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Forever Connected: The Lifelong Biological
Consequences of Fetomaternal and Maternofetal
Microchimerism

Diana W. Bianchi,®* Kiarash Khosrotehrani,® Sing Sing Way,© Tippi C. MacKenzie,®
Ingeborg Bajema,® and Keelin O'Donoghue’

BACKGROUND: Originally studied as a mechanism to un-
derstand eclampsia-related deaths during pregnancy, fe-
tal cells in maternal blood have more recently garnered
attention as a noninvasive source of fetal material for
prenatal testing. In the 21st century, however, intact fe-
tal cells have been largely supplanted by circulating cell-
free placental DNA for aneuploidy screening. Instead,
interest has pivoted to the ways in which fetal cells influ-
ence maternal biology. In parallel, an increasing appreci-
ation of the consequences of maternal cells in the devel-
oping fetus has occurred.

CONTENT: In this review, we highlight the potential
clinical applications and functional consequences of the
bidirectional trafficking of intact cells between a preg-
nant woman and her fetus. Fetal cells play a potential
role in the pathogenesis of maternal disease and tissue
repair. Maternal cells play an essential role in educating
the fetal immune system and as a factor in transplant ac-
ceptance. Naturally occurring maternal microchimerism
is also being explored as a source of hematopoietic stem
cells for transplant in fetal hematopoietic disorders.

SUMMARY: Future investigations in humans need to in-
clude complete pregnancy histories to understand ma-
ternal health and transplant success or failure. Animal
models are useful to understand the mechanisms under-
lying fetal wound healing and/or repair associated with
maternal injury and inflammation. The lifelong
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consequences of the exchange of cells between a mother
and her child are profound and have many applications
in development, health, and disease. This intricate ex-
change of genetically foreign cells creates a permanent
connection that contributes to the survival of both

individuals.

For well over a century it has been known in the medi-
cal literature that multi-nucleated syncytial giant cells
could be demonstrated in the organs of women who
died of eclampsia (1, 2). The renowned German pathol-
ogist, Christian Georg Schmorl, unexpectedly and con-
sistently found them when performing autopsies on 17
women. While Schmorl’s focus was on understanding
the pathophysiology of preeclampsia and eclampsia, his
work established the foundation for a body of knowl-
edge that has continuously evolved over time. In this re-
view, we will discuss the potential clinical applications
and functional consequences of bi-directional trafficking
of intact cells between the pregnant woman and her fe-
tus. Originally sought as a source of fetal material that
could be noninvasively obtained for prenatal genetic di-
agnosis, the information presented here will highlight
the potential role that fetal cells play in the pathogenesis
of maternal disease and tissue repair, as well as the im-
portance of maternal cells in educating the fetal immune
system. This intricate interchange of genetically foreign
cells creates a lifelong bond between a mother and her
child that contributes to the survival of both individuals.

Fetomaternal Microchimerism

WHERE FETAL CELLS ARE FOUND IN THE MOTHER

Maternal blood. Historically, the placenta was thought
to be a barrier that separated the genetically distinct
mother and fetus. It is now well established, however,
that fetal cells pass into the maternal circulation during
both human and rodent gestations (3, 4). Definitive
proof of fetal cells in maternal blood occurred when XY
metaphases in fetal lymphocytes were demonstrated in
the peripheral blood of pregnant women carrying male
fetuses (5). Even more convincing evidence came in
the 1990s with the application of molecular genetic
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techniques such as polymerase chain reaction amplifica-
tion and fluorescence in situ hybridization to detect
unique amplified fetal DNA sequences from cellular
components of the blood of pregnant women (4).

Fetal cells can be found in the peripheral blood of
100% of pregnant women and are detectable by 6 weeks
of gestation, although the volume of fetal blood present
in the maternal circulation is usually very small (6).
Data from a review of fetomaternal hemorrhage show
that the volume present in the maternal circulation at
delivery is < 0.05mL in 74% of women, < 1 mL in
96%, and < 30 mL in 99.67% (7). The principal mech-
anism is damage to placental villi with physical disrup-
tions in the 5-45 pm barrier that separates the maternal
and fetal circulations (Fig. 1). The number of fetal cells
found in the maternal circulation is influenced by fetal
and placental pathologies. Fetal cells can pass into ma-
ternal blood in significant amounts during or after spon-
taneous miscarriage (8, 9). Fetomaternal hemorrhage
after first trimester termination of pregnancy results in
an 80-fold increase in fetal cells in maternal blood (10).
An increased number of fetal cells is also observed in
maternal blood in cases of fetal aneuploidy, although
this may reflect placental abnormalities rather than the

underlying karyotype (11). More recently, cesarean de-
livery has been conclusively linked with higher detection
and greater concentrations of microchimeric cells in ma-
ternal blood than vaginal delivery (12). Fetomaternal
cell trafficking is increased in a range of common preg-
nancy problems, including hyperemesis gravidarum,
preeclampsia, antepartum hemorrhage, and miscarriage
(13-19).

