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Abstract 

Large-scale high-resolution satellite observations of plant functional diversity patterns will 

greatly benefit our ability to study ecosystem functioning. Here, we demonstrate a potentially 

scalable approach that uses aggregate plant traits estimated from radiative transfer model 

(RTM) inversion of Sentinel-2 satellite images to calculate community patterns of plant 

functional diversity. Trait retrieval relied on simulations and Look-up Tables (LUTs) generated 

by an RTM and hybrid approaches rather than heavily depending on a priori field data and 

data-driven statistical learning. This independence from in-situ training data benefits its 

scalability as relevant field data remains scarce and difficult to acquire. We ran a total of three 

different inversion algorithms that are representative of commonly applied approaches and we 

used two different metrics to calculate functional diversity. 

In tandem with Sentinel-2 image-based estimation of plant traits, we measured Leaf Area Index 

(LAI), leaf Chlorophyll content (CAB), and Leaf Mass per Area (LMA) in-situ in a (semi-

)natural heterogeneous landscape (Montesinho region) located in northern Portugal. Sampling 

plots were scaled and georeferenced to match the satellite observed pixels and thereby allowed 

for a direct one-to-one posterior ground truth validation of individual traits and functional 

diversity. 

Across approaches, we observe a reasonable correspondence between the satellite-based 

retrievals and the in-situ observations in terms of the relative distribution of individual trait 

means and plant functional diversity across locations despite the heterogeneity of the landscape 

and canopies. The functional diversity estimates, based on a combination of canopy and leaf 

traits, were robust against estimation biases in trait means. Particularly, the convex hull volume 

estimate of functional diversity showed strong concordance with in-situ observations across all 

three inversion methods (Spearman's ρ: 0.67–0.80). The remotely sensed estimates of 

functional diversity also related to in-situ taxonomic diversity (Spearman's ρ: 0.55–0.63). 

Our work highlights the potential and challenges of RTM-based functional diversity metrics to 

study spatial community-level ecological patterns using currently operational and publicly 

https://doi.org/https:/doi.org/10.1016/j.rse.2021.112505
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/radiative-transfer
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/convex-hull
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available Sentinel-2 imagery. While further validation and assessment across different 

ecosystems and larger datasets are needed, the study contributes towards a further maturation 

of scalable, spatially, and temporally explicit methods for functional diversity assessments 

from space. 

3.1. Introduction  

Worldwide biodiversity declines are affecting ecosystem functioning and pose risks to 

humankind as our existence heavily relies on healthy ecosystems (Cardinale et al., 2012; 

IPBES, 2019; Rands et al., 2010). In light of this ongoing global biodiversity crisis, the urgency 

to monitor and map terrestrial biodiversity at large scales has spurred research on adequate 

quantitative methods for biodiversity assessments (Anderson, 2018; Pereira et al., 2013). 

Improved monitoring of biodiversity dynamics can equip us to better understand and act upon 

changes, and halt further exacerbation of the current alarming rates of biodiversity loss 

(O’Connor et al., 2015; Skidmore, 2015).  

A growing body of research highlights the role of functional diversity - rather than species 

diversity – in linking biodiversity to the functioning of ecosystems (Diaz and Cabido, 2001; 

Hooper et al., 2005; Violle et al., 2014). Functional diversity describes the range, value, and 

abundance of organismal traits. Traits are the measurable features of an organism that 

potentially affect performance, fitness, or resource acquisition strategies (Cadotte et al., 2011). 

Plant functional diversity integrates both inter- and intraspecific trait variation and has been 

found enhance ecosystem productivity, stability and resilience (Cardinale et al., 2011; Díaz et 

al., 2007; Duncan et al., 2015; Funk et al., 2016; Grime, 1998; Hooper, 2002; Isbell et al., 2011; 

Mori et al., 2013; Ruiz-jaen and Potvin, 2010). As such, the assessment of plant functional 

diversity patterns is highly relevant to monitoring the health (productivity, stability) and 

biodiversity of our ecosystems.   

Traditionally, trait measurements are acquired by elaborate field campaigns (Baraloto et al., 

2010). Such field campaigns are highly valuable but laborious, costly, and inefficient in dealing 

with the ecological complexity that comes with monitoring spatial and temporal variation of 

functional diversity (Májeková et al., 2016; Scholes et al., 2012). Field campaigns are 

particularly laborious if we aim to gather detailed spatially continuous information across large 

spatial extents for mapping and understanding the spatio-temporal dynamics of functional 

diversity.  

To overcome this challenge, an increasing number of studies has explored the applicability of 

remote sensing techniques in assessing regional plant functional diversity for different 

ecosystems to scale up our biodiversity monitoring capabilities (Aguirre-gutiérrez et al., 2021; 

Jetz et al., 2016; Wang and Gamon, 2019). State-of-the-art studies used airborne data to map 

multivariate forest functional types (Asner et al., 2017) and plant functional diversity using 

both optical and LiDAR observations in combination with statistical approaches (Durán et al., 

2019) and spectral indices (Schneider et al. 2017). Despite the value of these airborne remote 

sensing observations, its potential for application at larger extents is limited as airborne 

campaigns remain costly to organize and are bound in spatial extent and repeatability.  

With ongoing technological advances and the launch of higher spatial and spectral resolution 

sensors in orbit, satellite-based observations present global and timely information that holds 
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large potential as the next frontier to monitor functional diversity patterns across space and 

time (Aguirre-gutiérrez et al., 2021; Jetz et al., 2016; Ma et al., 2019). Spaceborne remote 

sensing, however, generally relies on sensors that operate at spatial and spectral resolutions 

that are inferior to airborne hyperspectral instruments. These constraints challenge the fine-

grained local-scale interpretation and in-situ validation of biodiversity estimates, and increase 

ill-posedness in retrieving biophysical traits from the spectral broadbands of satellites (Baret 

and Buis, 2008; Wang and Gamon, 2019).  

The search for adequate quantitative methods to monitor functional diversity exploiting 

satellite earth observations remains in need of further research and development (Ma et al., 

2019; Rossi et al., 2020; Torresani et al., 2019). Ideally, these research efforts will provide 

methods that allow us to accurately retrieve plants traits for functional diversity 1) with current 

satellite sensors, 2) without heavy reliance on scarce comprehensive ancillary field 

measurements, and that are 3) scalable across time and location including across vegetation 

types, and 4) measurable in-situ for validation against ecological field data. To meet these 

requirements, the use of optical traits that are physically related to spectra is particularly 

appealing given its universal applicability as opposed to statistical learning approaches and/or 

spectral indices that heavily depend on comprehensive field measurements for training and that 

have been found to be site- and time-specific (Verrelst et al. 2015; Clevers 2014; Ali, 

Darvishzadeh, Skidmore, Gara, et al. 2020).  

The physical basis of trait retrieval is commonly ensured through the use of Radiative Transfer 

Models (RTMs) which relate incident radiation to vegetation canopies through angular, 

structural, biochemical, and biophysical characteristics (Verhoef 1998; Jacquemoud et al. 

