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Chapter 5.: Sizing up the scale dependence of satellite-based 

plant diversity estimates: Functional diversity-area relationships  

observed through Sentinel-2 over the Bornean rainforest-

plantation matrix 

Based on:  

Hauser, L. T., Timmermans, J., Soudzilovskaia, N. A., van Bodegom, P. M., (Submitted). 

Sizing up scale dependence of satellite-based plant diversity estimates: Functional diversity-

area relationships  observed through Sentinel-2 over the Bornean rainforest-plantation matrix. 

Remote Sensing.  

 

Abstract: 

The dependency of biodiversity patterns on the spatial scale, at which we observe them, is 

widely acknowledged. This scale dependency is particularly important for satellite remote 

sensing applications of biodiversity patterns. With potential measurements at continuous and 

multiple scales, satellite remote sensing has a high potential to contribute to filling data gaps 

in large-scale plant functional diversity monitoring. However, apparent disparities of scale exist 

between the spatially continuous, and pixel-based modes of remote sensing observation versus 

the individual-plot and abstract conceptualisation of community diversity concepts of scale in 

ecology.  

In this study, we looked at the scale dependency of functional diversity estimates derived from 

satellite remote sensing. Hereto, we apply the concept of functional diversity-area relationships 

(FARs) based on indicators of plant functional diversity over the vast, biodiverse, and 

heterogeneous region of Sabah, Malaysian Borneo. The satellite-derived FARs derived from 

Sentinel-2 observations allow us to empirically study these relationships at new unprecedented 

continuous spatial extents and examine how ecological concepts of community diversity 

reoccur in spatially explicit pixel-based observations. 

The functional diversity-area relationships observed resonated with ecological theory and 

previous empirical field and airborne studies conducted at much smaller scales. The results 

also demonstrate a metric-dependent scale dependency of functional diversity estimates. 

Strong consistent trait convergence, compared to expectations from random spatial processes, 

was observed for functional richness with significant differences across a land use gradient. 

Landscape morphology, as an indicator of environmental heterogeneity, becomes increasingly 

important as plot area increases, suggesting a continuously increasing importance of beta 

diversity.  

The spatial continuity of the Sentinel-2 imagery allowed for easy-to-conduct multi-scale 

analysis and stratification of functional diversity estimates across land use. Such analyses can 

contribute to unveiling the role and continuous transition of different drivers at different spatial 

scales and across large spatial extents while omitting the need for arbitrary decisions of a fixed 
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optimal plot area. This prompts a reconsideration of whether the traditional ecological focus of 

discrete ‘within’ versus ‘between’ community diversity (i.e. alpha vs beta diversity) should be 

maintained or whether we need new more continuous concepts. 

5.1. Introduction 

The rampant decline of global biodiversity over the last decades has become a major threat to 

the ecosystems on which humans depend (IPBES, 2019). To further our understanding of the 

pace, drivers, and consequences of changes in biodiversity, we need reliable and well-

understood methods to monitor biodiversity dynamics across large areas and over prolonged 

periods of time (Rands et al., 2010). Sole reliance on traditional field sampling methods to meet 

this challenge is widely considered unfeasible given the spatial and temporal scales involved 

(O’Connor et al., 2015; Scholes et al., 2012). This has inspired a growing body of research on 

alternative monitoring tools, including the application of remote sensing (Wang and Gamon 

2019). Orbiting satellite remote sensing provides a unique perspective on Earth’s biodiversity 

with frequent and spatially continuous observations over large areas. However, with the 

increased usage, a full understanding of how exactly the configuration of these monitoring tools 

affects the observation of biodiversity patterns is crucial. This paper focuses on how spatial 

scaling, in particular the plot area over which we calculate diversity metrics, shape community 

patterns observed in functional diversity estimates derived from satellite remote sensing.   

Our perception of biodiversity patterns is affected by the conceptual scale as well as the spatial 

scale of observation. Conceptually, biodiversity complexity can be considered through 

different dimensions following the central organizing principles of modern biology (Anderson, 

2018; Gaston, 2010), from genetic to species, communities and ecosystems. Historically, 

studying large-scale spatio-temporal biodiversity patterns has been strongly rooted in 

(taxonomic) species concepts and led to global models of species’ ranges and species diversity 

patterns to develop and test ecological theories (Kreft and Jetz, 2007). Increasingly, a call to 

go beyond taxonomic identities and incorporate intra- and interspecific traits in an attempt to 

quantify community’s functional diversity (Mason et al., 2005; Violle et al., 2014). This is 

founded in the increased acknowledgment that the functional components of biodiversity, i.e., 

the diversity of forms and functions, are a principal link between biodiversity and ecosystem 

functioning (Funk et al., 2016; Violle et al., 2014)- affecting the productivity, adaptability, 

vulnerability to disturbances of ecosystems (Cadotte et al., 2011; Cardinale et al., 2011; Duncan 

et al., 2015; Grime, 1998; Hooper, 2002; Isbell et al., 2011; Mori et al., 2013; Ruiz-jaen and 

Potvin, 2010). These insights predicate the need for a better representation of functional 

diversity over large biogeographical scales to further validate ecological theories (Musavi et 

al., 2015; Reichstein et al., 2014) – a void that satellite remote sensing could potentially fill 

(Jetz et al., 2016).  

Optical remote sensing and the evolution of plants come together through the importance of 

solar radiation for both. The way plants interact with sunlight provides a window into plant 

strategies for resource allocation manifested through biophysical, biochemical, and structural 

plant properties which, in turn, result in distinct spectral responses measurable through remote 

sensing (Ollinger, 2011; Schweiger et al., 2018). Recently, the functional diversity of plant 

traits has been successfully mapped from spectral reflectance through hyperspectral airborne 
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instruments (Durán et al., 2019; Schneider et al., 2017; Zheng et al., 2021), and multi-spectral 

satellite remote sensing (Hauser et al., 2021; Ma et al., 2019). The latter is particularly 

interesting as it holds potential for studying large-scale plant trait patterns at regional and 

continental extents (e.g. Aguirre-gutiérrez et al., 2021; Campos-Taberner et al., 2018; Serbin 

et al., 2019). An undertaking that would virtually be impossible through laborious ground 

measurements (Májeková et al., 2016). 