Estimates during typical pregnancies suggest there
are only 1 to 2 fetal cells per mL of maternal blood (11),
with trophoblasts, monocytes, B and T lymphocyrtes,
nucleated erythrocytes, and hematopoietic progenitors
present (Table 1). In practice, stimulating fetal erythroid
and hematopoietic progenitor cells in culture to provide
a greater number for genetic analysis proved disappoint-
ing, because fetal and maternal cells were too similar,
and amplification was unsuccessful (20).

The identification of mesenchymal stem cells
(MSC) in first trimester fetal blood (21) offered the
prospect of targeting a unique fetal stem cell for nonin-
vasive prenatal diagnosis. Fetal MSC were, however,
found to circulate at a very low frequency in maternal
blood (in 5% of post termination blood samples), mak-
ing them unlikely to be wuseful clinically (22).

Fig. 1. Male fetal chimeric cells in the uterus identified by in situ hybridization. (A) A single Y-chromosome positive cell in a
healthy control myometrium; (B) A uterus with placenta increta. Large numbers of chimeric cells are present at sites of placental
invasion (arrow); arrowheads show individual male cells. Figure courtesy of Marije Koopmans and Idske Kremer Hovinga.
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Fetomaternal and Maternofetal Microchimerism

Table 1. Types of fetal cells found in maternal blood.
Trophoblasts Leukocytes NRBCs HSCs MSCs PAPCs
Specific cell  No, although Yes Yes, improving  Yes Yes, although ~ CD34+4CD38+
markers HLA-G has with use of definedby  Endothelial
potential embryonic absence of
hemoglobins markers
Similarityto  None Yes Yes, with ex- Yes, but have None in blood  Not known
maternal ception of higher prolif-
cells primitive fetal  erative
NRBCs potential
Found in No, cleared by Yes Yes Not typically No No
non- preg-  pulmonary
nant adult circulation
circulation
Persistin No Yes No, Yes Yes Yes
maternal short-lived
tissues
Other Developmenta- Identified by Physiologic in-  Rare, but can Rare, but can Have capability
qualities lly end-stage, HLA differen-  crease in ma- be amplified be amplified of differentia-
Multinucleated ces between ternal NRBCs in vitro in vitro, may tion to repair
mother and occurs dur- escape im- maternal
fetus ing mune tissues
pregnancy rejection.
Likely to adhere
and engraft
rapidly
Abbreviations: NRBCs, nucleated erythrocytes; HSCs, hematopoietic stem cells; MSCs, mesenchymal stem cells; PAPCs, pregnancy-associated progenitor cells; HLA, human leu-
kocyte antigen.

Subsequent work found that fetal CD34+ cells could
be detected in the maternal intervillous blood space
from term placental chorion, suggesting that their point
of origin resided in the fetal villi; these cells were not he-
matopoietic but had endothelial lineage characteristics
(23). Failure to routinely isolate the stem/progenitor
cells in maternal blood was eventually and variously at-
tributed to their low frequency, to limitations of the
sensitivity of enrichment methods, and/or to their en-
graftment in maternal tissues soon after their transpla-
cental passage (19, 24, 25). More recently, however,
researchers identified, isolated and cultured fetal micro-
chimeric stem cells from a pluripotent maternal stem
cell niche 24-26 years after the delivery of a 45-year old
woman’s sons (26). These cells expressed genes associ-
ated with a pluripotent stem cell phenotype and were

able to be differentiated into osteocytes, adipocytes, and
chondrocytes.

