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Abstract

Background: Given the high heterogeneity among breast tumors, associations between common germline genetic
variants and survival that may exist within specific subgroups could go undetected in an unstratified set of breast
cancer patients.

Methods: We performed genome-wide association analyses within 15 subgroups of breast cancer patients based
on prognostic factors, including hormone receptors, tumor grade, age, and type of systemic treatment. Analyses
were based on 91,686 female patients of European ancestry from the Breast Cancer Association Consortium,
including 7531 breast cancer-specific deaths over a median follow-up of 8.1 years. Cox regression was used to
assess associations of common germline variants with 15-year and 5-year breast cancer-specific survival. We
assessed the probability of these associations being true positives via the Bayesian false discovery probability (BFDP
< 0.15).

Results: Evidence of associations with breast cancer-specific survival was observed in three patient subgroups, with
variant rs5934618 in patients with grade 3 tumors (15-year-hazard ratio (HR) [95% confidence interval (CI)] 1.32 [1.20,
1.45], P = 1.4E−08, BFDP = 0.01, per G allele); variant rs4679741 in patients with ER-positive tumors treated with
endocrine therapy (15-year-HR [95% CI] 1.18 [1.11, 1.26], P = 1.6E−07, BFDP = 0.09, per G allele); variants rs1106333
(15-year-HR [95% CI] 1.68 [1.39,2.03], P = 5.6E−08, BFDP = 0.12, per A allele) and rs78754389 (5-year-HR [95% CI] 1.79
[1.46,2.20], P = 1.7E−08, BFDP = 0.07, per A allele), in patients with ER-negative tumors treated with chemotherapy.

Conclusions: We found evidence of four loci associated with breast cancer-specific survival within three patient
subgroups. There was limited evidence for the existence of associations in other patient subgroups. However, the
power for many subgroups is limited due to the low number of events. Even so, our results suggest that the
impact of common germline genetic variants on breast cancer-specific survival might be limited.

Keywords: Common germline genetic variants, Breast cancer-specific survival, Patient subgroups, Tumor biology,
Systemic treatment

Introduction
Inherited common genetic variation is likely to influ-
ence survival in breast cancer patients [1]. Results
from pre-clinical experiments have shown different
metastatic behaviors in mice with different genetic
backgrounds [2–7]. In addition, familial studies of
breast cancer patients have shown that women with a
first-degree relative with a poor prognosis breast can-
cer have a worse prognosis compared to women with
a first-degree relative with a good prognosis cancer
[8]. Moreover, genome-wide and candidate gene asso-
ciation studies have discovered common genetic vari-
ants associated with specific subtypes of breast cancer
based on the expression of the estrogen receptor (ER)
[9–11], progesterone receptor (PR), and the amplifica-
tion of the human epidermal growth factor receptor 2
(HER2) [12, 13], which are known breast cancer

prognostic factors [14, 15]. Finally, a number of stud-
ies have suggested that specific common germline
genetic variants affect breast cancer prognosis both
overall and within subgroups of patients [16–24].
Despite the supporting evidence, it remains challen-

ging to identify common germline variants associated
with breast cancer-specific survival. This may partially
be explained by the good prognosis of breast cancer pa-
tients, which leads to underpowered analyses. Even large
studies based on worldwide consortia cannot reach the
number of breast cancer deaths necessary to detect small
to moderate associations at a genome-wide significant
level [19, 20, 25]. However, breast cancer is a heteroge-
neous disease, and it is possible that stronger associa-
tions between common germline variants and breast
cancer-specific survival are present in certain patient
subgroups, but cannot be detected in breast cancer
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overall. Previous studies provide modest evidence sup-
porting this hypothesis [16, 19, 20].
The aim of our study was to evaluate the evidence for

associations of inherited common genetic variants with
breast cancer-specific survival within more homoge-
neous subgroups of breast cancer patients, defined by
prognostic factors representative of tumor biology and/
or by the type of systemic treatment. To this end, we
performed genome-wide association analyses within
clinically relevant, defined subgroups of patients based
on hormone receptors, tumor grade, age at diagnosis,
and type of systemic treatment [26, 27]. We also ex-
plored the subgroup-specific associations identified by
previous studies [16, 19, 23, 28, 29], to confirm or refute
those results.

Materials and methods
Study sample
We selected female breast cancer patients of European
ancestry from studies participating in the Breast Cancer
Association Consortium (BCAC). We included patients
with available information about vital status and number
of years from diagnosis to last follow-up who were diag-
nosed with a primary invasive breast cancer of any stage
and were at least 18 years old at diagnosis. The final
study sample consisted of 91,686 breast cancer patients
from 70 BCAC studies. A description of the included
studies is given in Additional file 1: Supplementary Table
S1.
Information about histopathology, survival, and treat-

ment was collected by individual studies and pooled and
harmonized at the Netherlands Cancer Institute before
incorporation into the BCAC database at the University
of Cambridge (version 12, July 2019). All studies were
approved by the relevant ethics committees and in-
formed consent was obtained from all patients.

