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Abstract
Delayed graft function (DGF) is a strong risk factor for development of interstitial fibrosis and tubular atrophy (IFTA) in
kidney transplants. Quantitative assessment of inflammatory infiltrates in kidney biopsies of DGF patients can reveal
predictive markers for IFTA development. In this study, we combined multiplex tyramide signal amplification (mTSA) and
convolutional neural networks (CNNs) to assess the inflammatory microenvironment in kidney biopsies of DGF patients
(n = 22) taken at 6 weeks post-transplantation. Patients were stratified for IFTA development (<10% versus ≥10%) from
6 weeks to 6 months post-transplantation, based on histopathological assessment by three kidney pathologists. One mTSA
panel was developed for visualization of capillaries, T- and B-lymphocytes and macrophages and a second mTSA panel for
T-helper cell and macrophage subsets. The slides were multi spectrally imaged and custom-made python scripts enabled
conversion to artificial brightfield whole-slide images (WSI). We used an existing CNN for the detection of lymphocytes
with cytoplasmatic staining patterns in immunohistochemistry and developed two new CNNs for the detection of
macrophages and nuclear-stained lymphocytes. F1-scores were 0.77 (nuclear-stained lymphocytes), 0.81 (cytoplasmatic-
stained lymphocytes), and 0.82 (macrophages) on a test set of artificial brightfield WSI. The CNNs were used to detect
inflammatory cells, after which we assessed the peritubular capillary extent, cell density, cell ratios, and cell distance in the
two patient groups. In this cohort, distance of macrophages to other immune cells and peritubular capillary extent did not
vary significantly at 6 weeks post-transplantation between patient groups. CD163+ cell density was higher in patients with
≥10% IFTA development 6 months post-transplantation (p < 0.05). CD3+CD8−/CD3+CD8+ ratios were higher in patients
with <10% IFTA development (p < 0.05). We observed a high correlation between CD163+ and CD4+GATA3+ cell density
(R= 0.74, p < 0.001). Our study demonstrates that CNNs can be used to leverage reliable, quantitative results from mTSA-
stained, multi spectrally imaged slides of kidney transplant biopsies.

Introduction

Delayed graft function (DGF) after kidney transplantation is
multifactorial and mainly related to donor characteristics
and ischemia time. DGF is generally described as the need
for dialysis within 7 days post-transplantation and is a

strong risk factor for chronic kidney graft injury [1–3]. A
classical component of chronic kidney injury is the presence
of interstitial fibrosis and tubular atrophy (IFTA). However,
not all DGF patients progress to the development of IFTA
and the complex relationship between DGF and IFTA is
still poorly understood. This is first due to the lag time
between potentially causative events and functional decline,
and second because of the variable and complex effects of
potential inducers such as rejection and side effects of
medication [1, 4]. The general presence of inflammation and
specifically macrophages has been described in numerous
studies as a predictor for graft loss [5–8]. However, the
underlying pathological processes are not fully understood,
and high levels of inflammation do not invariably lead to

* Jeroen A. W. M. van der Laak
jeroen.vanderlaak@radboudumc.nl

Extended author information available on the last page of the article

Supplementary information The online version contains
supplementary material available at https://doi.org/10.1038/s41374-
021-00601-w.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41374-021-00601-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41374-021-00601-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41374-021-00601-w&domain=pdf
http://orcid.org/0000-0001-7685-8087
http://orcid.org/0000-0001-7685-8087
http://orcid.org/0000-0001-7685-8087
http://orcid.org/0000-0001-7685-8087
http://orcid.org/0000-0001-7685-8087
http://orcid.org/0000-0002-1234-982X
http://orcid.org/0000-0002-1234-982X
http://orcid.org/0000-0002-1234-982X
http://orcid.org/0000-0002-1234-982X
http://orcid.org/0000-0002-1234-982X
http://orcid.org/0000-0001-7982-0754
http://orcid.org/0000-0001-7982-0754
http://orcid.org/0000-0001-7982-0754
http://orcid.org/0000-0001-7982-0754
http://orcid.org/0000-0001-7982-0754
mailto:jeroen.vanderlaak@radboudumc.nl
https://doi.org/10.1038/s41374-021-00601-w
https://doi.org/10.1038/s41374-021-00601-w


