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Editorial 

Focus issue: Artificial intelligence in medical physics 

1. Preamble 

Following on the European Federation of Organisations for Medical 
Physics (EFOMP) editorial on Artificial Intelligence in relation to the 
medical physics profession [1], and in order to meet the educational 
needs of the Medical Physicist (MP) in this new area of AI, EFOMP 
announced in June 2019 the creation of a 2 years Working Group (WG) 
entitled “Artificial Intelligence (AI)”. The expected outcomes are an AI 
for Medical Physicists (MPs) Curricular and Professional Program as 
well as an EFOMP European School of Medical Physics Expert (ESMPE) 
AI module. 

EFOMP identified the need for Medical physicists (MPs) to take up 
their stakeholders’ role in the era of AI in medicine, by updating their 
training and education programs. This is also clearly stated in the EU 
RP174 presenting European Guidelines on Medical Physics Expert and 
strengthening the importance of education and training as the founda-
tions of the MP profession [2]. 

It is within this context that the EFOMP WG on AI proposed to the 
Editor-in-Chief of EJMP a focus issue (FI) dedicated to AI in medical 
physics. The idea was to gather in one Physica Medica volume the most 
important topics addressed in the curriculum, for the education and 
training of European Medical Physicists (MPs). Having received the 
enthusiastic approval of the Editor, who suggested to widen the scope of 
this Focus Issue to current research aspects in the field of AI, we were 
asked to act as Guest Editors. We were honoured and humbly accepted 
the task. 

This FI aims at providing a summary of the techniques and appli-
cations of AI in medical physics. It also addresses common pitfalls 
associated with these technologies. Because the application of AI in 
medicine in general and in medical physics in particular has seen an 
unprecedented increase in the recent years, the medical physicist pro-
fession has to keep pace with these changes, and we hope that this Focus 
Issue will provide a guide for MPs who are, or will be involved, in this 
exciting field. 

2. Content of the volume 

Twenty-seven papers (out of the 32 invited) were finally accepted for 
this Focus Issue. The table of content of this issue is meant to introducing 
MPs, through review and original papers, to the pillars of knowledge, 
development and applications of AI, in the context of medical imaging 
and radiation therapy. It is certainly not exhaustive, and it lacks some 
important topics like ethical aspects of AI or a methodological paper on 
the integration of AI applications in the clinical workflow, which un-
fortunately did not make it through the peer-reviewed process of the 

invited contributions. Because of the restrictive timeframe for the FI 
there was no possibility to include new contributions on these topics. 

As the curricular program developed by the WG was almost ready at 
the time the FI was conceived, it was also included as an invited (and 
accepted) paper. The FI starts therefore with it and the following articles 
are presented in a sequential way that reflects the curricular structure. 

2.1. The medical physicist curricular and professional programme to 
include Artificial Intelligence 

The curricular programs for MPs are organized per sub-specialties. 
The curriculum on AI developed by the working group (Zanca et al.) is 
not meant to replace them, but rather expand the sub-specialties’ ones 
on topics related to AI [3]. It has been subdivided in two levels, Basic 
and Advanced, depending on the potential involvement of the medical 
physicist in specific applications of AI and hence allowing for tailored 
education. The aim of this Basic training level is to introduce MPs to the 
pillars of knowledge, development and applications of AI, in the context 
of medical imaging and radiotherapy. The Advanced level instead, aims 
at building deeper expertise in the same topics. This paper is an 
extremely important contribution to the education of medical physicists 
in AI as the curriculum presented could be used not only as a module of 
the ESMP but also as a guideline for the programs of national organi-
sations, members of EFOMP. Note that surveys had been performed to 
assess the perceptions of MPs towards relevance and impact of AI [4]. 