2009; Jacquemoud and Ustin 2019). These model parameters include leaf or canopy 

characteristics of ecological relevance (Anderson, 2018; Feilhauer et al., 2018; Homolová et 

al., 2013; Ollinger, 2011; Roelofsen et al., 2013). However, the universality of these models is 

bound by strong assumptions and heavy parameterization, simplifying the heterogeneous 

canopies and vegetation types encountered in the field. In the end, the practice of canopy RTM 

inversion to estimate plant traits from vegetation spectral reflectance is not trivial, but ill-posed 

and prone to a range of equally possible solutions, especially in multispectral settings (Combal 

et al., 2003; Koetz et al., 2007; Musavi et al., 2015).  

Recently, a number of studies have shown success in applying RTM inversion on satellite earth 

observations (Sentinel-2) to estimate key plant traits in (semi-)natural ecosytems (e.g. Ali, 

Darvishzadeh, Skidmore, Gara, et al. 2020; Ali, Darvishzadeh, Skidmore, Heurich, et al. 2020; 

Rossi et al. 2020; Vinué, Camacho, and Fuster 2018). Unfortunately, the step from using trait 

estimates that are consistent among each other to deriving functional diversity from satellite 

remote sensing is undertaken less often (Ma et al., 2019; Rossi et al., 2020). To our knowledge, 

none of the existing satellite-based approaches so far has used RTM inversion to derive 

multiple traits simultaneously to obtain functional diversity estimates in heterogeneous (semi-

)natural landscapes. 

In this study, we present satellite-based functional diversity estimates using Sentinel-2 

imagery. Our main objective is to examine our current ability to derive multiple plant traits, 

the local variation in trait aggregates, and ultimately estimate community patterns of functional 

diversity metrics across a heterogeneous and biodiverse (semi-)natural landscape. Our 

approach focuses on the use of RTM inversion that does not heavily rely on ‘data-intensive’ or 
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‘a priori’ in-situ training data. In support of our main objective, we 1) validated functional 

diversity estimates as derived by satellite observations using appropriately scaled in-situ 

measurements, 2) evaluated the robustness of different functional diversity indicators in light 

of uncertainties in the retrieval of trait values, and 3) assessed how remotely sensed 

community-based patterns of functional diversity aligns with in-situ community taxonomic 

diversity, as species are still the most commonly used units of assessment in conservation 

planning (Gaston, 2010; Meatyard, 2005; Petchey and Gaston, 2002). We ran three different 

implementations of commonly used RTM inversion approaches to estimate plant traits to more 

generically evaluate the performance, applicability and robustness of RTM-based functional 

diversity estimates instead of focusing on tweaking a single inversion method. Taken together, 

the demonstration and validation of Sentinel-2-derived functional diversity gives insight into 

the potential of scalable and operational RTM approaches to serve plant functional diversity 

monitoring from satellite earth observations across large-scale heterogeneous landscapes. 

3.2. Methods 

3.2.1. Study area 

A comprehensive field data campaign was conducted in the Montesinho Natural Park and the 

Natura 2000 sites in Montesinho-Nogueira located in the Northeast of Portugal along the 

Spanish border (See Fig. 3.1). With a size of over 1000 km2, the area plays an important role 

in the conservation of regionally endemic biodiversity (Aguiar, 2001; Bastos et al., 2018). The 

study area is characterized as a natural mountainous area with elevation ranging between 371m 

and 1488m above sea level. The highlands are dominated by a patchy landscape of shrublands, 

mixed with occasional Pyrenean oak forests and Holm-oak woodlands of which the latter 

mostly occur on rock outcrops, shallow soils, and steep slopes (Azevedo et al., 2013; Fonseca 

et al., 2012; Rego et al., 2011). The lowlands consist of agriculture intermingled with chestnut 

plantations, while pine forests plantations occur at mid-elevation in the eastern part of the area 

(Sil et al., 2017).  

 

Fig. 3.1: Map of the study area depicting the location of the Montesinho-Nogueira Natura 2000 site in 

Portugal (panel A.), the distribution of the twelve individual sampling locations characterized by (semi-

)natural woody vegetation across the wider national park and Natura 2000 site (panel B.), and an exemplar 

individual location (panel C.) consisting of nine individual adjacent plots scaled and georeferenced to 

Sentinel-2’s pixel raster which is illustrated by the panchromatic reflectance at 20m spatial resolution as 



46 

 

background. For each plot (total N=97), an average of 17 individual sunlit branches were sampled to collect 

leaves representative of trait means of the overstory areal composition. 

A total of twelve vegetated locations were selected in the Montesinho area (Fig. 3.1). The 

selection of the locations is representative of the territorially abundant extensively managed 

(semi-)natural areas dominated by woody vegetation that are of importance to the endemic 

biodiversity. These twelve locations include six forested and six shrubland locations and 

include sites that are dominated by single-species canopies as well as sites with a heterogeneous 

mix of species. Each location consisted of eight to nine plots (8-9⨯(20m⨯20m)) that 

correspond to georeferenced and scaled Sentinel-2 pixels. Fig. S. 8 depicts photos taken during 

the field campaign illustrative of the typical sampling locations.   

3.2.2. Field measured plant traits 

In-situ species inventories and leaf and canopy traits of each plot across the twelve locations 

were assessed during a field study that lasted from 12/06 until 05/07 of 2019. The trait 

collection resulted in ground measurements of Leaf Area Index (LAI), Chlorophyll A and B 

content (µg/cm²; CAB) and Leaf Mass per Area (g/cm²; LMA) operationalized in units directly 

comparable to the implementation of these traits in the PROSAIL RTM (Jacquemoud et al. 

2009). The selection of traits was based on their ecological importance in terms of plant 

functioning (Croft et al. 2017; Wright et al. 2004; Díaz et al. 2016; Asner, Scurlock, and Hicke 

2003; Zheng and Moskal 2009), and their importance in the spectral response of vegetation and 

our understanding thereof (Feret et al. 2008; Jacquemoud and Baret 1990; Serbin et al. 2019). 

Selected traits include;  

• LAI, defined as the area of leaf material per unit of ground surface area, is considered 

an important canopy trait, both by itself as well as an important characteristic to scale 

up leaf traits to canopy traits (Asner 1998; Roelofsen et al. 2013). LAI relates directly 

to primary productivity and to competitive and complementary light use, transpiration, 

and energy exchange (Asner et al., 2003; Castillo et al., 2017; Fang et al., 2019; Zheng 

and Moskal, 2009).  

• CAB is the surface-based leaf content of green photosynthetic pigments in chloroplasts 

and plays an important role in the photosynthetic capacity and resource strategy of 

plants (Croft et al. 2017).  

• LMA is the amount of dry mass of a leaf per leaf area and a key feature in capturing 

leaf economics, reflecting trade-offs between carbon gain and longevity of a plant (Díaz 

et al., 2016; Wright et al., 2004). 

We used hemispherical photography to specify LAI similar to approaches by Garrigues et al. 

(2008), Hadi et al. (2017), and Weiss et al. (2004). For consistent measurements across all sites, 

we took five hemispherical photos per plot that we combined to plot-wise mean LAI 

measurements: one from the centroid and one from the center of each quadrant. Images were 

retaken in case of the presence of sunbeams or sun fleck problems. After the field campaign, 

we processed the RGB hemispherical photographs using CAN-EYE v6.4 open-source software 

to retrieve effective LAI measurements comparable to PROSAIL’s interpretation (Weiss and 

Baret 2010). We cross-validated the LAI measurements from hemispherical photography with 

above and below canopy measurements taken with a Photosynthetically Active Radiation 

(PAR) sensor (Apogee MQ-301; handheld device), quantifying the relative quantity of incident 
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solar radiation absorbed by vegetation. The LAI observations strongly correlated with the PAR 

measurements (See Fig. S. 9).  

