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Abstract: Advice regarding the analysis of observational studies of 
exposure effects usually is against adjustment for factors that occur 
after the exposure, as they may be caused by the exposure (or medi-
ate the effect of exposure on outcome), so potentially leading to col-
lider stratification bias. However, such factors could also be caused by 
unmeasured confounding factors, in which case adjusting for them will 
also remove some of the bias due to confounding. We derive expres-
sions for collider stratification bias when conditioning and confound-
ing bias when not conditioning on the mediator, in the presence of 
unmeasured confounding (assuming that all associations are linear and 
there are no interactions). Using simulations, we show that generally 
neither the conditioned nor the unconditioned estimate is unbiased, and 
the trade-off between them depends on the magnitude of the effect of 
the exposure that is mediated relative to the effect of the unmeasured 
confounders and their relations with the mediator. We illustrate the use 
of the bias expressions via three examples: neuroticism and mortality 
(adjusting for the mediator appears the least biased option), glycated 
hemoglobin levels and systolic blood pressure (adjusting gives smaller 
bias), and literacy in primary school pupils (not adjusting gives smaller 
bias). Our formulae and simulations can inform quantitative bias anal-
ysis as well as analysis strategies for observational studies in which 
there is a potential for unmeasured confounding.

Keywords: Bias; Confounding; Mediation; Observational study

(Epidemiology 2021;32: 194–201)

In observational epidemiologic studies, often the interest lies 
in the causal effect of an exposure on a certain outcome, yet 

this may be biased by (unmeasured) confounding.1 To control 
for confounding, generally, it is advised to condition on (a suf-
ficient set of) confounders, that is, variables that cause both 
exposure and outcome.2–5 Textbooks on epidemiology, as well 
as research articles about confounding adjustment, generally 
advise against controlling for variables that are measured after 
exposure has started.6–12 One reason is that adjustment for 
postexposure variables may lead to collider stratification bias. 
Another reason is that such variables may actually be media-
tors of the causal relationship between exposure and outcome, 
and conditioning on such variables may introduce bias.5,13 As 
indicated by VanderWeele: “…we often refrain from adjust-
ing for covariates that occur temporally subsequent to the 
exposure.”3

Nevertheless, in applied research, postexposure vari-
ables are sometimes adjusted for in the analysis of an obser-
vational study. For example, in a cohort study of the effect 
of prevalent vitamin K antagonist use on renal function, 
adjustment was made for measurements of hemoglobin and 
glomerular filtration rate at cohort entry (i.e., after initiation 
of vitamin K antagonist use).14 In a case–control study of 
very hot tea consumption and esophageal cancer, adjustment 
was made for the confounder “oral hygiene” measured at the 
time of outcome assessment.15 In another case–control study 
of migraine and the risk of stroke, adjustment was made for 
several confounders, again measured at the time of outcome 
assessment.16 One may wonder whether these are examples 
of bad practice or whether there could be instances in which 
adjustment for a postexposure variable could, in fact, be ben-
eficial, particularly if the postexposure variable may carry 
information about unmeasured confounders.

Bias formulas for unmeasured confounding have been 
described, for example, in Arah et al17 and Vanderweele and 
Arah.18 However, these do not consider scenarios where a 
variable related to an unmeasured confounder may also be 
caused by the exposure. Here, we consider that scenario where 
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an effect of the exposure, or a mediator, is associated with an 
unmeasured confounder and derive expressions for the bias 
when conditioning and when not conditioning on the media-
tor. The use of these formulae is illustrated by three exam-
ples: a study of neuroticism and mortality, a study of glycated 
hemoglobin levels and systolic blood pressure (SBP), and a 
study of literacy in primary school pupils.