The influence of scale on spatial patterns is a central theme both in biodiversity research as 

well as in remote sensing (Anderson, 2018; Field et al., 2009; Marceau and Hay, 1999). Spatial 

scales (i.e. the scale dependency of observations) affect the way we observe spatial patterns of 

plant diversity. Yet, clear discrepancies exist between how spatial diversity is calculated in 

ecology and remote sensing, namely at individual/community level (using spatially irregular 

and discrete observations) versus between pixels (using spatially continuous rasterized 

observations). To advance remote sensing for ecological applications and mapping spatial plant 

diversity patterns in particular, a translation between these concepts is necessary. This requires 

us to overcome, or at least understand the effects of, spatial scaling discrepancies found 

between ecology and remote sensing. 

In ecology, the concept of scale generally refers to the sampling scale shaped by the units of 

observation, including the geographic extent of field sampling design, and the plot area (grain 

size) of the ecological community for which to determine diversity (Field et al., 2009; Smith 

et al., 2013). In this perspective, ecological communities are abstractly defined as “a group of 

organisms representing multiple species living in a specified place and time” (Vellend, 2010) 

and serve as the window through which we measure diversity separated in ‘within’ (alpha) and 

‘between’ (beta) diversity of community plots (Jurasinski et al., 2009; Whittaker, 1972). 

Application of these  concepts in field studies generally results in discrete plots scattered across 

the study area, where alpha diversity is characterised characterized by differences between 

individuals within a plot, while beta diversity is calculated as the differences between plots 

(Chase et al., 2019). 

The pixel-based spatially continuous mode of observation of satellite remote sensing differs 

strongly from these (relatively fluid) ecological concepts (Jurasinski et al., 2009; Whittaker, 

1972). In general, most satellite remote sensing sensors offer spatial resolutions that are too 

coarse for the delineation of individual plant canopies (Anderson, 2018). This mismatch 

becomes further amplified when aiming to grasp the ecological community concept in a set of 

pixels. In contrast, some studies have simply assumed that every single pixel (e.g. 10-20m of 

Sentinel-2) equals an ecological community (Hoffmann et al., 2019; Khare et al., 2021, 2019; 

Rossi et al., 2020). While such assumptions might be defendable for specific grasslands, they 

are likely inadequate for larger tree and shrub canopies.  

In theory, diversity of ecological ‘communities’ may be grasped through remote sensing by 

applying diversity metrics to clusters of pixels ranging from two single pixels to an entire scene 

of pixels. Different terms have been used for describing such pixel-based ‘communities’, e.g. 

spectral plot extents (Végh and Tsuyuzaki, 2021), (moving/sliding) window size (Barton et al., 

2013; Schneider et al., 2017), and area (Durán et al., 2019; Zheng et al., 2021). However, 

community diversity metrics calculated over such pixel clusters raise questions whether we 

looking at alpha or beta-diversity, or a mix of both (Laliberté et al., 2019). Not all individual 
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differences will be captured given the coarseness of individual satellite-based pixels while the 

community concept is arbitrarily captured through a cluster of pixels (Hauser et al., 2021; 

Rocchini et al., 2015). Given these challenges, a meaningful evaluation of the pixel-based 

integration of ecological spatial scaling concepts and the scale dependency of observed spatial 

patterns will be essential to conduct, interpret and advance with large-scale plant diversity 

assessments using satellite remote sensing (Wang et al., 2018).  

The scale-dependency of biodiversity metrics is perhaps most demonstrated and widely studied 

through the concept of the species-area relationship (SAR), fundamental to spatial ecology and 

biogeography (Lomolino, 2000; Preston, 1960). The principle of SARs suggests that species 

richness (𝑆) is proportional to the area (𝐴) raised to some exponent (𝑧) (Plotkin et al., 2000), 

often described as the power law relationship 𝑆 ∝ 𝐴𝑧(Rosindell and Cornell, 2007). Similarly, 

yet less widely studied, the functional diversity-area relationship (FAR) is the trait-based 

counterpart of SAR (Karadimou et al., 2016; Smith et al., 2013). Importantly, FAR/SARs can 

be linked to the community diversity concepts (Whittaker, 1973) in which ‘area’ is 

representative for (landscape) gamma diversity: the species/trait space pool of a certain 

(increasingly large) area. Gamma diversity, in turn, is affected by alpha and beta diversity 

drivers that together determine the increases in diversity as a function of area (Chase et al., 

2019).  

A few airborne remote sensing studies have been conducted to research the effect of different 

spatial scales on functional or spectral diversity (Dahlin, 2016; Durán et al., 2019; Schneider 

et al., 2017). Given the spatial resolution of the airborne observations used in these studies, the 

impact of mixing alpha and beta diversity within plots might be less relevant as compared to 

satellite remote sensing. Furthermore, given the limited spatial extent of airborne observations, 

these studies have remained limited in geographical extent. To our knowledge, so far, no 

studies have attempted to study the scale dependency of functional diversity in general or the 

FAR concept in particular using satellite remote sensing.  

Here, we apply the concept of FAR to diversity metrics (Villéger et al., 2008) calculated from 

spectral trait indicators derived from the Sentinel-2 over the vast, biodiverse, and 

heterogeneous region of Sabah, Malaysian Borneo. Based on this, we construct FARs to study 

the scale dependency of satellite remote sensing observations of functional diversity estimates. 

We use a comparison against null-models, a land use gradient, and environmental drivers to 

assess the scale-dependent influence of assembly processes on satellite remotely sensed FARs. 

A land use gradient, from oil-palm plantations to intact forests, is used to indicate how different 

species pool (from monoculture to species-rich) environments affect the curvature of FAR, 

while landscape morphology as a driver of habitat heterogeneity can be indicative of the beta 

composition of functional diversity patterns (Grytnes and Beaman, 2006; Tello et al., 2015). 

The findings of this analysis open discussion on the role of satellite remote sensing for studying 

traditional ecological concepts of scale including FARs, and (drivers of) alpha and beta-

diversity. 



82 

 

 

5.2. Methods 

5.2.1. Study area 

We opted for a study area in the Malaysian province of Sabah as it represents a crucial global 

biodiversity hotspot (UNDP, 2012) with well-studied gradients of elevation (Aiba and 

Kitayama, 2010; Grytnes and Beaman, 2006; Kitayama, 1992) and validated maps of relevant 

land use types (Gaveau et al., 2016, 2014). The study area is located in the northern tip of 

Borneo (115°12'27.317"E-117°59'5.608"E, 4°26'3.612"N - 7°13'51.89"N) and covers a 

rectangular tile of 14400 km2 square (120*120km, 6000 by 6000 pixels) surrounding the 

Danum Conservation Area (Marsh et al., 1992). Over the past decades, widespread forest 

conversion for oil-palm and timber/pulp production has significantly altered the landscape 

threatening more than 1000 taxa of endemic plants present in Sabah including iconic 

Dipterocarpaceae species and a unique variety of fauna dependent on these habitats (Bryan et 

al., 2013; Maycock et al., 2012; Wilcove et al., 2013). We implemented a land use classification 

representative of the historic forest conversion developments and related plant diversity 

implications. The gradient consists of three different land use types; intact forests within and 

surrounding the protected Danum Valley Conservation area and nearby logged forests and oil-

palm plantations (Fig.  5.1c). These three dominant land use types (Fig.  5.1b) are defined as 

(Gaveau et al., 2016, 2014); (1) ‘Intact Forest‘ which are old-growth forests. These forest 

ecosystems usually include old closed-canopy emergent trees. (2) ‘Logged Forest’ are intact 

forests that have been impacted by mechanized selective logging at some point since 1973, and 

(3) ‘Industrial Oil-Palm Plantations’ which are production systems mainly revolving around 

monoculture planting of Elaeis guineensis jacq..  