For the leaf trait analysis, we collected 17 leaf samples from the healthy unshaded top of the 

canopy of each individual plot. Prior visual and geometric inspection guided choices to select 

the most appropriate samples in terms of areal representativeness. As such, the collected 

samples approximated a representative composite trait mean of the plots’ upper canopy layer. 

Collected leaves were transported on ice after which they were either dried for LMA analysis 

or stored in a ≤ -18 °C freezer until CAB analysis in the lab. LMA was calculated based on the 

dry leaf weight and fresh leaf area (as determined in Image J 1.52a software (Schneider, 

Rasband, and Eliceiri 2012)). CAB was derived using a protocol based on Lichtenthaler (1987). 

Simultaneously with the collection of leaf samples and hemispherical photography, an 

inventory of the overstorey plant species composition and species number was made of each 

plot of each location. Parallel to trait and species assessments, local soil spectra were collected 

using an RS-3500 spectroradiometer (350-2500nm,   ̴8nm average spectral resolution) 

developed by Spectral Evolution. These soil spectra aid a representative approximation of 

PROSAIL’s soil parameters for the study site. 

3.2.3. Remotely sensed plant traits 

3.2.3.1. Sentinel-2 data 

The Sentinel-2 constellation consists of two wide-swath, medium-high spatial resolution (10, 

20, and 60 m), multi-spectral (13 bands) imaging instruments with a combined 5-day revisiting 

time (ESA, 2015). Corresponding to the study area and timeframe of our field campaign, one 

scene (29/07/2019) was completely free of problematic quality flags (cloud cover, cloud 

shadow, cirrus, and other atmospheric contamination). The availability of a single could-free 

image prevented complications of having to combine scenes from different timestamps and 

introducing temporal variability. The Sentinel-2 Level-2a (L2a) imagery for this data was 

acquired atmospherically corrected (Sen2Cor software) and obtained through the European 

Space Agency (ESA)’s Copernicus open-access Scientific Hub (Gascon et al., 2014; Louis et 

al., 2016). We excluded the 60m broad bands from the analysis and resampled the 10m spectral 

bands to 20m spatial resolution to match the scaling of our georeferenced field plots. 

Ultimately, ten out of thirteen available spectral bands of Sentinel-2 were used. 

3.2.3.2. Radiative transfer model inversion 

Sentinel-2 L2a reflectance data served as the foundation for estimating key plant traits. The 

relationship between spectra, geometry, and soil and vegetation biophysical parameters was 

modelled with the use of the PROSAIL radiative transfer model inversion, which combines the 

leaf model PROSPECT (Feret et al. 2008; Féret et al. 2017; Jacquemoud and Baret 1990) and 

the canopy model 4SAIL (Verhoef 1984; Verhoef et al. 2007). PROSAIL assumes the canopy 

to be a homogenous turbid medium where absorption is defined by soil, canopy, and leaf 

properties (Jacquemoud et al. 2006). Such homogeneous canopies are an idealized 

approximation for many ecosystems. Inversion results are therefore subject to discrepancies 

between underlying assumptions of the extended 1-D columnar model and the complex reality 

of the heterogeneous canopies observed in the field (Jacquemoud et al., 2009). PROSAIL’s 

relative simplicity with few but ecologically relevant input parameters avoids further 

complication of ill-posedness in the non-trivial inversion of multispectral reflectance data 
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acquired by Sentinel-2 (Verrelst et al., 2019b; Yin et al., 2015). Spectral sensitivity of Sentinel-

2 for retrieval of PROSAIL’s traits under study (LAI, CAB, and LMA) has been demonstrated 

in previous sensitivity analyses (Gu et al. 2016; Rossi et al. 2020; Verrelst, Vicent, et al. 2019; 

de Sá, Baratchi, and Hauser 2021). Considering the model’s widespread application, research 

on its generality across different vegetation types is relevant to a growing body of applications 

(Jacquemoud et al. 2006; Yin et al. 2015). 

We implemented three approaches for inversion of the PROSAIL RTM on Sentinel-2 

reflectance data representative of different common approaches found in remote sensing (Ali 

et al., 2020b; Verrelst et al., 2015); a Look-up Table (LUT)-based inversion based on a non-

normalized “least-squares estimator” (LSE) cost function (Rivera et al., 2013; Rossi et al., 

2020), the biophysical processor module from the ESA’s Sentinel application platform (SNAP 

toolbox) (Weiss and Baret 2016), and a hybrid PROSAIL-D Support Vector Regression 

approach (SVR) (Féret et al., 2018, 2017).   

Table 3.1: Ranges of variable input parameters of the PROSAIL model used to generate the LUTs. 

Domain Parameter Symbol Unit Distribution Range 

Leaf 

Leaf structural parameter N – Uniform 1.4-1.7 

Chlorophyll a+b content CAB μg/cm2 Gaussian 10-60 

Equivalent water thickness EWT g/cm2 Uniform 0.001-0.045 

Leaf dry mass per area LMA g/cm2 Uniform 0.001-0.040 

Brown pigments content Cbrown – Fixed 0.01 

Canopy 

Leaf area index LAI m2/m2 Gaussian 0.01-3.5 

Mean leaf inclination angle ALA deg Uniform 30-70 

Hot spot size parameter hot m/m Fixed 0.01 

Abiotic 
Ratio of diffuse to total incident radiation SKYL – Fixed 18% 

Soil brightness psoil – Fixed Spectroradiometer 

Positional 

Solar zenith tts o Fixed Sentinel-2 geometry 

Observer zenith tto o Fixed Sentinel-2 geometry 

Relative azimuth phi o Fixed Sentinel-2 geometry 

 

3.2.3.2.1. Look-up Table (LUT)-based inversion 

The Look-up Table (LUT)-based inversion is a two-step approach entailing:   

i. generating a large number of simulations using a RTM, using a given sampling strategy 

for the input parameter ranges, and  

ii. identifying the sample or the set of samples minimizing a cost function.  

The estimated biophysical parameter corresponding to a reflectance spectrum is deduced from 

the value or mean value of the LUT samples minimizing the cost function. Here, we first 

created an extensive LUT of a subset of 10 000 simulations using Latin hypercube sampling to 

capture an optimal representation of all possibilities within the relevant trait space based on 

constrained search ranges defined by minimum and maximum trait values found in the field. 

Fixed values and ranges of parameters not measured in the field were selected based on 

literature (Bacour et al., 2002; Jay et al., 2017; Spitters et al., 1986). We used PROSPECT-4 

coupled with 4SAIL in order to simulate canopy reflectance. The value, range, and distribution 

followed for each input parameter of the models are provided in Table 3.1.  
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For the inversion, we used a non-normalized “least-squares estimator” (LSE) cost function 

(Rivera et al., 2013; Rossi et al., 2020) and implemented the LUT inversion with the ARTMO 

toolbox V1.14 in Matlab (Verrelst et al. 2011). We applied the LUT inversion approach to 

estimate leaf CAB, LMA, and LAI. For optimization of its performance, we applied Gaussian 

noise (0-18%) to account for model and measurement uncertainties (Rivera et al., 2013). We 

used ARTMO’s default parameterization for the noise and the multiple solution binning.  