METHODS

Notation and Setup
To derive expressions for the bias due to unmeasured 

confounding and the bias due to conditioning on a mediator 
that is (possibly) associated with an unmeasured confounder, 
we consider the model depicted in Figure  1. X denotes the 
exposure, Y the outcome of interest, and M is a mediator of 
the effect of X on Y. The variables U1 and U2 are unmeasured 
variables. U1 is a confounder of the X Y− -relation, and U1  
also causes M. U2 is a confounder of the M Y− -relation, but 
not of the X Y− -relation. Each variable is a linear combi-
nation of the variables affecting it (indicated by the directed 
arrows in Figure 1) plus an error term. We assume there are 
no interactions between variables in their effects on outcome 
or mediator. Furthermore, we assume that all variables are 
normally distributed, all associations are linear and additive, 
all errors uncorrelated, and there is no interaction between 
variables. The regression coefficients of the linear models are 
denoted by β.. , for example, βxm  for the effect of X on M. 
The variances of the errors are denoted by σ .

2, for example, 
σ y

2  for the variance of the error of Y. We assume an ordinary 
least squares (OLS) estimator is used to obtain estimates of 
the relation between exposure and outcome. Furthermore, we 
assume no other sources of bias (no model misspecification, 
no measurement error, and no missing data).19 We note that 
under the model depicted in Figure 1, the causal effect of X 
on Y is in principle not identifiable, due to U1 and U2 being 

unmeasured (in the eAppendix, http://links.lww.com/EDE/
B760; we provide an explanation for this based on a single-
world intervention graph, or SWIG).20

We have written an app demonstrating the biases 
described in the paper, which is available at https://remlap-
mot.shinyapps.io/bias-app/. The source code for the app is on 
GitHub at https://github.com/remlapmot/bias-app.

Bias Due to an Unmeasured Confounder
Here, we derive expressions for the scenario depicted 

in Figure  1, where both U1 and U2 are considered to be 
unmeasured (details about the derivations of the bias expres-
sions are presented in the eAppendix; http://links.lww.com/
EDE/B760). When U1 is unmeasured, this variable cannot be 
adjusted for and the estimator of the total effect of X on Y  
will be biased. The (true) total effect of X on Y is given by 
β β βxy xm my+ . Using the path tracing rules, the observed rela-
tion between X and Y is, in expectation,

β β β β
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β σ σ
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Here, βxy
 is the direct effect of X on Y, βmy  the direct effect  

of M on Y, etc. The bias in the OLS estimator of the total effect 
of X on Y is given by
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The two components of this second expression represent the 
two back-door paths from X to Y: the first term represents 
the path X U Y← →1  and the second term represents the 
path X U M Y← → →1 . Note that if U1 does not cause X 
( βu x1

= 0 ), then there is no bias due to unmeasured confound-
ing. If U1 does not cause Y directly (i.e., βu y1

= 0), then there 
is a nonzero bias due to unmeasured confounding that is medi-
ated by M.

Expression (1) can be simplified when assuming all 
error terms are equal to 1 (i.e., σu1

= 1, σu2
1= ). Then

β β β β
β β β β

β
�
xy xy xm my

u x u y u m my

u x

= + +
+

+
1 1 1

1

2 1

( )
.

If the unmeasured confounder does not cause the media-
tor, that is, βu m1

0= , this bias expression simplifies to 
β β βu x u y u x1 1 1

2 1/ ( )+ .

Bias due to conditioning on a mediator
To explore under what scenarios conditioning on M may 

remove (part of) the confounding effect by U1, we derive an 

Figure 1. Directed acyclic graph of an exposure (X), an out-
come (Y), a mediator (M), and two unmeasured variables  
(U1 and U2).

http://links.lww.com/EDE/B760
http://links.lww.com/EDE/B760
http://links.lww.com/EDE/B760
http://links.lww.com/EDE/B760
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expression for the OLS estimator of the relation between X 
and Y, when conditioning on M. Derivations of the general 
expressions are presented in the eAppendix; http://links.lww.
com/EDE/B760. For clarity, here we assume all error terms 
are equal to 1 (i.e., σu1

1= , σu2
1= , etc.). In that case, con-

ditioning on M is expected to result in the observed relation 
between X and Y to be

β
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When βu m2
0= , expression (2) reduces to
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if the unmeasured confounder U1 does not cause the media-
tor M, that is, when βu m1

0= . When βu m2
0≠ , yet βu m1

0= ,  
expression (2) reduces to
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If we assume no unmeasured confounding by U1, for example, 
because βu x1

0= , this reduces further to
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Even though there is no unmeasured confounding of the 
X Y− -relation by U1, clearly this expectation of the observed 

relation between X and Y differs from the total effect of X on Y 
( β β βxy xm my+ ), which is partly due to blocking of the direct 
effect of X on Y via M and partly due to collider stratification 
bias (opening the path X M U Y→ ← →2 ).

