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Abstract
Background  Molecular analysis of KIT and PDGFRA is critical for tyrosine kinase inhibitor treatment selection of gastro-
intestinal stromal tumors (GISTs) and hence recommended by international guidelines. We performed a nationwide study 
into the application of predictive mutation testing in GIST patients and its impact on targeted treatment decisions in clinical 
practice.
Methods  Real-world clinical and pathology information was obtained from GIST patients with initial diagnosis in 2017–2018 
through database linkage between the Netherlands Cancer Registry and the nationwide Dutch Pathology Registry.
Results  Predictive mutation analysis was performed in 89% of the patients with high risk or metastatic disease. Molecular 
testing rates were higher for patients treated in expertise centers (96%) compared to non-expertise centers (75%, P < 0.01). 
Imatinib therapy was applied in 81% of the patients with high risk or metastatic disease without patient’s refusal or adverse 
characteristics, e.g., comorbidities or resistance mutations. Mutation analysis that was performed in 97% of these imatinib-
treated cases, did not guarantee mutation-tailored treatment: 2% of these patients had the PDGFRA p.D842V resistance 
mutation and 7% initiated imatinib therapy at the normal instead of high dose despite of having a KIT exon 9 mutation.
Conclusion  In conclusion, nationwide real-world data show that over 81% of the eligible high risk or metastatic disease 
patients receive targeted therapy, which was tailored to the mutation status as recommended in guidelines in 88% of cases. 
Therefore, still 27% of these GIST patients misses out on mutation-tailored treatment. The reasons for suboptimal uptake of 
testing and treatment require further study.

Keywords  Gastrointestinal stromal tumor · Predictive genetic testing · Imatinib · Molecular targeted therapy · Guidelines · 
KIT · PDGFRA

Introduction

Gastrointestinal stromal tumors (GISTs) are the most com-
mon primary mesenchymal neoplasms of the gastrointes-
tinal tract. The majority of GISTs (75–80%) have one or 
more somatic mutations in the proto-oncogene KIT [1, 2]. The PATH consortium members are mentioned in 
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These mainly affect the juxtamembrane domain (encoded 
by exon 11), followed by mutations in the extracellular 
domain of KIT (encoded by exon 9). Primary mutations in 
the intracellular ATP-binding region and activation loop of 
the kinase domain of KIT (exon 13 and 17, respectively) are 
observed in a low percentage of tumors. In KIT-negative 
GISTs, activating somatic mutations in PDGFRA are found 
in 20–25% of cases [3, 4], including mutations in the activa-
tion loop (exon 18), juxtamembrane domain (exon 12), and 
ATP-binding domain (exon 14). GISTs without mutations 
in KIT or PDGFRA are a heterogeneous group that display 
various oncogenic mutations, including mutations in BRAF, 
succinate dehydrogenase (SDH) subunits genes, NF1, or the 
RAS family [5, 6].

Prognosis varies greatly depending on the malignant 
potential of the tumor, defined by tumor size, tumor loca-
tion, the mitotic rate and presence of tumor rupture during 
surgery [7, 8]. While most GISTs are primarily treated with 
surgery [9], the tyrosine kinase inhibitor (TKI) imatinib has 
proven to be effective in prolonging survival of patients with 
a high risk of recurrence after surgery and cases with locally 
advanced, unresectable and/or metastatic disease [10–14]. 
However, sensitivity to imatinib therapy depends on the type 
of initial KIT/PDGFRA mutation [15–17]. Imatinib binds to 
the inactive state of the kinase domains of KIT and PDG-
FRA, resulting in stabilization of the ‘closed’ conforma-
tion. Hence, mutations that favor the active conformation of 
the kinase domain disfavor imatinib binding. Consequently 
these patients are less sensitive (KIT exon 9) or resistant 
(PDGFRA exon 18 p.D842V) to imatinib and therefore 
require higher imatinib doses or should be excluded from 
imatinib therapy, respectively [18–21]. Genetic testing to 
guide dose selection of imatinib or to selectively withhold 
imatinib from patients with the PDGFRA p.D842V variation 
was reported to be cost-effective [22, 23]. Thus, targeted 
therapy in GIST requires both in-depth molecular analysis 
and interpretation.