Patient subgroups
The subgroups of interest were defined based on age at
diagnosis, estrogen receptor (ER) status, progesterone re-
ceptor (PR) status, human epidermal growth factor re-
ceptor 2 (HER2) status, tumor grade, and the use and
type of systemic treatment, as available in the BCAC
database. For age at diagnosis and tumor grade, we fo-
cused on subgroups characterized by worse prognosis.
We thus defined 15 subgroups: (a) patients younger than
age 40 years at diagnosis; (b) patients with grade 3 tu-
mors; (c) patients with ER-positive (ER+) tumors, who
received endocrine therapy (any kind); (d) patients diag-
nosed with ER-negative (ER−) tumors, who received
chemotherapy (any kind); (e) patients with tumors that
were hormone receptor (HR) positive (ER+ or PR+) and
HER2-negative (HER2−); (f) patients with HR-positive
(HR+), HER2− tumors, who received chemotherapy (any

kind); (g) patients with HR+, HER2− tumors, who did
not receive chemotherapy; (h) patients with HR+, HER2-
positive (HER2+) tumors; (i) patients with HR-negative
(HR−), HER2+ tumors, (j) patients with HR−, HER2− tu-
mors; (k) patients who received Tamoxifen; (l) patients
who received an aromatase inhibitor; (m) patients who
received a Cyclophosphamide Methotrexate Fluorouracil
(CMF)-like chemotherapy regimen; (n) patients who re-
ceived taxanes; (o) patients who received anthracyclines.
The rationale and references to the literature support-

ing the choice of each subgroup for inclusion in a
genome-wide association study on survival are given in
Additional file 1: Supplementary Table S2. We did not
include the subgroup of HER2+ tumors treated with
Trastuzumab because of a relatively small number of pa-
tients and low event rate, leading to analyses that are
more underpowered than those presented.
Patients with metastatic breast tumors at diagnosis

(1.1 % of all included patients) were excluded from the
subgroup analyses whose definition was based on the
use and type of systemic therapy as generally they are
treated with palliative intent [15, 30, 31].
In addition to the subgroup analyses, we also per-

formed a genome-wide analysis of 15-year breast cancer-
specific survival in all breast cancer patients. We per-
formed this analysis to evaluate whether associations be-
tween common germline variants and breast cancer-
specific survival in subgroups could be detected in the
full dataset of patients. Genome-wide analyses for sur-
vival (unstratified by subtype) were previously performed
[20] based on 12 GWAS datasets, but these included
fewer patients from iCOGS and OncoArray (n =
84,757), with shorter follow-up, than were available in
the current dataset. We focused our analyses on the
iCOGS and OncoArray datasets, because the remaining
10 GWAS datasets used in the previous study did not
include information about tumor characteristics, beyond
ER status, or treatment, which were crucial for the sub-
group analyses.
Due to the presence of missing values in the variables

used to define the subgroups, not all patients could be
classified by each subgroup. The number of patients in-
cluded in each subgroup, together with the number of
breast cancer-specific deaths, patient/tumor characteris-
tics, treatment, and follow-up information, are shown in
Additional file 1: Supplementary Tables S3-S4, and Add-
itional file 2: Supplementary Table S5.

Imputation of missing values in clinical and pathological
variables
For secondary adjusted analyses, we imputed missing
values in the clinical and pathological variables using the
Multiple imputation by Chained Equations (MICE) R
package (v. 3.2.0), as described in Additional file 2:
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Supplementary Methods. A list of imputed variables and
corresponding percentages of missing values and imput-
ation methods is provided in Additional file 2: Supple-
mentary Table S6.

Genotyping and imputation of genetic variants, ancestry
analysis, and quality controls
Methods related to genotyping and genotype imputation
have been described previously [17, 18, 20]. In brief, pa-
tients were genotyped with two different arrays: iCOGS
and OncoArray [17, 32]. Only samples that were inferred
to have European ancestry, based on genotype data, were
included in the analyses. Non-genotyped variants were
initially imputed based on the 1000 Genomes Project
Phase 3 (October 2014) release as reference panel. More
recently, non-genotyped single-nucleotide variants
(SNVs) were re-imputed using a reference panel from
the Haplotype Reference Consortium (HRC) [33] in
order to improve imputation quality, especially for rarer
variants. Analyses were performed on genotyped variants
or imputed variants with a minor allele frequency
(MAF) > 0.01. Imputed variants were included in the
analyses if they had imputation r2 > 0.7. Approximately
10 million variants were analyzed.

Statistical analyses
The outcome in the analyses was breast cancer-specific
survival (time to death due to breast cancer). Hazard ra-
tios (HR) and 95% confidence intervals (CI) were esti-
mated using delayed entry Cox regression models, where
the time at risk was considered as starting from the time
of study entry if the study entry was after diagnosis (22.9%
within 1 year after diagnosis, and 27.3% more than 1 year
after diagnosis) and from diagnosis if the time of study
entry was missing (24.5%), at diagnosis (16.9%) or before
diagnosis (8.4%). The time-to-event was right censored at
the time of last follow-up, or at 15 years after diagnosis,
whichever came first. Patients who died of unknown cause
or causes other than breast cancer were censored at the
time of death if death occurred before 15 years from diag-
nosis or at 15 years otherwise.
With reference to the results of Early Breast Cancer Tri-

alists’ Collaborative Group (EBCTCG) [34], we additionally
performed analyses within the subgroups whose definition
was based on the use and type of systemic therapy, where
we restricted the maximum follow-up time to 5 years after
diagnosis (Additional file 2: Supplementary Table S5). The
goal of those analyses was to investigate the potential short-
term effects of germline variants on patients who received
specific types of systemic treatment, since the effect might
not be constant over time and treatment plans tend to
focus on the first 5 years after diagnosis [15, 31].