3.2.3.2.2. Sentinel Application Platform Biophysical processor 

The Sentinel Application Platform (SNAP) biophysical processor (Weiss and Baret 2016) is 

based on a hybrid approach combining physical modeling and machine learning. This type of 

approach consists of training the machine learning algorithm with a LUT to produce regression 

models for the estimation of a set of parameters. SNAP uses an artificial neural network (ANN) 

inversion pre-trained on a PROSAIL simulated database including canopy reflectance and the 

corresponding set of input parameters. The value, range and distribution followed for each 

input parameter of the models are described in Weiss and Baret (2016). SNAP can be 

considered as the standard approach and first port of entry for the estimation of vegetation 

biophysical parameters, as it is publicly available and easily applicable without strong 

expertise. SNAP includes an unreleased version of PROSPECT prior to PROSPECT-4, 

coupled with the SAIL model (Fourty and Baret, 1997). Traits retrieved in SNAP are scaled at 

canopy-level and include LAI, canopy chlorophyll (CAB*LAI) and canopy water (EWT*LAI). 

We reversed the multiplication by LAI to arrive at leaf trait estimates (CAB, EWT). In order 

to derive LMA, we coupled LMA to EWT (fixed factor; EWT*0.79=LMA), a strategy adopted 

more commonly in RTM inversion exercises given the large spectral overlap of LMA and EWT 

(e.g. Combal et al. 2003; Weiss et al. 2000; Kattenborn et al. 2017). The strong association 

between EWT and LMA has been found repeatedly in relevant datasets; in our own in-situ 

observations, but also the LOPEX/ANGERS, and NEON datasets (Hosgood et al. 1994; 

Jacquemoud et al. 2003; NEON, 2020).      

3.2.3.2.3. PROSAIL-D/Support Vector Regression hybrid approach 

We tested an alternative hybrid approach including a physical modeling layer and a machine 

learning algorithm differing from those used in SNAP. The physical modeling layer included 

the newer leaf model PROSPECT-D (Féret et al., 2017) coupled with the 4SAIL canopy model 

(Verhoef et al. 2007). The Support Vector Regression (SVR, Vapnik 1998) algorithm was used 

as a regression model.  

This hybrid inversion consists of bagging prediction of biophysical properties: a LUT is 

simulated with PROSAIL and resampled in order to produce multiple datasets including a 

limited number of samples. Then a set of individual support vector regression (SVR) models 

is trained from each reduced dataset. In our study, we produced 5000 samples and trained 50 

SVR models of 100 samples with repetition for each biophysical property. The sampling used 

to produce the LUT followed the same distribution as showed in Table 3.1, with a few 

exceptions; as opposed to the fixed soil parameter in the ARTMO LUT implementation, the 

variability of the soil reflectance was introduced by defining minimum and maximum soil 

reflectance from experimental data. Soil spectra corresponding to weighted sum of these 

minimum and maximum soil spectra were generated, with the weight defined by the 𝑝𝑠𝑜𝑖𝑙 
parameter (Table 3.1), which was randomly sampled following a uniform distribution between 

0 and 1.  
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The geometry of acquisition, including solar zenith, observer zenith and relative azimuth was 

defined based on a random sampling following a uniform distribution between the minimum 

and maximum angles corresponding to the different acquisitions. The ratio of diffuse to total 

incident radiation (SKYL) was defined based on the sun zenith angle under clear sky 

conditions, following the equations proposed by Spitters, Toussaint, and Goudriaan (1986).  

Two additional pigments are included in PROSPECT-D compared to the PROSPECT-4 

parameterization: carotenoids and anthocyanins. Both pigment contents were defined based on 

a random sampling following a uniform distribution. The range for carotenoid content was 

defined between 0 and 15 μg/cm2, which corresponds to the extended range observed in-situ, 

while the range for anthocyanin content was defined between 0 and 10 μg/cm2, which 

corresponds to the range measured for mature leaves, yellow and reddish senescent leaves 

(Feret et al., 2017).  

Finally, a random Gaussian noise was applied on the reflectance data, in order to account for 

the uncertainty originating from multiple origins, such as atmospheric conditions, sensor 

calibration, and the radiative transfer model itself (Berger et al., 2018b), or its improper 

parameterization (Danner et al., 2019).  

3.2.4. Functional and taxonomic diversity estimations 

The inversion of PROSAIL with Sentinel-2 spectra allowed us to estimate pixel-based 

(aggregated) trait values of plant canopies. For both in-situ and remote sensing datasets, 

functional diversity metrics were calculated for each location. While numerous functional 

diversity metrics exist, we opted for two commonly used metrics of functional diversity: the 

convex hull volume (CHV) and Rao’s quadratic entropy (Rao’s Q) (Dahlin, 2016; Gholizadeh 

et al., 2018; Rocchini et al., 2017; Torresani et al., 2019). Both metrics are straightforward to 

compute with relatively few observations, relatively easy to interpret and particularly equipped 

in characterizing multivariate trait space.  

The CHV, a construct from computational geometry, provides an n-dimensional measure of 

the volume of canopy plant trait space within a community. CHV is commonly proposed as an 

adequate method to capture continuous trait space (Cornwell et al., 2006) and provides the 

smallest convex hull that encloses all observed traits. The measure is relatively sensitive to 

outliers and anomalies (Blonder et al., 2014; Schleuter et al., 2010). Functional richness 

calculated through the CHV has generally been found to hold a strong relationship to species 

richness (Mouchet et al., 2010; Schleuter et al., 2010).  

Rao’s Q is one of the most commonly used multivariate measures of functional diversity and 

its calculation offers relative mathematical simplicity (Botta-Dukat, 2005; Mouchet et al., 

2010; Ricotta and Moretti, 2011; Rocchini et al., 2017; Schleuter et al., 2010). A trait-based 

implementation of Rao’s Q depends both on the range of functional space occupied and on the 

similarity between trait combinations weighted by abundance (Botta-Dukat, 2005). Hence, 

elements of both functional richness and functional divergence are part of Rao’s Q (Mouchet 

et al., 2010). Rao’s Q has been widely applied to analyse patterns of trait convergence or 

divergence, i.e. quantifying trait dissimilarity compared to a random expectation (Ricotta and 

Moretti, 2011). In the remote sensing setting here, Rao’s Q describes the sum of pairwise 

distances between pixel-based multivariate values representing trait estimates while accounting 

for pixel abundance (in this case; p = 1) (Botta-Dukat, 2005; Rocchini et al., 2017): 
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where 𝑑𝑖𝑗 corresponds to the multivariate distance matrix comprising i-th to j-th pixel, 𝑝 is the 

pixel or plot value abundance (=1 in our case), and 𝐿 corresponds to the number of pixels or 

plots sampled per location. 

For the calculation of functional diversity, we took the combination of canopy (LAI) and leaf 

traits (CAB and LMA) given the ecological importance of these traits for plant functioning (see 

section 2.2). The combination of these traits allows us to partition canopy reflectance through 

RTM inversion and focus on canopy structure through LAI, foliar morphology through LMA 

and leaf chemistry (pigments) through CAB (Rossi et al. 2020; Serbin et al. 2019; Croft et al. 

2017; Díaz et al. 2016). Functional diversity was calculated per location in the study area based 

on the eight to nine plot/pixel-wise trait mean estimates. All three traits were standardized prior 

to the calculations to assure equal weight to each trait. 