Maternal organs. Fetomaternal microchimerism is de-
fined as low levels of intact fetal cells that persist in ma-
ternal blood and tissues for years after pregnancy (17,
19, 27, 28). Microchimerism is proposed as a state of
balance between host versus graft and graft versus host
reactions, leading to the acceptance of the allogenic fe-
tus; it has been specifically suggested that fetal stem cells
engraft in maternal bone marrow to maintain tolerance
to the semi-allogeneic fetoplacental graft (29). Bianchi
et al. (24) were the first to demonstrate that fetal cells
could persist in maternal blood up to 27 years postpar-
tum and later confirmed that a live birth was not re-
quired for a woman to become a chimera (10, 30, 31).
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Fig. 2. Microchimeric male fetal cells present in the ap-
pendix of a pregnant woman. Fluorescence in situ hybridi-
zation was performed with X and Y chromosomes labeled
with SpectrumOrange™ and SpectrumGreen™, respec-
tively. A single male cell is seen in the center of the
image.

To understand more about the significance and
pathophysiological role of microchimeric cells, the
‘where, when, and how’ is of extreme importance. The
search for microchimerism can make use of several sour-
ces, such as normal or diseased tissues; the timepoints
can be during health or disease, during reproductive ages
or beyond, during pregnancy or not. Techniques to de-
tect chimeric cells in tissues usually rely on the detection
of Y-chromosome positive cells in women (Fig. 2), some-
times in combination with immunohistochemistry to de-
tect the true nature of the cells, but this technique limits
the focus to women who have had male fetuses. Fetal cell
microchimerism occurs equally in both fetal sexes. When
studying chimeric cells in tissues, a distinction can be
made between tissue samples obtained during life or at
autopsy. The latter provides an adequate amount of tis-
sue for study, but usually suffers from degenerative
changes. Studies on the presence and location of chimeric
cells in tissues from women obtained at autopsy have
shown that Y-chromosome positive chimeric cells were
present in kidneys, livers, hearts, thyroids, lungs, skins,
and lymph nodes unaffected by disease (Fig. 3) (32, 33).
It is evident that a low level of ‘background’ chimerism is
physiologic and that the number of chimeric cells
increases in disease. Whether the role of chimeric cells
lies mainly in the development of disease or in its repair
phase is still an unresolved issue (34).

Fetomaternal chimerism and maternal disease. Microchimerism

seems to be more common in affected tissues than in
blood (35), in which the number of microchimeric cells
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Fig. 3. Bidirectional trafficking of fetal and maternal cells
during pregnancy. Fetal cells (red) become incorporated
into maternal organs shown on the left. Maternal cells
(blue) are found in fetal organs on the right. They play an
important role in education of the fetal immune system.

is greater than in controls (31). Studies have confirmed
that the increase in fetal microchimerism in autoim-
mune disease is derived from circulating cells and not
from cell-free DNA. Fetomaternal microchimerism has
been most strongly implicated in the pathogenesis of au-
toimmune diseases, which have a predilection for
women after pregnancy (36) and clinically resemble
graft versus host disease (28, 31, 37). Candidate autoim-
mune diseases with higher prevalence in women include
systemic sclerosis (35, 38-40), Sjogren’s syndrome (41),
thyroid disorders (42), lupus nephritis (34), and sys-
temic lupus erythematosus (43). Microchimerism has
now been investigated in many of these diseases, with fe-
tal cells demonstrated in skin lesions, tissues, and pe-
ripheral blood, and some results supporting a potential
role in disease pathogenesis. Some authors suggest that
an explanation for the conflicting results in studies relat-
ing fetal microchimerism and autoimmune disease is the
migration of fetal cells preferentially into target organs
of the disease rather than the circulation (41).

Both microchimeric cells and human leukocyte an-
tigen relationships of host and non-host cells are most
likely involved in the subsequent pathogenesis of auto-
immune disease (37, 39). The finding of more male
cells in women with older sons, as well as the increased
amount of microchimerism remote from systemic lupus
erythematosus diagnosis and pregnancy, lends support
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to the idea that it takes time for the fetal cells to repopu-
late and establish a cell line (43, 44).

During pregnancy, microchimeric fetal cells have
been proven to invade maternal skin, and their presence
has been associated with the development of otherwise
unexplained  inflammatory  skin = disorders  (45).
Melanomas that occur during pregnancy have also been
shown to include microchimeric fetal cells that cluster
around the tumor and appear to have mainly adopted
an endothelial phenotype (46). Identification of male—
presumed fetal cells in healed maternal cesarean scars af-
ter pregnancy suggests that, possibly in response to sig-
nals produced by maternal skin injury at surgery, fetal
cells migrate to the site of damage to become involved
in maternal tissue repair, or proliferate locally (47).