5.2.2. Datasets 

Optical remote sensing acquisition above Sabah, Malaysia, is challenged by its year-round high 

average cloud cover. For this study, we focused on the Sentinel-2 observations for the 9th of 

July 2017 (illustrated by a RGB composite in Fig.  5.1a) covering the study area, as the cloud 

cover was the lowest since the launch of Sentinel-2 in 2014.  

After the acquisition, the data were atmospherically corrected using the Sen2Cor processor 

(Gascon et al., 2014; Louis et al., 2016) within ESA’s Sentinel Application Platform (SNAP) 

toolbox. Stringent quality flags stemming from both the atmospheric correction and the 

biophysical processor (see below) were applied to mask all areas affected by cloud 

contamination, poor atmospheric correction, poor trait retrievals (outside the physical range of 

variation), and shadows (Louis et al., 2016; Weiss and Baret, 2016). Additional cautionary 

buffers of 100m radius were applied around the quality flags to further limit the influence of 

clouds and cloud shadows on the spectral properties of the imagery. Non-vegetated areas with 

a fractional cover (FC) below 30% were masked out to remove non-/marginally vegetated 

areas.  

Finally, functional trait estimates were obtained using the biophysical processor through 

spectral trait indicators (Weiss and Baret, 2016) within SNAP. The biophysical processor is 

based on a hybrid approach combining physical modeling and machine learning (Weiss and 

Baret 2016). Specifically, SNAP uses an artificial neural network (ANN) inversion pre-trained 

on a spectral database including canopy reflectance (simulated using an unreleased version of 
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PROSPECT prior to PROSPECT-4 (Feret et al., 2008), coupled with the SAIL model (Verhoef, 

2002, 1984)). The value, range, and distribution for each input parameter aim to provide 

general global applicability without the ingestion of ecosystem-specific ancillary data (Weiss 

and Baret, 2016).  

 

Fig.  5.1: a) Map of the Sentinel-2 observation, as seen through a true visible range composite image, over 

the study area in Sabah, Malaysia on the 9th of July 2017 after atmospheric corrections. b) Map of the three 

land use classes within the Sabah study area used for analysis. c) Map of study area consisting of sampled 

plots that have been used to scale the functional diversity metrics from 0.4 to 60 ha uninterruptedly. d-f) 

Canopy trait estimate maps derived of Sabah through imaging spectroscopy that represent Leaf Chlorophyll 

Content (µg/cm2) (d), Leaf Area Index  (m2/m2) (e), and Leaf Water Content (g/cm2) (f), respectively. 

From the complete set of spectral trait indicators that SNAP can retrieve, we focused on Leaf 

Area Index (LAI), Leaf Chlorophyll-ab (CAB) and Leaf Water Content (LWC), as shown in  

Fig.  5.1d,e,f. These retrievable traits are both spectrally and ecologically relevant: LAI  

(m2/m2) relates directly to primary productivity and to competitive and complementary light 

use, transpiration and energy exchange (Asner et al., 2003; Castillo et al., 2017; Zheng & 

Moskal, 2009). Through PROSAIL, effective LAI captures the canopy structure simplified in 

a 1-D simplified representation (Jacquemoud et al., 2009). Complementary to LAI describing 

resource use at the canopy level, CAB and LWC relate to processes occurring at the leaf level 

(Poorter and Bongers, 2006). CAB (µg/cm2)  directly plays a functionally important role in the 

photosynthetic capacity and resource strategy of plants (Cao, 2000; Croft et al., 2017). LWC 

(g/cm2) is important for physiological plant performance and regulatory mechanisms such as 

photosynthetic carbon assimilation, electron transport rate, and isohydric behavior (Damm et 

al., 2018; Lawlor and Cornic, 2002). Furthermore, it plays a role in plant responses to drought 

and stress tolerance (Nieuwstadt and Sheil 2005; Saura-Mas 2007; Weiher et al. 1999), and 

plant-water relations and water uptake (Asbjornsen et al., 2011; Damm et al., 2018).  

a. b. c. 

d. e. f. 
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We assessed the plausibility of the retrieved estimates of spectral trait indicators using; 1) a 

sensitivity analysis, 2) reverse inversion to assess possible biases between canopy types, and 

3) detailed comparison to field measurements conducted in previous studies in Sabah, Borneo, 

of plant traits of regionally common tree species and the dominant oil-palm species. Further 

details on the retrieval of traits using SNAP and qualitative assessment of retrievals are found 

in Suppl. Mat. Fig. S. 21.  

Land use data were derived from CIFOR’s open-access ‘Atlas of deforestation and industrial 

plantations in Borneo’ (https://www.cifor.org/map/atlas/). The data is based on longitudinal 

LandSat satellite imagery (1973-2016) with additional visual, expert-based interpretation 

methods and maps of oil-palm and pulpwood concessions. The maps have been validated 

(Gaveau et al., 2016, 2014). Fig.  5.1b presents a map of the land use types of interest in the 

study area.  

In addition to land use, elevation and slope are considered as environmental drivers in shaping 

functional diversity patterns (Sanders and Rahbek, 2012; Stein et al., 2014; Zarnetske et al., 

2017). The Shuttle Radar Topography Mission (30m spatial resolution) was used to map 

elevation and slope across the study area.  