long-term graft loss. As a result of environmental stimuli,
macrophages acquire specialized functions and polarize into
different phenotypes. Numerous studies suggest that spe-
cific macrophage subtypes (alternatively activated macro-
phages) are involved in tissue remodeling by inducing
tissue repair or fibrosis. The polarization toward a tissue
remodeling (sometimes pro-fibrotic) phenotype is known to
be dependent on a wide range of environmental stimuli,
among others provided by T-helper lymphocyte subtypes
[9–11]. Assessment of T-helper cell populations in the graft
at the time of DGF revealed a prevalent T-helper 1 subtype,
but correlations to graft outcome or progression to IFTA
were not investigated so far [12]. Comprehensive assess-
ment of the inflammatory microenvironment, specifically
focused on macrophages and T-helper cell subsets in care-
fully selected patient cohorts, might provide insight into
why some, but not all DGF patients progress to the devel-
opment of IFTA.

However, comprehensive investigation of inflammatory
infiltrates is hampered by several (technical) limitations.
Traditional immunohistochemistry (IHC) and immuno-
fluorescence techniques support visualization of only a
limited number of cell markers in one tissue section. Serial
sectioning of small, valuable tissue fragments such as kid-
ney biopsies is not desired and the interpretation of rela-
tionships between cells in different sections is difficult. In
addition, quantitative assessment of the inflammatory infil-
trates by visual estimation comes with a significant level of
interobserver variability [13]. Traditional image processing
techniques such as pixel thresholding, watershed, and
morphology-based segmentation rely on prior knowledge of
all morphologic cell representations and tissue stain inten-
sity throughout a data set [14–16]. Therefore, these methods
often lack robustness for biological and technical image
variations and translate poorly to new or external data sets.
The rise of digital pathology has accelerated the develop-
ment of alternative methods for the assessment of whole-
slide images (WSI) [17, 18]. Deep learning models, speci-
fically, convolutional neural networks (CNNs) have proven
to be capable of segmenting and detecting relevant biolo-
gical structures in histopathological slides [19–23]. These
techniques have the potential to move from subjective
visual estimation and traditional image processing to
accurate, objective, and reproducible cell detection.

The aim of this study is to develop a method for objec-
tive, quantitative assessment of multiple inflammatory cell
markers, circumventing the need for extensive serial slide
sectioning. To do so, we combine multiplex IHC, multi-
spectral imaging, and deep learning models. To demonstrate
the applicability of these techniques, we study the correla-
tions of the inflammatory microenvironment, quantified by
deep learning models, with the development of IFTA in
surveillance graft biopsies of DGF patients.

Materials and methods

To assess the inflammatory microenvironment in kidney
biopsies of DGF patients, we performed multiplex IHC on
surveillance biopsies taken at 6 weeks post-transplantation.
Patients were stratified for IFTA development (<10% versus
≥10%) from 6 weeks to 6 months post-transplantation,
based on histopathological assessment by three kidney
pathologists. Multiplex IHC was performed using tyramide
signal amplification (mTSA) panels. One mTSA panel was
designed for the visualization of capillaries, macrophages,
and T and B lymphocytes (panel I) and one mTSA panel for
the visualization of polarized T-helper lymphocytes and
macrophages (panel II). Second, the mTSA slides were
multi spectrally imaged, and custom-made python scripts
were used to convert the multispectral images to artificial
brightfield IHC WSI. Converting the slides to artificial IHC
WSI allowed for the application of an existing CNN for the
detection of lymphocytes in IHC [22]. This existing CNN
was designed for cytoplasmatic lymphocyte markers.
Hence, a second and third CNN were developed in this
study for the quantification of macrophages and nuclear
lymphocyte markers in IHC WSI. These three CNNs were
subsequently used to quantitatively assess the inflammatory
infiltrates in the two patient groups and to study the corre-
lations of the inflammatory microenvironment at 6 weeks
post-transplantation with the development of IFTA 6
months after transplantation.