Lastly, we calculated taxonomic diversity using in-situ species count data. We relied on the 

commonly applied Shannon’s H diversity index as an indicator of local taxonomic diversity of 

each location; 

 

𝐻 = −∑(𝑝𝑖log2 𝑝𝑖)

𝑠

𝑖=1

 (2) 

 

where 𝑠 is the number of species IDs and 𝑝𝑖 is the proportion of the community represented by 

species i. These calculations were conducted using the scikit-bio 0.5.6 (http://scikit-bio.org/) 

package in Python. Min-max normalization of all metrics provided all values scaled between 

0 and 1. 

3.2.5. Statistical analysis 

The structure of our data complicated a straightforward application of single goodness-of-fit 

measures such as R2 or Pearson’s r correlation (Khamis, 2008; Schober and Schwarte, 2018). 

Therefore, we evaluated the relationship between satellite estimates and the corresponding in-

situ measurements by different metrics of association, error and correlation (Lee’s L statistic, 

Spatial Error Models, Spearman’s rho (ρ) and Root Mean Square Error (RMSE)). 

The plots/pixels (N=97) were non-randomly distributed, which might inflate the correlation 

and lead to biases. An ordinary least squares linear regression model and Moran’s I statistics 

on the residuals indeed confirmed the presence of spatial autocorrelation in our data (Suppl. 

Mat. Table S. 10). To account for autocorrelation, we ran Lee’s L test (instead of Pearson’s r). 

Lee’s L statistic captures the spatial co-patterning by integrating a univariate spatial 

autocorrelation of each variable (Moran’s I) and their bivariate point-to-point association 

(Pearson’s r) (Kim et al., 2018; Lee, 2001). In addition, we ran a spatial error regression model 

implemented with the “spdep” package of R (Bivand et al., 2011), which controls for the bias 

of spatially autocorrelated errors. We evaluated the model’s performance for spatial 

http://scikit-bio.org/
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autocorrelation by reassessing the residuals with Moran’s I, which showed that spatial 

autocorrelation was no longer significant (Suppl. Mat. Table S. 11).   

In addition, we evaluated the correspondence of satellite and in-situ observations at the 

location-level. The means and standard deviations at the location-level gave insight in local 

variability of estimates and potential robustness of aggregation against noise and 

misregistration. Moreover, location-wise trait means eliminate the effects of spatial auto-

correlation resulting from multiple plots/pixels per locations. The locations are randomly 

distributed over our study area. However, the small sample size of locations (N=12) makes it 

difficult to warrant for normality. In precaution of non-normality, we implemented Spearman’s 

rho, as the non-parametric and rank-based alternative to Pearson’s r (Fowler, 1987; Khamis, 

2008; Schober and Schwarte, 2018). In addition, we calculated the Root-Mean-Square Error 

(RMSE) to quantify absolute biases for both plot-/pixel-level and location-level analyses.  

The functional diversity metrics (CHV, Rao’s Q) derived from satellite observations were 

compared against in-situ functional diversity observations. In addition, the satellite-based 

functional diversity metrics were compared against in-situ taxonomic diversity to evaluate the 

ecological relevance of the selected RTM-based traits for assessing species-based biodiversity 

and conservation planning. For the analyses of functional diversity patterns, we used 

Spearman’s rho to warrant for possible non-normality in the small sample size (N=12). 

3.3. Results 

3.3.1. Trait estimates 

Table 3.2 shows the performance of the three retrievals against in-situ trait measurements, both 

at pixel-level and location-level aggregation. All three methods estimated the distribution of 

trait values from Sentinel-2’s spectral reflectance reasonably well. LAI was estimated with 

relatively high precision across all three methods (Table 3.2). Across approaches, forest 

locations generally exhibited higher LAI values compared to shrublands in line with field 

observations.   

LMA estimates corresponded well with the variation in in-situ measurements, with SVR and 

ARTMO performing better than SNAP. Despite relative correspondence with the field data, 

ARTMO exhibited a strong bias, overestimating absolute in-situ LMA observations. SVR 

produced accurate estimators for LMA both in a relative and absolute sense. All three 

approaches consistently identified generally higher LMA values in shrublands as compared to 

forested locations.   

CAB retrievals were still significantly correlated to the in-situ measurements at plot-level, but 

with weaker relationships and stronger deviations from the 1:1 line compared to the other traits 

for all three retrieval methods (Table 3.2).  

Spatial error (regression) models (Table S. 11) accounting for spatial autocorrelations at the 

plot level indicated a strong significance of the satellite-based estimates and high overall 

predictive power of the models (Pseudo-R2: 0.76-0.93, depending on trait and inversion 

method) with the exception of ARTMO’s CAB estimation (Not significant, Pseudo-R2: 0.35).  

Despite the smaller sample size, the location-level aggregation of trait means retained a strong 

association between in-situ measurements and the satellite-based estimates for LMA and LAI, 
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while CAB estimation by SVR’s hybrid inversion and SNAP’s biophysical processor were no 

longer significant (>0.05) (Table 3.2).  

The retrieval of within-location standard deviation was less convincing overall compared to 

mean estimates, although LAI variability correlated significantly for all three inversion 

methods (Table 3.2). Only ARTMO’s LUT-based inversion performed was significantly 

correlated to the in-situ variability of LMA (Fig. 3.3). Retrieval for SVR and ARTMO is 

illustrated in Fig. 3.2 and Fig. 3.3, respectively, while figures for retrieval based on SNAP’s 

biophysical processor can be found in Fig. S. 12. The patterns of location-wise standard 

deviations did not differ evidently between forested and shrubland locations.
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Table 3.2: An overview of satellite-based single trait estimation of the three RTM inversion algorithms (SVR, ARTMO, and SNAP) compared against in-situ field 

measurements. Validation was done both at the individual pixel-level (in-situ: plot) and the location-level aggregation. Measures of association indicate the strength 

of correlation between in-situ measured and satellite estimated trait values. At the pixel/plot-level, Lee’s L statistic was implemented as an alternative to Pearson’s r 

to account for spatial autocorrelation within spatially neighbouring plot/pixel observations. At the location-level, Spearman’s rho (ρ) was implemented to warrant for 

the possible non-normality in small sample sizes (N=12). RMSE and nRMSE are indicative of the absolute and relative error found in trait means. 