5.2.3. Functional diversity 

The spectral trait indicator maps retrieved over the study area were used to calculate functional 

diversity. Specifically, we focus on two multi-trait functional diversity indices; 1) functional 

richness (FRich) and 2) functional divergence (FDiv). FRich (calculated using Quickhull 

Algorith, http://www.qhull.org, within the Scipy.spatial package in Python) represents the 

amount of niche space occupied by the community and is calculated as the convex hull volume 

(CHV) of the three pixel-based spectral trait indicators (Cornwell et al., 2006). FDiv  

(calculated using EQ1 and EQ2 equations by Villéger et al. (2008) as implemented by 

Schneider et al. (2017)), quantifies how combinations of spectral trait indicators diverge in 

their distances from the centre of gravity in multi-dimensional trait space based on Euclidian 

distances (Villéger et al., 2008): 

Δ|𝑑| = ∑  𝑆
𝑖=1

1

𝑆
⋅ |𝑑𝐺𝑖 − 𝑑𝐺

__

|        EQ1 

FDiv =
𝑑𝐺
__

Δ|𝑑|+𝑑𝐺
__          EQ2 

where S is the number of pixels mapped in the multidimensional space, dGi is the Euclidean 

distance between the ith pixel and the center of gravity, and 𝑑𝐺
__

 is the average distance of all 

pixels to the center of gravity. Functional divergence is scaled from 0 to 1, with 1 indicating 

all pixels lying on a sphere with equal distance to the centre of gravity and large trait differences 

within a community. 

The functional diversity metrics were calculated for pixel-based ‘communities’. Within these, 

higher FRich values represent a larger volume in trait space caused by richer diversities of trait 

combinations, while higher FDiv values represent broader distributions of trait space niches 

relative to trait space. The multi-variate diversity calculations considered only the 90% 

centermost data points, as determined by kernel density estimates, to limit the influence of 

https://www.cifor.org/map/atlas/
http://www.qhull.org/
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extreme values, noise, and possible retrieval artifacts. We based this on estimated signal-noise 

ratios (5-10%) found in atmospherically corrected Sentinel-2 spectral reflectance (Brede et al., 

2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  5.2: Three different plot sizes are exemplified for functional diversity calculations. All plots (N = 1713) 

are grown based on a nest radial nearest neighbour search and plot locations are chosen in which plot sizes 

van be varied from 0.4ha to 60ha continuously without masks transecting the plots.  

5.2.4. Scaling of plots 

To assess the changes across different scaling of the functional diversity metrics, we calculated 

the functional diversity metrics over pixel ‘communities’ with increasing window sizes, i.e. 

plots with an increasing area and inherently an increasing number of pixels. The range of spatial 

scaling in this study consisted of plot areas with extents analysed from 0.4 ha to 60 ha which 

translates to ‘communities’ comprised of 10 to 1500 Sentinel-2 pixels at 20m spatial resolution. 

Plot sizes of 60 hectares were considered the largest possible window size considering data 

patchiness (due to cloud cover, quality masks, vegetation masks, and the mosaic of land use 

types) while still obtaining a large number of observations across all land use types (N>300). 

Hereafter, we will refer to plot area to indicate the changing spatial scale over which we 

calculated functional diversity metrics (i.e. FARs).  

Across the entire study area, we found 1713 plots consisting of a single uninterrupted land use 

type (Intact Forest or Logged Forest and Oil-Palm plantations), with an area of at least 60ha. 

For each of the 1713 60ha-plots, functional diversity was calculated repeatedly while 

Plot size: 10 pixels Plot size: 100 pixels Plot size: 1000 pixels 

Calculations of Functional Richness and Divergence 
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increasing the area (i.e., number of pixels) of the same plot up to 60ha within a single 

uninterrupted land use type. The set-up ensures consistency in functional diversity metrics 

across all scales as the exact same 60ha plots are analysed from smallest to largest extents. This 

implies that the same areas are sampled consistently and the sample size (N) remains constant 

across scales and land use types. 

Increments were made by steps of 10 pixels in the repeated calculations. The approach adopted 

for increasing plot areas followed a nested radial nearest neighbour search where pixels were 

selected adjacent to the previously selected pixels (Fornberg and Flyer, 2015). Search decisions 

were based on the minimal spatial distance to the starting point of the pixel-based ‘community’. 

All starting points and pixels selected lay within the maximum plot extent (60 ha) and were of 

the same single land use type. To assure representativeness for the entire plot, we conducted 

repeated random drawings (ten times) of different starting points and radial nearest neighbour 

search approach to ensure a representative sample of the entire 60ha single land use plots at 

smaller spatial extents. Fig.  5.2 illustrates the nested radial nearest neighbour search for three 

exemplar scales; 0.4 ha (10 pixels), 4 ha (100 pixels) and 40 ha (1000 pixels). 

5.2.5. Data analysis  

The satellite remote sensing estimates of the functional diversity-area relationship were 

evaluated against null-models and stratified across land use types. Our analysis involved three 

main parts. 

Firstly, we developed null-models to compare our observed FARs against expectations from 

random spatial trait distributions. Null-models allow testing of the passive sampling hypothesis 

(Rosenzweig, 1995) which suggests that larger areas passively sample more individuals and 

thus statistically will incorporate more trait diversity from the regional pool. Deviance from 

such probabilistic artifacts and purely random processes in the Sentinel-2 observed data can 

signal trait convergence/divergence, i.e. functional under-/over-dispersion, through 

environmental filtering and/or biotic sorting (Smith et al., 2013; Zheng et al., 2021). These 

null-models give a random, spatially blind account of the mathematical effect of having more 

data points (pixels) available as the plot area increases from 0.4 to 60ha plots. Two kinds of 

null-models were applied. Both draw from the pool of existing trait combinations as observed 

through our remote sensing estimates. The ‘random null-model’ contained trait combinations 

that were randomly drawn without consideration of land use, whereas for the ‘land use null-

model’ trait combinations were drawn within the matching land use type to which the null-

model is compared. In other words, both null-models draw from trait combinations found in 

the observed data trait distribution, but one with consideration of the specific trait pools of 

different land use types and the other from the total trait pool of the study area without 

consideration of land use. The comparison between observed patterns and the null-models 

allowed for insights in the shape of FAR curvature, passive sampling hypothesis, di-

/convergence as opposed to random processes, and possible trait pool saturation.  

Secondly, we stratified the functional diversity-area relationships between the distinct land use 

types of the study area; intact forests, logged forests, and oil-palm plantations. Functional 

diversity-area curvatures were expected to differ significantly across land use types. The 

distinct land use types were expected to underpin different community assembly processes that 

translate into different FAR curvatures (Barnes et al. 2014; Edwards et al. 2014; Fitzherbert et 
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al. 2008; Koh and Wilcove 2008; Varsha et al. 2016; Wang and Foster 2015). Differences in 

functional diversity metrics between land use types and across scales were assessed by 

ANOVAs and post-hoc analyses executed across the full range of different plot areas (0.4 to 

60ha). Notably, all plot areas were selected to consist of a single land use with no plots of 

mixed land use. The assumptions of the ANOVAs were evaluated and a log transformation of 

Functional Richness was applied to ensure normality of residuals.  