Research has also shown that fetal cells are present
in maternal organs affected by non-autoimmune condi-
tions, such as hepatitis C (30), cervical cancer (48), and
breast cancer (49). Most investigations that have exam-
ined solid tumors convincingly show that fetal cells are
preferentially present at tumor sites (28, 50). The func-
tion of these cells is unknown, but hypotheses proposed
include promotion of tumorigenesis, immunosurveil-
lance, and participation in tissue repair. It cannot be
concluded that fetal cell microchimerism always results
in a graft-versus-host phenomenon (27).

Furthermore, fetal microchimerism is not always
found in association with maternal disease. Because feto-
maternal cell trafficking occurs in all pregnancies, micro-
chimerism is likely established in healthy women as well
(19, 31, 51). If fetal progenitor/stem cell trafficking
occurs in every pregnancy, a much greater incidence of
autoimmune disease in postreproductive women would
be expected. Therefore, differentiation of fetal stem/pro-
genitor cells engrafted in maternal tissues must occur in
response to pre-existing tissue injury such as autoimmu-
nity, or the cells must differentiate into others able to
trigger autoimmunity in response to activation events
such as infectious disease, malignancy, exposure to
chemicals, or tissue injury (19, 27).

Searching for microchimerism in tissues of preg-
nant women who died due to a variety of causes revealed
that Y-chromosome-positive chimeric cells were present
in practically all organs, and significantly more so than
in organs of nonpregnant women, with the lungs being
most chimeric (52). Chimeric cells appeared to be both
parenchymal and hematopoietic cells (52). Most inter-
estingly, the distribution of chimeric cells in various
organs appears to be similar to those in a mouse model
(53), with microchimerism most often present in the
lungs (54). This raises the hypothesis of the lungs as a
favorable microenvironment for chimerism, a site of pas-
sive entrapment, or a site where microchimerism occurs
mostly because of the great percentage of cardiac output
received in the pulmonary capillary bed. Interestingly,

another autopsy study showed that even more chimeric
cells in lungs were present in women with preeclampsia
(55), a finding that dates back to Schmorl (1, 2) but
with the additional evidence of syncytial aggregates con-
taining the anti-angiogenic factor sFlt-1 that may con-
tribute to the systemic endothelial dysfunction
characteristic of preeclampsia.

Pregnancy-associated progenitor cells and significance for
repair of maternal tissue and organs. From the time that
fetal microchimeric cells were identified in pregnant
and postpartum women, investigators have explored a
range of hypotheses regarding their role with a strong
predilection around allo-immunity of these fetal cells
(24, 39). An intriguing observation consisted of fetal
cells persisting for decades in the maternal body and
forming entire thyroid follicles (42). Similarly, when
looking more systematically, fetal cells could be shown
to adopt phenotypes across multiple lineages in a range
of maternal injured tissues (56, 57). This introduced a
new paradigm suggesting that fetal cells were stem or
progenitors that would engraft in maternal tissues and
participate in the naturally occurring injury repair pro-
cess (58). These fetal stem cells were called pregnancy-
associated progenitor cells (PAPCs) (56, 59). Many
studies have attempted to understand the functional
plasticity and potency of these cells. The initial study in
the peripheral blood of pregnant women suggested that
PAPCs had hematopoietic as well as lymphoid progeni-
tor activities (CD34+4CD38+ phenotype) (24). This
was subsequently functionally validated in murine T
and B cell immunodeficient models in which fetal lym-
phoid progenitors could mature in the maternal thymus
and bone marrow to form T cells and immunoglobulin-
producing B cells (60). Although PAPCs did not dem-
onstrate a significant myeloid potential (61), fetal gran-
ulocytes have been reported in maternal blood,
suggesting that PAPCs also have myeloid capacity (62).
The multilineage potential of PAPCs supported the
role and activity of an early progenitor cell acquired by
the mother during the first trimester and early stages of
pregnancy. Accordingly, fetal mesenchymal stem cells
have been described to enter the circulation and engraft
in the maternal bone marrow where they can persist for
decades (22, 63). These fetal MSCs have extended plas-
ticity towards mesenchymal lineages. In particular, con-
tribution of PAPCs to mesenchymal lineages has been
demonstrated when fibrosis occurs in the kidney,
wounds, or the appendix (64-66). Other studies have
reported cardiomyocyte differentiation of fetal cells in
maternal heart (67), however, muscle differentiation was
not reproducible in mice with a maternal genetic defect
or injury such as in models of Duchenne muscle dystro-