 

  
Algorithm Trait 

Pixel-level trait estimates 
Location-level trait 

means 

Location-level trait 

standard deviations 

Lee’s L RMSE nRMSE (%) 
Spearman’s 

ρ 
RMSE 

Spearman’s 

ρ 
RMSE 

SV
R

 (
H

yb
ri

d
) 

Leaf Area Index (m2/m2) 0.70** 0.49 15.71 0.73** 0.43 0.67** 0.18 

Leaf Mass per Area (mg/cm2) 0.96** 6.36 17.78 0.77** 5.77 0.46 1.20 

Leaf Chlorophyll (μg/cm2) 0.52** 7.07 17.35 0.53 5.80 0.04 1.87 

A
R

TM
O

 (
LU

T)
 Leaf Area Index (m2/m2) 0.72** 0.51 16.24 0.81** 0.44 0.66* 0.13 

Leaf Mass per Area (mg/cm2) 0.79** 31.06 34.43 0.83** 30.25 0.73** 4.70 

Leaf Chlorophyll (μg/cm2) 0.29** 12.03 28.45 0.71** 9.62 0.49 2.63 

SN
A

P
 

Leaf Area Index (m2/m2) 0.68** 0.62 19.84 0.73** 0.58 0.76** 0.16 

Leaf Mass per Area (mg/cm2) 0.71** 5.94 23.46 0.71** 5.50 0.24 1.62 

Leaf Chlorophyll (μg/cm2) 0.41** 13.79 28.54 0.39 13.23 -0.24 2.61 

**: Significant correlation (p <0.01), *: Significant correlation (p <0.05), ns: Not significant (p>0.05) 



55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2: Comparison of Sentinel-2-based trait estimates (y-axis) retrieved using a Support Vector 

Regression (SVR) hybrid inversion algorithm against in-situ field measurements (x-axis). The left column 

shows pixel-level (in-situ: plot) comparisons of traits, where different colors indicate plots of respective 

locations. The middle column depicts trait means per location and the right column presents trait standard 

deviations per location. The grey dotted line shows the 1:1 relationship, whereas the black line indicates the 

fitted linear relationship between the remotely sensed estimates and field data. Purple and green markers 

represent shrubland and forested locations, respectively.  

  

Pixel-level Location-level (mean) 
Location-level   

(standard deviation) 
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Fig. 3.3: Comparison of Sentinel-2-based trait estimates (y-axis) retrieved using ARTMO LUT-based 

inversion against in-situ field measurements (x-axis). The left column shows pixel-level (in-situ: plot) 

comparisons of traits, where different colors indicate plots of respective locations. The middle column 

depicts trait means per location and the right column presents trait standard deviations per location. The 

grey dotted line shows the 1:1 relationship, whereas the black line indicates the fitted linear relationship 

between the remotely sensed estimates and field data. Purple and green markers represent shrubland and 

forested locations, respectively.  

 

 

Pixel-level Location-level (mean) 
Location-level   

(standard deviation) 
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3.3.2. Functional diversity estimates  

Despite the small sample size (N= 12) and availability of only 8-9 trait observations per 

location to calculate functional diversity, functional diversity exhibited a significant 

relationship between in-situ and satellite-based estimates in most cases. The CHV metric was 

significantly associated with in-situ functional diversity across all three inversion algorithms. 

For Rao’s Q, this significant relationship only holds for SVR and LUT-based ARTMO trait 

retrieval. Yet, in general, the three approaches indicate feasibility in predicting in-situ plant 

functional diversity through satellite-based estimates (Table 3). Fig. 3.4 shows the results of 

the SVR and ARTMO inversion approaches. The results of the SNAP inversion can be found 

in Fig. S. 13. 

Table 3.3: Rank-based correlation between in-situ observed plant functional diversity (CHV and Rao’s Q) 

and satellite remote sensing observed functional diversity. Calculations of functional diversity combine 

canopy trait (LAI) and leaf-level traits (LMA and CAB). Significant correlations (α < 0.05) are highlighted 

in bold. RMSE and nRMSE are indicative of the absolute and relative error found in functional diversity 

estimates. 

 

Algorithm Spearman’s ρ Sig. RMSE nRMSE (%) 

C
o

n
ve

x 
H

u
ll 

V
o

lu
m

e 
(C

H
V

) SVR (Hybrid) 0.80 <0.01 0.11 20.48 

ARTMO (LUT) 0.76 <0.01 0.09 20.94 

SNAP 0.67 0.02 0.11 25.74 

      

R
ao

's
 q

u
ad

ra
ti

c 

en
tr

o
p

y 

SVR (Hybrid) 0.75 0.01 0.13 22.08 

ARTMO (LUT) 0.80 <0.01 0.08 19.28 

SNAP 0.19 0.56 0.19 43.06 

 

Remotely sensed functional diversity metrics were also significantly tied to in-situ community 

taxonomic diversity (Fig. 3.4, rightmost column). This significant relationship indicates that 

the selected traits are relevant for both trait and species diversity and serves as cross-validation 

of the capability of RTM inversion of Sentinel-2 spectral information to predict ecologically 

relevant in-situ plant biodiversity, either directly or through surrogacy. Functional diversity 

and taxonomic diversity were also related in-situ (Fig. S. 14). 
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Fig. 3.4: Remotely sensed functional diversity estimates (CHV and Rao’s Q) calculated from Sentinel-2 

derived traits through the SVR hybrid inversion (top row) and ARTMO LUT-based inversion (bottom row) 

compared against in-situ functional diversity measurements (left and center columns). The rightmost column 

compares the remotely sensed functional diversity (CHV) against in-situ taxonomic diversity (Shannon’s H). 

The grey dotted line shows the 1:1 relationship, whereas the black line indicates the linear relationship 

between the remotely sensed estimates and field data. Purple and green markers represent shrubland and 

forested locations, respectively. 

3.4. Discussion 

3.4.1. Estimating canopy and leaf traits 

The capability to estimate spatial plant canopy trait patterns from currently operational optical 

satellite remote sensing, both in terms of mean and variability, serves as an important starting 

point towards the assessment of satellite-based functional diversity estimates. Estimation of 

individual plant traits from Sentinel-2 inference using RTM inversion has been shown to be 

viable in numerous previous studies conducted in relatively homogeneous (semi-)natural 

environments (Ali et al., 2020a, 2020b; Brede et al., 2020; Brown et al., 2019; Darvishzadeh 

et al., 2019a, 2019b; Padalia et al., 2020; Rossi et al., 2020; Vinué et al., 2018). Similarly, in 

our study, we demonstrated the potential of remote sensing to estimate the relative spatial 

distribution of multiple individual vegetation traits simultaneously, yet in a relatively 

Functional Diversity 
(CHV)  

Functional Diversity 
(Rao’s Q)  

Taxonomic Diversity 

(Shannon’s H) 
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heterogeneous landscape using a comparatively simple RTM. Unique to this study, we assessed 

a multivariate retrieval of three traits (LAI, LMA and CAB) in twelve separate locations 

consisting of multiple adjacent pixels (N=97) in a set-up designed for further assessment of 

plant community patterns of functional diversity (Fig. 3.1). The georeferenced and carefully 

scaled in-situ field measurements allowed us to validate satellite remote sensing directly 

without relying upon interpolation of point data and/or temporally and/or spatially transposed 

secondary trait data (e.g. Ma et al. 2019; Butler et al. 2017; Moreno-Martínez et al. 2018). 

In light of the multitude of existing inversion methods, we ran three different algorithms to 

invert PROSAIL on Sentinel-2 reflectance data (Verrelst, Malenovský, et al. 2019; Rivera et 

al. 2013; Verrelst et al. 2015). Despite the heterogeneity of the canopies and the landscape, all 

three retrieval approaches (SVR, ARTMO (LUT-based) and SNAP) showed significant 

correlations between the estimates of the various traits and the actual in-situ measurements 

(Table, 2, Fig. 3.2 and Fig. 3.3). Significant relations were found for pixel-wise trait estimates 

as well as aggregated trait means at the location level. The good performance of the latter is 

noteworthy as aggregation potentially attenuates the influence of noise. The Sentinel-2 retrieval 

performed specifically well for estimating the relative distribution of LAI and LMA despite 

biases (RMSE), whereas CAB exhibits a considerably less association with field measurements 

(Table 3.2). Differences in the performance of CAB may be attributed to its parameterization 

in different versions of PROSPECT, as well as strong absorption of radiation in the visible 

range and associated low signal-to-noise ratios. 