Thirdly, the predictive power of environmental drivers of spatial patterns in functional diversity 

was assessed. In addition to land use, we looked at the explanatory role of landscape 

morphology – as captured by the variation in elevation and slope - on patterns of functional 

diversity. Variation in landscape morphology can introduce heterogeneity within and between 

habitat patches which, in turn, drives beta-diversity by introducing opportunities for different 

communities and environmental niches (Barton et al., 2013). Statistical analysis was based on 

regression models run for each plot area from 0.4ha to 60ha separately. Ordinary least squares 

(OLS) regression models were used to quantify the extent to which studied environmental 

drivers explained the functional diversity patterns at different spatial scales dictated by the plot 

area. We ran two sets of regression models; one to focus only on the effect of land use, and one 

set of models that incorporates both land use and variation in elevation and slope as predictors.  

5.3. Results 

5.3.1. FAR against null-model predictions 

Fig.  5.3 shows how functional diversity metrics, from both satellite observations and null-

models, change as a function of plot area (for non-log transposed representations see (Fig. S. 

23a). Functional richness is highly scale-dependent, with the curvature appearing to be 

biphasic; initially depicting fast increases in richness which phases out to a more linear pattern 

from 10ha and beyond. At the largest plot area (60ha), no full saturation in increases of 

functional richness is observed yet. This implies that trait variation at 60ha is not yet exhausted. 

In comparison to the null-models, the observed clustering of functional traits was much 

stronger, as indicated by the significantly lower functional richness. This comparison suggests 

a spatial convergence of traits as opposed to a random distribution. Observed functional 

richness is 3-5 times more converged than what would be expected from a random distribution. 

With increasing plot area sizes, the convergence gap becomes smaller. 

The patterns in functional divergence (FDiv) are relatively scale-independent. At plot area 

<5ha, functional divergence decreases with plot area until it ultimately stabilizes. We observe 

a close resemblance between the actual observed data and the land use null-model, while the 

fully random null-model deviates more strongly from the actual observed patterns. This 

suggests that land use plays an important role in shaping actual functional divergence patterns 

while there is a higher divergence between trait combinations in the observed data than would 

be expected based on fully random processes.  
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Fig.  5.3: Scale dependency of the functional richness (left) and divergence (right) metrics comparing 

observed remotely sensed diversity in Sabah, Borneo, versus null-models based on randomly drawn trait 

combinations from observed trait values. The ‘Random Null’ model (orange) draws random trait 

combinations irrespective of land use type, whereas the ‘Land Use Null’ model draws random trait 

combinations in consideration of land use. Dark lines represent the mean and standard deviations are 

represented by the respective shaded areas. Note the Log-transformed x-axis. 

5.3.2. FAR across land use types 

 

 

 

 

 

 

 

Fig.  5.4: Scale dependency of the functional richness (left) and divergence (right) metrics stratified across 

land use types. Functional diversity calculations were done over continuous plots of one land use type over 

a range from 0.4 to 60 ha. Dark lines represent the mean and standard deviations are represented by the 

respective shaded areas. Note the log-transformed x-axis. 

Fig.  5.4 shows the FAR curvatures for the different land use types studied. Functional richness 

is largest in intact forests, followed by logged forests, whereas oil-palm plantations structurally 

host the lowest mean functional richness across all plot area sizes (for non-log transposed 

representations see Fig. S. 23b). Standard deviations for all three land use types are relatively 

large and could relate to the large variation in environment and landscapes across the vast study 

area and/or the relative sensitivity of convex hull volumes to anomalous observations. Despite 

large standard deviations, differences between the land use types are found to be statistically 

significant across all plot areas. Post-hoc analysis further revealed that differences in functional 

richness between logged forests and intact forests become significant from around 4 ha 

onwards while oil-palm plantations significantly deviated from the forested land use types 

across all plot areas (Fig. S. 24). In addition to a lower functional richness, oil-palm plantations 

are characterized by significantly lower functional divergence compared to the forested land 
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use types while logged forests and intact forests exhibit comparable mean functional 

divergence across the range of plot areas considered (For post-hoc analyses results; see Fig. S. 

24).  

5.3.3. The scale dependency of environmental predictors  

Fig.  5.5 depicts the explained variance of two sets of linear regression models that were run 

over the same 1713 plots at area size varying from 0.4. to 60ha. For functional richness, we 

find a significant contribution of the environmental drivers as plot area increases. Like the 

universal principle behind SAR, abiotic heterogeneity likely increases when larger areas are 

considered for analysis. As a response to the more diverse environment, a higher richness of 

trait combinations and a corresponding larger trait space volume is a logical response of 

ecological communities. As plot area increases, the role of landscape morphology as a driver 

of environmental heterogeneity becomes an increasingly important explanatory predictor in 

comparison to the model only accounting for land use as a predictor. Land use steadily explains 

around 15 % of the variance in functional richness across all plot areas which is relatively low 

in part due to the large standard deviations in functional richness found within land use types.  

Elevation and slope as indicators of landscape morphology contribute relatively little to 

explaining functional divergence patterns. The processes driving the distribution of traits 

within relative trait space appear to be for a large part determined by land use. Land use 

becomes an increasingly important predictor with increasing plot area.  

 

 

 

 

 

 

 

 

Fig.  5.5: Explained variance of two sets of linear regression models as predictors of spatial functional 

richness (left) and divergence (right) patterns across plot area size. The first set of models (orange) includes 

land use as a predictor of functional diversity. The second set of models (blue) expands with elevation and 

slope as environmental drivers in predicting spatial functional diversity patterns. All models were found to 

be significant (p<0.01) across the entire range of plot areas.     

5.4. Discussion 

The dependency of biodiversity patterns on spatial processes has been widely acknowledged 

(Kunin et al., 2018; Marceau & Hay, 1999; Smith et al., 2013; Steinbauer, Dolos, Reineking, 

& Beierkuhnlein, 2012; Wang, Rahbek, & Fang, 2012). With ongoing advances in sensor 

technologies and processing methodologies, satellite remote sensing is widely expected to 

contribute to current data gaps in large-scale biodiversity monitoring (Almeida et al., 2021a; 
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Jetz et al., 2016). As such, future attempts to estimate plant diversity patterns over large spatial 

extents using satellite remote sensing are similarly subject to spatial scaling decisions that will 

affect the patterns we observe. In this study, we looked at the scale dependency of functional 

diversity estimates derived from satellite remote sensing, specifically at how the ‘community’ 

concept translates into a pixel-based plot area affects spatial functional diversity patterns. The 

results demonstrate a metric-dependent scale dependency of functional diversity estimates 

across an unprecedented range of scales. Here, we further discuss the shape of the presented 

satellite-based FARs in relation to previously conducted studies at smaller scales, the passive 

sampling hypothesis, trait convergence, land use, and alpha/beta diversity concepts. 