Cox regression analysis was performed within each sub-
group of interest, separately, and was stratified by country.
All the analyses were performed separately by genotyping
platform (iCOGS vs OncoArray), and the results were
combined via a fixed-effects meta-analysis. The standard
errors of the HR estimates were re-computed based on
the likelihood ratio test statistic, as done previously [20]
(Figs. 1 and 2). For variants that satisfied the inclusion cri-
teria (MAF>0.01 and r2 > 0.7) on only one genotyping
platform, we included the result for that specific platform
(Tables 1 and 2). However, for variants with an association
P < 5E−08, we also computed HR and 95% confidence
interval in the other genotyping platform to verify that the
direction of the association was the same (Additional file 2:
Supplementary Table S7).
Inflation of the likelihood ratio test statistics was esti-

mated, within each subgroup, by dividing the median of
the observed test statistics values by the median of a χ21
distribution (Additional file 2: Supplementary Figures S1
and S2). To assess the noteworthiness of the observed
associations, we made use of the Bayesian false discovery
probability (BFDP) measure [35]. To compute BFDPs,
we set the prior probability of true association to 10−4
[36, 37], as done previously [20], and chose the prior dis-
tribution of the log hazard ratio of interest (effect size of
a variant) to be a Normal distribution with mean 0 and
standard error equal to 0.2 [36]. We describe associa-
tions with BFDP < 0.15 as “noteworthy” [20]. For each
noteworthy result at a prior of 10−4, we also provided
BFDPs under two, more restrictive, prior probabilities of
true association (10−5 and 10−6; Additional file 3: Supple-
mentary Tables S8-S9) [36, 37]. In addition, we esti-
mated the power to detect genetic variant associated
with 15-year and 5-year breast cancer-specific survival
by subgroup (Additional file 3: Supplementary Table S10
and S11) as described in Additional file 2: Supplemen-
tary Methods.

For each genome-wide significant (P < 5E−08) [38]
and/or noteworthy (BFDP < 0.15) association observed
in the primary unadjusted subgroup analyses, we per-
formed secondary analyses adjusted for age at diagno-
sis, tumor characteristics, and type of systemic
treatment not used in the definition of the specific
subgroup in which the association was detected (Ta-
bles 1 and 2). Secondary adjusted analyses were per-
formed to account for residual heterogeneity; we used
imputed covariates in order to keep the same sample
size.
For each genome-wide significant or noteworthy associ-

ation in the primary unadjusted analyses, we looked at the
functional annotation of the surrounding genomic area,
using the Functional Mapping and Annotation of Genome-
Wide Association Studies (FUMA GWAS) tool [39]
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(Additional file 2: Supplementary Figures S5 and S6). We
also tested whether the expression of the nearest genes cor-
related with distant metastasis-free survival in breast cancer
patients using KMplotter [40, 41].
PancanQTL [42] was used to identify cis-expression

quantitative trait locus (eQTLs), trans-eQTLs, and

survival eQTLs in breast cancer to see whether the
genome-wide significant or noteworthy genetic variants
from the primary analyses could be linked with the ex-
pression levels of genes affecting survival. In addition,
for all the genome-wide significant and/or noteworthy
associations detected in the primary analyses, we

Fig. 1 Genome-wide analyses of 15-year breast cancer-specific survival. The Manhattan plots show the results of the unadjusted analyses
(stratified by country). Results are represented as −log10 of the p value from Cox regression models (y-axis). The x-axis shows the chromosome
number, where chromosome 23 represents the X chromosome. The red line represents the genome-wide significant threshold 5E−08, the blue
line corresponds to the threshold 1E−05. Breast cancer patients included in the analysis in panel: a younger than age 40 years at diagnosis; b
diagnosed with a grade 3 tumor; c diagnosed with an ER+ tumor and treated with (any) endocrine therapy; d diagnosed with a ER− tumor and
treated with (any) chemotherapy; e diagnosed with an ER+ or PR+, and HER2− tumor; f diagnosed with an ER+ or PR+, and HER2− tumor
treated with (any) chemotherapy; g diagnosed with an ER+ or PR+, and HER2− tumor not treated with chemotherapy; h diagnosed with an ER+
or PR+, and HER2+ tumor; i diagnosed with an ER− and PR− and HER2+ tumor; j diagnosed with an ER− and PR− and HER2− tumor; k treated
with tamoxifen; l treated with aromatase inhibitor; m treated with CMF-like chemotherapy; n treated with taxanes; o treated with anthracyclines;
p all
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searched the GWAS catalog [43] to see whether there
was already evidence of those being associated with
breast cancer or other traits.