Guidelines for molecular analysis and targeted therapy 
have been developed to assist in the care of patients with 
GIST [19, 20, 24–26]. Although many of these guidelines 
were revised several times, only a few studies investigated 
compliance to guidelines in clinical practice [27–32]. Insight 
into real-world clinical management of GIST patients may 
guide further optimization of access to state-of-the-art 
patient care. In the current study, we used nationwide real-
world data to investigate how effectively awareness of pre-
dictive mutation analysis has penetrated in routine clinical 
practice. In addition, we assessed whether molecular test 
results affected treatment decisions.

Methods

Databases and data linkage

Clinical and pathology data were obtained from data link-
age between the Netherlands Cancer Registry (NCR) and the 
nationwide network and registry of histo- and cytopathology 
in the Netherlands (PALGA) [33]. Both databases cover the 
entire Dutch population (approximately 17.2 million inhabit-
ants). From the NCR, clinical characteristics of patients with 
a primary GIST diagnosis in 2017 or 2018 were obtained. 
These variables were registered 6–9 months after initial diag-
nosis and included: age at initial diagnosis, tumor localiza-
tion, tumor size, distant metastasis, performance status, sur-
gery, primary therapy details (agent, dose), whether a patient 
was excluded from further therapy (e.g., due to comorbidi-
ties), vital status, time from initial diagnosis to last follow-up 
date, and whether a patient was evaluated for treatment in an 
expertise center as defined by Verschoor et al. [31] (i.e., five 
centers with more than 15 new pathology diagnoses of GIST 
per year in 2011/2012 and a dedicated multidisciplinary sar-
coma team). Risk stratification of cases with localized disease 
was performed according to the AFIP-Miettinen criteria [8] 
(Supplementary Table 1). Uptake of predictive analysis and 
imatinib therapy was studied in patients having an established 
indication for imatinib therapy (i.e., all patients with high risk 
or metastatic disease). The NCR did not contain information 
on treatment beyond the first-line, nor on disease progression 
or recurrence. Via a trusted third party (ZorgTTP [34]), the 
clinical data were linked to the pathology data (Fig. 1). This 
linkage was successful for 756/758 GIST patients. Pathology 
reports were collected from January 2017 to June 2019 using 
specific queries, which yielded 1977 reports of 986 patients. 
Manual curation of pathology reports resulted in 545 patients 
undergoing molecular analyses (Supplementary Fig. 1). Initial 
diagnosis of 374 of these cases was in 2017 or 2018. 171 cases 
were diagnosed before 2017 (follow-up samples) or after 2018. 
Details of the molecular analyses (i.e. technique, gene panel, 
diagnostic yield) were manually extracted from the reports and 
annotated. In addition, the pathology department that firstly 
described the GIST in a report was annotated as department 
of initial diagnosis. This department could either be located in 
an expertise center, tertiary cancer center (i.e., academic hos-
pital that is no GIST expertise center), peripheral center with 
molecular diagnostic facilities, or peripheral center without 
molecular diagnostic facilities. 

Statistical analysis

To identify associations the Fisher’s exact test and multivari-
ate logistic regression were applied using IBM SPSS Sta-
tistics (version 25). Obtained odds ratios (ORs) and overall 
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P-values (two-sided) are reported. The McNemar test was 
applied to study paired observations. Overall survival (OS) 
analyses were performed with R software (version 3.5.3), 
using the packages cmprsk (version 2.2–9) [35], mstate (ver-
sion 0.2.12) [36] and survival (version 3.1–8) [37]. Death 
was counted as event. OS rates were determined using Cox 
regression and compared using the Wald test.