5.4.1. Comparison against field and airborne studies 

The results show that functional diversity holds a consistent relationship with plot area, with 

different degrees of scale dependency between functional richness and functional divergence 

metrics. At smaller plot areas, curvatures were similar to those found by Karadimou et al. 

(2016) and Smith (2013) using traditional field sampling approaches applied to vascular plant 

diversity. Although the range over which the grain and extent varied, was much lower than 

ours (Karadimou et al. (2016) had plots ranging from 1 to 128 m2 and Smith et al. (2013) 0.02 

m2 to 4 m2), both studies found that functional richness increases consistently with area. In 

addition, Karadimou et al. (2016) observed, similar to our study, that functional divergence 

exhibited a nearly flat curve with plot area.  

The application of (airborne) remote sensing generally allows increasing the range of study. 

Schneider et al. (2017) looked at functional diversity derived through imaging spectroscopy 

using airborne optical and LiDAR remote sensing over a Swiss mountain ridge- across radii 

from 60m radius to 1020m with 6m spatial resolution. Durán et al. (2019) used hyperspectral 

sensors to retrieve foliar trait indicators to estimate functional diversity in tropical forests across 

an Amazon-to-Andes elevation gradient (215 to 3537 m). Durán et al. (2019) ranged plot areas 

between 20 m2 and 0.5-5.3 ha stratified across different segments of elevation. Again, both 

studies demonstrated functional richness curves similar to patterns observed in our study. These 

curvatures are characterized by initial steep increases attenuating as area sizes increase. 

Although functional divergence patterns differed across elevation according to Duran et al. 

(2019), in general, both studies (Durán et al., 2019; Schneider et al., 2017) revealed relatively 

scale-invariant patterns of divergence that are similar to those found here. 

Dahlin (2016) evaluated the effects of land use on the FARs, using spectra(l diversity) instead 

of using spectral trait indicators as proxies for functional diversity. In a mixed landscape of 

forest and agriculture in Northern US with plots ranging from 8 to 12 m2, Dahlin (2016) showed 

the typical biphasic curvature for functional richness with fast increases at smaller scales and 

slowed down increases at large scales as seen in our and other studies. The data of Dahlin 

(2016) showed trait convergence compared to random null-models. In addition, forest plots 

were characterized by a higher diversity and amplitude of the curvature as compared to 

agricultural plots.   

Through satellite earth observations, we were able to extend the range of scale far beyond the 

spatial extents studied in previous empirical studies. The general curvature among scales and 

approaches seems to correspond. The previous in-situ, airborne, and our presented satellite 

observations all demonstrate a steep increase in functional richness at smaller scales and 
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relatively scale-invariant patterns for functional divergence. At larger scales, we show that the 

increase in functional richness flattens as plot area increases while functional divergence 

stabilizes and becomes relatively scale-independent at the larger plot areas.  

These observations are in line with ecological theory. The scale dependency of functional 

richness relates to the amount of available resources present in an area, a relationship that 

follows those seen in the species richness - area relationship (Karadimou et al., 2016; Plotkin 

et al., 2000). The cumulative amount of available resources rises with increasing area. This 

leads to communities supporting a larger number of species and corresponding trait 

combinations (Karadimou et al., 2016). Initially, each added area adds new trait combinations 

that may be due to compositional changes, stochastic species occupancy patterns, and intra-

specific trait variation. As the area increases, the convergence of traits to its surrounding 

environment results in fewer new inter-/intra-specific trait combinations relative to the trait 

space of the sampled community (see also Barton et al., 2013). This causes the relationship of 

increasing functional richness with scale to attenuate. However, no full saturation is observed 

as the surrounding environment of plots also tends to change with increasingly larger scales 

(Zarnetske et al., 2019, 2017). At 60 ha plots, we notice no saturation has yet occurred, 

suggesting that either the total trait pool is expressed at even larger scales or that we might need 

to abandon the concept of one clear-cut trait pool from which selection occurs but rather rely 

on a continuum that hardly saturates at these scales.  

5.4.2. Passive sampling hypothesis 

Increases in plot area also result in an increase in sample size, caused by the larger number of 

pixels to cover a larger area. In line with the passive sampling hypothesis, plot areas with a 

larger number of sampled individuals will statistically be more likely to exhibit higher richness. 

Our datasets are fixed by the 20m spatial resolution of Sentinel-2. Given the fixed spatial 

resolution, an increase in areas is automatically tied to an increase in the number 

observations/pixels. An area of 0.4 ha requires 10 pixel-based observations, whereas a plot of 

60ha would require 1500 similar observations. With substantial increases in the number of 

observations as the area expands, the probabilistic likelihood of encountering new trait 

combinations distinct to the already observed trait space increases too. This effect diminishes 

as the area continues to increase as the probability of encountering new trait combinations 

becomes smaller given the presumably finite possible trait ranges. Our null-models, based on 

randomization, with and without consideration of land use, mimic this probabilistic effect and 

are indicative of the passive sampling hypothesis for FARs. The shape of curvatures calculated 

based on satellite-derived functional diversity estimates did not differ from the null-models 

(Fig.  5.3), even when stratified across different land use types (Fig.  5.4). Nonetheless, 

importantly, the amplitude of the different FARs was found to be crucially different for the 

observed data, and for different land use types. Specifically, the observed functional richness 

reveals much smaller increases in functional richness with plot area as would be expected based 

on the null-models. Functional richness increases are converged beyond what could be 

expected solely on random effects. The role of the passive sampling hypothesis is not 

dismissed; however, the observed patterns are shaped by other non-random factors as indicated 

by the deviance from the random null-models.   
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5.4.3. Trait convergence 

At any given plot area, we observed strong trait convergence of the observed functional 

richness estimates as compared to the randomization-based null-models (Fig.  5.3). The spatial 

distribution of functional traits appears to be confined geographically, but is also further bound 

by land use patterns. A confined subset of trait combinations is expressed at each plot area and 

for each land use type which results in significantly smaller trait spaces, i.e. functional richness, 

in the observed data as compared to the null-models.  