The bias expressions were supported by statistical simu-
lations. Details of these simulations and their results are pre-
sented in the eAppendix; http://links.lww.com/EDE/B760.

Illustration of Bias Formulas
To illustrate the use of the bias formulae (1) and (2), 

we first present a numerical example. The bias formulae 
can be applied by specifying the parameters. First, we could 

assume all the error terms (σu1, σu2, σ x , σm , and σ y) are 
equal to 1. Next, based on the literature or own experience 
the other parameters could be specified. For example, we 
could assume that a one-unit increase in the unmeasured 
variable U1 causes an increase in each of X, M, and Y of 0.3 
( β β βu x u m u y1 1 1

0 3= = = . ). Likewise, we could assume that a 
one-unit increase in the unmeasured variable U2 causes an 
increase in each of M and Y of 0.2 (β βu m u y2 2

0 2= = . ). Also, 

we assume that a one-unit increase in X causes and increase in 
M of 0.4 ( βxm = 0 4. ) and that a one-unit increase in M causes 
an increase in Y of 0.7 ( βmy = 0 7. ). Finally, we assume that X 
has no direct effect on Y (i.e., βxy = 0). With these numbers, 
we can apply the bias formulae and calculate the bias. Without 
adjustment for U1, the bias in the estimated X Y−  relation is 
0.14 , whereas with adjustment for U1, the bias is −0.25.

Figure 2 illustrates the impact of various model param-
eters on the bias of the OLS estimator of the X Y−  relation 
due to unmeasured confounding by U1, with and without 
adjustment for the mediator M. These results are based on 
expressions (1) and (2). Specifically, the values of error terms 
(σu1

, σu2
, σ x , σm , and σ y ) were set to 1. The value of the 

model coefficients ( βu x1
, βu m1

, βu y1
, βxm , βmy , βu xm2

, and 

βu y2
) were each set to 0.00,0.25,0.50,0.75,  or 1.00, while 

βyx  was set to 0. This means that in total 78,125 different con-
figurations of the parameter values were investigated. In each 
panel, the bias is plotted against the variation in one of the 
parameters. The distribution of the bias (represented as a box-
plot) is due to the variation in the other parameter; that is, each 
is marginal over the values of the other parameters.

The figure shows situations when conditioning on a medi-
ator may actually lead to a larger bias, compared with not condi-
tioning on a mediator, for example, when the indirect effect via M 
becomes larger (indicated by increasing values of βxm  and βmy). 

Particularly when βu x1
 and βu y1

 have larger values, adjustment 

may be preferred, however those settings do include scenarios 
in which adjustment can lead to a relatively large negative bias. 
For the parameters βu m2

 and βu y2
, both approaches tend to 

result in bias, although adjustment for the mediator M can result 
in bias that is larger in magnitude, owing to collider stratifica-
tion bias. Note that in this illustration, all parameters of the bias 
formulae have a zero or positive value. However, if, for exam-
ple, we take the same parameter values as mentioned above (i.e., 
β β β β β βxy u y u m my u m u y= = = = = =0 0 3 0 7 0 2

1 1 2 2
, . , . , . ),   but set  

βu x1
 and βxm  to negative values (i.e., β βu x xm1

0 3 0 4= − = −. , . ,  

then the bias after adjustment for the mediator would be posi-
tive (0.25) whereas not adjusting would result in a negative bias 
(−0.14).