Results

Patient Demographics

In 2017 and 2018, 758 patients were diagnosed with a pri-
mary GIST in the Netherlands (Fig. 1). The median age of 
the patients was 67 years, primary tumor localization mainly 

involved the stomach or small intestine, and the majority 
of cases was diagnosed with low risk disease (Table 1, 
Fig. 2a). 21% of the patients showed high risk or metastatic 
disease and hence were candidates for predictive mutation 
analysis and targeted therapy. Overall survival (OS) of GIST 
patients was significantly different between the risk groups 
(Fig. 2b). Cases with metastatic disease had a shorter OS 
compared to cases with localized disease (P < 0.001). Sur-
gery was predominantly performed in cases with localized 
disease (Fig. 2c). No details were available of tumor rup-
ture or spill during surgery, which classifies low and inter-
mediate risk cases for adjuvant imatinib therapy. Targeted 
therapy was registered for 199 cases and was significantly 
enriched in high risk (OR = 10.2) and metastatic disease 
cases (OR = 10.9; Fig. 2d).

GIST cases
Initial diagnosis in 2017 or 2018

n=758

Netherlands Cancer Registry

Linked dataset
n=756

Pathology reports of GISTs
January 2017 until June 2019

n=986

Dutch Pathology Registry

Uncoupled GIST cases
n=2

Uncoupled pathology reports
Initial diagnosis not in 2017 or 2018

n=230

Data linkage by a 
trusted third party

Low risk
n=461

Intermediate risk
n=74

Metastatic disease
n=81

High risk
n=78

Cohort to study uptake predictive analysis
and mutation-tailored targeted therapy choices

n=159

Fig. 1   Overview of data collection by the NCR and PALGA. Flow chart of data collection by the NCR and PALGA [33]. Data were linked by a 
trusted third party, which enabled evaluation of uptake of molecular testing and mutation-informed targeted therapy choice
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Table 1   Clinical characteristics of patients diagnosed with GIST in 2017 or 2018

Total cohort N = 758 Uptake molecular testing 
N = 756; 49%††

Uptake predictive analysis† 
N = 159; 89%††

N (%) % (N) P* OR** % P* OR**

Gender ns ns
 Male 380 (50.1%) 52.8% (200) 82.3% (90)
 Female 378 (49.9%) 46.2% (174) 92.8% (51)

Age at initial diagnosis ns ns
  < 50 94 (12.4%) 53.2% (50) 94.1% (16)
 50–70 303 (40.0%) 60.7% (184) 91.5% (65)

  > 70 361 (47.6%) 39% (140) 84.5% (60)
Risk group at initial diagnosis  < 0.001 ns
 Low risk 461 (60.8%) 32.8% (151)  < 0.001 0.2
  Low risk, non-rectal GISTs < 2 cm 139 (18.3%) 14.4% (20)  < 0.001 0.1
  Low risk, other 322 (43.8%) 40.7% (131)  < 0.001 0.5

 Intermediate risk 74 (9.8%) 67.6% (50) 0.001 2.3
 High 78 (10.3%) 93.6% (73)  < 0.001 18.2 93.6% (73)
 Metastatic disease 81 (10.7%) 84% (68)  < 0.001 6.3 84.0% (68)
 NOS 62 (8.4%) 51.6% (32) ns

Topography‡  < 0.001 ns
 Colon 9 (1.2%) 33.3% (3) ns 66.7% (2)
 Esophagus 16 (2.1%) 18.8% (3) 0.034 0.2 100.0% (2)
 Rectum 19 (2.5%) 89.5% (17)  < 0.001 9.0 62.5% (5)
 Small intestines 177 (23.4%) 60.5% (107) 0.002 1.8 93.0% (53)
 Stomach 521 (68.7%) 44.3% (230)  < 0.001 0.5 87.3% (69)
 Peritoneum 5 (0.7%) 100% (5) 0.029 100.0% (3)
 Unspecified 16 (2.1%) 56.3% (9) ns 70.0% (7)

Mitotic rate per 50 high power fields‡  < 0.001 ns
  ≤ 5 548 (72.3%) 39.2% (215)  < 0.001 0.2 80.0% (32)
  > 5 127 (16.8%) 85% (108)  < 0.001 8.1 93.6% (88)
 Unspecified 83 (10.9%) 63% (51) 0.013 1.9 84.0% (21)