Tissue samples

We used surveillance biopsies from kidney transplant
recipients at Hannover Medical School (Hannover, Ger-
many), acquired in the context of a prospective surveillance
biopsy program. Inclusion criteria were: DGF occurrence
(defined as <500 ml urine production within the first 24 h
after transplantation and/or the need for dialysis within
7 days post-transplantation), absence of rejection in any of
the surveillance biopsies or biopsies for cause within the
first year post-transplantation, and absence of IFTA in the
surveillance biopsy taken at 6 weeks after transplantation
(based on the pathology report and graded according to the
Banff lesion grading system [24]). All patients were treated
with dialysis because of no, or insufficient graft function,
variably manifested by (combinations of) anuria, oliguria,
metabolic de-arrangement with acidosis or hyperkalaemia.
None of the patients had hyperkalaemia or hypervolemia
alone. Formalin-fixed, paraffin-embedded tissue (FFPE)
from biopsies taken 6 weeks and 6 months post-
transplantation was collected. Six patients did not undergo
a surveillance biopsy procedure 6 months after transplan-
tation. Instead, the surveillance biopsy taken at 3 months
post-transplantation was included (n= 3) or the nearest
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biopsy for cause (n= 3, 2.5, 4.3, and 4.6 months post-
transplantation). Hereinafter the biopsies are referred to as
“6 weeks biopsies” and “6 months biopsies.” If sufficient
residual tissue was present in the tissue block for this study,
three consecutive slides (2 µm thick) were cut from the 6
weeks biopsy, and one slide from the 6 months biopsy. One
slide from both time points was stained using periodic acid-
Schiff (PAS) reagent. The remaining two slides from the 6
weeks biopsy were stained using our mTSA panels (see
“Multiplex TSA staining” in “Materials and methods”).

Table 1 Patient and donor characteristics categorized by the IFTA
development (<10% or ≥10%) from 6 weeks to 6 months post-
transplantation.

ΔIFTA < 10%
(n = 9)

ΔIFTA ≥ 10%
(n = 13)

Recipient

Female (%) 3 (33.3) 7 (53.8)

Age, yr 54.4 (36.7–66.0) 56.8 (32.8–69.3)

BMI, kg/m2 27.5 (22.7–31.0) 27.9 (22.2–30.4)

Dialysis time, months 79.4 (7.5–109.3) 57.8 (17.5–196.6)

Pre-formed panel reactive
antibodies, %

0 (0–0) 0 (0–85)

Number of transplants 1 (1–1) 1 (1–3)

Underlying renal disease

Glomerulonephritis/
vasculitis

1 (11.1) 3 (23.1)

Tubulo-interstitial disease 1 (11.1) 1 (7.7)

Hypertensive/diabetic
nephropathy

1 (11.1) 3 (23.1)

Congenital disease 1 (11.1) 1 (7.7)

Other specified disease 0 (0) 1 (7.7)

Unknown 5 (55.6) 4 (30.8)

Graft characteristics

Age donor 50 (38–63) 49 (27–75)

HLA-A mismatch 0 (0–1) 1 (0–2)

HLA-B mismatch 1 (0–2) 0 (0–2)

HLA-DR mismatch 0 (0–1) 1 (0–1)

Deceased donor 8 (88.9) 13 (100)

Cold ischemia time, hours 14.2 (2.3–22.3) 15.5 (11.6–27.4)

Induction therapy*

None 2 (22.2) 0 (0)

Anti-IL-2 antibodies 5 (55.6) 10 (76.9)

Anti-thymocyte globulin 0 (0) 3 (23.1)

Alemtuzumab 2 (22.2) 0 (0)

Plasmapheresis 0 (0) 2 (15.4)

Maintenance therapy

Cyclosporin 3 (33.3) 9 (69.2)

Tacrolimus 5 (55.6) 4 (30.8)

Mycophenolate mofetil/
mycophenolic acid

3 (33.3) 9 (69.2)

Azathioprine 0 (0) 0 (0)

Rapamycine 0 (0) 0 (0)

Belatacept 1 (11.1) 0 (0)

Sotrastaurin 1 (11.1) 0 (0)

Steroids 7 (77.8) 12 (92.3)

Clinical events < 6 months post-transplantation

Hydronephrosis 2 (22.2) 5 (38.5)

BKV nephritis 0 (0) 0 (0)

Urinary tract infection 0 (0) 4 (30.8)

Sepsis or other severe
infection

0 (0) 0 (0)

Table 1 (continued)

ΔIFTA < 10%
(n = 9)

ΔIFTA ≥ 10%
(n = 13)

Graft function

Serum creatinine, µmol/l 178.0 (101–293) 157.0 (116–383)

Serum creatinine, µmol/l
at 6 months

146.0 (107–364) 154 (98–860)

Proteinuria, g/l 0.0 (0.0–0.08) 0.0 (0.0–0.15)