Example 1—Neuroticism and Mortality
To illustrate the use of the expressions for bias, pre-

sented in the previous sections, we consider a study of the 
relation between neuroticism and mortality risk, in which 

http://links.lww.com/EDE/B760
http://links.lww.com/EDE/B760
http://links.lww.com/EDE/B760
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neuroticism and self-rated health were measured at cohort 
entry.21 In this case, self-rated health scores could have been 
affected by preexisting neuroticism, yet at the same time could 
be related to unmeasured health status (see Figure  3 for a 
graphical representation). Conditioning on self-rated health 
scores may control for confounding but may also induce a bias 
due to conditioning on the mediator. In this situation, the data 
analyst needs to identify whether the bias introduced by con-
ditioning on the mediator is likely to be greater than the bias 
introduced by not conditioning on it. This assessment could 
inform the analysis strategy.

In terms of the model presented in the previous section, 
X would represent neuroticism, Y mortality, M self-rated health 
score, and U1 would represent unmeasured health status. For 
brevity, we assume there is no confounding of the M Y−  rela-
tion by a variable U2 . If we assume that there is no direct effect 
of self-rated health on mortality, but only indirectly via health 
status, we set βmy = 0  and remove the arrow from self-rated 
health to mortality from the graph. Furthermore, we assume 
for ease of interpretation that the effect of X on M is equal to 
the effect of U on M and that the effect of U on X is equal to the 
effect of U on Y.22 In addition, all error terms (σ ) were set to 1.

Figure  4 shows the difference in absolute bias of not 
conditioning on self-rated health score versus conditioning 
on self-rated health score for various scenarios. In those sce-
narios in which the confounding effect of U1 is relatively small 
(β βu x u y1 1

0 1 0 1= =. , . ), both analytical approaches give small 
bias. However, when the confounding effect is larger, differ-
ences are more pronounced. If the unmeasured confounder is 
positively associated with X and Y (e.g., β βu x u y1 1

0 4 0 4= =. , . ),  

adjustment for M reduces the bias. In contrast, if the 

unmeasured confounder is negatively associated with X and 
Y ( β βu x u y1 1

0 3 0 3= − = −. , . ), adjustment for M leads to an 

increase in bias. The reason for the latter phenomenon is col-
lider stratification bias: upon adjustment for M, the relation 
between U1, and X becomes stronger, thus increasing the con-
founding effect by U.

Arguably, a more realistic scenario is that in which 
neuroticism has a negative effect on self-rated health (e.g., 
βxm = 0.5− ), while health status has a positive effect on self-
rated health (e.g., βu m1

1= ). Furthermore, the health status 
could be negatively associated with neuroticism and mortal-
ity (e.g., βu x1

0 3= − . , and βu y1
0 3= − . ). Given these values, 

without adjustment for the health status the bias in the effect 
of neuroticism is expected to be 0.08. However, when adjust-
ing for self-rated health, this bias is expected to be −0.03. This 
suggests that, in this scenario, adjustment for self-rated health 
gives a smaller bias. Although the actual values of the different 
parameters will be context-specific, an analysis like this may 

Figure 2. Bias in the OLS estimator of the X  – Y relation when conditioning on a mediator (adjusted) and when omitting a media-
tor (unadjusted), when the mediator is caused by an unmeasured confounder. The distribution of bias values for each parameters 
is marginal over the values of the other parameters. OLS, ordinary least squares.

Figure 3. Directed acyclic graph of example 1: the relation 
between neuroticism and mortality, with UHS being a con-
founder and SRH a mediator. SRH, self-rated health; UHS, 
unmeasured health status; 
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guide data analysts in decisions about analysis strategies and 
sensitivity analyses of adjustment for a mediator that is caused 
by an unmeasured confounder, in this case self-rated health 
scores. Further work could include using more realistic values 
for the coefficients, if these could be obtained for example 
from external data or expert opinion.

Example 2—Glycated Hemoglobin Levels and 
Systolic Blood Pressure

Suppose an interested reader finds an article that 
describes a study of the relation between glycated hemoglo-
bin levels (HbA1C) and SBP. This relation is estimated using 
linear regression. Age, sex, and body mass index (BMI) are 
included as covariates in the model to adjust for confounding. 
In this cohort study, BMI was measured 2 months after HbA1C 
levels were measured, for example, because routine data from 
general practitioners were used. The reader wonders whether 
the researchers actually should have adjusted for BMI, or if 
this could â€˜adjust awayâ€™ part of the effect of HbA1C on 
SBP. Therefore, she decides to conduct a sensitivity analysis.