Performance status 0.015 ns
 WHO 0 208 (27.4%) 55.8% (116) 0.034 1.4 88.9% (40)
 WHO 1 93 (12.3%) 59.1% (55) ns 96.9% (31)
 WHO 2 15 (2.0%) 53.3% (8) ns 80.0% (4)
 WHO 3 7 (0.9%) 57.1% (4) ns 66.7% (2)
 Unspecified 435 (57.4%) 44.1% (191) 0.001 0.6 86.5% (64)

Tumor grade  < 0.001 0.011
 Well differentiated 469 (61.9%) 35.9% (168)  < 0.001 0.2 75.0% (18) 0.033 0.3
 Moderately differentiated 64 (8.4%) 78.1% (50)  < 0.001 4.0 96.3% (26) ns
 Poorly differentiated/undifferentiated 83 (10.9%) 92.7% (76)  < 0.001 15.9 95.4% (62) 0.039 3.9
 Unknown 142 (18.7%) 56.3% (80) ns 81.4% (35) ns

Surgery  < 0.001 ns
 Yes 628 (82.8%) 46.6% (292)  < 0.001 0.5 90.2% (92)
 No 128 (16.9%) 64.6% (82)  < 0.001 2.1 86.0% (49)
 Unknown 2 (0.3%)

Targeted therapy  < 0.001  < 0.001
 Yes 200 (26.4%) 91.5% (182)  < 0.001 56.2 96.6% (113)  < 0.001 14.1
 No 556 (73.4%) 14.8% (82)  < 0.001 0.0 66.7% (28)  < 0.001 0.1
 Unknown 2 (0.3%)

Initial pathology department  < 0.001 ns
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Molecular characterization of GIST

The molecular landscape of 545 GIST patients was studied, 
involving 374 cases diagnosed in 2017/2018 and 171 cases 
diagnosed before 2017 (follow-up samples) or after 2018 
(Supplementary Fig. 1). For 6 of the 545 cases no results 
were obtained due to insufficient quality or quantity of the 
biopsy material. 74.9% of the cases harbored ≥ 1 KIT muta-
tion, 14.7% of the cases showed a PDGFRA mutation and 
10.4% of the cases were KIT/PDGFRA wildtype (Fig. 3). 
PDGFRA mutations were associated with a poor OS in met-
astatic disease cases (Supplementary Fig. 2). For the other 
risk groups, no association between mutations and outcome 
was observed in the cohort that was linked to the NCR.

A total of 424 KIT mutations were reported: 385 cases 
presented with a single KIT mutation, sixteen cases showed 
two mutations in KIT and two cases harbored three KIT 
mutations. These latter two groups consisted of cases har-
boring secondary resistance mutations (Supplementary 
Table 2). In addition, 79 cases had a PDGFRA mutation, of 
which the resistance mutation p.D842V (N = 48) was most 
frequent. The distribution of the mutations over the differ-
ent regions of KIT and PDGFRA is presented in Fig. 3 and 
Supplementary Fig. 3a.

Molecular characterization of the 545 GIST patients 
was performed in 15 (of 38) pathology departments. The 
number of performed analyses ranged from 3 to 87 analyses 
per pathology department during 30 months of follow-up. 
Molecular tests were mainly performed using a targeted 
NGS-approach whether or not combined with Sanger 
sequencing of KIT. Comparing the total diagnostic yield 
(i.e., frequency of KIT and PDGFRA mutations) between the 
departments showed one department that underperformed 
the national average diagnostic yield (Fig. 3d). Studying the 

mutations in the different regions of KIT and PDGFRA in 
more detail showed one department that reported a signifi-
cantly higher frequency of PDGFRA mutations and unspeci-
fied KIT mutations (Supplementary Fig. 3b).

Molecular testing rates

Uptake of mutation analysis was studied in all GIST patients 
with initial diagnosis in 2017–2018. Molecular testing rates 
were significantly higher in high risk or metastatic disease 
cases (89%) compared to low or intermediate risk cases 
(38%; P < 0.01; Fig. 4a; Table 1). Patients were also more 
likely to receive molecular testing (P < 0.001) if they had 
poorly differentiated tumors, did not undergo surgery, or 
received targeted therapy. In addition, tumor localization in 
the rectum or small intestine was associated with a high 
uptake of mutation analysis (61% and 90%, receptively) 
compared to localization in the stomach or esophagus (44% 
and 19%, respectively). The association between clinical 
variables and uptake of mutation analysis was further ana-
lyzed in a multivariate logistic regression model, including 
risk group, performance status, tumor differentiation, sur-
gery and targeted therapy. Except for surgery and perfor-
mance status, these factors remained significantly associated 
with mutation analysis.