From an ecological perspective, these trait convergence patterns signal the role of 

environmental filtering and biotic sorting, creating an underdispersion of trait combinations in 

space (Schneider et al., 2017; Smith et al., 2013; Tello et al., 2015; Weiher and Keddy, 1995; 

Zarnetske et al., 2017). When we stratify FARs by land use, intact forests - followed by logged 

forests - exhibit the largest functional richness whereas oil-palm plantations host structurally 

lower mean functional richness across all scales (Fig.  5.4). These results are in line with 

findings of earlier field studies in Borneo and (sub-)tropical ecosystems comparing functional 

diversity in oil-palm plantations with intact and logged forests (Barnes et al., 2014; Edwards et 

al., 2014; Maeshiro et al., 2013), albeit that previous studies analysed different taxa and did not 

investigate the scale-dependence of land use impacts. The land use gradient represents how 

different species pool (from monoculture to species-rich) environments affect the curvature of 

FAR. The lower functional richness of oil-palm plantations can readily be explained by the 

intensive management selecting for monocultures. Given that intra-specific trait variability is 

commonly lower than inter-specific trait variability (Baraloto et al., 2010; Hulshof and 

Swenson, 2010; Messier et al., 2010; Swenson, 2013), this translates into lower functional 

richness.  

In contrast to the richness metric, functional divergence between trait combinations observed 

from satellite data was higher than what would be expected based on random processes. The 

land use null-model fares particularly well in modelling the observed data, which highlights 

the role of land use in driving functional divergence patterns. The distinct patterns of lower 

functional divergence in oil-palm plantations likely relate to the intensively managed nature of 

this monocultural land use type as its management suppresses community assembly processes, 

e.g. competition and niche partitioning (Smith et al., 2013). The comparisons against random 

null-models and across land use types suggest that a degree of non-random niche differentiation 

and/or competitive adversity is taking place, resulting in more relative divergence than would 

be expected from purely random spatial trait selection (Weiher and Keddy, 1995). Notably, 

processes of competitive adversity are assumed to be prominent at fine scales as organisms 

compete for resources within each other’s vicinity (Smith et al., 2013).  

From a remote sensing perspective, two considerations are important in relation to the observed 

trait convergence in functional richness estimates as opposed to the random and land use null 

models. Firstly, the 20m spatial resolution of Sentinel-2 is too coarse to support the delineation 

of individual canopies, rather pixels are aggregates of multiple canopies. Pixel aggregation of 

functional traits of multiple canopies can mediate and converge the extremes otherwise found 

between individual canopies leading to a degree of trait convergence. Secondly, atmospheric 

scattering causes light reflected from adjacent landscapes to be observed by the sensor. Without 

adequate correction of possible adjacency effects, scattering leads to minor biases or possible 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/atmospheric-scattering
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/atmospheric-scattering
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spectral convergence with effects for the convergence of functional richness estimates (Hauser 

et al., 2021; Louis et al., 2016).  

5.4.4. Environmental drivers 

Beyond the general shape of FARs themselves, we looked into environmental drivers to assess 

the scale-dependent influence of assembly processes on satellite remotely sensed FARs. For 

functional divergence, land use seems to be dominant as an explanatory variable of the spatial 

patterns observed (Fig.  5.5). With increasing plot area, the effect of land use becomes 

increasingly profound as standard deviations of functional divergence become increasingly 

smaller in proportion. This might be attributable to a crystallization of within-trait space 

relationships and a waning effect of noise on diversity metrics when based on larger sets of 

observations (Brede et al., 2020; Skakun et al., 2017). Land use, and correspondingly its 

management intensity, is an important driver shaping natural community assembly processes 

that influence the divergence between trait combinations within multidimensional trait space. 

Intensive management and monoculture practices are likely to undermine processes of 

competition naturally occurring in forests which resonates with the higher functional 

divergence found in the latter (Fig.  5.4). In contrast, the role of landscape morphology 

appeared virtually absent in the models explaining spatial differences in our estimates of 

functional divergence. 

In the case of functional richness, our findings highlight that the importance of land use remains 

rather constant across plot area sizes (Fig.  5.5). On the other hand, slope and elevation, i.e. 

landscape morphology, as an indicator of environmental heterogeneity, manifests itself as a 

predictor of functional richness only with increasing plot area (Fig.  5.5). In other words, the 

importance of landscape morphology (slope and elevation) appears to be a function of plot 

area. The latter could relate to the larger probability to contain a more heterogeneous 

environment at larger plot areas. In most ecosystems, the environment can act as a selective 

filter on plant species along abiotic gradients (Read et al., 2014). As a result, the observed 

functional diversity in a plot could become increasingly shaped by environmental heterogeneity 

and the diverse adaptations of individuals thereupon. Slope and elevation are limited indicators 

of the real complexity of factors shaping the environment. For future studies, including soil 

data or water availability could be important environmental drivers to consider (Chave, 2008; 

John et al., 2007).  

5.4.5. Alpha and beta diversity components 

Alpha and beta concepts make a distinction between within- and between-community diversity 

dynamics (Whittaker, 1972). In this study, the plot area through which ‘community’ diversity 

was conceptualized was assessed from 0.4ha to 60ha. The functional richness estimates showed 

a monotonous change in increases as a function of plot area. The fast increases observed at 

small scales may be attributable to high variation in stochastic species occupancy patterns 

among sampling units, and variation in species responses to competition and niche occupancy. 

Such shapers of variation are commonly attributable to alpha diversity drivers (Field et al., 

2009).  

At larger plot areas (> 5ha), increases of richness per area slow down leading to saturation in 

variation. Particularly at larger plot areas, an increasingly large share of the variance of 
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functional richness could be explained by landscape heterogeneity, for which we used 

morphology (slope and elevation) as an indicator (Fig.  5.5). The increasing explanatory role 

of landscape morphology at bigger (intermediate) scales (Fig.  5.5) suggests the increasing 

importance of beta diversity drivers that capture distinct ecological communities that are 

present adapting to different environmental conditions (Barton et al., 2013; Weiher and Keddy, 

1995).  As a mechanism for the FAR, larger areas are expected to have higher levels of habitat 

heterogeneity compared to smaller areas. Habitat heterogeneity leads to new environments that 

require trait adaptation following the niche theory (Weiher and Keddy, 1995). Distinct 

heterogenous environmental conditions are linked to hosting distinct ecological communities 

to thrive resulting in higher ‘between’ community diversity (i.e. beta diversity) (Barton et al., 

2013). 

