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Metastatic tumor deposits in bone marrow elicit differential bone responses that vary with
the type of malignancy. This results in either sclerotic, lytic, or mixed bone lesions, which
can change in morphology due to treatment effects and/or secondary bone remodeling.
Hence, morphological imaging is regarded unsuitable for response assessment of bone
metastases and in the current Response Evaluation Criteria In Solid Tumors 1.1
(RECIST1.1) guideline bone metastases are deemed unmeasurable. Nevertheless, the
advent of functional and molecular imaging modalities such as whole-body magnetic
resonance imaging (WB-MRI) and positron emission tomography (PET) has improved the
ability for follow-up of bone metastases, regardless of their morphology. Both these
modalities not only have improved sensitivity for visual detection of bone lesions, but also
allow for objective measurements of bone lesion characteristics. WB-MRI provides a
global assessment of skeletal metastases and for a one-step “all-organ” approach of
metastatic disease. Novel MRI techniques include diffusion-weighted imaging (DWI)
targeting highly cellular lesions, dynamic contrast-enhanced MRI (DCE-MRI) for
quantitative assessment of bone lesion vascularization, and multiparametric MRI
(mpMRI) combining anatomical and functional sequences. Recommendations for a
homogenization of MRI image acquisitions and generalizable response criteria have
been developed. For PET, many metabolic and molecular radiotracers are available,
some targeting tumor characteristics not confined to cancer type (e.g. 18F-FDG) while
November 2021 | Volume 11 | Article 7725301

https://www.frontiersin.org/articles/10.3389/fonc.2021.772530/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.772530/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.772530/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:d.oprea-lager@amsterdamumc.nl
https://doi.org/10.3389/fonc.2021.772530
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.772530
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.772530&domain=pdf&date_stamp=2021-11-19


Oprea-Lager et al. Bone Metastases Are Measurable

Frontiers in Oncology | www.frontiersin.or
other targeted radiotracers target specific molecular characteristics, such as prostate
specific membrane antigen (PSMA) ligands for prostate cancer. Supporting data on
quantitative PET analysis regarding repeatability, reproducibility, and harmonization of
PET/CT system performance is available. Bone metastases detected on PET and MRI can
be quantitatively assessed using validated methodologies, both on a whole-body and
individual lesion basis. Both have the advantage of covering not only bone lesions but
visceral and nodal lesions as well. Hybrid imaging, combining PET with MRI, may provide
complementary parameters on the morphologic, functional, metabolic and molecular level
of bone metastases in one examination. For clinical implementation of measuring bone
metastases in response assessment using WB-MRI and PET, current RECIST1.1
guidelines need to be adapted. This review summarizes available data and insights into
imaging of bone metastases using MRI and PET.
Keywords: bone metastases, MRI, PET, measurable, response
INTRODUCTION

Bone is a common site of secondary tumor deposits because, in
addition to its rigid, calcified, outer cortex, it has a richly vascular
inner marrow of bony trabeculae, stroma, haematopoeitic tissue
and fat (1). Within bone, it is the crucial balance between
osteoblastic and osteoclastic elements that maintains its
functional strength and rigidity. Metastatic deposits elicit
differential responses from the osteblastic and osteoclastic
components, which vary with the type of malignancy and result
in strikinglydifferentappearanceson imaging (2). In somecases, the
tumor incites a predominantly osteoblastic response with a
resulting increase in calcified sclerotic matrix, as in prostate and
breast cancer (3). In other tumor types, the metastasis causes bony
destruction (osteoclastic response) without exciting an osteoblastic
response, so that metastases (e.g. kidneys, thyroid, lungs) appear
lytic and expansile (3). Finally, the tumor cells can simply invade the
marrow without influence on the mineral content of the bone (i.e.
radio-occult metastases). In many instances there is a mixture of
sclerotic, lytic and radio-occult types.As treatment response isoften
accompanied by an increase in bony sclerosis (“flare response”), it
canbedifficult todifferentiate it fromanosteoblastic response to the
tumor itself (4). Moreover, once deformed by the presence of
metastases, the rigid form of the bony skeleton does not usually
remodel sufficiently after treatment to distinguish untreated from
treated tumor. Therefore, on morphological imaging, especially X-
ray based, evaluation of response to treatment of bone metastases
remains difficult.

RECIST were presented more than 2 decades ago and rely
principally on unidimensional size measurements (5). Nowadays,
RECIST forms the mainstay of response evaluation of solid tumors
to treatment and is universally used in clinical trials of solid tumors.
Index lesions with well-definedmargins, discernable from adjacent
parenchyma are required for reproducible measurements, and
specific modifications are set out for some tissues (short-axis
measurements for lymph nodes, bi-dimensional measurements
for brain lesions). However, because of the blastic response of
bone to tumor or to treatment, and of the rigid nature of calcified
g 2
bone where deformity of the cortex persists after treatment, bone
lesionswere consideredunmeasurable byRECIST.Modifications to
RECIST (i.e., RECIST 1.1) stated that bone metastases with soft
tissue masses > 10 mm could be considered measurable index
lesions (6). Nevertheless, as reduction of the soft tissue component
renders the lesions unmeasurable by these criteria again, there
remains a critical unmet need for a means of quantifying bone
lesions and their response to treatment.

The advent of imaging modalities providing information
about tissue microstructure or its metabolism has accelerated
the identification of skeletal metastases. 18F-fluorodeoxyglucose
(18F-FDG) PET/CT identifies secondary deposits within bone
because of their increased glucose turnover. Its whole-body
coverage and increasingly widespread availability has made it
of primary importance in cancer staging, particularly in patients
where the tumor pathology or molecular profile indicates a high
metastatic risk (7, 8). Additionally, techniques such as WB-MRI
with DWI have a high sensitivity for identifying highly cellular
lesions such as tumors and have been incorporated routinely into
the staging of some tumor types such as myeloma (9–11). Dynamic
contrast-enhanced MRI (DCE-MRI) for quantitatively assessing
vascularization within bone marrow in patients with multiple
myeloma was found to be of prognostic significance for these
patients (12, 13). While these techniques have their own
limitations, they are not hampered by what makes bone lesions
unmeasurable by RECIST 1.1 (i.e. radio-occult appearance, sclerotic
response and persistent bone deformity on healing). The purpose of
this manuscript is to review the MRI and PET techniques available
for measuring bone metastases, their opportunities and challenges,
and their applicability in various tumor types.
DIFFERENT CANCERS – DIFFERENT
TYPES OF BONE METASTASES

At present, the incidence of bone metastases is 65-75% in
advanced metastatic breast cancer, 65-75% in prostate cancer,
60% in thyroid cancer, 30-40% in lung cancer, 40% in bladder
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cancer, 20-25% in renal cell carcinoma and 14-45% in
melanoma (14).