Variation in uptake of predictive analysis was studied in 
patients having an established indication for imatinib ther-
apy, i.e., high risk or metastatic disease cases. These predic-
tive molecular testing rates were independent of the type of 
pathology department of initial diagnosis (Table 1, Fig. 4b). 
The center of initial diagnosis is not necessarily the center 
that requests the molecular analysis and treats the patient, 
which was emphasized by the higher number of patients 
treated than initially diagnosed in expertise centers (Fig. 4c). 

† Predictive analysis includes molecular analysis of patients with high risk or metastatic disease
†† Mean uptake in the respective group
*Fisher’s exact test was applied to calculate significance
**OR = Odds ratio
‡ Factors were not included in logistic-regression model as they contribute to the risk group

Table 1   (continued)

Total cohort N = 758 Uptake molecular testing 
N = 756; 49%††

Uptake predictive analysis† 
N = 159; 89%††

N (%) % (N) P* OR** % P* OR**

 Located in expertise center 149 (19.7%) 67.1% (100)  < 0.001 2.4 96.9% (31)
 Located in tertiary center 56 (7.4%) 67.9% (38) 0.005 2.3 92.3% (12)
 Located in peripheral center with molecular lab 170 (22.5%) 37.6% (64)  < 0.001 0.5 78.6% (22)
 Located in peripheral center w/o molecular lab 381 (50.4%) 45.1% (172) 0.02 0.7 88.4% (76)

Treatment in expertise center  < 0.001  < 0.001
 Yes 344 (45.4%) 76.1% (261)  < 0.001 8.5 96.1% (98)  < 0.001 8.0
 No 414 (54.6%) 27.4% (113)  < 0.001 0.1 75.4% (43)  < 0.001 0.1
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Studying test uptake in the context of treatment center dem-
onstrated a higher uptake of predictive mutation analysis for 
patients treated in expertise centers (96%) compared to non-
expertise centers (75%, P < 0.001; Table 1, Fig. 4d). This 
association remained significant in a multivariate logistic-
regression model including risk group, tumor differentiation, 
targeted therapy, and a variable indicating exclusion from 
further therapy (e.g. comorbidities, poor performance status 
or patients’ choice).

Mutation‑tailored targeted therapy choices

Variation in uptake of imatinib therapy and mutation-tai-
lored therapeutic choices, as recommended by the ESMO 
guidelines [19, 20], was also studied in these high risk or 
metastatic disease cases. 117 (74%) of these 159 cases 
received imatinib therapy. Uptake of imatinib therapy was 
significantly higher in expertise centers (84%) compared to 
non-expertise centers (54%, P < 0.001, OR = 4.5) (Fig. 4e). 
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11% (17/159) of the cases with high risk or metastatic dis-
ease were not eligible for imatinib therapy due to comor-
bidity, patients’ refusal, too high tumor load or presence of 
the PDGFRA p.D842V imatinib-resistance mutation. After 
exclusion of these cases, 81% (115/142) of the remaining 
cases were treated with imatinib therapy, which remained 
significantly higher in the expertise centers (89%) compared 
to non-expertise centers (65%; P = 0.002, OR = 4.1). Two 
untreated cases were KIT and PDGFRA wildtype, while 
for 25 cases it remained unclear why they did not receive 
imatinib therapy. Eight of these cases did not undergo 
molecular testing, 16 cases harbored a KIT mutation, one 
case a sensitizing PDGFRA mutation.

Two of the five patients that were diagnosed with high 
risk or metastatic disease and the primary resistance muta-
tion PDGFRA p.D842V received imatinib therapy (Fig. 4f). 
Treatment was given in one expertise and one non-expertise 
center. Nine of twelve cases diagnosed with the KIT exon 
9 mutation received imatinib therapy, which involved the 
normal dose in eight of the patients and an unspecified dose 
in one patient. Four patients received imatinib therapy while 
no molecular analysis was performed.