Results
After a median follow-up of 8.1 years, there were a total
of 7531 breast cancer deaths among 91686 breast cancer

patients (Additional file 1: Supplementary Tables S3-S4
and Additional file 2: Supplementary Table S5).
In the 15-year breast cancer-specific survival ana-

lyses, power for detecting genome-wide significant as-
sociations was < 0.45 for effect sizes (HRs) < 1.20 in
all subgroups investigated and for all minor allele fre-
quencies. The power was highest in the subgroups of
grade 3 tumors, ER+ tumors treated with endocrine

Fig. 2 Genome-wide analyses of 5-year breast cancer-specific survival. The Manhattan plots show the results of the unadjusted analyses (stratified
by country). Results are represented as −log10 of the p value from Cox regression models (y-axis). The x-axis shows the chromosome number,
where chromosome 23 represents the X chromosome. The red line represents the genome-wide significant threshold 5E−08, the blue line
corresponds to the threshold 1E−05. Breast cancer patients included in the analysis in panel: a diagnosed with a ER+ tumor and treated with
(any) endocrine therapy; b diagnosed with a ER− tumor and treated with (any) chemotherapy; c diagnosed with a ER+ or PR+, and HER2− tumor
treated with (any) chemotherapy; d diagnosed with a ER+ or PR+, and HER2− tumor not treated with chemotherapy; e treated with tamoxifen; f
treated with aromatase inhibitor; g treated with CMF-like chemotherapy; h treated with taxanes; i treated with anthracyclines
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Table 1 GWAS significant (P<5×10-8) and noteworthy (BFDP<0.15) results by subgroup, and corresponding results from adjusted
analyses

Subgroup Variant Chr Position Allelesa AAF Unadjusted analyses Adjusted analyses

HR [95% CI] P value BFDP HR [95% CI] P value BFDP

Grade 3 tumors rs5934618b X 9437463 A/G 0.08 1.39 [1.24,1.56] 1.7E-08 0.02 1.36 [1.21,1.53]e 3.0E-07 0.17

rs4830644b X 9434808 A/G 0.08 1.39 [1.24,1.56] 2.0E-08 0.02 1.35 [1.20,1.52]e 4.8E-07 0.23

rs3810742b, c X 9432603 T/C 0.08 1.38 [1.24,1.55] 2.0E-08 0.02 1.35 [1.20,1.52]e 4.2E-07 0.20

rs4830642b X 9431786 T/C 0.08 1.38 [1.24,1.55] 2.9E-08 0.02 1.35 [1.20,1.52]e 5.8E-07 0.26

rs72611496b X 9434264 G/A 0.08 1.38 [1.24,1.55] 4.3E-08 0.03 1.34 [1.19,1.51]e 1.2E-06 0.40

rs66871326 2 209048052 AAGGAG/A 0.76 0.85 [0.80,0.90] 2.1E-07 0.11 0.86 [0.81,0.92]e 1.8E-06 0.49

ER+ or PR+, and HER2- rs8030394 15 71637241 C/T 0.99 2.47 [1.81,3.37] 1.1E-08 0.42 2.38 [1.74,3.27]f 7.6E-08 0.72

rs112641969 15 71715016 A/G 0.02 0.46 [0.35,0.61] 4.6E-08 0.46 0.48 [0.36,0.64]f 3.7E-07 0.78

rs16955466 15 71637757 C/T 0.01 0.40 [0.29,0.55] 1.5E-08 0.49 0.42 [0.31,0.58]f 1.8E-07 0.82

rs7165279 15 71636591 T/C 0.99 2.41 [1.77,3.28] 2.7E-08 0.54 2.33 [1.70,3.19]f 1.4E-07 0.78

rs111962948 15 71656213 G/T 0.01 0.41 [0.29,0.56] 3.0E-08 0.61 0.43 [0.31,0.60]f 5.6E-07 0.91

rs112813972 15 71577932 T/C 0.02 0.40 [0.28,0.55] 4.0E-08 0.70 0.42 [0.30,0.59]f 3.7E-07 0.90

ER+ or PR+, and
HER2- treated
with CT

rs62192052 2 230372348 C/T 0.02 0.15 [0.08, 0.28] 2.6E-09 0.99 0.15 [0.08, 0.29]g 5.5E-09 0.99

rs74423556c 2 230325234 C/G 0.02 0.16 [0.08,0.30] 2.1E-08 0.99 0.16 [0.08,0.31]g 3.8E-08 1.00

rs145983608 2 230296944 A/G 0.02 0.15 [0.08,0.30] 3.8E-08 1.00 0.15 [0.08,0.31]g 1.1E-07 1.00

ER+ or PR+, and
HER2- not treated
with CT

rs56248395b 11 20084391 C/T 0.13 2.33 [1.72,3.15] 4.8E-08 0.59 2.23 [1.66,2.99]g 1.2E-07 0.69

ER+ treated with ET rs4679741 3 155003603 T/G 0.49 1.18 [1.11,1.26] 1.6E-07 0.09 1.20 [1.13,1.28] h 1.1E-08 0.01

ER- treated with CT rs78754389d 4 35962454 G/A 0.07 1.79 [1.46,2.20] 1.7E-08 0.07 1.67 [1.39,2.00] i 4.1E-08 0.09

rs1106333 3 14562127 C/A 0.06 1.68 [1.39,2.03] 5.6E-08 0.12 1.70 [1.41,2.05] i 4.4E-08 0.11

rs117685664d 8 26989084 C/T 0.03 0.26 [0.16,0.42] 4.6E-08 0.97 0.50 [0.35,0.70]i 6.4E-05 0.99

Tamoxifen rs72775397d 5 94266932 C/T 0.28 1.36 [1.21,1.53] 1.8E-07 0.11 1.11 [1.03,1.19]j 6.6E-03 1.00

Anthracylines rs34072391 7 30243729 C/CA 0.52 1.27 [1.17,1.39] 6.2E-08 0.04 1.26 [1.15,1.37]k 3.4E-07 0.16