Bone metastases can be classified as osteolytic, osteoblastic,
radio-occult, or as a mixed type. Osteolytic metastases are
characterized by destruction of normal bone and osteoblastic/
sclerotic metastases are characterized by deposition of new bone.
Radio-occult lesions have no impact on the mineral content of
the bone. Osteolytic lesions are predominantly present in
multiple myeloma, renal cell carcinoma, melanoma, non-small
cell lung cancer (NSCLC), non-Hodgkin lymphoma (NHL),
thyroid cancer, Langerhans-cell histiocytosis and breast cancer,
and osteoblastic lesions are present in prostate cancer,
neuroendocrine tumors, small-cell lung cancer (SCLC),
Hodgkin lymphoma and medulloblastoma (14). Mixed lesions
can be found in gastrointestinal cancers and squamous cancers,
and 15-20% of bone metastases of breast cancer can be either
osteoblastic or mixed (14). Radio-occult lesions can be present in
virtually all tumor types. The mechanisms responsible for the
impact of metastatic tumor growth on the mineral content of the
skeleton are complex and involve the stimulation of osteoclasts
and osteoblasts by tumor cells expressing factors. The resulting
imbalance between resorption and production of bone matrix
subsequently leads to osteoclastic, osteoblastic, or mixed
metastatic disease (2).

In osteolytic lesions, bone destruction is primarily mediated by
osteoclasts and, in later stages, ischemia can play a role due to the
compression of the vasculature (15). Parathyroid hormone-related
peptide (PTHrP) induces osteoblasts to produce a receptor activator
of nuclear factor kB ligand, which stimulates osteoclast maturation,
and thereby plays a critical role in the development of osteolytic
lesions. Increased osteoclast activity leads to bone resorption that
exceeds the reparative ability of osteoblasts (16). It releases factors
from the bone matrix that stimulate PTHrP, thereby creating a
vicious cycle. In osteoblastic lesions, osteoblast generation is
influenced by transforming growth factor, bone morphogenic
proteins (BMP), and endothelin-1 (17). Tumor-derived growth
factors stimulate primarily osteoblasts rather than osteoclasts,
resulting in deposition of excess abnormal bone. PTHrP can be
cleavedbyprostate-specificantigen(PSA), resulting inanosteoblastic
reaction and decreased bone reabsorption. Furthermore, osteoblast
differentiation is influencedby core binding factor alphal, also known
as Runx-2 (14). Osteoblast activity may also increase as a reparative
process in successfully treated bone metastases, which can be visible
on molecular imaging as the so-called “flare phenomenon” and can
cause lesions to become denser on radiographs or CT scans (18).

After the tumor cells have left the primary tumor and are in
circulation, the bone tumor microenvironment needs to provide
a fertile ground (the soil), for the survival and growth of
metastatic cancer cells (the seed) (19). Vascular adhesion and
extravasation need to occur, and the tumor cells have to remain
at the metastatic site. Subsequently, chemo-attractive and
adhesion molecules play an important role in the retention of
the tumor cells in the bone marrow vasculature. In turn, tumor
cells use equivalent molecules, such as chemokines, integrins,
osteopontin, bone sialoprotein and type I collagen for organ
colonization (20). The microenvironment supports cancer cell
Frontiers in Oncology | www.frontiersin.org 3
survival and growth by producing promoting factors that may
contribute to bone metastases development. Subsequently,
epithelial-mesenchymal transition occurs, which enables
epithelial cells to migrate to a new environment. While this
occurs mainly during embryogenesis, in cancer cells this process
denotes the invasive phenotype (21).

Sex-associated differences exist in bone metastasis formation
from breast-, lung- and prostate cancer. In breast cancer,
estrogen influences the bone microenvironment by creating
and conditioning a favorable niche for colonization of breast
cancer cells. Patients with estrogen receptor a positive (ER+)
tumors have bone metastases three times more often than do
patients with ER- tumors (22). In lung cancer, it is reported that
females more often have bone metastases due to a more favorable
bone microenvironment for metastasis formation. In prostate
cancer patients, a decrease in the androgen-to-estrogen balance
results in bone metastasis formation, with a potentially
important role for ERb that may be similar to that in breast
cancer. Androgens as well as estrogens have an influence on
osteoblast proliferation and on bone resorbing osteoclasts. In
both males and females, estrogens have a dominant effect on
bone maintenance and can directly inhibit osteoclasts.
Furthermore, androgens directly contribute to male periosteal
bone expansion, mineralization, and trabecular bone
maintenance (23).

The time from primary diagnosis to the development of bone
metastasis can range from months to decades. This implies that
tumor cells can lay dormant for significant periods of time after
they leave the primary site. It has been shown that the bone is an
important reservoir for dormant tumor cells. The best-illustrated
cases for clinical dormancy are in breast cancer, where ER+
patients show late recurrences, sometimes decades after removal
of the primary tumor. Latent bone metastasis formation likely
depends on estrogen regulation, and it is significantly higher in
ER+ cases (24).

Bone metastases have unique disease-specific characteristics,
such as longevity, fracture healing rates, local and systemic
disease progression, and sensitivity to adjuvant treatments.
Bone metastases from lung cancer and renal cancer can also
show acral distribution (25). Patients with bone metastases of
lung cancer historically showed a median survival of
approximately 6 months (14). Treatment options for patients
with identifiable mutations include immunotherapy and
epidermal growth factor receptor tyrosine kinase inhibitors,
with evidently improved survival benefit (26). Bone metastases
of lung cancer are, in general, sensitive to radiation therapy (27).