phy (68).
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Studies attempting to identify PAPCs in placental
sections visualized fetal CD34+ in maternal decidual
tissues. Surprisingly, most of these cells harbored endo-
thelial markers such as CD31 or von Willebrand factor,
suggesting a major contribution of fetal endothelial pro-
genitors to PAPCs (23). Indeed, the endothelial poten-
tial of PAPCs has been shown in maternal inflammatory
skin diseases (69), skin wounds (47, 70), myocardial in-
farction (71), melanoma (46), and more recentdy in
stroke (72). In all of these examples, entire blood vessels
have formed from fetal microchimeric cells and were
connected to maternal vessels. The origin of these endo-
thelial progenitors remains unclear, as some findings
suggest that they can emanate from term placentas, and
others support the role of earlier CDX2 positive progen-
itors (71). Evidence for chimeric cells in wound healing
comes from a recent study in mice in which it was
shown that fetal microchimeric cells with a CD11b+
CD34+ CD31+ phenotype and high expression of the
C-C chemokine receptor 2 migrate to areas of maternal
injury, where they participate in repair (73). These mye-
loid cells could be part of the myeloid angiogenic cells
that promote wound vascularization via paracrine activi-
ties (74). It is suggested that these findings could lead to
therapeutic strategies involving tissue repair through
natural stem cell therapy.

Finally, beyond these classical mesodermal lineages,
several studies have demonstrated the potential of
PAPC:s to have endodermal or ectodermal fates. Indeed,
liver cells have been reported to originate from fetal cell
microchimerism (75). Cells derived from multiple ner-
vous system lineages including neurons have been found
in postpartum maternal brains or spinal cord (76, 77).
Intestinal or thyroid epithelium has been also reported
(78). Although the functional significance of these find-
ings is difficult to evaluate, these observations raise fun-
damental questions in the field of stem cell therapy.
Indeed, a major question is whether PAPCs are a ho-
mogenous population acquired early during gestation
that naturally has multilineage potential or if it is a
mixed population including multiple cell types with di-
verse plasticity.

Maternofetal Microchimerism

MATERNAL CELLS IN OFFSPRING TISSUES

Transfer of cells between the pregnant woman and her
fetus also occurs, resulting in persistence of maternal
cells in offspring for many years after birth (79-81).
Maternal cells have been identified in a variety of tissues
including the heart, liver, lung, and brain of neonates
(Fig. 2) (82), older infants, and adults, with a variety of
potential immunological implications (83, 84). For ex-
ample, increased levels of maternal microchimerism
have been described in many human autoimmune

356 Clinical Chemistry 67:2 (2021)

disorders including juvenile dermatomyositis (85), idio-
pathic inflammatory myopathies (86), and biliary atresia
(87-89).

Whether these genetically foreign maternal cells are
harmful and instigate alloreactivity, or alternatively pro-
vide regenerative properties remains uncertain. Evidence
suggesting the latter hypothesis includes the identifica-
tion of female insulin-producing cells in the pancreatic
islets of men with type 1 diabetes (90, 91), keratinocyte
phenotypes amongst maternal microchimeric cells in
patients with pityriasis lichenoides (92), and cardiac
myocyte properties by maternal cells in infants with
arrhythmias due to neonatal lupus 3). The rarity of ma-
ternal microchimeric cells (~1 in 10> to 107 offspring
cells) has precluded a more comprehensive systemic
identification of their distribution and cellular pheno-
types across multiple tissues. Likewise, the lack of tools
for their experimental manipulation has prevented de-
finitive identification of their functional roles.

A naturally occurring instance of maternal micro-
chimerism that bypasses these limitations is the enriched
accumulation of maternal immune cells in immune-
deficient offspring. Graft-versus-host disease from trans-
placentally engrafted maternal lymphocytes is a well-
described clinical manifestation of severe combined im-
mune deficiency (93). On the other hand, expanded lev-
els of circulating maternal T cells can also protect
immune-deficient offspring by augmenting antimicro-
bial host defense against pathogens that cause opportu-
nistic  infections (94). In rodents, maternal
microchimeric cells have been shown to produce IgG in
B cell-deficient offspring (95), and interleukin-2 in the
thymus and spleen of interleukin-2-deficient offspring
96).