Abbreviations: Chr chromosome, ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor 2, ET Endocrine therapy, CT
chemotherapy, AAF alternative allele frequency, HR hazard ratio, CI confidence interval, BFDP Bayesian False Discovery Probability
Note: BFDP is computed assuming the prior probability of true association equal to 10-4for all variants, which implies a number of expected true associations in the
order of 102. Results with BFDP<0.15 in the adjusted analyses are bolded. aReference/Alternative alleles, bAnalyses only include OncoArray data since the variants had
imputation r2 <0.7 on iCOGS. More detailed analyses are reported in Table 2 and Supplementary Table 7, cVariant genotyped on OncoArray, dFrom the 5-years breast
cancer specific survival analysis, eAdjusted for age at diagnosis, lymph node status, tumor size, distant metastases status, ER status, HER2 status, (neo)adjuvant CT,
fAdjusted for age at diagnosis, lymph node status, tumor size, tumor grade, distant metastases status, and (neo)adjuvant CT, gAdjusted for age at diagnosis, lymph node
status, tumor size, and tumor grade, hAdjusted for age at diagnosis, lymph node status, tumor size, tumor grade, HER2 status, (neo)adjuvant CT, iAdjusted for age at
diagnosis, lymph node status, tumor size, tumor grade, and HER2 status, jAdjusted for age at diagnosis, lymph node status, tumor size, tumor grade, HER2 status ,and
(neo)adjuvant CT, kAdjusted for age at diagnosis, lymph node status, tumor size, tumor grade, ER status, and HER2 status

Table 2 Meta-analysis results for variants analysed on OncoArray only in the unadjusted analyses in Table 1

Subgroup Variant Chr Position Allelesa AAF Unadjusted meta-analysis Adjusted meta-analysis

HR [95% CI] P value BFDP HR [95% CI] P value BFDP

Grade 3 tumors rs5934618 X 9437463 A/G 0.08 1.32 [1.20,1.45] 1.4E-08 0.01 1.31 [1.18, 1.44]b 7.9E-08 0.05

rs4830644 9434808 A/G 0.08 1.32 [1.20,1.45] 2.1E-08 0.01 1.30 [1.18, 1.43]b 1.7E-07 0.10

rs3810742 9432603 T/C 0.08 1.31 [1.19,1.44] 2.7E-08 0.02 1.29 [1.17, 1.42]b 1.8E-07 0.10

rs4830642 9431786 T/C 0.08 1.31 [1.19,1.44] 2.8E-08 0.02 1.29 [1.17, 1.42]b 2.2E-07 0.12

rs72611496 9434264 G/A 0.08 1.32 [1.20,1.45] 2.3E-08 0.02 1.30 [1.18, 1.43]b 2.5E-07 0.13

ER+ or PR+, and HER2-
not treated with CT

rs56248395 11 20084391 C/T 0.13 1.53 [1.25,1.89] 5.2E-05 0.97 1.52 [1.24,1.87]c 6.4E-05 0.98

Abbreviations: Chr chromosome, AAF alternative allele frequency, HR hazard ratio, CI confidence interval, BFDP Bayesian False Discovery Probability
Note: BFDP is computed assuming the prior probability of true association equal to 10-4 for all variants, which implies a number of expected true associations in
the order of 102. Results with BFDP<0.15 in the adjusted analyses are bolded. aReference/Alternative alleles, bAdjusted for age at diagnosis, lymph node status,
tumor size, distant metastases status, ER status, HER2 status, (neo)adjuvant CT, cAdjusted for age at diagnosis, lymph node status, tumor size, and tumor grade
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therapy, HR+ and HER2− tumors, and patients who
received tamoxifen (Additional file 3: Supplementary
Table S10). In the 5-year breast cancer-specific sur-
vival analyses, power was highest in the subgroups of
patients with an ER− tumor who received chemother-
apy, patients who received tamoxifen, and patients
who received anthracyclines (Additional file 3: Supple-
mentary Table S11).
Genome-wide significant and/or noteworthy associa-

tions with 15-year or 5-year breast cancer-specific sur-
vival were observed in the unadjusted analyses based on
all patients (Additional file 2: Supplementary Table S7)
and analyses of eight out of the 15 subgroups investi-
gated (Tables 1 and 2; Figs. 1 and 2). The genomic infla-
tion factor of the unadjusted genome-wide analyses
varied from 0.981 to 1.028 (Additional file 2: Supple-
mentary Figures S1- S4); it is therefore unlikely that the
association results were affected by cryptic population
substructure.
Two genome-wide significant associations were ob-

served in the unstratified analysis based on patients
genotyped using OncoArray (Additional file 2: Supple-
mentary Table S7), namely variants rs57714252 (P =
4.7E−08) and rs4129285 (P = 4.9E−08), both situated
in an intergenic region of chromosome 4 (Additional
file 2: Supplementary Figure S5). These results were
only based on the OncoArray data, since on iCOGS
the variants did not satisfy the inclusion criteria for
genotypes (iCOGS imputation r2 = 0.62). The corre-
sponding estimates in the iCOGS data were in the
opposite direction compared to the OncoArray esti-
mates, and the results from the meta-analysis were
not genome-wide significant and showed a large
BFDP (Additional file 2: Supplementary Table S7).
Genome-wide significant associations were observed