The median survival of breast cancer patients with bone-only
metastasis is 36 months (28). The medical treatment of breast
cancer depends on the hormone receptor and HER-2/neu status
and is different for premenopausal and postmenopausal women
(25). Furthermore, pain reduction can be achieved, and skeletal-
related events and the development of new skeletal lesions can be
prevented by the use of bisphosphonates or denosumab, due to
their ability to limit bone resorption. Bone metastases of breast
cancer are in general radiosensitive, resulting in a lower
proportion of surgical treatments (29).
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Men with prostate cancer, a good performance status, and
bone-only disease have a median duration of disease control after
androgen blockade of 4 years and a median survival of 53
months (14). Bone metastases of prostate cancer have a
predilection for the axial skeleton, resulting in an increased
risk for spinal cord compression (25). However, due to the
osteoblastic nature of the metastases, skeletal-related events are
relatively uncommon. Also, bone metastases of prostate cancer
tend to be radiosensitive, which allows a higher proportion of
nonsurgical treatment. In case of a pathologic fracture, healing
rates are higher than for most other metastatic carcinomas (29).
Treatment with Radium-223, a calcium-mimetic and alpha-
emitter that selectively binds to areas of increased bone
turnover, results in significantly prolonged OS in patients who
had castration-resistant prostate cancer and bone metastases (30).
LESSONS LEARNED FROM
EXPERIMENTAL IMAGING

Quantitative imaging of bone metastases beyond morphology
has been studied in preclinical studies on the functional and
molecular level using MRI and PET. In these studies, quantitative
biomarkers in skeletal lesions were assessed and validated with
the underlying histology. Thereby, DCE-MRI parameters in
bone metastatic lesions from breast cancer associated with
blood volume and vessel permeability were correlated with
vessel maturity, while the apparent diffusion coefficient (ADC)
from DWI was associated with tumor cellularity as assessed by
cell nuclei staining (31). Treatment monitoring in an animal
model of osteolytic breast cancer could be performed reliably
using DCE-MRI and 18F-FDG PET, while therapy response
could be detected through functional and metabolic techniques
earlier than through morphological imaging (32, 33). Integration
of parameters from DCE-MRI and 18F-FDG PET by machine
learning algorithms enabled the detection of early pathologic
processes in the bone marrow preceding morphologic changes in
bone structure (34). Thus, parameters from functional and
metabolic MR and PET imaging are powerful tools to quantify
pathophysiologic processes during colonization of bone marrow
and to determine response to treatment of skeletal metastasis.

On the molecular level, PET is the method of choice to
determine molecular structures expressed in bone metastases,
such as integrins alphavbeta3/5 or the chemokine receptor
CXCR4 (35, 36). Although a major limitation of MRI is the
lack of sensitivity when compared to PET, a strategy of signal
amplification using a pair of enzymes and an appropriate
reducing substrate was presented recently to non-invasively
assess epidermal growth factor receptor (EGFR) expression in
MRI (37). Besides MRI and PET, other imaging modalities may
also be used to determine molecular information in bone
metastases, such as ultrasound with its high spatial resolution
and unique contrast characteristics of gas-filled microbubbles for
enabling the assessment of intra-vascular targets such as vascular
endothelial growth factor receptor-2 (VEGFR-2) expressed in
bone metastases (38). Thus, molecular imaging strategies for
Frontiers in Oncology | www.frontiersin.org 4
molecular characterization of skeletal lesions have been
developed for PET but also for MRI and ultrasound, which are
suitable for clinical translation in the near future.
MAGNETIC RESONANCE IMAGING (MRI)

From Axial Spine-MRI to Whole Body-MRI
With Diffusion-Weighted Imaging
Since the early 1990s, bone marrow MRI has been developed to
overcome the limitations of bone scintigraphy and CT for the
assessment of bone metastatic disease, showing an unparalleled
sensitivity to the replacement of the bone marrow by neoplastic
cells (39, 40).

Axial skeleton MRI (AS-MRI) examinations was first
developed as a tool used for the detection of bone marrow
replacement by neoplastic foci and their quantification (40,
41). Coverage of the “axial skeleton”, i.e. the whole spine, bony
pelvis and proximal femurs, already probes more than 80% of the
red marrow containing areas where metastatic disease is
observed, and has limited risk to miss isolated peripheral
metastatic disease (39, 42).

Whole body MRI (WB-MRI) was later developed for a global
assessment of skeletal metastases and for a one-step “all-organ”
approach of metastatic disease. The morphologic T1, fat
saturated T2/STIR sequences were first used, and were later
complemented with functional DWI sequences (42). The “fluid
sensitive-fat saturated” T2-like sequences are now preferably
acquired using the Dixon method, that not only provides fat-
saturated T2 or STIR equivalent “water only” images, but also
“fat only” images providing T1-like information and highly
sensitive detection of focal lesions on a background of fatty
marrow, questioning the residual need for T1 images (43).
This T2 Dixon approach can now be extended to whole body
examinations: using T2 Dixon sequences as an alternative to the
addition of T1 and STIR drastically decreases the acquisition
times of anatomical WB-MRI studies (44). Additionally, the
Dixon technique offers the possibility to calculate the marrow
fat fraction (FF) and generate fat fraction maps. This quantitative
approach is gaining interest along with ADC measurements as a
biomarker for response evaluation. Indeed, the fat proportion is
expected to increase in focal and diffuse marrow infiltration in
response to treatment (45).

Principles, Advantages and Weaknesses
Classic morphologic MRI sequences detect metastases based on
the decrease in normal marrow components, mainly fat cell, and
on their replacement by neoplastic cells which may present
different biochemical composition properties and variable
influence on the adjacent bone structure (46).

DWI sequences detect metastatic foci based on the alteration
of the movements of water molecules through tissues. In the
bone marrow, early infiltration by neoplastic cells is responsible
for a decrease in the free movements of water and ADC (47).
DWI sequences provide a functional dimension to MRI
examinations, as diffusion parameters mainly probe membrane
November 2021 | Volume 11 | Article 772530
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integrity, cell viability and tissue density, and allow a quantitative
approach of these parameters. It also largely contributes to the
detection and response evaluation in extraskeletal organs
involved by the metastatic disease (11, 48, 49).

The detection of neoplastic tissue using MRI does not rely on
activation of osteoblasts/clasts and subsequent sclerosis/lysis
developed on bone trabeculae, which causes delay in the
diagnosis of bone infiltration by radiographs, CT and bone
scintigraphy. Unlike PET, MRI does not rely on the avidity of
the tumoral tissue for a given radioactive tracer, which largely
varies according the primary cancer and also according to the
disease stage in the same cancer (50). This provides a “universal”
dimension to MRI for the detection and follow-up of
metastatic disease.

A major strength of MRI is the detailed morphologic analysis
of bones, which allows distinction of benign versus malignant
fractures, assessment of extraosseous spread and (sometimes
preclinical) impingement on neurologic structures, and
monitoring of these complications after initiation of targeted
or systemic treatment (51).