Based on the literature and her own experience, she 
expresses possible ranges of the relations between pre-HbA1c-
measurement BMI ( BMI0 ), HbA1C, post-HbA1c-measure-
ment BMI ( BMI1), and SBP (Figure 5). As in the previous 
example, all error terms (σ ’s) are assumed to be 1 and U2 is 
considered absent. For each relation, the possible range is then 
split in 10 equidistant values. For each of the 100,000 combi-
nations of the values of the five relations, the possible bias due 
to conditioning on BMI1  (the mediator that is related to the 
unmeasured confounder BMI0 ) is compared with the possible 
bias due to omitting the unmeasured confounder BMI0.

Figure 6 shows the relative bias of conditioning versus 
not conditioning on BMI1 , which indicates that in 17.3%  of 
the scenarios it would be better not to condition on BMI1 . In 
the large majority of scenarios ( 82.7% ), however, condition-
ing on BMI1  is to be preferred. Based on the assumptions 
made and the quantification of the bias under two analyti-
cal strategies, the reader concludes that she agrees with the 
choices made by the researchers regarding the analysis of the 
study of the relation between HbA1C and SBP.

Note that different values of the parameters can give rise 
to the same difference in absolute bias. For example, when 
β β β β βmu mx xu ym yu, , , ,  have values 0.90, 0.15, 0.17, 1.0, and 
0.80, respectively, the difference in absolute bias between 
adjusting and not adjusting for BMI1  is approximately zero. 
Also, when βmu , βmx

, βxu
, βym

, and βyu
 have values 1.06, 

0.106, 0.172, 1.10, and 0.60, respectively, the difference in 
absolute bias is approximately zero. However, the magnitude 
of the bias differs: 0.13 for the first scenario and 0.10 for the 
second scenario. Furthermore, in both scenarios the bias when 
not conditioning has a positive sign, whereas the bias when 
conditioning on the mediator has a negative sign. An alter-
native approach, like in example 1, would be to consider the 
(absolute) bias in each of the analytical approaches, instead of 
their difference; if the bias for both approaches is considered 
too large, it might be preferable not to conduct a statistical 
analysis at all but instead put effort in collecting additional 
data, for example, on U1 (in this example BMI0).

Example 3—Literacy in Primary School Children
Literacy achievements among primary school pupils 

may affect their literacy later in life. Suppose researchers are 

Figure 4. Bias in example 1 when conditioning on a mediator 
(adjusted) and when omitting a mediator (unadjusted), when 
the mediator is caused by an unmeasured confounder. See 
main text for details.

Figure 5. Directed acyclic graph of example 2 
with hypothetical values of the relations between 
BMI0 , BMI1, HbA1C, and SBP. BMI, body mass 
indexl; SBP, systolic blood pressure.
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interested in the effect of literacy in the first year of school on 
literacy 2 years later (i.e., in the third year in school). Literacy 
is measured in the first and in the third year by means of the 
Word Recognition and Phonic Skills Test (WRAPS). Age, 
sex, and phonological capacity may be confounders of this 
relation. The latter could be measured using the phonologi-
cal assessment battery (PHAB). For this example, we use data 
from the ready to learn randomized controlled trial.23 We use 
the data of 132 children who received the control intervention, 
with complete information about WRAPS in years 1 and 3, 
PHAB in years 1 and 2, age, and sex. These data are available 
via http://reshare.ukdataservice.ac.uk/853287/, where more 
information can be found, for instance about ethical review 
of this study.