Proteinuria, g/l at
6-months

0.0 (0.0–0.07) 0.0 (0.0–0.08)

eGFR (CKD-EPI),
ml/min/1.73 m2

36.0 (15–55) 35.0 (14–47)

eGFR (CKD-EPI),
ml/min/1.73 m2 at
6-months

44.0 (11–58) 33.0 (5–79)

Banff lesion scores

Total inflammation (ti) 1 (0–2) 1 (0–1)

Inflammation in non-
scarred parenchyma (i)

0 (0–1) 0 (0–1)

Inflammation in scarred
parenchyma (i-IFTA)

2 (0–3) 2 (0–3)

Interstitial fibrosis (ci) 0 (0–1) 0 (0–1)

Tubular atrophy (ct) 0 (0–1) 1 (0–1)

Banff lesion scores at 6 months

Total inflammation (ti) 1 (0–2) 1 (0–3)

Inflammation in non-
scarred parenchyma (i)

0 (0–1) 0 (0–3)

Inflammation in scarred
parenchyma (i-IFTA)*

1 (0–3) 3 (1–3)

Interstitial fibrosis (ci) 0 (0–1) 1 (0–2)

Tubular atrophy (ct) 1 (0–1) 1 (0–2)

IFTA percentages

IFTA 6 weeks 9.7 (0–30) 7.5 (0.17–22.5)

IFTA 6 months** 5.0 (1.67–33.33) 25.0 (12.5–68.3)

ΔIFTA 6 weeks to
6-months**

1.0 (−12.5–5.0) 19.0 (11.5–61.7)

The median (minimum–maximum value) or occurrences (percentages
or minimum–maximum value) are reported.

BMI body mass index, HLA human leukocyte antigen, Il-2 interleukin
2, BKV BK virus, eGFR estimated glomerular filtration rate.

*p < 0.05; **p < 0.001.
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Cases with sufficient cortical tissue (here defined as ≥4
glomeruli) in both the 6 weeks and the 6 months biopsy
were included in the study (n= 24). One case was excluded
because of interstitial nephritis of unknown cause and one
more case due to fixation artifacts. A final number of 22
patients were included in this study (Table 1).

IFTA assessment

The extent of interstitial fibrosis (ci) and tubular atrophy (ct)
(IFTA) at 6 weeks and 6 months, expressed using the Banff
lesion grading system [24] was acquired from the pathology
report. To assess the relationship between early inflamma-
tory infiltrates and IFTA development in more detail, all
PAS-stained slides were digitized for re-examination using
a Pannoramic 250 Flash II digital slide scanner (3DHistech,
Hungary) with a 20× objective at a resolution of 0.24 μm/
pixel. The PAS WSI of both time points (6 weeks and 6
months) were scored for the extent of IFTA (percentage of
surface area, with 10% intervals) by three kidney patholo-
gists. The mean IFTA scores of the pathologists were used
as a final score to calculate the change in IFTA between 6
weeks and 6 months post-transplantation. Patients were
stratified by absolute increase in IFTA score of 10% or
more (n= 13) and no or <10% increase of IFTA (n= 9)
(Table 1). Recipient characteristics, donor characteristics,
and Banff ci, ct, ti, i and i-IFTA lesion scores (obtained
from the pathology report) are listed in Table 1 for both
patient groups. Significant differences between patient
groups were assessed using the independent samples
Mann–Whitney U test or Fisher’s exact test and are dis-
played in Table 1.

In addition, the Banff lesion scores were compared
between time points using Wilcoxon signed ranks test. This
revealed significant differences between 6 weeks and 6
months biopsies for Banff categories ti (p= 0.017), ci (p=
0.004), and ct (p= 0.011).

Multiplex TSA staining

We performed multiplex IHC using mTSA to visualize
multiple cell markers in the 6 weeks biopsies. After incu-
bation with a primary and secondary antibody, the tissue
was treated with fluorescently labeled tyramide. The horse-
radish peroxidase from the secondary antibody catalyzes the
formation of active tyramide radicals. The tyramide radicals
covalently bind to the tyrosine residues on the antigen. This
permanent binding allowed for heat-induced removal of the
primary–secondary antibody complex, while preserving the
fluorescent tyramide deposit [25]. This enabled the sub-
sequent successive incubation with further antibodies from
the same species against the target antigens.