As main weaknesses, some benign bone lesions may mimic
neoplastic foci and should be identified based on the correlation of
DWI andmorphologic sequences and on ADCmeasurements (52,
53). In late stages of the disease, treated lesions and scar tissue
within the bone marrow may complicate the detection and size
measurements of active metastases, especially on morphologic
sequences. DWI sequences and ADC maps then become cardinal
for response assessment (54–56).

Another potential limitation of MRI is a benign increase in
marrow cellularity of the red bone marrow during the treatment, in
response to various factors among which are marrow stimulating
drugs, potentially resulting in a diffuse “pseudoprogression” (57).
This can be prevented by avoiding the use of MRI during and
shortly after the use of these drugs.

Measurement of Response
Bone marrow MRI is currently used daily in clinical practice and
clinical trials to assess the response to treatment of bone only and
bone predominant metastatic disease, using several approaches
with different complexity (18, 58). Recommendations for a
homogenization of MRI image acquisitions and generalizable
response criteria have been developed (55). The harmonization
of quantitative DWI acquisitions and ADC calculations has been
addressed by the United Kingdom Quantitative WB-DWI
Technical Workgroup (59).

Size and Number
Metastatic disease to the bone marrow may present as a focal or a
diffuse pattern. Evolution from a normal appearing marrow to a
focal or diffuse pattern, increase in number and size of focal
lesions will indicate disease progression (60). A decrease in focal
lesion number and size, return from diffuse or focal patterns of
marrow infiltration to a normal marrow appearance will indicate
response (Figures 1, 2).

RECIST-like criteria can be transposed to bone marrow
metastases. Simple size measurements of bone metastases on
morphologic sequences in (a limited sample of) bone metastases
Frontiers in Oncology | www.frontiersin.org 5
allows objective assessment of response, especially in early
disease. This approach can be used on morphologic sequences
and on high b value DWI sequences. In prostate cancer, this
approach more than doubles the proportion of patients with
measurable metastatic disease, previously limited to those
patients with quantifiable abdominal lymph nodes (41).

Non-Quantitative Features
Additional “qualitative” signs may be used for response
assessment on MR images. The progressive appearance of a
“fatty halo” of high signal on T1-weighted images at the
periphery of regressing focal lesions indicates responsive disease
(60). Conversely, the disappearance of a peripheral “cellular” of
high signal intensity on T2-weighted images, representing active
or aggressive disease, also represents an early sign of response,
whereas its re-appearance suggests disease relapse. The appearance
of malignant vertebral compression fractures, and appearance/
progression of extraosseous/epidural spread unambiguously
indicate progressive disease (60).

Quantitative Functional and
Multiparametric Approaches
The quantitative approach can be directed either to individual
lesions or to the whole-skeleton using ADC measurements and
mapping derived from DWI sequences and fat fraction (FF)
measurements derived from Dixon acquisitions. This approach
becomes cardinal in advanced metastatic disease where
previously treated lesions and scar tissue complicate the size
measurements of active lesions on morphologic sequences.

Response to treatment is associated with an early increase in
ADC values within individual lesions (61). At a later stage,
responsive bone metastases present a decrease in ADC values
together with a decreased signal on high b-value images due to
recolonization by normal bone marrow. A sharper decrease in
signal intensity andADC is related to the sclerotic transformationof
treated lesions, which is also observed on anatomic sequences. A
total diffusionvolumecanbederived fromWBDWIsequences for a
global quantification of the metastatic burden and its follow-up
under treatment (62, 63). The FF presents an early increase in focal
and diffuse metastatic infiltration in response to treatment) (45).

Multiparametric MRI by definition combines anatomical and
at least two functional sequences. The multiparametric WB-MRI
approach used for the quantitative evaluation of bone lesions
combines anatomical T1 and STIR sequences (potentially
replaced by single T2 Dixon acquistions), FF measurements,
and functional DWI sequences along with ADC maps.

TheMETastasis Reporting and Data System for prostate cancer
(MET-RADS-P) guidelines were designed in prostate cancer, in an
international initiative to standardizeWB-MRI protocols andmost
importantly to provide multiparametric response evaluation
criteria for bone, node, and visceral lesions (55). These criteria
combine quantitative approaches of ADC and FF within bone
marrow metastases, RECIST-like size criteria transposed to bone
lesions, andRECISTcriteria for node andvisceral lesions follow-up.
They allow categorization of the disease response or progression on
a 5-point Likert scale. The method also offers the possibility to
record the heterogeneity of response within metastases and
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categorizes the response as “discordant” if some bone lesions or
soft-tissueareprogressing,while others are stable orare responding,
and vice-versa. The reproducibility of the technique aswell as its use
by readers with various experience have been validated (64). The
same criteriamaybe transposed forWB-MRI studiesperformed for
lesion follow-up and response assessment in bone-only or bone-
predominant metastatic disease from other primary cancers.

Target Cancers
The objective parameters extracted from AS-MRI and WB-MRI/
DWI are increasingly used to assess response of bone metastases
to treatment in a large number of primary cancers.
Frontiers in Oncology | www.frontiersin.org 6
In prostate cancer, AS-MRI and later WB-MRI were
introduced after demonstration of their superiority to bone
scintigraphy for detection of bone metastases and for a one
step staging of bone and lymph node involvement (40, 65, 66).
The current roles of WB-MRI to assess metastatic disease have
been recently illustrated and compared to other techniques (44).
PSMA-PET/CT is most likely the current most sensitive
technique for the detection of low volume metastatic disease
and for therapeutic decision (curative versus systemic treatment)
in newly diagnosed prostate cancer and at the biochemical
recurrence stage. WB-MRI is an optimal non-irradiating
alternative for polymetastatic disease detection and follow-up
FIGURE 1 | 53 year-old woman with newly diagnosed metastatic breast cancer (grade II ductal carcinoma, ER 8, PR8, KI 67 5%, HER2 neu 2+): spinal MRI
findings at diagnosis of bone metastases and during treatment. (A) Baseline sagittal T1-weighted MR image of the whole spine shows multiple foci of low signal
intensity of the bone marrow, typical for bone metastases (posterior arch of C4, vertebral bodies of T8, T9, L1, tiny foci in L5). (B) Corresponding MR image obtained
2-m later after combined treatment including a selective estrogen receptor degrader (SERD) and palbociclib shows significant decrease in size of all lesions, and
disappearance of the small L5 foci. (C) Follow-up MR image obtained 2-m later shows further decrease in size of all lesions, with measurable decrease in lesion size
and reappearance of fatty marrow at the periphery and within the lesions, again indicating frank response to treatment.
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under systemic treatment (Figure 2). WB-MRI might become
the first choice in advanced disease, castration-resistant prostate
cancer (CRPC), as PSMA-PET/CT might be confounded by
androgen blockade (AB) treatments which induce short term
upregulation of PSMA expression and long term downregulation
of this expression, limiting the possibility of following metastatic
prostate cancer lesions at this stage (67, 68).