Avanzo et al. [5] presented a survey of research articles in AI ap-
plications in medical imaging produced in 2015–2020 by authors with 
scientific affiliation in Italy, also in collaboration with the task group “AI 
for Medical Physics” of the Italian Association of Medical Physics 
(AIFM). This represents the first attempt to review this research field in 
Italy by the medical physics community, with an analysis of 168 studies. 
The vast majority (71%) was in the field of diagnostic imaging (MRI, CT, 
radiography, mammography), and prevalently aiming at image classi-
fication tasks (57% of the articles) and then at image segmentation 
(16%), using deep learning in only 35% of the cases. These findings 
confirmed for the Italian framework the well-known rapid growth of the 
research interest in AI technologies by the international medical physics 
community in very recent years. They also pointed to possible diffi-
culties in assembling and accessing large databases of images best suited 
for analysis by deep learning AI methods. This concern was also shared 
at EU level with specific research calls dedicated to building large re-
positories of freely available medical images for AI applications. 
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2.2. The pillars of AI knowledge for MPs 

In Montero et al. [6] a review of the building blocks of AI methods, 
together with their application to medical imaging is given. A key sec-
tion is the one describing the state-of-the-art of AI methods such as 
Machine Learning (Ml) and Deep Learning (DL) for medical imaging 
analysis, completed by interesting interpretation on the evolution 
needed for having such AI applications really breaking through in 
clinical practice. An overview of such ML-based applications in the 
literature is given by Strigari et al. [7]. The manuscript highlights more 
than 188 scientific papers and discusses some limitations and opportu-
nities of AI application in the clinical practice for future research. The 
authors identified common factors such as research area, discipline, 
number of images reported in the study for validation, number of pa-
tients analysed, type of images, codes and algorithms used, primary and 
secondary purposes of the studies. Regardless of the field of work, the 
reader can easily find and identify his/her own study discipline and have 
an immediate overview of the state of the art of the literature of the last 
5 years on which to identify his/her research and amount of data needed 
in the field of medical imaging applied to AI. 

When it comes to developing such applications, as reviewed by 
Castiglioni et al. [8], each of the phases required for building them has 
its specific challenge. Researchers in AI need to collect a large set of high 
quality labelled and annotated data, as the accuracy of AI tools depends 
largely on the dataset used for training. Harmonization techniques can 
minimize error due to heterogeneity when dealing with data from 
multiple centers, for instance. In radiomics studies, overfitting of ma-
chine learning can be prevented by careful feature selection before ML. 
Deep neural networks composed stacks of layers of nonlinear units are 
more challenging due to the infinite possibilities of arranging neurons 
into different architectures. Methods to estimate sample size in AI are 
still under investigation, however, data augmentation can deal with 
small and imbalanced datasets, and transfer learning – the use of pre-
trained AI tools adapted to the task at hand – can be applied as a less 
demanding alternative to training a DL network from scratch. 

To illustrate the aspect of data preparation, a comprehensive guide to 
open access platforms and tools has been described by Diaz et al. [9]. 
They explain in detail a typical medical image pipeline, i.e. de- 
identification, data curation, centralised and decentralised medica 
image storage, and data annotation tools. They provide a comprehensive 
guide to choose among the armamentarium of currently available tools 
and platforms towards developing and or applying AI algorithms. 

Next to in-house developed AI application, commercially available 
ones are also increasing and dealing with the procurement, commis-
sioning and integration in clinical workflow of such tools poses impor-
tant challenges. Bosmans et al. [10] proposed a framework to facilitate 
medical physicists’ role in the introduction of AI solutions in clinical 
practice. Focus was given to the procurement process including accep-
tance, commissioning and QA of AI tools. On the AI regime, these steps 
require further consideration and dedicated test methods as compared to 
the tradition radiological equipment procurement process. The nature of 
AI based tools warrant specific Key Performance Indicators (KPIs) and 
metrics defined for systematic set of clinical cases (in acceptance) and 
ensuring suitability to local clinical environment (in commissioning). 
Insight of the expected performance of new clinical AI tools may also be 
surveyed from scientific publications or published data-sets with 
representative data, with similarity to local workflow. Quality assurance 
of AI tools is needed to ensure the stable performance of these algo-
rithms especially concerning the upscaling usage and upgrading with 
self-learning networks. All these aspects indicate new and additional 
challenges which must be taken into account while considering 
continuous professional development of medical physicist and our role 
in hospitals. 