mTSA was performed on two consecutive slides from the 6
weeks surveillance biopsies. We developed two mTSA panels
to assess the inflammatory infiltrate and peritubular capillary
extent in our patient groups. Panel I existed of anti-CD3, CD4,
CD8, CD20, CD68, and CD34 antibodies. Panel II was used
to investigate the T-helper cell and macrophage polarization
by using anti-CD4, Tbet, GATA3, CD68, and CD163 anti-
body. Antibody specifications, dilutions, and orders of stain-
ing are listed in Supplementary Table 1. All slides were
deparaffinized in xylene, dehydrated in 95% ethanol, washed
in tap water, and boiled for epitope retrieval in 10x diluted tris-
borate-EDTA (TBE 10x, 0658, VWR Life Sciences, U.S.)
buffer. After cooling down, the slides were washed in 3%
hydrogen peroxidase solution for endogenous peroxidase
blocking and washed with tris-buffered saline buffer with
0.05% Tween 20 (822184, Merck KGaA, Germany) (TBS-T).
Protein blocking was performed using TBS-T with 1% bovine
serum albumin (BSA) (mTSA step 1). Primary antibodies
were incubated for 1 h at room temperature, or overnight at
four degrees Celsius (mTSA step 2). After washing in TBS-T,
the slides were incubated with an HRP-conjugated secondary
antibody (Poly-HRP-GAMs/Rb IgG, VWRKDPVO999HRP,
Immunologic, The Netherlands) for 30min at room tem-
perature (mTSA step 3). Next, TSA was performed using the
Opal TSA fluorophores from an Opal 7-color Manual IHC Kit
(NEL811001KT, Akoya Biosciences, U.S.) (mTSA step 4)
(fluorophores and their corresponding antibodies are listed in
Supplementary Table 1). The antibody-TSA complex was
removed with a boiling cycle in TBE buffer (mTSA step 5).
mTSA steps 1–5 were repeated until the slides were stained
with all antibodies from the concerning panel. The slides were
covered with fluoromount-G with DAPI (00-4959-52, Thermo
Fisher, U.S.).

Multiplex TSA validation

Repeated boiling cycles can affect the target epitope affi-
nity. Some antibodies show a weaker staining pattern after
the tissue is boiled multiple times, other antibodies need
more boiling cycles to reach the optimum staining intensity,
and others are not affected at all. We assessed this effect for
all antibodies using chromogenic IHC on FFPE control
tonsil tissue. For every tested antibody (n= 9), six sections
were cut (4 μm thick). All slides were deparaffinized in
xylene, dehydrated in 95% ethanol, washed in tap water,
and boiled for epitope retrieval in 10x diluted TBE (boiling
cycle one). After cooling down, one slide per tested anti-
body was stored in phosphate-buffered saline (PBS). The
remaining slides were boiled again. This cycle was repeated
five times. All slides were subsequently washed in 3%
hydrogen peroxidase solution and followed by rinsing in
PBS. Primary antibodies (Supplementary Table 1) were
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incubated for 1 h at room temperature. After incubation, the
slides were washed in PBS. Slides stained with anti-CD68,
Tbet, and GATA3 antibody required an additional incuba-
tion with post-antibody blocking (PAB) for 15 min
(VWRKDPVB blocking, Immunologic, The Netherlands).
After incubation, the slides were washed in PBS and
incubated with an HRP-conjugated secondary antibody
(following PAB VWRKDPVB110HRP, Immunologic, The
Netherlands, for others see secondary antibody Supple-
mentary Table 1). Visualization was performed using 3,3′-
diaminobenzidine (DAB) (Bright-DAB, VWRKBS04,
Immunologic, The Netherlands). The results are visualized
in Supplementary Fig. 1. Based on these results, we deter-
mined the optimal antibody order for the mTSA experi-
ments, as listed in Supplementary Table 1.

If epitopes of interest are co-localized, the tyramide
deposits can interfere with each other. To test for this steric
inhibition, we used tonsil control tissue slides and stained
these with our mTSA panels. The antibody expression in
the mTSA was compared to that in single-stained slides,
which went through the same number of boiling cycles. We
did not observe differences in staining patterns between the
single- and multiplex-stained slides (examples included
from panel I, Supplementary Figs. 2 and 3).

All primary antibodies in the mTSA were used in the
same dilution that was used for chromogenic IHC. The
intensity of the fluorescent signal was optimized by
adjusting the TSA solution dilutions.