In breast cancer, AS-MRI andWB-MRIwere also introduced to
overcome the limitations of bone scintigraphy (BS) and CT for the
detection of bone metastases and evaluation of their response to
treatment (Figure1A) (54, 69, 70).WB-MRIprogressivelybecomes
a key imagingmodality for the evaluation of response in bone only/
predominant metastatic breast cancer for the follow-up of
treatment response (71). In patients with advanced breast cancer
treated with systemic treatment ofmetastatic disease and followed-
up withWB-MRI in addition to other imaging modalities (CT, BS,
TAP-CTorPET/CT),WB-MRIdisclosesprogressivedisease earlier
than the reference examination and provides decisive information
for changes in treatment in more than 50% of patients (72–74). Of
note, WB-MRI shows a frequent discrepancy between response as
assessed locally within the primary cancer and within metastases,
and disease progression is identified earlier in distant disease
compared to local disease assessment (75).

There is a consistently increasing number of indications ofWB-
MRI for bone and visceral metastases detection in various primary
cancers, sometimes relying on the design of disease- or patient-
Frontiers in Oncology | www.frontiersin.org 7
tailoredMRI studies (coverageof lung, liver, andbrain,with specific
sequences according to primary cancer).WB-MRI can for example
be proposed in this indication in lung, thyroid, kidney and
colorectal cancers, in melanoma, myxoid liposarcoma, Ewing
sarcoma or osteosarcoma. The detection of bone metastases using
the same technique substantiates its use for the subsequent
evaluation of the response of bone lesions to treatment (76).
POSITRON EMISSION
TOMOGRAPHY (PET)

Quantitative Assessment of Bone
Metastases on PET
Traditionally, PET is used for staging of many cancer types
because of its high sensitivity for visual detection of metastatic
disease, typically using 18F-FDG as radiotracer. In 2009, novel
qualitative and quantitative approaches to metabolic tumor
response assessment, solely applicable for 18F-FDG PET, were
proposed (77). The purpose was to overcome the limitations of
morphologic imaging alone-based criteria (e.g. RECIST,
RECIST1.1) and to capitalize the benefit of using newer cancer
therapies. The framework for PET Response Criteria in Solid
Tumors (PERCIST), version 1.0, was meant to serve as an
example for use in clinical trials and in structured quantitative
clinical reporting (77).
FIGURE 2 | 73 year-old man with advanced prostate cancer. Comparison of pre- and post-treatment (enzalutamide) WB-MRI/DWI. Baseline coronal T1-weighted
MR image (A) shows diffuse bone marrow infiltration within the spine, responsible for diffuse low signal intensity of the bone marrow, and related to advanced
metastatic disease after several lines of treatment. The pelvic bones show higher signal of the bone marrow indicating a fatty content due to previous irradiation.
Several focal lesions of low signal intensity are visible within the pelvis and left proximal femur. Baseline DWI MR image (B; B = 1000 s/mm2, inverted grey scale)
shows high signal intensity foci typical for active bone metastases within the T4, T5 (arrowheads) and T10 (curved arrow) vertebrae. Follow-up T1-weighted MR
image (C) shows no evident change of the spinal bone marrow, but increase in the right paraspinal extension of the T10 metastasis (curved arrow), and a new lesion
within the right posterior iliac crest (arrow). Follow-up DWI MR image (D) shows disappearance of the midthoracic vertebral lesions, but increase in size and right
paraspinal extension of the T10 vertebral lesion (curved arrow), and appearance of new lesions within the L1 vertebral body, the right iliac crest and left proximal
femur (arrows). The observation of concurrent signs of disease response and progression is frequent, especially in advanced stages of metastatic cancer.
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In current practice, however, the quantitative nature of PET is
often unexploited. Especially in the case of bone metastases that
are deemed non-measurable by RECIST 1.1, quantification of
radiotracer uptake might prove crucial for assessing bone disease
through changes in the viability or molecular processes of tumor
cells instead of lesion morphology. A further advantage is that
quantitative PET assessment can be performed on a per-lesion
basis, as well as on a whole-body level.

Parameters that can be extracted from routinely acquired
static whole-body PET images have been validated for many
tracers in different cancer types (78–82). In general, these
parameters can be divided into those based on (83): i) tracer
uptake intensity (e.g. standardized uptake values, SUVs), ii)
metabolically active tumor volumes (MATV), and iii) a
combination of both, representing the total tracer uptake in a
tumor. Typical SUV metrics are the mean uptake (SUVmean), the
maximum uptake (highest voxel value; SUVmax), or the peak
uptake (highest average value of a 1cm³ sphere; SUVpeak) within
an identified lesion. Depending on specific radiotracer kinetics,
uptake may need to be normalized to background activity in e.g.
liver or blood (81). Metrics combining lesion volume and tracer
uptake, such as total lesion glycolysis (TLG) for 18F-FDG, seem
especially promising for objective longitudinal assessment of
bone metastases load, as they provide information on the total
amount of viable tumor tissue within a bone lesion both on an
individual lesion and patient-basis (84, 85).

Target Cancers
Prostate Cancer
In metastatic prostate cancer, osteoblastic or mixed bone lesions
with minor soft tissue component are frequently observed,
Frontiers in Oncology | www.frontiersin.org 8
challenging accurate RECIST1.1-based follow-up for these
patients. With the recent introduction of several PET-tracers
targeting the PSMA (Figure 3), detection of prostate cancer
lesions has significantly improved (86, 87). In 2018, guidelines
for standardized interpretation of PSMA PET images
(PROMISE) were proposed (88). Quantitative parameters for
evaluation of treatment response using PSMA PET/CT, besides
well-known maximum standardized uptake values (SUVmax),
have been proposed including PSMA tumor volume (PSMA-
TV) and total lesion PSMA expression (TL-PSMA) (85). Initial
studies evaluating metrics such as PSMA-TV and TL-PSMA for
metabolic response assessment have shown promising results,
some of these through a ‘PSMA-modified’ RECIST or PERCIST
classification system. Importantly, several studies reported an
association of these PSMA PET parameters with overall survival
(OS) during treatment with radioligand therapy (RLT) with
177Lu-PSMA (89–91). A recent systematic review summarized
the available evidence for using quantitative PSMA parameters
versus serum PSA in assessing response for castration-resistant
prostate cancer (92).