Both for in-house developed and for commercially available appli-
cations, an effective regulation is crucial to enable a safe and optimal 
embedding of AI-based medical devices in the clinical settings. As 

described in Beckers et al. [11], in May 2021, the European Medical 
Device Regulation (EU MDR) will become fully applicable and AI- 
devices with an impact on patient diagnosis or treatment fall under 
such directive as well, when classified as medical devices. The paper 
summarizes the new regulatory roadmap comprising the intended use, 
risk classification, clinical evidence generation and post-market sur-
veillance. With such knowledge, MPEs will be able to effectively 
participate on the purchase, commission and introduction of AI-based 
tools in the clinical workflow. As noted in the paper, one of the main 
pitfalls at present is the existence of very few guidelines for commission 
and acceptance of AI based medical device software, noting the urgency 
for initiatives from national and international medical physicists’ pro-
fessional organizations to solve this gap. 

Last but not least, the review of McCarthy et al. [12] provides in-
sights into recent enterprise imaging solutions applied to medical 
physics and healthcare settings. The rise in big data has opened up 
numerous opportunities for the application of enterprise imaging solu-
tions to big data issues of healthcare. The review summarizes the key 
tools and approaches of enterprise imaging and big data in clinical 
practice and has a considered discussion of the steps required to 
implement a clinically based enterprise model. Insights are provided 
into how solutions must address compliance, improve patient care, cost 
effectiveness, healthcare workflow and the AI platforms. The key chal-
lenges of systems integration, governance and data privacy/security is 
also highlighted in line with clinical value and efficacy of the electronic 
health records. The use of AI can expediate patient care and reduce 
healthcare costs, but the management of system accuracy, stability and 
reproducibility must be considered with specialist training and contin-
uous professional development of medical physicists to ensure appro-
priate care of patients and regulatory compliance. 

2.3. AI applications in CT and NM 

The integration of AI in x-ray and emission CT for fast and accurate 
diagnosis of difficult lesions looks promising. These new AI applications, 
however, require proper validation, as their reliability and robustness 
are critical for patient outcome. In Buls et al. [13], a FDA approved 
commercial AI tool with real-time clinical workflow integration was 
assessed for diagnosis of intracranial hemorrhage (ICH) and pulmonary 
embolism (PE) on a two retrospective cohorts of contrast enhanced 
pulmonary angiography and cranial non-contrast CT exams of 500 pa-
tients each. The AI tool was able to produce accuracy 0.93 (0.90–0.96) 
for ICH and 0.98 (0.96–0.99) for PE, showing potential to rule out ICH 
and PE in diverse clinical settings with substantial concordance between 
AI and expert reading. 

Computer aided diagnosis in Low dose CT, the most common mo-
dality for lung cancer diagnosis, is of paramount interest for lung cancer 
screening. In Astaraki et al. [14] an AI pipeline to classify lung nodules 
in low-dose CT as malignant or benign which uses a convolutional 
neural network (CNN) to extract image features combined with a ma-
chine learning classifier was implemented. The features were extracted 
using supervised training. The models were trained in a publicly avail-
able database and resulted in high performance (0.936 Area under the 
Receiver Operating Characteristic (ROC) curve) in cross validation, 
which outperformed the classification performance of the Kaggle 2017 
challenge winner. 

Quality assurance of AI tools in imaging rely on the use of specific 
phantoms for measurements in reproducible and controlled conditions. 
Cisbani et al. [15] designed a phantom with capability of contrast me-
dium injection and inserts of different sizes for testing AI in CT imaging, 
They tested deep learning architecture based on modified U-net for 
denoising or segmentation, and investigated dependency of perfor-
mance on dose from CT scan, showing potential for studying patient 
dose reduction achieved by AI-based image quality improvement. 