in the analysis restricted to patients diagnosed with a
grade 3 tumor, with five correlated variants (Tables 1
and 2) located on chromosome X (Additional file 2:
Supplementary Figure S5) in intron 1 of TBL1X. For
the most significant variant, rs5934618, the alternative
G allele was associated with increased risk of breast
cancer death in unadjusted analyses (meta-analysis
hazard ratio (HR) [95% confidence interval (CI)] 1.32
[1.20, 1.45], P = 1.4E−08, BFDP = 0.01; Table 2). The
meta-analysis result remained substantially unchanged
after adjusting for age at diagnosis, additional tumor
characteristics, and treatment with (neo)adjuvant
chemotherapy (HR [95% CI] 1.31 [1.18, 1.44], P =
7.9E−08, BFDP = 0.05; Table 2). The variant was not
associated with the outcome in lower-grade tumors or
in all patients combined (heterogeneity by grade P =
1.5E−03; Additional file 2: Supplementary Figure S7).
All the five variants overlap chromatin features
H3K4me3 and H3K27ac (associated with active

transcription start sites) in multiple mammary cell
types from normal breast tissue (Additional file 2:
Supplementary Figure S8). Furthermore, there was
evidence of TBL1X expression being associated with
distant metastasis-free survival (HR [95%CI] for high
vs low expression 1.71 [1.20,2.44], P = 2.7E−03) spe-
cifically in grade 3 patients, but not in patients with
lower-grade disease (Additional file 2: Supplementary
Figure S9). However, there was no evidence of associ-
ation with TBL1X expression in normal breast tissue
with any of the variants identified in our genome-
wide analyses (Additional file 2: Supplementary Figure
S10).
In the same subgroup of grade 3 tumors, we observed

a noteworthy, non-genome-wide significant association
with variant rs66871326, located on chromosome 2 in
an intron of C2orf80. For variant rs66871326, the alter-
native A allele was associated with decreased risk of
breast cancer death (HR [95% CI] 0.85 [0.80,0.90], P =
2.1E−07, BFDP = 0.11). The corresponding BFDP in-
creased to 0.49 after adjusting for age at diagnosis, add-
itional tumor characteristics, and treatment with
(neo)adjuvant chemotherapy (Table 1).
We identified six variants on chromosome 15 with

genome-wide significant associations within the sub-
group of patients diagnosed with an ER+ or PR+, HER2
− tumor (Table 1). We identified two independent vari-
ants, namely rs8030394 and rs112813972, both situated
in an intronic region of THSD4 (Additional file 2: Sup-
plementary Figure S5). For the most significant variant,
rs8030394, the T allele was associated with increased
risk of breast cancer death (HR [95% CI]: 2.47 [1.81, 3.37],
P = 1.1E−08, BFDP = 0.42). For the second variant,
rs112813972, the C allele was associated with decreased
risk of death (HR [95% CI] 0.40 [0.28,0.55], P = 4.0E−08,
BFDP = 0.70). These associations were not genome-wide
significant after adjusting for age at diagnosis, additional
tumor characteristics, and treatment with (neo)adjuvant
chemotherapy, and the corresponding BFDPs increased to
0.72 and 0.90, respectively (Table 1).
We observed genome-wide significant associations

from the 15-year breast cancer-specific analyses in the
subgroups of patients with an ER+ or PR+ and HER2−
tumor who did and did not receive chemotherapy. Three
correlated variants on chromosome 2 were identified
within the subgroup of patients who received chemo-
therapy. The most significant variant, rs62192052, is lo-
cated in an intronic region of DNER (Additional file 2:
Supplementary Figure S5) and was associated with de-
creased risk of death (HR [95% CI] 0.15 [0.08, 0.28], P =
2.6E−09, per T allele; Table 1). Although the result
remained genome-wide significant after adjusting for age
at diagnosis and additional tumor characteristics, the
BFDP from both the unadjusted and adjusted analysis
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was ≥ 0.99 (Table 1; Supplementary Table S8), indicating
that this association is almost certainly a false positive.
Variant rs56248395, located on chromosome 11 in an
intron of NAV2 (Additional file 2: Supplementary Figure
S5), was associated with breast cancer death in the sub-
group of patients with an ER+ or PR+ and HER2−
tumor who did not receive chemotherapy (HR [95% CI]
2.33 [1.72,3.15], P = 4.8E−08, per T allele; Table 1). This
result had BFDP ≥ 0.59 and was only based on the
OncoArray data, since on iCOGS the variants did not
satisfy the inclusion criteria for genotypes (iCOGS im-
putation r2 = 0.66; Additional file 2: Supplementary
Table S7). The corresponding estimates in the iCOGS
data (HR [95% CI] 1.07 [0.80,1.41], P = 6.6E−01; Add-
itional file 2: Supplementary Table S7) and from the
meta-analysis (HR [95% CI] 1.53 [1.25,1.89], P = 5.2E
−05; Table 2) were not genome-wide significant and not
noteworthy (meta-analysis BFDP≥0.97; Table 2; Supple-
mentary Table S9).
We observed three additional single SNP noteworthy