In summary, 81% (115/142) of the eligible high risk or 
metastatic disease patients received imatinib therapy. 2% 

(2/117) of the imatinib-treated patients received therapy 
despite the PDGFRA p.D842V resistance mutation, 7% 
(8/117) of the patients initiated imatinib therapy at the nor-
mal instead of high dose in spite of having a KIT exon 9 
mutation, and 3% (4/117) of the imatinib-treated patients 
were not molecularly characterized. Taken together, 73% 
(103/142) of the eligible high risk or metastatic disease 
patients received mutation-tailored therapy according to 
the ESMO guideline.

Discussion

Evaluation of mutation-informed treatment of GIST dem-
onstrated that over 80% of the GIST patients with high risk 
or metastatic disease are molecularly tested and treated 
with imatinib mostly in line with ESMO guidelines [19, 
20]. Overall, we showed that 89% of the GIST patients with 
high risk or metastatic disease underwent predictive test-
ing. This uptake was independent of the center performing 
the initial diagnosis, which was not necessarily the center 
that requested the molecular test and treated the patient. In 
contrast, this predictive analysis was more often performed 
for patients treated in expertise centers compared to non-
expertise centers. Likewise, uptake of imatinib therapy was 
higher for patients with high risk or metastatic disease that 
were treated in expertise centers, suggesting that treatment 
in expertise centers improves the therapeutic management 
of GIST patients. In general, 81% of the patients with high 
risk or metastatic disease, without adverse characteristics 
like comorbidities, too high tumor load or the PDGFRA 
p.D842V resistance mutation, received imatinib therapy. 
These results are in line with the recent study of Nishida 
et al. [30]. Molecular analysis preceded imatinib therapy in 
97% of the cases. For the cases with the PDGFRA p.D842V 
resistance mutation that received imatinib therapy, it remains 
unclear whether therapy was initiated due to insufficient 
knowledge or whether the test result was not noticed by the 
treating clinician. Primary therapy for patients that harbor 
KIT exon 9 mutations mainly involved the standard dose of 
imatinib, instead of the high dose as advised by the ESMO 
guideline [19, 20]. A possible explanation might be that ther-
apy was initiated with this standard imatinib dose to prevent 
more severe side effects that are observed upon treatment 
with the high imatinib dose [38] and was increased upon 
progressive disease. However, as only the primary systemic 
therapy was registered by the NCR, we could not evalu-
ate whether treatment dose was adjusted over time. Taken 
together, these observations show that performing predictive 
mutation analysis does not guarantee mutation-tailored treat-
ment selection and that one in four eligible patients was not 
treated according to the recommendations in the guideline.

Fig. 4   Uptake of predictive molecular analysis and targeted therapy. 
a The frequency of performed mutation analysis in the total cohort 
and per risk group. The total number of cases that are present in each 
bar is displayed above the bar. The Fisher’s Exact test was applied 
to study associations. **p < 0.001; *p < 0.05. b Uptake of predic-
tive molecular analysis displayed per pathology department involved 
in the initial diagnosis. This pathology department could either be 
located in an expertise center, tertiary cancer center, peripheral center 
with a molecular laboratory, or a peripheral center without a molecu-
lar laboratory, which is displayed by the different colors. The dotted 
line represents the mean uptake in the total predictive cohort. The 
bar graph shows the uptake of predictive molecular analysis shown 
per type of pathology department. Mean ± standard deviation (SD) 
is shown. Association between the uptake of molecular analysis and 
the type of pathology laboratory was studied using the Fisher’s exact 
test. c Number of patients initially diagnosed in an expertise or non-
expertise center compared to the number of patients treated in an 
expertise or non-expertise center. Numbers are shown for the total 
cohort (left) and the predictive analysis cohort (right). The McNemar 
test was applied to study significance. d Uptake of predictive muta-
tion analysis by expertise and non-expertise centers. The Fisher’s 
Exact test was applied to study differences in uptake. The odds ratio 
is displayed above the bars. **p < 0.001. e Uptake of targeted ther-
apy by expertise and non-expertise centers. Uptake is shown for all 
cases with high risk or metastatic disease, and for eligible high risk 
or metastatic disease cases, defined by exclusion of patients that did 
not receive therapy due to comorbidity, patients’ refusal and/or too 
high tumor load or presence of the PDGFRA p.D842V mutation. The 
Fisher’s Exact test was applied to study differences in uptake. Odds 
ratios are displayed above the bars. **p < 0.001;  *p < 0.05. f Primary 
therapy specification of 199 GIST cases. Primary therapy includes 
the therapy that was registered within the first 6–9 months after initial 
diagnosis. The different types of KIT/PDGFRA mutations are shown 
in different colors