Conditional generative adversarial networks (cGAN) are a promising 
AI tool which generates images. Funama et al. [16] explored the use of 
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cGAN for generating a 55 keV CT from a standard 120 kVp CT of 
enhanced abdominal imaging. The obtained images provide improved 
contrast of iodine compared with the surrounding tissues, in terms of 
peak signal to noise ratio and structural similarity index, showing how 
synthetic images generated by cGAN can improve diagnostic 
performance. 

The applications of AI in nuclear medicine focusing on both single- 
photon emission computed tomography (SPECT) and positron emis-
sion tomography (PET) imaging were reviewed comprehensively by 
Arabi et al. [17], with emphasis on deep learning (DL) algorithms, now 
used on a broad range of applications. They presented DL algorithms and 
architectures used in SPECT and PET acquisition, reconstruction, and 
quantitative imaging for different purposes such as AI-assisted image 
interpretation, decision support, image segmentation, registration, and 
fusion, diagnosis and prognosis as well as radiomics and precision 
medicine. The AI-based internal radiation dosimetry in radionuclide 
metabolic therapy using PET and SPECT is also discussed. Of note, the AI 
approaches are presented from the point of view of the MP and emphasis 
on understanding their advantages and limitations as processing and/or 
decision support tools. 

2.4. AI applications in RX, mammography 

As two-dimensional X-ray imaging is the most common medical 
image, AI is expected to have significant impact in this field. Nouisianen 
et al. [18] investigated the use of CNN to automate diagnostic chest 
radiography quality control, assessing different image quality features 
on patient images (lung edges inclusion, patient rotation, and correct 
inspiration). The areas under the ROC curve were >0.88 for the lungs’ 
inclusion, and >0.70/>0.79 for the rotation and the inspiration, 
respectively. Such an approach is proposed as an automated quality 
control of radiographies, which could help reducing unnecessary image 
repetition and patient dose. 

AI-based techniques have demonstrated to be important tools not 
only for radiologists but also for MPs and estimating dose from medical 
imaging is among MPs’ most critical responsibilities. Breast dose from 
mammographic procedures is typically quantified as mean glandular 
dose (MGD). Its estimation requires measurements of breast density, air 
kerma and Monte Carlo-based conversion coefficients. By use of deep 
neural networks Tomal et al. [19] showed that both volumetric breast 
glandularity and mean glandular dose could be automatically assessed. 
The system was thoroughly validated by virtual anthropomorphic breast 
phantoms and other tools available in the literature. The developed tools 
and databases used, are made available for the Medical Physics com-
munity by contacting the corresponding author. 

Finally, Ricciardi et al. [20] introduced a system for the automatic 
classification of the presence/absence of mass lesions in digital breast 
tomosynthesis (DBT), based on a deep convolutional neural network 
(DCNN). Three DCNN architectures were compared with state-of-the-art 
of pre-trained DCNN architectures (AlexNet and VGG19) on two 
different radiology datasets. A Gradient-weighted Class Activation 
Mapping (Grad-CAM) technique was also implemented, which, by 
visualizing false color maps over the areas in the image at risk of pres-
ence of a lesion, can facilitate tumor localization. This work could be 
further extended to also include localization of masses and micro-
calcifications within the tomosynthesis images. 

2.5. AI applications in MRI 

With its excellent soft tissue contrast, MRI is key for the diagnosis, 
management and treatment planning of patients, and AI applications to 
MRI imaging are seeing rapid pace of evolution. In the review of 
Montalt-Tordera et al. [21], the authors summarize the clinical appli-
cations, major drawbacks, and current trends of ML approaches used in 
MRI reconstruction. By focusing on AI for image formation, they identify 
current machine learning (ML) approaches used to populate the k-space 

and/or image space in clinical images in order to speed up what is an 
inherently a slow acquisition process. The resulting image quality 
enhancement, and its potential for translation into clinical use are dis-
cussed. In a clinical setting, quality measurement of MRI images is the 
role and responsibility of MPs. 