Multiplex TSA imaging

Multispectral imaging was performed using a Vectra Polaris
Imaging System (CLS143455, Akoya Biosciences, U.S.)
with a 20x objective, at a resolution of 0.49 μm per pixel,
and using DAPI, FITC, CY3, Texas Red, and Cy5 spectral
cubes. The Vectra system allows manual selection of regions
for multispectral acquisition, which are subsequently divided
by the system into tiles (Fig. 1.1). The spectra of auto-
fluorescence and all Opal TSA fluorophores were pre-
recorded in a spectral “library” using the Inform Advanced
Image Analysis Software 2.4.6. (Akoya Biosciences, U.S.).
The spectral library enabled decomposing the multiplex tile
into multiple single tiles representing the contribution of
each fluorophore (“unmixing”). This resulted in mono-
chrome, multi-channeled tiles, each channel corresponding
to a single fluorophore and thus, antibody (Fig. 1.2).

Conversion to artificial brightfield IHC

Based on stored coordinates, the tiles were stitched to create
a multi-channel WSI using a custom python script

(Fig. 1.3). The channels representing the DAPI signal
(IDAPI) and the channels representing one of the antibodies
(IIHC) were converted to artificial hematoxylin and DAB
staining, respectively (Figs. 1.4 and 1.5). Based on known
chromatic hematoxylin and DAB Cx,Cy coordinates after
hue-saturation-density (HSD) transform, stain vectors were
acquired in previous studies [26, 27]. These stain vectors
were used to calculate the red-green-blue values for the
artificial brightfield IHC (Fig. 1.5), as:

R ¼ 255 � e� IDAPI�cR;HemþIIHC �cR;DABð Þ

with cR,st the light absorption of dye st in the red part of the
spectrum. Values for B and G were calculated in a similar
fashion.

Image analysis

Regions of interest (ROIs)

Regions of interest (ROIs) were annotated for every case in
the cohort using the automated slide analysis platform
software (ASAP; version 1.9, available as open-source
software on GitHub). These ROIs comprised of cortical
tubulointerstitium, thus excluding the capsule, glomeruli,
and arteries. Since inflammation in renal subcapsular
regions is considered non-specific in transplant pathology,
the biopsies in this study were primarily analyzed excluding
the subcapsular region (defined as 400 µm below the cap-
sule). Secondarily, we repeated the analyses including the
subcapsular region. Visual examples of the ROIs are
included in Supplementary Fig. 4.

Lymphocyte detection CNN I

The artificial brightfield IHC images representing CD3,
CD4, CD8, and CD20 staining were analyzed using an
existing CNN with a U-Net architecture [22, 28]. This
network was specifically designed for the detection of
cytoplasmatic lymphocyte markers in IHC. CNN perfor-
mance can be expressed in precision, recall, and an F1-
score, where:

Precision ¼ True positive detections ðTPÞ
True positive detections TPð Þ þ False positive detections ðFPÞ

Recall ¼ True positive detections ðTPÞ
True positive detections TPð Þ þ False negative detections ðFNÞ

F1 ¼ 2 � Precision � Recall
Precisionþ Recall

974 M. Hermsen et al.



The CNN achieved a precision of 0.76, a recall of 0.79,
and a F1-score of 0.78 on the test set that was used in the
original paper, comprising of traditional IHC WSI. Detec-
tion of individual positive cells requires thresholding the
CNN output, followed by postprocessing. Because the
CD3 staining in the mTSA panel was stronger compared to
CD4, CD8, and CD20, a lower object detection threshold
was used for the latter three (0.4) and the original object
detection threshold for CD3 (0.7). To assess the CNN
performance on the artificial brightfield IHC WSIs in this
study, four artificial brightfield IHC WSI (CD8 and CD20
from two patients) were used as a test set in this study. Dot
annotations (n= 1115) were generated using ASAP soft-
ware. After applying the network, precision, recall, and F1-
score were calculated to assess the CNN performance.
Detections were considered true positive if they were
found within 4 µm (average lymphocyte diameter) from a
ground truth annotation. When two detections were found
within a 4 µm range, only the detection that was closest
to the annotation was considered true positive. Subse-
quently, lymphocyte detection CNN I was used for the
analysis of all artificial brightfield IHC WSI representing
cytoplasmatic lymphocyte markers (CD3, CD4, CD8,
and CD20).