associations from the 15-year breast cancer-specific sur-
vival analyses. The intergenic variant rs4679741 on
chromosome 3 was associated with breast cancer death
in the subgroup of patients with an ER+ tumor treated
with endocrine therapy (HR [95% CI] 1.18 [1.11, 1.26], P
= 1.6E−07, BFDP = 0.09, per G allele). This result be-
came genome-wide significant after adjusting for age at
diagnosis, tumor characteristics, and treatment with
chemotherapy (HR [95% CI] 1.20 [1.13, 1.28], P = 1.1E
−08, BFDP = 0.01). The BFDP of this association
remained < 0.15 when considering 10−5 as prior prob-
ability of true association (Additional file 3: Supplemen-
tary Table S8). PanCanQTL did not show any cis-
eQTLs, trans-eQTLs nor survival eQTLs for this variant.
Variant rs1106333 on chromosome 3, whose nearest
gene is GRIP2, was associated with risk of dying of
breast cancer in the subgroup of patients with an ER−
tumor who received chemotherapy (HR [95% CI] 1.68
[1.39,2.03], P = 5.6E−08, BFDP = 0.12 per A allele). This
result also became genome-wide significant after adjust-
ing for additional prognostic factors (HR [95% CI] 1.70
[1.41,2.05], P = 4.4E−08, BFDP = 0.11). PanCanGTL re-
vealed the presence of a cis-eQTL linking variant
rs1106333 with GRIP2 expression in prostate adenocar-
cinoma but not in breast cancer. There was no evidence
of association of GRIP2 expression levels with distant
metastasis-free survival within ER− breast cancer pa-
tients treated with chemotherapy based on KMPlotter
data (Additional file 2: Supplementary Figure S11). The
last association of interest was observed in the subgroup
of patients who received anthracyclines with intergenic
variant rs34072391 on chromosome 7, but was not note-
worthy after adjustment for additional prognostic factors
(Table 1).

In the 5-year survival analyses focused on the treat-
ment subgroups, we observed two genome-wide signifi-
cant associations within the subgroup of patients
diagnosed with an ER− tumor who received chemother-
apy. The most significant variant was rs78754389, lo-
cated on chromosome 4 in an intronic region of gene
ARAP2 (Additional file 2: Supplementary Figure S5; HR
[95% CI] 1.79 [1.46,2.20], P = 1.7E−08, BFDP = 0.07 per
A allele). This result remained both genome-wide sig-
nificant and noteworthy after adjusting for age at diag-
nosis and additional tumor characteristics (HR [95% CI]
1.67 [1.39,2.00], P = 4.1E−08, BFDP = 0.09; Table 1).
However, PanCanQTL did not show any cis-eQTLs,
trans-eQTLs nor survival eQTLs for rs78754389 and
there was no evidence of association of ARAP2 expres-
sion levels with distant metastasis-free survival within
ER− breast cancer patients treated with chemotherapy
based on KMPlotter data (Additional file 2: Supplemen-
tary Figure S12). The second genome-wide significant
variant was rs117685664, located on chromosome 8 (HR
[95% CI] 0.26 [0.16,0.42], P = 4.6E−08, per T allele). This
association was not genome-wide significant after ac-
counting for the age at diagnosis and additional tumor
characteristics (Table 1), and the corresponding BFDPs
from unadjusted and adjusted analysis were 1.00 and
0.99, respectively, indicating a false positive finding.
We also observed one additional noteworthy but not

genome-wide significant association in the 5-year breast
cancer-specific survival analyses in the subgroup of pa-
tients who received Tamoxifen with variant rs72775397,
situated in the 3′ untranslated region of MCTP1 (HR
[95% CI] 1.36 [1.21,1.53], P = 1.8E−07, BFDP = 0.11, per
C allele). The association was attenuated after adjust-
ment for additional prognostic factors (HR [95% CI]
1.11 [1.04,1.20], P = 3.8E−03, BFDP = 1.00).
We did not identify any genome-wide significant or

noteworthy association in any of the remaining seven
subgroups investigated (Figs. 1 and 2). In addition, none
of the above reported associations have a BFDP < 0.15
when considering 10−6 as prior probability of true asso-
ciation (Additional file 3: Supplementary Tables S8).
Moreover, none of the subgroup-specific genome-wide
significant associations detected by previous studies
using a smaller version (both in terms of number of
cases and of length of follow-up) of the iCOGS and/or
OncoArray BCAC datasets were replicated at P < 0.001
(Additional file 3: Supplementary Table S12).

Discussion
We investigated the association of over 10 million com-
mon germline genetic variants with breast cancer-
specific survival within 15 patient subgroups based on
prognostic factors representative of tumor biology or re-
lated to the type of systemic treatment. Our hypothesis
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was that focusing on more homogeneous subgroups of
breast cancer patients might reveal otherwise undetected
associations. Besides type of systemic treatment, the def-
inition of the subgroups was based on current clinically
used biological characteristics for tumor subtyping and
treatment decisions: patient’s age, tumor histological
grade, ER, PR, and HER2 status ( [31]; Supplementary
table S2). We did not have gene expression or copy
number aberration data available to classify tumors on
the basis of specific biological processes [44, 45]; how-
ever, relevant survival differences have been reported
among the four subtypes based on ER, PR, and HER2
status [27, 46, 47].
A concern about performing GWAS on several sub-

groups of patients is the increased proportion of false
discoveries, also known as type I errors. For this reason
and to overcome additional limitations of the association
p values [35–37], we made use of the BFDP approach
and only considered as robust candidates those associa-
tions with BFDP < 0.15 at a prior probability of 10−4.
We found evidence of four loci potentially associated

with breast cancer survival: one in the subgroup of pa-
tients diagnosed with a grade 3 tumor, one in the sub-
group of patients with an ER+ tumor and treated with
endocrine therapy, and two in the subgroup of patients
with an ER− tumor and treated with chemotherapy.
The most significant variant identified in the subgroup