Among others, MRI-based AI methods are expected to improve 
diagnosis in Neurooncology, with impact on diagnosis, therapy and 
follow-up. Zegers et al. [22] review the requirements for AI applications 
to generate fully synthetic CT data for radiotherapy planning, pathology 
classification or patient outcome prediction and identify the core 
knowledge. The original research papers reviewed by the authors were 
classified based on their applications, into three categories: technolog-
ical innovation, diagnosis and follow-up and the applications ranged 
from improving the acquisition, synthetic CT generation, auto- 
segmentation, tumor classification, outcome prediction and response 
assessment. The authors identified the novel fields and potential broad 
range of applications, the applicability across institutions and the re-
quirements for robust validation of the implantation of technologies in 
clinical practice. 

Another AI application with clinical impact in MRI is presented by 
Ritz et al. [23], where they evaluated deep learning models for the 
detection and characterization of medial and lateral meniscal tears. The 
combined architecture 3D convolutional neural networks reached AUC 
values of 0.84–0.95 for meniscal tear detection and migration. External 
validation of the models resulted in an AUC of 0.89, demonstrating a 
high performance in knee menisci lesion detection and characterization. 

2.6. AI applications in RT 

Radiotherapy is another hotbed for AI applications, promising to 
automate and speed up the entire workflow from patient positioning to 
treatment planning and plan verification. Heddens et al. [24] investi-
gated deep learning applications in breast cancer radiotherapy per-
formed in a 3D conformal fashion. They configured a modified U-net to 
predict the optimal dose distribution, that is, the dose from a treatment 
plan, whose beam configuration has been optimized to meet the pre-
scribed dose constraints. The resulting dose map can be used as a 
reference dose for automatic plan generation. 

Barragan et al. [25] investigated the factors influencing deep 
learning dose prediction for IMRT of esophageal cancer. They investi-
gated the effect of different LINACs, beam arrangements and energies, 
and tested robustness of dose after recontouring, concluding that dose 
accuracy depends on data size and quality. This is a typical example of 
how AI is currently already in the stage of creating complex treatment 
plans. 

Radiotherapy is inherently linked to diagnostics and utilising diag-
nostic data (especially from CT, MRI and PET) in therapy planning and 
guidance. Therefore, various AI applications and methods which have 
been developed and implemented in previously described studies are 
also affecting and improving the radiotherapy processes which can be 
seen as a large-scale platform for AI data-driven patient care. 

2.7. Applications in US 

Tsai et al. [26] use a DL approach to diagnose pleural effusion on 
clinical lung ultrasound videos. Their proposed algorithm resulted in 
high accuracy (91.1% for videos, 92.4% for frames) compared to clinical 
standards, allowing fast and robust diagnosis irrespective of the 
competence of the sonographer performing the examination. This study 
is a step towards full automation of lung ultrasound evaluation for lung 
pathologies. 

2.8. AI applications in radiomics 

Papadimitroulas et al. [27] describe the status of the research on AI 
for extracting image biomarkers from medical images, a field currently 
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termed radiomics. The authors review the major interpretability 
methods that help overcoming the black box issue, enabling explainable 
AI for classification and prediction in clinical practice. They also discuss 
the crucial requirement of multicenter recruitment of large datasets, 
increasing the biomarkers variability, so as to establish the potential 
clinical value of radiomics and the development of robust explainable AI 
models. 

In Maffei et al. [28] a radiomics features classifier was implemented 
to evaluate segmentation quality of heart structures, to drive auto- 
contouring optimization. Twenty radiomics features were found to be 
robust across structures, and the trained AI Classifier detected correct 
and incorrect contours with an accuracy of 82.6%. The proposed 
workflow allows an automatic assessment of segmentation quality and 
may accelerate the expansion of an existing auto-contouring atlas 
database as well as improve dosimetric analyses of large treatment plan 
databases. 