In parallel to ER-targeted PET imaging in breast cancer with
16a-18F-fluoro-17b-estradiol ([18F]FES), androgen receptor
(AR)-targeted PET imaging in prostate cancer is possible using
18F-fluorodihydrotestosterone (18F-FDHT; Figure 3), which
binds the intracellular AR in prostate cancer cells (93). This
enables quantitative assessment of AR-expression in bone
metastases, both for response monitoring and prognostic
purposes (80, 93, 94). 18F-FDHT cannot be used during
treatment with drugs that directly block the AR (95, 96). For
PSMA-ligands and 18F-FDHT, technical validation studies
assessing tracer pharmacokinetics and repeatability have been
FIGURE 3 | Example of a male patient with bone and lymph node metastases from castration-resistant prostate cancer who underwent bone scintigraphy (A) and 18F-
DCFPyL (B) and 18F-FDHT PET (C) for research purposes. Bone scintigraphy demonstrated several rib metastases. A large number of additional (measurable) bone
metastases were observed on 18F-DCFPyl PET, with additional lymph node metastases detected on-par. Disconcordant AR-expression visualized on 18F-FDHT PET.
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performed, enabling their clinical use in (quantitative) response
assessment (80, 81, 94, 97, 98).

The PET response assessment approach for bone metastases
in prostate cancer using PSMA PET may be extended to other
targeted PET tracers, such as 18F-NaF and 18F-FDHT in prostate
cancer, 18F-FES in breast cancer and 18F-FDG and 68Ga-
fibroblast activation protein inhibitors (68Ga-FAPI) in a
multitude of cancer types (94, 99–102).

Lung Cancer
The skeleton is the most common site of distant metastasis in
lung cancer. Approximately 30% to 40% of the patients with
advanced cancer will develop bone metastases, which represent
10% of disease recurrence even in early stage operable lung
cancer (15, 103, 104). 18F-FDG PET/CT plays a key role in the
diagnostic work-up of lung cancer, being fundamental especially
at diagnosis and during staging/restaging (105). Consequently,
all clinical guidelines support the use of the modality for the
assessment of advanced disease (106–110), given the high
diagnostic accuracy in depicting distant metastases for which
18F-FDG PET/CT results superior to other conventional imaging
(111–115).

Recent meta-analysis data comparing [18F]FDG PET/CT with
WB-MRI show similar performances for staging NSCLC, i.e. area
under the curve (AUC) 0.95 for PET versus 0.93 for MRI (116).
The performance was also similar in case of SCLC patients (117).
When considering only bone metastases, dedicated meta-
analyses in lung cancer have proven PET/CT is superior to
other modalities, with a pooled sensitivity for [18F]FDG PET/
CT, MRI and bone scintigraphy (BS) of 92%, 77% and 86%,
respectively, associated to a pooled specificity of 98%, 92% and
88%, respectively (118). Depending on cancer type, there is also
an associated impact in patient management that ranges from
12%-40% of the cases (105, 111, 115, 118).

Breast Cancer
The use of 18F-FDG PET/CT in breast cancer faces more
conflicting indications based on major clinical guidelines (111,
119, 120). While staging in advanced or suspicious metastatic
breast cancer is widely supported, initial preoperative staging is
regarded of limited value. Still, the results of a recent meta-
analysis in 4276 patients prove that the use of 18F-FDG PET for
initial evaluation of breast cancer leads to a change in staging and
management in 25% and 18% of patients, respectively (121).
With younger age, clinical stage III to IV and histologic grade II
to III were significantly associated with a greater proportion of
changes. These results are most likely attributable to the superior
diagnostic accuracy of 18F-FDG PET/CT compared with other
modalities (122, 123). In particular, the pooled sensitivity and
specificity of whole-body 18F-FDG PET and PET/CT are
reported to be 99% and 95%, respectively, compared to 57%
and 88% for conventional imaging studies (8, 124).

Approximately 70%–80% of breast cancers express hormone
receptors (HR), i.e. ERa and/or progesterone receptors (PR)
(125). Thanks to the use of [18F]FES PET, breast cancer
metastases can be characterized non-invasively also for ER
status reaching a pooled sensitivity and specificity of 78% and
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98%, respectively (126, 127). The information obtained by [18F]
FES PET can be used also to predict the response to hormonal
therapy in patients with locally advanced or metastatic breast
cancer. For this purpose, SUV cut-off values can be applied, for
example 1.5 and 2.0, demonstrating pooled sensitivities and
specificities for response prediction of 63.9% vs. 66.7%, and
28.6% vs. 62.1%, respectively (127). In newly diagnosed ER-
positive breast cancer, moreover, [18F]FES PET shows a
sensitivity of 90.8% versus 82.8% for 18F-FDG PET/CT, thus
potentially leading to a change in patient management in 26.3%
of the cases (128).

Besides overexpression of hormone receptors, a proportion of
breast cancer tumors is known to show expression of human
epidermal growth factor receptors 2 (HER2) (129). In recent
years, whole body HER2-targeted PET imaging has proven to be
a valuable tool, both for the identification of patients suitable for
anti-HER2 therapy and monitoring therapeutic efficacy (130–
135). HERs can be targeted by several inhibitors that directly
block the receptors on HER-expressing tumor cells or interfere
with their signaling pathways (135). HER2-targeted PET imaging
with 64Cu- or 89Zr-labeled antibodies is effective but typically
requires late time points acquisitions due to the antibody and
radio-isotope properties (132, 133). 68Ga-labeled affibody
molecules targeting HER2 allow for routine same-day PET
imaging, thereby improving the clinical utility of HER2-
targeted imaging, and have yielded promising initial results
(130, 131, 136). More clinical data on the use of HER2-
targeted molecular imaging in breast cancer patients is
required before future clinical use.

Challenges and Opportunities in PET
Absolute measurements of tumor lesion PET metrics are
inherently dependent on the method used for tumor
delineation (137). Several segmentation methods have been
proposed, most semi-automatic and relatively easy to apply,
requiring a good repeatability and reproducibility basis in
order to detect small changes during response monitoring
(138, 139). Software packages are often vendor-supplied and
differences between several methods have been well evaluated
(139–141).