The absence of defined fetal-neonatal immune cell
subsets in these instances undoubtedly creates the physi-
ological niche that allows for microchimerism of trans-
placentally engrafted maternal leukocytes. Whether
microchimeric maternal cells provide similarly protective
benefits in the immune components of offspring
remains undefined. However, given the relatively naive
and hyporesponsive state of fetal and neonatal adaptive
immune components that promote increased vulnerabil-
ity in these developmental windows (97, 98), and the
increasingly established purposeful transfer of protective
maternal antibodies (99, 100), it would not be surpris-
ing that vertically transferred intact maternal cells that
persist in offspring also promote the maturation of neo-
natal immunity.

SIGNIFICANCE OF MATERNAL MICROCHIMERISM FOR THE
EDUCATION OF FETAL IMMUNE SYSTEM

Exposure to maternal tissues and the presence of micro-
chimeric maternal cells in the fetus throughout develop-
ment have important implications for preventing fetal
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immune cells from rejecting noninherited maternal
alloantigens. For example, it has been shown that in a
healthy pregnancy, human fetuses develop regulatory T
cells (Tregs) that suppress a fetal T cell response to non-
inherited maternal antigens (101). The presence of
microchimeric maternal cells may serve to educate fetal
T cells toward tolerance, thus avoiding a fetal immune
response against the mother. Conversely, this tolerance
of the fetus to maternal antigens may be damaged in
pregnancy complications such as preterm labor. The
cord blood of infants born preterm (due to preterm pre-
mature rupture of membranes, a condition in which
there is often a subclinical or clinical infection) (102),
contains higher levels of maternal cell microchimerism,
along with increased maturation of fetal dendritic and T
cells (103). Interestingly, cord blood T cells from these
neonates are sensitized against maternal antigens and
produce tumor necrosis factor-ot and interferon-y, medi-
ators that can contribute to the cascade of uterine con-
tractions in preterm labor (104). These data are
consistent with results obtained in mouse models in
which there is increased maternal microchimerism after
fetal stem cell transplantation (105) or infection with li-
popolysaccharide to induce preterm labor (106) or mis-
carriage (107), and in fetuses undergoing surgery in the
womb (108), which is often complicated by preterm la-
bor. Thus, levels of maternal microchimerism may be
“tunable” to enable fetal tolerance to maternal antigens
at baseline, or sensitization against them during infec-
tion/inflammation, to contribute to the complex cascade
that can prematurely end the pregnancy.

LONG-TERM IMMUNE CONSEQUENCES OF PREGNANCY/
PARTURITION FOR FUTURE PREGNANCIES

Despite the similarities between maternal and fetal cell
microchimerism, a critical distinction between them is
how these genetically foreign cells establish persistence.
This potentially relates to immunological maturity of
each respective host. Fetal microchimeric cells enter
pregnant women who have a functional repertoire of
adaptive immune components. By contrast, maternal
cells are found in fetal tissues beginning in the second
trimester (108), prior to or during key milestones in hu-
man immunological development, such as development
of the thymus and acquisition of effector function in pe-
ripheral T cells (109, 110).

Exposure to genetically foreign maternal cells in
these early stages of immunological development paral-
lels expanded immunological tolerance of offspring to
non-inherited maternal antigens (NIMA) (79, 111).
Immunological implications of NIMA-specific tolerance
have classically been described in transplantation. Before
the availabilitcy of recombinant erythropoietin,
transfusion-dependent individuals broadly exposed to a
wide repertoire of genetically foreign human leukocyte

antigen alloantigens were found to selectively lack anti-
bodies with NIMA specificity (112). Long-term survival
of renal allografts is markedly improved between NIMA
matched sibling donor—recipient pairings (113). The
risk of graft versus host disease after hematopoietic stem
cell transplantation is similarly reduced in NIMA-
matched donor—recipient pairings (114—116).