5.4.6. Recommendations 

In combination, our findings show how discrete concepts of alpha and beta diversity translate 

to a continuous transition when observed from spatially explicit satellite remote sensing. This 

challenges the applicability of discrete alpha and beta concepts and raises the question of 

whether we need new more continuous concepts. It may even be questioned whether the strong 

ecological focus of within vs. between communities (alpha vs beta) may be maintained given 

that the spatially explicit continuity of remote sensing allows for multi-scale analyses of 

diversity patterns across communities of different sizes.  

Conceptually, the concepts of alpha and beta diversity are of value to make sense of spatial 

functional diversity patterns. Alpha and beta diversity concepts allow coupling biodiversity 

assessments to distinguish the relative importance of different processes, mechanisms, and 

drivers underlying diversity patterns (Socolar et al., 2016; Wang et al., 2015). The distinction 

between alpha and beta diversity allows for a full understanding of biodiversity patterns as high 

local diversity and distinctiveness in composition (alpha) versus habitat heterogeneity and 

species/trait turnover (beta) are both key criteria used to determine the ecological value of 

ecosystems (Laliberté et al., 2019).  

Whittaker’s (1972) conceptualization of alpha and beta diversity stems from field study 

sampling schemes. While it is still possible to create discrete clusters of pixels to represent 

communities following a similar approach to traditional field studies, remote sensing offers a 

powerful tool to spatially explicitly assess multi-scale analyses to be calculated and mapped at 

potentially continuous scales. This allows us to omit arbitrary decisions to decide upon fixed 

community sizes in terms of area/ number of pixels. Additionally, a consistent optimal plot 

area in terms of pixels to calculate functional diversity estimates for an entire region might not 

exist. Different plot area sizes exhibit different patterns and relationships to environmental 

drivers as shown in Fig.  5.5. Moreover, in a heterogenous landscape, scale dependence of 

functional diversity estimates is also vegetation (canopy size) dependent (Magurran, 2003; 

Zheng et al., 2021). Fig.  5.4 demonstrated distinct amplitudes of FAR curvatures for different 

land use types representing different species pools and vegetation compositions. Together, 

these findings highlight the value of multi-scale and stratified approaches to assess the scale 

dependence of the patterns observed.  

While satellite remote sensing of functional diversity is still in its infancy, the link between 

field studies for validation and calibration is still very important for validation and calibration 
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(Hauser et al., 2021). Therefore, alpha and beta-diversity concepts as imposed in most field 

designs will remain equally relevant. However, further along the line, the availability of 

spatially explicit and continuous data through remote sensing allows the development of 

theories that underpins a continuum of gradual community dynamics that go beyond a discrete 

scaling of alpha and beta diversity. Alternatively, there are methods available (e.g. Laliberté et 

al. 2019) that can help partition spectrally derived plant diversity into alpha and beta 

components.   

5.4.7. Limitations 

In our analyses using Sentinel-2, the pixel size remained invariant at 20m spatial resolution. At 

20m spatial resolution, already part of the local diversity is occurring at a sub-pixel level which 

challenges the interpretation of traditional ecological diversity concepts. For future 

development and application of satellite remote sensing, it is important to increase 

understanding of how both grain (spatial resolution) and the number of pixels (this study: plot 

area to capture a ‘community’) affect the patterns observed in functional diversity assessments 

done from space-borne instruments. This requires expanding our current analysis to include 

both variant pixel sizes (e.g. Rocchini, 2007 has compared different sensors). A continuum of 

various combinations of changing grain and extent (change grain maintain extent, change 

extent maintain grain, change grain and extent) could be examined to explore scaling 

relationships like theorized by Barton et al. 2013. Integration of in-situ measurements, 

hyperspectral airborne measurements, and large-scale repeated satellite remote sensing 

approaches combined with the ongoing advances in these instruments will be necessary to 

assess the totality of scaling effects of both spatial grain size, plot sizes, and spatial extent on 

patterns observed (Gholizadeh et al., 2019; Jetz et al., 2016; Rocchini, 2007; Wang et al., 2018). 

Furthermore, data assimilation of multi-temporal and multi-sensor images may help overcome 

the patchiness of optical remote sensing data in tropical regions to study even wider range of 

spatial extents (>60ha), possibly even beyond biogeographic regions with distinct geological 

barriers and evolutionary histories to observe the changes and turnover in functional diversity 

patterns.  

Lastly, we relied on the performance of the SNAP toolbox for retrieving spectral trait indicators 

to estimate functional diversity patterns. Future studies will require further in-depth validation 

against in-situ estimates (e.g. Ali et al., 2020; Hauser et al., 2021). Moreover, spectral and 

spatial resolutions of satellite missions will continue to advance and facilitate improvements in 

the range and number of ecologically relevant -yet accurately retrieved- trait estimates (Wang 

& Gamon, 2019). The accuracy of functional trait retrieval can be further improved by 

optimizing retrieval methodologies, for instance through more realistic radiative transfer 

models (Huang et al., 2011), alternative hybrid inversion techniques (Verrelst et al., 2019a), 

assimilation of ancillary data (Hakkenberg et al., 2018; Moreno-Martínez et al., 2018), data-

driven deep learning (Reichstein et al., 2019), and active learning heuristics (Berger et al., 

2021). 

5.5. Conclusions 

How much biological diversity occurs within a given area is a fundamental question in spatial 

ecology. At the same time, the magnitude of diversity is a function of area too. We showed 
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how satellite remote sensing estimates of functional diversity hold a consistent relationship 

with plot area, with different degrees of scale dependency between functional richness and 

functional divergence. The shape of functional diversity-area relationships observed was found 

to correspond with ecological theory while satellite remote sensing allowed us to extend the 

range of area considered far beyond the spatial extent of previous empirical field and air-borne 

studies. Strong consistent trait convergence was observed through our estimates of functional 

richness compared to the random spatial processes of the null-models. Moreover, trait 

convergence differed significantly between different land use types.  

The fluidity of ecological concepts of community diversity bears challenges when attempting 

to fit these into the spatially continuous pixel raster of satellite remote sensing observations. 

Nonetheless, the spatial continuity of this data allows for easy-to-conduct multi-scale analysis 

of functional diversity while omitting the shortcomings for arbitrary scaling decisions of a 

discrete sampling design. This challenges the applicability of discrete alpha and beta concepts 

and raises the question of whether the strong ecological focus of within versus between 

communities (alpha vs beta) is sufficiently justified or whether we need new more continuous 

concepts. For now, stratified multi-scale analyses through remote sensing instruments help 

unveil the role of different drivers at different spatial scales and across larger spatial extents 

while illustrating the continuity of assembly processes driving the functional diversity-area 

relationship.  

 

 

  