◂
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Although this study focused on uptake of predictive 
analysis and mutation-informed therapy in patients with 
high risk or metastatic disease, also data regarding uptake 
of mutation analysis in low and intermediate risk patients 
were obtained. Only a minority of these patients under-
went molecular characterization instead of all patients as 
proposed by the guidelines [19, 20]. These low molecular 
testing rates suggest that a selective approach is often used 
for mutation analysis, which focusses on GIST patients 
that are candidates for imatinib therapy. This approach is 
likely used to reduce cost burden of diagnostic procedures. 
As the additive value of testing low and intermediate risk 
patients is limited, it may be justifiable not to test these 
patients. The observations presented in the current study 
should be used to consider whether guidelines adjustments 
should be made based on actual practice.

An overview of the molecular landscape of GIST cases 
showed KIT mutations in 74.8% of the cases, PDGFRA 
mutations in 14.8% of the cases, and 10.4% of the cases 
were KIT/PDGFRA wildtype, which was in  line with 
other studies [15, 39–45]. Although numbers were lim-
ited, patients with metastatic disease and PDGFRA muta-
tions had a poor OS compared to the remaining metastatic 
disease patients. This is likely explained by absence of 
or a poor response to targeted therapy [21, 46, 47]. In 
contrast, in literature, it has been suggested that localized 
GISTs with PDGFRA mutations are associated with more 
favorable prognosis [48–50]. Due to limitations in the data 
collection strategy, we could not analyze the association 
between PDGFRA mutations and recurrence in the cur-
rent study. However, we did not observe an aberrant OS 
of PDGFRA mutated GIST patients in localized disease.

The quality of mutation testing is essential for the diag-
nosis and treatment of GIST patients and therefore perfor-
mance of the pathology departments was studied. Vari-
ant detection was performed by 15 individual pathology 
departments. One pathology department underperformed 
the national average diagnostic yield, whereas the remain-
ing 14 departments showed comparable overall mutation 
frequencies of KIT and PDGFRA. However, power for 
comparison of mutational frequencies was limited, as 
9/15 laboratories performed less than 50 analyses during 
the inclusion period of 2.5 years. These low number also 
affected the power to compare the frequency of the differ-
ent mutation types between the pathology departments. 
Nevertheless, one department was identified that outper-
formed the national average of PDGFRA mutations.

Our study was limited to the data collection design of 
the two registries. Tumor rupture or spill during surgery, 
an important prognostic variable, was not registered by 
the NCR. Hence, uptake of predictive analysis and tar-
geted therapy could not be studied in low and intermediate 
risk cases. However, by limiting the analysis of uptake to 

those patients with an established indication for predic-
tive testing and imatinib therapy, this did not affect our 
results. As clinical variables were registered only once, 
i.e., 6–9 months after initial diagnosis, we were unable to 
study changes in therapy (dose) and relapses. This did not 
affect or explain the main result of suboptimal uptake of 
testing and subsequent targeted therapy.

In conclusion, nationwide real-world data show that 
over 80% of the patients with high risk or metastatic dis-
ease receive predictive analysis and targeted therapy. Pre-
dictive analysis did not guarantee treatment according to 
ESMO guideline as only 91% actually received mutation-
tailored treatment. Therefore, one in four patients that 
could opt for targeted treatment were not treated according 
to the recommendations in the guideline. The reasons for 
suboptimal uptake of testing and treatment require further 
study.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10120-​021-​01190-9.
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