Differences in performance between the three algorithms is in part due to parameterization and 

the mathematical intrinsic properties of the individual inversion methods. However, also the 

role of ‘a priori’ information deserves further attention (Verrelst et al. 2015; Verrelst, 

Malenovský, et al. 2019). In this study, the ARTMO LUT-based and SVR hybrid approaches 

both rely on PROSAIL simulations that are generated from the minimum and maximum trait 

ranges found in the field, while the SNAP biophysical processor runs completely independently 

of ancillary data (Weiss and Baret 2016). Databases like TRY (Kattge et al. 2020) can aid 

future analyses to generate locally optimized trait ranges based on species occurrences without 

the need for dedicated field campaigns. The optimized LUTs, taking into account the trait 

ranges of the ecosystem under study, enhanced performance in terms of the relative prediction 

of in-situ trait and the absolute bias.  

For an accurate assessment of functional diversity, proper estimation of local trait variability 

is important, which has received little attention in the body of research on the retrieval of plant 

traits from satellite remote sensing thus far. In comparison to location-level trait means, our 

ability to retrieve trait variability is relatively inconsistent (Table 3.2). The observed 

inconsistencies might require additional accounting of adjacency effects, noise/inconsistencies 

in field measurements, noise from atmospheric correction (5-10%) and reported multispectral 

misregistration of Sentinel-2 that complicate the process of deciphering subtle differences at a 

local scale (Brede et al., 2020; Skakun et al., 2017).  

Atmospheric scattering causes light reflected from adjacent landscapes to be observed by the 

sensor. Without adequate correction of possible adjacency effects (being only an option within 

the Sen2Cor processor, with a low resolution of 1km), scattering leads to minor biases or 

spectral convergence (Louis et al., 2016). While the local mean traits would be affected little, 
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spectral convergence could result in a lower sensitivity to capture the variation between 

neighboring pixels and thereby affect functional diversity estimates.  

As an exception, the results for LAI still indicate high sensitivity across the three retrieval 

algorithms to accurately depict local variability in LAI between adjacent pixels and plots (Table 

3.2) despite a general underestimation. LAI is known to exhibit a relatively strong spectral 

response across large part of Sentinel-2’s spectrum, which could favor the capability in 

detecting small changes and an improved signal-to-noise ratios as opposed to other traits (Asner 

1998). 

This validation of multivariate single plant traits demonstrates how an RTM approach can 

present us with a semi-mechanistic way to retrieve plant traits based on the physical principles 

of radiative transfer, even if limited field data is available. For now, field data remains critical 

for validation. More specifically, further independent testing will be needed to examine the 

scalability of the approach across multiple diverse ecosystems, canopy types and even biomes. 

Accuracies of simultaneous retrieval of multiple traits can be further improved with RTMs 

optimized for the specific vegetation types under study. However, RTM selection and 

configuration needs to be done under consideration of the trade-offs between local optimization 

and generality across heterogeneous landscapes, as well as the ill-posedness induced by heavy 

parameterization of complex optimized models in inversion applied to limited spectral 

information (Huang et al., 2011). In the future, data assimilation developments (Lewis et al. 

2012) and the prospective launch of hyperspectral satellite imagers (e.g. EnMAP, SBG, 

CHIME; Cavender-Bares, Gamon, and Townsend 2020; Lahoz and Schneider 2014) will likely 

enable more detailed spectral information for inversion to accurately derive more traits for 

functional diversity assessments.  

3.4.2. Estimating multivariate functional diversity 

The retrieval and validation of single trait estimates and the relative spatial variability thereof 

serves our study’s core objective of estimating plant functional diversity from satellite remote 

sensing. The study demonstrates a methodology for one-to-one scaled ground-truthing of 

functional diversity based on satellite observed mean trait estimates for aggregate canopies. 

We tested two different metrics (CHV and Rao’s Q) to calculate functional diversity. 

Functional diversity was calculated over three traits combining canopy structure through LAI, 

and foliar morphology through LMA, and leaf chemistry (pigments) through CAB as key 

functional traits (Croft et al., 2017; Díaz et al., 2016; Rossi et al., 2020; Serbin et al., 2019).  

Across different setups, the majority of satellite-based functional diversity metrics 

corresponded significantly with in-situ measurements. The convex hull volume (CHV) 

operationalization of functional diversity showed strong concordance with in-situ observations 

across all three inversion methods (Spearman’s ρ: 0.67-0.80). For the interpretation of these 

results, we highlight the implications of the distance-based nature of the functional diversity 

metrics and the statistical power of the study in the following paragraphs.  

The functional diversity metrics used here, and many of the multivariate alternative metrics 

(e.g. Schleuter et al. (2010), Mouchet et al. (2010), Aiba et al. (2013)), rely on the quantification 

of “diversity” or “entropy”, based on relative distances or volume between trait observations 

set in a n-dimensional space in which each axis represents a specific trait. Accordingly, the 
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accurate prediction of functional diversity is determined predominantly by the normalized 

relative position of trait combinations rather than the absolute trait value deviation itself. As 

such, the functional diversity metrics presented here have shown a degree of robustness against 

biases in RMSE, specifically for CHV calculations. For instance, the SVR hybrid inversion 

reveals better RMSE for LAI, LMA and CAB (Fig. 3.2), especially compared to the 

overestimation of LAI by ARTMO (LUT-based) and the inferior accuracy of SNAP, yet the 

functional diversity estimates show a level of robustness to these errors given the reasonable 

performance across retrieval algorithms (See Table 3.3, Fig. 3.4, and Fig. S. 13).  

The interpretation of the results needs to be done in consideration of the sample size which is 

dictated by the laboriousness of validating functional diversity at the scale of satellite pixels. 

Our field campaign involved comprehensive efforts to representatively sample the composition 

of the dominant canopies, based on an average of 17 sampled sunlit leaves from individual 

branches, within each of the eight to nine plots across each of the twelve semi-natural 

shrubland/forested locations. Despite these efforts, the statistical power of the twelve points for 

functional diversity estimation imposes limitations on the confidence and our ability to attest 

the patterns found between remotely sensed estimates and in-situ observations. In addition, 

each functional diversity calculation only relies on eight to nine individual observations. 

Statistically, we know that a larger number of individual observations allows us to better 

characterize functional diversity and result in higher robustness against noise, misregistration, 

and random artifacts (Frank, 2009; Hubbell, 2001; Steinbauer et al., 2012). This robustness is 

relevant considering that convex hull volumes are particularly sensitive to outliers and that 

satellite remote sensing, including atmospheric correction, remains susceptible to unfavorable 

signal-to-noise ratios (Blonder et al. 2014; Lewis et al. 2012; Brede et al. 2020; Verrelst, 

Vicent, et al. 2019; Skakun et al. 2017).  

3.4.3. Ecological implications 

The validation results show the potential of using satellite remote sensing to estimate spatial 

patterns of plant functional diversity. However, for ecological implementation, we need to go 

beyond validation and delve into the ecological relevance and usefulness of satellite remote 

sensing products quantifying functional diversity (Feilhauer et al., 2018). Here, we highlight 

three aspects - the selection, scale, and number of traits, the spatial resolution of the functional 

diversity metrics, and the need for further validation – as considerations for interpreting and 

improving the ecological relevance of remotely sensed metrics. 