Evaluating longitudinal changes in tracer uptake on PET
typically requires patients to be scanned on preferably the
same PET/CT system using the same image reconstruction
protocol (142–144). Still, in PET the technical uncertainties
can be easily mitigated by harmonization of PET/CT system
performances between and within clinical centers. The latter is
achieved by the EARL accreditation program showing that
harmonization is feasible and is a prerequisite for a high
reproducibility of quantitative reads (145, 146).

Besides technical challenges, biological aspects need to be
considered when using PET for measuring bone lesions and
response to treatment in a clinical setting. The optimal timing of
disease assessment will depend on the specific treatment type a
patient is receiving, such as radiotherapy, RLT, chemotherapy, or
other targeted drugs. For example, systemic cytotoxic or
antihormonal treatments may elicit so called ‘flare’ phenomena,
potentially precluding the use of PET early during treatment follow-
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up (147–150). This can be avoided by adhering to clinical guidelines
and not performing PET too soon after treatment initiation.

Recent andongoing technical advances have given rise to several
new opportunities in PET imaging. PET initially was a stand-alone
modality, but has moved on to become a hybrid imaging modality
(with CT andMRI). Evenmore recently, the novel ‘total body’ PET
systemshave become available (151, 152).These total body (or ‘long
axial field of view’) PET systems can be used to perform PET
imaging in a single field-of-view instead of multiple bed positions,
with typical FOV from skull apex to mid-thighs (151–153). Not
onlydoes this severely shorten the required acquisition time (a large
benefit for patients with often painful bone metastases), but this is
also accompanied by a large increase in system sensitivity which is
expected to improve lesiondetection rates (153).Moreover, the total
body PET might enable quantitative parameters incorporating
radiotracer dynamics, such as whole body Patlak (154), to be
extracted and parametric images to be generated.

Advances in computer science have made the routine use of
artificial intelligence (AI) in medical imaging analysis possible (155).
A commonapplication ofAI in PET lies in the analysis andmodeling
of radiomics features. Radiomics pertain to large volumes of data on
tumor shape, size,metabolism and texture that can be extracted from
PET-positive lesions, providing an image-based tumor phenotype
(155–157). The Imaging Biomarker Standardization Initiative has
harmonizedperformanceof radiomics softwarepackages to allow for
its robust and reproducible use (157). Recently, consensus
recommendations for considerations on the use of radiomics (both
PET, CT, andMRI) in clinical trials have been proposed (158). Deep
learning techniques, which do not require extraction of predefined
features seem particularly promising for segmentation purposes of
PET-avid bone metastases (159, 160). For PSMA PET, a deep
learning algorithm for automated analysis of PET images
(‘aPROMISE’) has been developed (161).
HYBRID IMAGING (PET/MRI)

The unique potential of hybrid imaging, as reviewed by Schmidkonz
and colleagues, lies in the assessment of complementary parameters
on the morphologic, functional, metabolic and molecular levels of
bone metastases from different modalities in a single examination
(162). When combining PET with CT in a PET/CT study, the CT
component enables assessment of bone morphology and osseous
destruction,whileMRI in aPET/MRIhybrid studywill offer superior
soft tissue contrast. Due to the (still) novelty and increased cost and
complexity of PET/MRI, this technique currently is primarily
compared to PET/CT for assessing the respective potential of these
two imaging approaches for evaluating bone metastases.

When comparing the performance of 18F-FDG PET/CT with
18F-FDG PET/MRI for the assessment of malignant bone lesions,
the overall performance of PET/MRI has been found to be
equivalent to PET/CT for the detection and characterization of
bone lesions when these hybrid techniques were performed
sequentially (163). However, in PET/MRI, lesion delineation
and allocation of PET-positive findings were found to be
superior to PET/CT (163). Samarin and colleagues reported
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similar results from a comparison of 18F-FDG PET/CT with
18F-FDG PET/MRI in 24 patients with bone metastases from
different primary tumors (164). The overall detection rate was
not significantly different between PET/CT and PET/MRI, but
the latter provided higher reader confidence and improved
conspicuity as compared with PET/CT (164).

In a prospective comparison of the diagnostic accuracy of 18F-
FDGPET/MRI and CT, PET/MRI was significantly better than CT
for the detection of bone metastases in patients with newly
diagnosed breast cancer (165). Also, in a particular series of 109
breast cancer patients, PET/MR demonstrated an improved
sensitivity over 18F-FDG PET/CT alone, where the sensitivity of
PET/MR and PET/CT were 96% and 85%, respectively (166). In
men with biochemical recurrence of prostate cancer following
curative therapy, 68Ga-PSMA-11 PET/MRI demonstrated a high
detection rate especially for recurrent disease with low PSA values,
but included all sites of local or distant recurrence including lymph
nodes and bone (167). In 26 patients with prostate cancer, 68Ga-
PSMA-11 PET/MRI and PET/CT performed equally regarding the
PET component for detection of bone metastases, while two PET-
positive skeletal metastases could be confirmed on contrast MRI,
but not on CT (168).

An interesting approach for patients with both osteolytic and
osteoblastic metastases from breast or prostate cancer was
proposed by Sonni and colleagues (169). Combining 18F-FDG
and Na18F in PET/MRI was superior for the detection of skeletal
metastases as compared to whole-body bone scintigraphy (169).
This approach includes in an innovative manner both a
radiotracer (Na18F) for the assessment of primarily osteoblastic
activity in osteoblastic lesions, and another tracer (18F-FDG) for
assessing increased glucose metabolism in the soft tissue
component of predominantly osteolytic metastases. Based on
the data and results referenced above, PET/MRI appears rather
superior to PET/CT for the detection of metastatic bone lesions,
but it lacks the morphologic information of bone and
osteoblastic bone formation derived from the CT component,
which might be mitigated some through innovative approaches
as reported by Sonni and co-workers.
BEYOND RECIST AND PERCIST

In 2009, the PET Response Criteria in Solid Tumors (PERCIST)
were introduced for 18F-FDG PET (77). Later on, along with the
detailed describing of the 18F-FDG PET requirements to allow
quantitative expression of the changes in PET measurements and
assessment of overall treatment response, a Simplified Guide to
PERCIST 1.0 was published (170). The PERCIST criteria enable
avid bone target lesions to be selected based on their metabolic
activity, and response to be measured objectively based on the
changes in metabolic activity even in the absence of an evident
anatomic change. PERCIST, however, only considers the change in
uptakeof a single target lesionwhenassessing response,which is the
lesion with the highest SUVpeak value normalized for lean body
mass (SULpeak). New lesions, in the bone or elsewhere, result in
progressive disease by definition. The target lesion may or may not
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bewithin the bone, but all bone lesions have to be considered in the
selection of target lesion. Of note, there is no impact of changes in
volume of lesions, only the uptake concentration is considered.
Compared to RECIST, PERCIST represents a major step forward
for bone assessment as it considers bone lesions equally to any other
lesions anywhere else in the body.