of grade 3 tumors, rs5934618, is situated in intron 1 of
TBL1X, a gene which encodes the Transducin (beta)-like
1X-linked protein. Both TBL1X and the closely related
gene TBLR1 have been implicated in the activation of
the Wnt/beta-catenin signaling pathway, which has been
reported to be overactivated in the progression and pro-
liferation of several tumors, including breast tumors,
where it has been linked with reduced overall survival
[48–50]. Rs5934618 and the other four correlated vari-
ants identified in our genome-wide analysis overlap with
chromatin features H3K4me3 and H3K27ac in normal
breast; these histone marks are generally characteristics
of gene promoters and/or enhancers and might indicate
that one or more of these variants act through modulat-
ing expression of TBL1X. There was no direct evidence
that any of these variants are expression single-
nucleotide polymorphisms (eSNPs) for TBL1X, but this
might reflect the tissues examined or that the variants
only regulate the gene in a specific context.
The remaining three variants potentially associated

with breast cancer survival were as follows:
rs4679741, identified in the subgroup of patients diag-
nosed with an ER+ tumor and treated with endocrine
therapy; rs1106333 and rs78754389, identified in the
subgroup of patients diagnosed with an ER− tumor
and treated with chemotherapy. For variant
rs4679741, it is unclear which the potential target

genes might be, while there was no evidence linking
the other two variants to the expression of the closest
genes in breast cancer nor evidence of association be-
tween those genes and survival within the specific
subgroups of breast cancer patients. Nevertheless,
there are several mechanisms through which the four
identified variants could affect survival. For example,
they could act through regulation of an unannotated
long noncoding RNA [51, 52] or microRNA [53, 54].
Further functional studies including epigenetic mecha-
nisms are needed in order to gain more insights
about the detected associations and to ascertain the
potential underlying biological mechanisms.
We did not find strong evidence of germline variants

associated with breast cancer-specific survival in any of
the other subgroups of patients investigated. In addition,
we did not replicate any of the subgroup-specific associ-
ations identified by previous studies. One of these asso-
ciations, with variant rs4458204, was previously detected
in the subgroup of patients with an ER− tumor who re-
ceived chemotherapy [16]. The estimated HR (95% CI)
was 1.81 (1.49–2.19) with association P = 1.9E−09. In
our analysis of the same subgroup, we obtained a much
lower HR estimate and the association was no longer
statistically significant (HR (95% CI) 1.14 (0.99, 1.32), P
= 6.0E−02), suggesting that the previous result was a
false positive. Even though there is some overlap in
terms of patients between the previous study and our
current study, the latter is based on a substantially larger
number of breast cancer patients and it includes more
complete follow-up data.
A major strength of our study is the sample size,

which was the largest to date and provided reasonable
power to detect associations with breast cancer-specific
survival within specific subgroups of patients. On the
other hand, our study is subject to several limitations
that are intrinsic to large consortium studies: these in-
clude variation in study design, time periods of diagno-
sis, and duration of follow-up, all of which can
contribute to within subgroup heterogeneity. Some
broad treatment-related subgroups, namely ER+ treated
with any endocrine therapy and ER− treated with any
chemotherapy, may include different treatments due to
the wide period of diagnosis included in our study. On
the other hand, the majority of patients were diagnosed
between 2000 and 2009 (69.9% and 64.5% for ER+
treated with any endocrine therapy and ER− treated with
any chemotherapy, respectively). If any impact on the re-
sults, the variation in treatment over time might have
hampered the detection of associations between variants
and survival in these subgroups. Several studies did not
report the cause of death for all patients. Out of 14,606
deaths observed within the first 15 years after diagnosis,
7531 (51.6%) were due to breast cancer. Of the

Morra et al. Breast Cancer Research           (2021) 23:86 Page 10 of 18



remaining 7075 deaths, 4905 (33.6%) were due to causes
other than breast cancer, and for 2170 deaths (14.8%) it
was unknown whether they were due to breast cancer or
to other causes. This will have led to a loss of power,
given that most of the deaths of unknown cause are
likely to have been due to breast cancer. A related weak-
ness of the study is its dependence on accuracy of cause
of death certification and on coding practices of under-
lying cause of death in different countries. However, des-
pite potential inaccuracies in cause of death, we
considered it more valid to focus on deaths reported as
due to breast cancer than by considering all deaths to-
gether, which would include those due to other causes.
An additional limitation of the study is that in most sub-
groups we had very limited power to detect highly sig-
nificant associations, particularly for small to moderate
effect sizes (HRs 1.05–1.30), even for variants of rela-
tively high minor allele frequency (MAF = 0.20). There-
fore, we may have missed variants with low to moderate
associations with survival.

Conclusions
In conclusion, we found evidence of four loci associated
with breast cancer-specific survival within specific pa-
tient subgroups. The variants identified appear to be in-
dependent of known additional prognostic factors, as
shown in the results of the adjusted analyses based on
imputed clinic-pathological variables, and could, after
proper validation, improve prognostic estimates and po-
tentially help in better stratifying patients in treatment
subgroups. However, the power for many subgroups is
limited due to the low number of events. Even so, given
the lack of evidence of strong associations in many of
the patient subgroups investigated, and the fact that pre-
viously reported variants were not confirmed, our results
suggest that the impact of common germline genetic
variant on breast cancer-specific survival might be
limited.
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subgroup-specific associations detected by previous studies and corre-
sponding estimates from the current study.
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