We estimated that the relation between WRAPS at base-
line and WRAPS after 2 years of follow-up was estimated 
using linear regression. We included age and sex as covari-
ates in the model to adjust for possible confounding. First, 
we considered the situation in which a measurement of the 
confounder PHAB in year 1 is available (reference scenario). 
After adjustment for age, sex, and PHAB in year 1, we esti-
mated a one-unit increase in WRAPS in year 1 to increase 
WRAPS in year 3 by 0.70 units (95% CI = 0.43 to 0.97). Next, 
we assumed that the measurement of the confounder PHAB in 
year 1 is not available. In this case, after adjustment for only 
age and sex, we estimated a one-unit increase in WRAPS in 

year 1 to increase WRAPS in year 3 by 0.74 units (95% CI = 
0.48 to 1.00). If, however, a measurement of PHAB in year 2 
was available, we could adjust for that, because PHAB in year 
2 is probably correlated to PHAB in year 1. After adjustment 
for age, sex, and PHAB in year 2, we estimated a one-unit 
increase in WRAPS in year 1 to increase WRAPS in year 3 by 
0.63 units (95% CI = 0.37 to 0.88).

In this case, the data allow for estimation of the param-
eters of the bias formulae (1) and (2), where we assume there 
is no U2 and X represents WRAPS in year 1, Y represents 
WRAPS in year 3, U1 represents PHAB in year 1, and M rep-
resents PHAB in year 2. Based on the estimates of the parame-
ters, conditional on age and sex, we can attribute the following 
values (rounded to two decimal points) to the parameters: 
σ σ σ σ β β
β β

u x m y xy xm

my u
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1
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these values, without adjustment for the unmeasured con-
founder (U1 /PHAB in year 1) we expect the bias in the effect 
of WRAPS to be 0.04, which corresponds to the difference in 
estimates of 0.70 versus 0.74. However, when adjusting for 
the mediator (M/PHAB in year 2), this bias is expected to be 
−0.07. This value corresponds to the difference in estimates of 
0.70 versus 0.63.

In practice, data would not be available to estimate all 
parameters. However, estimates may be obtained from anal-
ysis of other data sources or retrieved from other source of 
information. These could then inform a sensitivity analysis.

DISCUSSION
In the presence of unmeasured confounding, condition-

ing on a mediator that is caused by an unmeasured confounder 
may reduce, but could also amplify, the bias in the OLS esti-
mator of the exposure-outcome relation. In this paper, we pro-
vided expressions for the bias in the OLS estimator for this 
particular situation to provide support in choosing between 
two potentially biased estimators. Using simulations, we show 
that generally neither the conditioned or the unconditioned 
estimate is unbiased, and the trade-off between them depends 
on the magnitude of the effect of the exposure that is medi-
ated relative to the confounding effect of the unmeasured con-
founders and their relations with the mediator.

Epidemiologists are increasingly seeing the value of 
quantitative bias analysis, whereby statistical formulae and 
external knowledge are used to estimate the potential size and 
direction of bias (e.g., due to unmeasured confounding) for a 
given analysis.22,24–27 Previous work on the impact of condi-
tioning on a mediator or omitting a confounder already pro-
vided expressions for the bias in case of a linear model.4,13,28–31 
We extended this work by considering the situation where a 
mediator is caused by an unmeasured confounder. In general, 
neither of the two approaches considered (i.e., conditioning 
and not conditioning on the mediator) yields an unbiased esti-
mator. Where others considered similar scenarios, yet focused 

Figure 6. Histogram of difference in absolute bias of con-
ditioning vs. not conditioning on a mediator to control for 
unmeasured confounding in example 2. Scenarios to the left 
of the dashed line favor not conditioning on BMI1, scenarios 
to the right of the dashed line favor conditioning on BMI1. See 
main text for details. BMI, body mass index.



 Epidemiology • Volume 32, Number 2, March 2021Groenwold et al.

200 | www.epidem.com © 2020 The Author(s). Published by Wolters Kluwer Health, Inc.

on estimation of indirect effects,32,33 our interest lay in estima-
tion of the total effect of the exposure on the outcome (and 
possible bias thereof).