The bidirectional transfer during pregnancy, and
persistence of microchimeric cells in mothers and off-
spring, is highly conserved across mammalian species.
Considering the fetus as an allograft, and improved
pregnancy outcomes with enforced fetal-allograft toler-
ance, further highlight potential teleological benefits
driving expanded tolerance of offspring to NIMA. An
example of these reproductive benefits is reduced sus-
ceptibility to fetal wastage in mice during pregnancies in
which fetal alloantigens are matched with NIMAs
(117). In other words, tolerance to NIMA likely has
beneficial impacts in enforcing fetal tolerance during
next-generation pregnancies that contain shared fetal
alloantigens. Maternal microchimerism is required for
these cross-generational reproductive benefits of NIMA-
specific tolerance since selective depletion of microchi-
meric maternal cells in female mice prior to mating
eliminates resiliency against fetal wastage in NIMA-fetal
alloantigen matched pregnancies (117). This expanded
tolerance in mice to non-inherited maternal MHC hap-
lotype antigens parallels classical human observations of
reduced sensitization to erythrocyte rhesus (Rh) antigen
during pregnancy amongst Rh-negative women born to
Rh-positive compared with Rh-negative mothers (118).
In particular, pregnancy-induced Rh sensitization was
shown to be significantly reduced amongst Rh-negative
women with Rh-positive mothers (Rh is transformed
into an NIMA) compared with Rh-negative women
born to Rh-negative mothers (119). Thus, maternal
microchimerism confers important immunological con-
sequences in female offspring on the outcomes of next-
generation, future pregnancies.

The similarities between maternal microchimerism
in children and fetal microchimerism in mothers raises
the question as to whether fetal microchimeric cells
retained in women also reinforce fetal tolerance during
subsequent pregnancies. Human epidemiology studies
consistently show pregnancy complications such as pre-
eclampsia are much more common during first pregnan-
cies (120). For example, an analysis of over 700 000
primiparous mothers showed that the overall 4.1% rate
of preeclampsia in a first pregnancy was reduced to
1.7% in subsequent pregnancies (121). Importantly,
these protective benefits are partner-specific since a
change in paternity overrides the reduced risk of pre-
eclampsia conferred by a prior pregnancy (122-124).
Although the necessity of fetal microchimeric cells in
sustaining and enforcing fetal tolerance has not been
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demonstrated, immunological memory of prior preg-
nancies, similar to expanded tolerance of offspring to
NIMA are each linked with persistent accumulation of
immune suppressive regulatory CD4+ T cells with de-
fined antigen-specificity (117, 125).

These reproductive benefits illustrate one aspect of
nature’s intent in promoting the transfer and retention
of microchimeric cells in mothers and their offspring,
and also raise interesting questions with regard to poten-
tial immunological consequences of individuals being
constitutively chimeric. A provocative hypothesis is that
defective tolerance to microchimeric cells may drive the
underlying pathogenesis of some autoimmune and/or
autoinflammatory disorders (84). Important next steps
will be to establish the origin, tissue distribution, and
molecular properties of microchimeric cells that control
whether tolerogenic or sensitization responses are
primed to further investigate the role of microhimeric
cells in the immune-pathogenesis of idiopathic autoim-
mune and/or autoinflammatory disorders (79).

SIGNIFICANCE OF MICROCHIMERISM FOR TRANSPLANTATION
AND CURE OF GENETIC DISORDERS

Fetal tolerance to non-inherited maternal antigens is
transient. Sustaining this tolerance after birth likely
depends on the presence of sufficient exposure to mater-
nal cells to enable continued education of T cells. There
is one experiment of nature, biliary atresia, in which
higher levels of maternal cells are found in the livers of
affected children after birth (87-89). Interestingly, there
is improved survival of liver transplants from a maternal
donor compared to a paternal donor in children with
biliary atresia (126), suggesting that the continued pres-
ence of maternal microchimerism in this disease can sus-
tain tolerance to the maternal donor.

One of the most exciting applications of fetal toler-
ance to maternal antigens is in the context of in utero
stem cell transplantation. Infants with congenital hema-
topoietic disorders can be cured by hematopoietic stem
cell (HSC) transplantation, but a suitable donor is often
not available and there are severe complications of the
conditioning and immune suppression regimens needed
to prepare the recipient’s bone marrow for the trans-
plant. However, these disorders are often diagnosed pre-
natally and could potentially benefit from in wutero
transplantation, a strategy that takes advantage of the
unique immune milieu of the fetus to induce tolerance
to the transplanted cells. Based on the observation that
human fetuses are tolerant to NIMAs during pregnancy
(101), and the understanding that the maternal immune
system can mediate rejection of third-party cells trans-
planted into the fetus (104), there is now an ongoing
phase 1 clinical trial to transplant maternal HSCs into
fetuses with alpha thalassemia major (clinicaltrials.gov

NCT02986698). These infants suffer from anemia

358 Clinical Chemistry 67:2 (2021)

before birth, requiring antenatal blood transfusions to
survive. The HSC transplantation can be given at the
same time as the transfusions. If this treatment is found
to be safe and effective, it could be expanded to treat
patients with similar, more common conditions such as
sickle cell anemia. Thus, a better understanding of the
biology that enables the trafficking of cells between the
mother and the fetus could ultimately result in therapies
to treat fetuses with genetic disorders.