The PERCIST approach focusses on the remaining hottest
lesion and has similarities with the therapy response criteria for
lymphoma, where the most active remaining lesions play a
dominant role (171). This “hottest lesion” centric approach is
well tailored to therapies with curative intent, but it might miss a
beneficial effect in non-curative therapies, where tumor control
and tumor bulk reduction are clinically relevant achievements. A
recent approach in image analysis is about abandoning the
selection of target lesions, as determined on baseline or post-
therapy scans, and aiming to take the entire tumor bulk in
consideration. The high contrast of modern oncological PET
tracers [e.g., 18F-FDG, somatostatin receptor (SSTR) and PSMA
ligands, 18F-DOPA, 18F-MFBG (172)] permits straightforward
three-dimensional segmentation of lesions; by segmenting all
lesions, the total tumor burden can then be obtained. This type of
analysis does not distinguish between bone and non-bone lesions
and thus puts bone metastases on par with other metastases.

There is evidence that the baseline metabolic tumor volume
(MTV) is an important prognostic factor, e.g. in NHL, NSCLC and
multiplemyeloma, aswell as inprostate cancerpatients treatedwith
the bone-seeking agent radium-223 (173–176). Furthermore,MTV
can be combined withmetrics of tumor distance within a patient to
not only represent volume, but also dissemination for better
reflecting prognosis, as shown in NHL (175). Evaluation of the
changes in MTV and/or TLG have been shown to outperform
PERCIST-based approaches in tumors with frequent bone lesions,
such as Ewing sarcoma and osteosarcoma (177–180). Volumetric
determination on PET is not hampered by bone/soft tissue
interfaces, taking the total tumor burden into account in
combination with the metabolic activity. Total tumor burden
analyses can be combined with specific organ segmentation either
based on PET or CT, e.g. for spleen (for lymphoma) and bone, to
generate organ-specific tumor burden (181, 182). Furthermore, the
segmentation leading to total tumor burden or organ-specific
tumor burden can also be used as a mask to determine specific
radiomic features, which can provide even more information for
response evaluation (180).

Although promising, some challenges remain to the application
of tumoral volumes for routine therapy response monitoring: (i)
lackof standardizationofuptake thresholds forPET-positive tumor
delineation; (ii) still too time consuming for clinical routine; (iii) no
prospectively defined response criteria. Especially regarding i and ii,
it is expected that advances in tumor segmentation, e.g. with further
automatizationof the segmentationprocess andcontributions from
deep learning-based AI algorithms, will increase the robustness,
accuracy and feasibility of total tumor segmentation to routine
clinical practice levels (141, 183). Based on results from current and
ongoing studies, automated tumor segmentation should actually be
one of the key expected improvements fromAI applications to PET
(and other) imaging (160).
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At any rate, similar analyses can be developed for non-FDG
tracers, e.g. with SSTR ligands in neuroendocrine tumors and
PSMA ligands in prostate cancer, Na18F in breast and prostate
cancer patients (184–187). For evaluation of response on PSMA
PET, consensus criteria have recently been proposed with
specific cut-off values for both uptake and volume (188).

A specific case of total tumor burden imaging that is worthy
to mention is the use of the bone scan index (BSI), which is a
metric based on 2D planar bone scintigraphy that reflects the
fraction of bone showing increased turnover due to metastatic
invasion (189). It has been proposed two decades ago as a metric
for tumor burden and response assessment in metastatic prostate
cancer (189). Changes in BSI under treatment have been shown
to correlate with OS in patients with metastatic castrate-resistant
prostate cancer (mCRPC) treated with a range of therapies (190).
This has been corroborated in multicenter trials in mCRCP
patients treated with abiraterone acetate and with radium-223
dichloride (191, 192). Although promising, it is expected that the
shift from 2D to 3D imaging and the increasing use of novel PET
tracers that can pick up lesions outside of the bone as well as
bone lesions (e.g. PSMA ligands) will eventually displace the
currently widespread adoption of BSI for therapy response.
Accordingly, similar but PET-based metrics from PSMA and/
or Na18F PET will likely outperform and replace BSI.
CONCLUSION

Modern imaging with PET and MRI allows bone metastases to be
detected and assessed both before and after therapy, without the
drawbacks of X-ray based imaging techniques (e.g. radiographs,
CT). These techniques assess bone metastases within the same
framework, as metastases in other organs. They further allow total
tumor burden to be assessed within a single imaging session, and
also the development of response criteria that include the bone,
thus filling a critical gap in the RECIST1.1 framework. The
EORTC, PERCIST and recent PSMA PET criteria are examples
of criteria that take bone metastases in consideration, on-par with
extra-osseous lesions. PET and/orMRI can detect and characterize
bone metastases of various types (e.g. lytic, sclerotic, radio-occult
or mixed) independently from the bone density changes. In
contrast with CT, they are not affected by changes in bone
mineralization induced by the tumor(s), and are not dependent
on soft-tissue components (as required by RECIST 1.1). Whole
body MRI including modern techniques such as DWI, DCE-MRI
and mpMRI can provide both detailed information on anatomical
structures as well as functional information on individual lesions
and whole body tumor burden. Modern PET imaging is
performed on hybrid cameras, with CT (from PET/CT) allowing
assessment of the bone mineral content (including fractures),
while MRI (from PET/MRI) can more often clarify a correlate
for the lesions observed on PET. Total tumor burden,
incorporating bone metastases on par with other metastases, is
an attractive approach to be applied in most PET tracers. While
advances in algorithms and deep-learning contributions are
expected to permit the determination of total tumor burden
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metrics in actual clinical routine before and after therapy, response
criteria through total tumor burden assessment are currently
developed, taking into consideration the tracer, therapy and
underlying cancer type.
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