The selection of which and the number of traits to include in functional diversity measurements 

is a critical step that will impact the patterns ultimately observed (Legras et al., 2020; Petchey 

and Gaston, 2006; Tsianou and Kallimanis, 2016). The majority of studies render functional 

diversity using traits largely determined by data availability despite that ideally such decisions 

are driven by the specific function of interest (Petchey and Gaston, 2006; Tsianou and 

Kallimanis, 2016). Likewise, in direct retrieval through (optical) remote sensing, we are limited 

to traits that are spectrally obtainable (Homolová et al., 2013). Exemplar prioritized lists of key 

functional plant traits that are remotely observable from space have been compiled by e.g. Jetz 

et al. (2016) and the National Academies of Sciences Engineering and Medicine (2019) among 

others.  
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LMA and CAB implemented in this study feature among those prioritized lists (Jetz et al., 

2016; National Academies of Sciences Engineering and Medicine, 2018) and are part of the 

PROSAIL input parameters. These traits allow us to characterize part of the foliar morphology 

through LMA and leaf chemistry (pigments) through CAB. These capture the tradeoffs of a 

plant’s investment in leaf structure, robustness, versus leaf surface area and per area capacity 

for photosynthesis (Croft et al., 2017; Díaz et al., 2016; Rossi et al., 2020; Serbin et al., 2019). 

Functional diversity can both be driven by intra- and interspecific variation. Our field 

observations indicate that higher taxonomic diversity (Shannon’s H) in the study area does 

translate to higher functional diversity (Fig. S. 14), implying that the observed species exhibit 

distinct functional profiles shaping trait space. While the implemented traits might not fully 

capture all aspects of functional importance, the selection does significantly resonate with the 

taxonomic composition. This relationship is relevant, as species diversity is still the most 

commonly used indicator by decision-makers in conservation planning and biodiversity 

monitoring (Gaston, 2010; Petchey and Gaston, 2002). 

In agreement with this, functional diversity (based on LAI, LMA, and CAB) captured from 

satellite remote sensing indeed also showed a relationship to in-situ community taxonomic 

diversity (Fig. 3.4). Fig. S. 15-Fig. S. 18 indicate that the inclusion of LAI as a key trait of 

functional diversity actually weakens the relationship between trait diversity and taxonomic 

diversity both in in-situ and satellite-derived observations. Diversity in LAI seems to be 

relatively orthogonal to the taxonomic diversity in the dataset of our study area. As such, 

functional diversity measures only involving the leaf traits (LMA and CAB) resulted in 

stronger significant relationships to taxonomic diversity, both for in-situ and satellite-based 

observations (See Fig. S. 15-Fig. S. 18). Given the dominance of LAI on the canopy reflectance 

signal, proper estimation of LAI and diversity thereof is still highly important to accurately 

obtain canopy-level traits and structural diversity (Asner et al. 2015; Roelofsen et al. 2013).   

These findings illustrate the importance of trait selection considerations in functional diversity 

assessments and decisions to be made regarding the scale at which we look at traits; at a leaf-

level or at the canopy-level. The incorporation or multiplication with LAI facilitates a relatively 

straightforward approach to upscale leaf traits to the canopy scale (Bacour et al., 2006; 

Kattenborn et al., 2019; Musavi et al., 2015). The retrieval of canopy traits for functional 

diversity, either through incorporation (see Fig. 3.4) or multiplication with LAI, resulted in 

higher accuracies as compared to solely through leaf-level traits as illustrated here by SVR and 

SNAP inversions (see Fig. Fig. S. 15 and Fig. S. 17). The improved retrieval accuracy of 

canopy traits compared to leaf traits has also been noted by e.g. Bacour et al., 2006; Homolová 

et al., 2013; Roelofsen et al., 2013. However, for our study area, this better retrieval seems to 

come at the cost of lesser relationship to taxonomic diversity.   

Sentinel-2’s pixel size, with most bands scaled at a 20m spatial resolution, thus resulting in 

plots of 400m2, is significantly larger than most plant canopies. This mismatch between 

ecology’s sampling units and the homogeneous coarse raster offered by satellite remote sensing 

complicates ecological interpretation (Wang and Gamon, 2019). The calculation of functional 

diversity requires multiple observations embodied in pixel-scaled plots. The calculations 

provided a characterization of functional diversity in ecological communities captured through 

multiple pixels covering around 3200 m2. As such, for ecological interpretation, the remotely 
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sensed functional diversity metrics likely capture both elements of alpha and beta-diversity 

indicative of the local turnover of functional diversity in arbitrary ecological communities 

(Barton et al., 2013; Rocchini et al., 2015).  

Besides ecological interpretation, this scale mismatch also challenges validation efforts. Our 

field campaign carefully followed Sentinel-2’s spatial scaling resulting in comprehensive but 

laborious sampling efforts of large plots. Our spatial scaling enabled a unique one-to-one 

validation of remotely sensed estimates against in-situ community functional diversity patterns. 

The results are indicative of current capabilities in mapping functional diversity from space 

through RTM inversion approaches (Table 3.3 and Fig. 3.4), yet remain ambiguous in terms of 

sample size and the number of observations on which functional diversity is calculated. An 

injection of finer scaled remote sensing approaches, such as a two-tier validation between field, 

UAV and satellite remote sensing may provide a better characterization of the spatial scaling 

of functional diversity patterns observed from space, and potentially facilitate feasible 

validation campaigns that include a larger number of observations. Complementary, wall-to-

wall (i.e. spatially explicit) landscape retrieval approaches of functional diversity from remote 

sensing would allow further assessment of the validity of remotely sensed functional diversity 

metrics along well-studied ecological gradients (Durán et al., 2019). Finally, interpolation of 

species-mean trait estimates based on carefully curated trait and species occurrence databases 

may complement the extensive sampling of field observations presented here to build a more 

complete validation dataset, possibly covering multiple ecosystem types, regions and or biomes 

(e.g. Aguirre-gutiérrez et al., 2021; Ma et al., 2019; Serbin et al., 2019).   

3.5. Conclusions 

We demonstrated the potential of RTM inversion of Sentinel-2 to simultaneously derive 

multiple relevant traits to calculate satellite remotely sensed functional diversity estimates in a 

(semi-)natural heterogeneous landscape. The implementation of our study design allowed for 

a unique direct one-to-one validation of individual traits and community patterns of functional 

diversity based on in-situ measurements that are precisely scaled and georeferenced to the 

satellite observed pixels. The implemented general RTM approach is relevant for wider 

application in ecosystem and biodiversity research as it allows for the retrieval of in-situ 

measurable multivariate trait estimations from reflectance without heavy reliance on field data 

for input. The approach is semi-mechanistic and the universal principles behind its physics are 

in theory scalable, although further research across ecosystems and canopy types is necessary. 

Across a representative selection of different inversion approaches, the functional diversity 

metrics (CHV in particular) appear relatively robust against errors in trait retrievals. Taken 

together, the study provides an important step towards maturation of operational, scalable, 

spatially and temporally explicit methods and, hopefully, inspires further validation and 

assessment of satellite-based functional diversity metrics across ecological gradients and larger 

datasets. A validated assessment will allow monitoring large-scale patterns of plant functional 

diversity to better understand the dynamics of functioning of our ecosystems.  

  