3. Concluding remarks 

This FI of Physica Medica reflects the interest of the scientific com-
munity and the professional organizations represented by EFOMP in AI 
by reviewing the techniques and the particular applications of AI in 
medical physics as well as the current limitations and the challenges yet 
to overcome. The need for basic education or continuous professional 
development of medical physicists to cope with the increased use of AI 
solutions in medical physics is also discussed making thus the work 
presented in this FI of high interest for the readers of Physica Medica. 
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[18] Nousiainen K, Mäkelä T, Piilonen A, Peltonen JI. Automating chest radiograph 
imaging quality control. Phys Med 2021;83:138–45. https://doi.org/10.1016/j. 
ejmp.2021.03.014. 

[19] Massera Rodrigo T, Tomal Alessandra. Breast glandularity and mean glandular 
dose assessment using a deep learning framework: Virtual patients study. Eur. J. 
Med. Phys. 2021;83:P264–77. https://doi.org/10.1016/j.ejmp.2021.03.007. 

[20] Ricciardi R, Mettivier G, Staffa M, Sarno A, Acampora G, Minelli S, et al. A deep 
learning classifier for digital breast tomosynthesis. Phys Med 2021;83:184–93. 
https://doi.org/10.1016/j.ejmp.2021.03.021. 

[21] Montalt-Tordera J, Muthurangu V, Hauptmann A, Steeden JA. Machine learning in 
magnetic resonance imaging: image reconstruction. Phys Med 2021;83:79–87. 
https://doi.org/10.1016/j.ejmp.2021.02.020. 

[22] Zegers CML, Posch J, Traverso A, Eekers D, Postma AA, Backes W, et al. Current 
applications of deep-learning in neuro-oncological MRI. Phys Med 2021;83: 
161–73. https://doi.org/10.1016/j.ejmp.2021.03.003. 

[23] Rizk B, Brat H, Zille P, Guillin R, Pouchy C, Adam C, et al. Meniscal lesion detection 
and characterization in adult knee MRI: a deep learning model approach with 
external validation. Phys Med 2021;83:64–71. https://doi.org/10.1016/j. 
ejmp.2021.02.010. 

[24] Hedden N, Xu H. Radiation therapy dose prediction for left-sided breast cancers 
using two-dimensional and three-dimensional deep learning models. Phys Med 
2021;83:101–7. https://doi.org/10.1016/j.ejmp.2021.02.021. 

[25] Barragán-Montero AM, Thomas M, Defraene G, Michiels S, Haustermans K, Lee JA, 
et al. Deep learning dose prediction for IMRT of esophageal cancer: the effect of 
data quality and quantity on model performance. Phys Med 2021;83:52–63. 
https://doi.org/10.1016/j.ejmp.2021.02.026. 

[26] Tsai C-H, van der Burgt J, Vukovic D, Kaur N, Demi L, Canty D, et al. Automatic 
deep learning-based pleural effusion classification in lung ultrasound images for 
respiratory pathology diagnosis. Phys Med 2021;83:38–45. https://doi.org/ 
10.1016/j.ejmp.2021.02.023. 

[27] Papadimitroulas P, Brocki L, Christopher Chung N, Marchadour W, Vermet F, 
Gaubert L, et al. Artificial intelligence: deep learning in oncological radiomics and 
challenges of interpretability and data harmonization. Phys Med 2021;83:108–21. 
https://doi.org/10.1016/j.ejmp.2021.03.009. 

[28] Nicola M, et al. AI classifier trained on radiomics features to quantify automatic 
segmentation quality of 25 cardiac sub-structures for RT treatment. Phys Med 
2021;83:278–86. https://doi.org/10.1016/j.ejmp.2021.05.009. 