Texts on confounding adjustment generally advise 
against adjustment for variables that are caused by expo-
sure.6,5,12,34–37 Variables measured after initiation of exposure 
may be caused by (prior) exposure status and therefore are 
generally not adjusted for.3 Nevertheless, there are several 
examples of observational studies where adjustment is made 
for variables that are measured after exposure started, with 
the aim to control for confounding. To allow for a fair assess-
ment of the quality of an observational study of causal effects, 
researchers should report relevant details about the timing 
of the measurement of confounders. If these are measured 
after the start of exposure, ideally researchers should explain 
whether they think the measured value represents a mediator 
or whether it should be considered to hold information about 
one or multiple unmeasured confounders.38 Directed acyclic 
graphs may be helpful to support and explain the arguments.39

The expression for the bias when conditioning on 
the mediator, equation (2), also provides further insight 
in collider stratification bias. Particularly, if we assume 
β β β βxy u x u m u y, , ,

1 1 1
, and βmy  are zero, the expression reduces 
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β β β
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on the collider M. Collider stratification bias can arise, for 
example, due to selective inclusion of subjects into a study 
or due to missing data.40 To quantify the potential bias due to 
collider stratification, bias expressions like the one presented 
in this paper could be used.30

Although the linear model allows us to derive expres-
sions for the bias of the different OLS estimators, an obvious 
limitation is that the results only apply to a limited number 
of settings. In particular, we have assumed that all associa-
tions are linear, and that there are no interactions. Also, the 
model considered is a gross simplification of what an observa-
tional study looks like in reality. In future work, the presented 
expressions could be extended to more complex models, 
including nonlinear models. For example, future work could 
extend the theorems about collider bias for binary outcome 
models.41,42 Also, extensions could be considered that take 
possible correlation between measured and unmeasured con-
founders into account.38,43 While we focused on bias in stud-
ies with a so-called point-exposure, many exposures are in 
fact time-varying (neuroticism in the first example is actu-
ally more of a time-varying exposure than a point-exposure). 
Future research could extend our bias formulae to setting 
of time-varying exposure. We note, however, that our bias 
expressions already could provide some insight into that situ-
ation, by considering the exposure (X) and the mediator (M)  

as different measurements of exposure (e.g., X1 and X2). The 
expressions could then help to quantify the potential impact 
of (time-varying) confounding and for example support deci-
sions about the frequency with which time-varying confound-
ers are measured.

An alternative to using bias expressions to guide 
choices regarding data analysis and to inform sensitivity 
analysis is to use simulated data to assess bias.24,25 There 
are functions in several structural equation modeling pack-
ages, which allow the user to generate data from a speci-
fied DAG/model. For example, the simulateSEM() function 
in the dagitty package, the simulateData() function in the 
lavaan package,44,45 and functions in the simMixedDAG 
package.46 The user can then fit various proposed models to 
the data to assess the potential bias in their proposed mod-
eling approach. A simulation approach was also used to 
assess the likely magnitude of collider bias as an explanation 
for the obesity paradox.37 And this web application, http://
watzilei.com/shiny/collider/, uses simulated data to investi-
gate collider bias for user-specified models.47 Additionally, 
the tipr package implements methods to assess the sensitiv-
ity of regression results to unmeasured confounders.48,49 The 
expressions presented in this paper offer a relatively simple 
first approach as compared to more advanced simulation 
based sensitivity analysis.

In summary, one of the major drawbacks of observa-
tional epidemiology is the possibility of unmeasured con-
founding. Where possible mediators of the exposure-outcome 
relation hold information about unmeasured confounders, it is 
important to estimate the bias incurred by both adjusting and 
not adjusting for these mediators. The bias expressions pre-
sented here are helpful to support choices regarding analysis 
strategies and to inform sensitivity analyses for observational 
studies in which there is a potential for unmeasured confound-
ing. The result of such a sensitivity analysis could be that col-
lecting data on currently unmeasured confounders is deemed 
necessary or the study should be stopped because the risk of 
bias is considered too large. Alternatively, the results of both 
analyses (adjusted and notadjusted for the mediator) could be 
presented and the bias expressions presented here could sup-
port discussions about the validity of each of the two analyses. 
Given that there will usually be uncertainty about the values 
of the parameters, it is not recommended to present the results 
of just one of the two analyses without acknowledging that 
uncertainty. Also, we would like to caution against interpret-
ing our results as evidence that adjustment for postexposure 
variables is advantageous. Instead, we hope they will be the 
basis of thoughtful investigations of the validity of observa-
tional research.
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