SUMMARY AND FUTURE RESEARCH

Intentionally, the focus of this review was on the biolog-
ical consequences of the exchange of intact cells between
the pregnant woman and her fetus during pregnancy.
Space limitations did not allow detailed mention of the
maternal cells that pass through breast milk after birth
(127), or exchange of cell-free nucleic acids, either
through free floating fragments of DNA or RNA in the
blood, or via structures such as exosomes. It is worth re-
membering, however, that the twentieth century interest
in fetal cell microchimerism originated as a quest to de-
velop noninvasive access to the fetus to facilitate prenatal
diagnosis of chromosomal and single gene disorders (4,
5, 128, 129). Although the feasibility of using next gen-
eration sequencing in trophoblast cells isolated from ma-
ternal blood has been demonstrated using current
technologies (130), this is still far from a trial-ready cell-
based version of noninvasive prenatal diagnosis. Novel
approaches suggested for manipulating first trimester fe-
tal primitive erythroblasts may provide additional ex-
ploratory strategies for use of this cell type for
noninvasive prenatal diagnosis (131) but improvements
in enrichment and automation are necessary for any
proposed clinical application (132). Reports using
microfluidics to isolate fetal trophoblast cells and eryth-
roblasts show promise (133), as do recent attempts to
develop and utilize a single cell-based polymerase chain
reaction system to analyze genomic DNA in fetal cells
purified from maternal blood (134). In reality, however,
it is the use of circulating cell-free fetal (cff) DNA for
prenatal screening for aneuploidy that has progressed
from an idea to widespread global clinical applications
(135) in a very short time, mainly because of the signifi-
cant quantity of fetal presumed-trophoblast DNA
within maternal plasma (136) compared with the rarity
of intact fetal cells within maternal blood, as well as
their persistence after pregnancy (25). Prenatal screening
technologies using cffDNA have limitations (137).
Positive predictive values for aneuploidies other than tri-
somy 21 can be suboptimal based on the testing plat-
form employed and are even lower for common
microdeletions. In addition, reliable genome-wide fetal
sequencing using cffDNA remains somewhat challeng-
ing due to the technological difficulties in detecting
small chromosomal imbalances, issues of confined
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placental mosaicism, the presence of unexpected mater-
nal chromosomal abnormalities, as well as the high pro-
portion of maternal cell free DNA in plasma (137).

As for the biological consequences of fetal cells in
maternal tssues and organs, future investigations in
humans need to include complete pregnancy histories,
including elective terminations and miscarriages. This is
particularly true in the stem cell field, in which the pres-
ence of male donor cells in female recipients have been
interpreted as transplant successes without mention or
consideration of prior pregnancy histories (27). Animal
models will continue to be very useful in establishing
the mechanisms underlying fetal cell wound healing
and/or repair associated with injury and inflammation
in the mother. An additional important area for future
investigation is whether ongoing stimulation by fetal
microchimeric cells in a woman is required for protec-
tion against complications primed by prior pregnancy,
such as preeclampsia.

The implications of maternal cell microchimerism
for the development and education of the fetal immune
system, as well as the significance of NIMAs for trans-
plant acceptance, are becoming increasingly appreciated.
The role of maternal cells in breast milk may play a role
in maintaining NIMA-specific tolerance during child-
hood and adulthood. This is an area for further research.
Microchimerism as a factor in multi-generational repro-
ductive success is another area of interest for the future.

Lastly, taking advantage of the priming of the fetal

immune system by naturally occurring maternal cell
microchimerism to provide lifesaving HSC transplants
is an exciting and important clinical application.

In summary, the lifelong consequences of the ex-
change of cells between a mother and child are profound
and have many applications in development, health, and
disease. Whereas a mother and her child are undeniably
forever connected in many ways, the studies presented
here demonstrate that the connection exists at the most
basic, granular, cellular level.

Nonstandard Abbreviations: MSC, mesenchymal stem cell; PAPC,
pregnancy-associated progenitor cell; NIMA, non-inherited maternal
antigen; HSC, hematopoietic stem cell; cff, cell-free fetal.
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