F. Zanca 
Palindromo Consulting, Leuven, Belgium 

M. Avanzo 
Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Department of 

Medical Physics, 33081 Aviano, PN, Italy 

N. Colgan 
School of Physics, National University of Ireland Galway, Galway, Ireland 

W. Crijns 
Department Oncology, Laboratory of Experimental Radiotherapy, KU 
Leuven and Department of Radiation Oncology, UZ Leuven, Belgium 

G. Guidi 
Medical Physics, Az. Ospedaliero-Universitaria di Modena, Modena, Italy 

I. Hernandez-Giron 
Leiden University Medical Center (LUMC), Radiology Department, Division 

of Image Processing, Albinusdreef 2, 2333ZA Leiden, The Netherlands 

G.C. Kagadis 
3DMI Research Group, Department of Medical Physics, School of Medicine, 

University of Patras, GR 265 04, Greece 

O. Diaz 

Editorial                                                                                                                                                                                                                                           

https://doi.org/10.1016/j.ejmp.2018.11.005
http://op.europa.eu/en/publication-detail/-/publication/b82ed768-4c50-4c9a-a789-98a3b0df5391
http://op.europa.eu/en/publication-detail/-/publication/b82ed768-4c50-4c9a-a789-98a3b0df5391
http://op.europa.eu/en/publication-detail/-/publication/b82ed768-4c50-4c9a-a789-98a3b0df5391
https://doi.org/10.1016/j.ejmp.2021.01.069
https://doi.org/10.1016/j.ejmp.2021.01.069
https://doi.org/10.1016/j.ejmp.2020.11.037
https://doi.org/10.1016/j.ejmp.2021.04.010
https://doi.org/10.1016/j.ejmp.2021.04.010
https://doi.org/10.1016/j.ejmp.2021.04.016
https://doi.org/10.1016/j.ejmp.2021.04.016
https://doi.org/10.1016/j.ejmp.2021.03.026
https://doi.org/10.1016/j.ejmp.2021.02.006
https://doi.org/10.1016/j.ejmp.2021.02.007
https://doi.org/10.1016/j.ejmp.2021.02.007
https://doi.org/10.1016/j.ejmp.2021.04.006
https://doi.org/10.1016/j.ejmp.2021.04.006
https://doi.org/10.1016/j.ejmp.2021.02.011
https://doi.org/10.1016/j.ejmp.2021.04.004
https://doi.org/10.1016/j.ejmp.2021.03.015
https://doi.org/10.1016/j.ejmp.2021.03.015
https://doi.org/10.1016/j.ejmp.2021.03.013
https://doi.org/10.1016/j.ejmp.2021.02.022
https://doi.org/10.1016/j.ejmp.2021.02.022
https://doi.org/10.1016/j.ejmp.2021.02.015
https://doi.org/10.1016/j.ejmp.2021.02.015
https://doi.org/10.1016/j.ejmp.2021.03.008
https://doi.org/10.1016/j.ejmp.2021.03.014
https://doi.org/10.1016/j.ejmp.2021.03.014
https://doi.org/10.1016/j.ejmp.2021.03.007
https://doi.org/10.1016/j.ejmp.2021.03.021
https://doi.org/10.1016/j.ejmp.2021.02.020
https://doi.org/10.1016/j.ejmp.2021.03.003
https://doi.org/10.1016/j.ejmp.2021.02.010
https://doi.org/10.1016/j.ejmp.2021.02.010
https://doi.org/10.1016/j.ejmp.2021.02.021
https://doi.org/10.1016/j.ejmp.2021.02.026
https://doi.org/10.1016/j.ejmp.2021.02.023
https://doi.org/10.1016/j.ejmp.2021.02.023
https://doi.org/10.1016/j.ejmp.2021.03.009
https://doi.org/10.1016/j.ejmp.2021.05.009


Physica Medica 83 (2021) 287–291

291

Faculty of Mathematics and Computer Science, University of Barcelona, 
Barcelona, Spain 

H. Zaidi 
Geneva University Hospital, Division of Nuclear Medicine and Molecular 

Imaging, CH-1211 Geneva, Switzerland 

P. Russo 
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