Lymphocyte detection CNN II

The analysis of artificial brightfield IHC WSI with nuclear
staining patterns (as presented by Tbet and GATA3)

required training, validation, and testing of a new CNN. For
this purpose, nine slides were cut from kidney, tonsil, and
appendix FFPE control tissue. These slides were IHC-
stained with anti-Tbet (clone 4B10, 14-5825-82, Thermo
Fisher Scientific, U.S.) and anti-GATA3 (clone L50-823,
CM-405B, Biocare Medical, The Netherlands) antibody.
The slides were digitized using a Pannoramic 250 Flash II
digital slide scanner at a resolution of 0.12 μm/pixel. Two
observers produced 5726 dot annotations across different
regions using ASAP software. Annotations from five slides
were used for training a U-Net architecture CNN using
patches of 256 × 256 pixels with a pixel size of 0.49 μm/
pixel. Two WSI were used for validation of the CNN and
for determining the object detection threshold (0.4). The
CNN performance on traditional IHC WSI was assessed on
a withheld test set of two IHC WSI. CNN performance on
artificial brightfield IHC WSI was assessed on a secondary
test set comprising of four artificial brightfield IHC WSI
(Tbet and GATA3 from two patients) with 1082 dot
annotations. Precision, recall, and F1-score were calculated
to assess the performance on both test sets. Detections were
considered true positive if they were found within 4 µm
from a ground truth annotation. When two detections
were found within a 4 µm range, only the detection that was
closest to the annotation was considered true positive.
Subsequently, lymphocyte detection CNN II was used
for the analysis of all artificial brightfield IHC WSIs
representing nuclear (lymphocyte) markers (Tbet and
GATA3).

Fig. 1 Conversion of an mTSA-stained slide to an artificial
brightfield IHC WSI. The mTSA slide was multi spectrally imaged
on the Vectra system, resulting in multispectral tiles (1). The tiles were
unmixed by the Inform software, leading to multi-channeled tiles
where each channel represents one marker (2). The tiles were subse-
quently stitched into a multi-channeled WSI (3). In this example, the

channels representing DAPI and CD4 were selected be combined in
one WSI (4). Stain vectors acquired in previous studies were used to
artificially color the DAPI signal blue (hematoxylin) and the
CD4 signal brown (DAB), resulting in an artificial brightfield IHC
WSI (5).
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Macrophage detection CNN

In contrast to lymphocyte detection, the identification of
individual macrophages is not unequivocal. Especially in
clustered scenes, a significant level of observer variability can
be expected. Therefore, a much larger number of cases and
human annotations were used to train a dedicated, third CNN
for the detection of CD68+ and CD163+ macrophages. IHC-
stained slides (n= 111) from native and transplant kidney
tissue were collected. IHC stainings were performed using
anti-CD68 (clone PG-M1, GA61361-2, Dako Omnis, Den-
mark or clone KP1, M0876, Dako, Denmark) or anti-CD163
(clone MRQ-26, or 10D6, NCL-L-CD163, Leica Biosystems,
U.K) antibody. The IHC slides were digitized using a Pan-
noramic 250 Flash II digital slide scanner or an Aperio AT2
Slide Scanner (Leica Biosystems, Wetzlar, Germany) at a
resolution of 0.24 or 0.25 μm/pixel, respectively. Four
observers produced 37,709 dot annotations across multiple
ROIs in the WSIs, using a protocol for macrophage annota-
tion, which was agreed upon after initial pilot experiments.
The annotations from 101 slides were used for training of a
YoloV2 architecture CNN [29]. Yolo is specifically suited for
tasks aimed at detection tasks. The network, consisting of
seven convolutional layers, was trained on patches of 256 ×
256 pixels extracted at a resolution of 0.98 μm/pixel with
bounding boxes of 21 μm (based on average macrophage
size). Ten WSI were used for validation of the CNN and for
determining the object detection threshold (0.45) and non-
maximum suppression parameters (0.05). The CNN perfor-
mance on traditional IHC WSI was assessed on a withheld
test set of ten IHC WSI. CNN performance on artificial
brightfield IHC WSI was assessed on a secondary test set
comprising of four artificial brightfield IHC WSI (CD68 and
CD163 from two patients) with 1033 dot annotations. Preci-
sion, recall, and F1-scores were calculated to assess the per-
formance on both test sets. Detections were considered true
positive if they were found within 21 µm (average macro-
phage diameter) from a ground truth annotation. When more
detections were found within a 21 µm range, only the detec-
tion that was closest to the annotation was considered true
positive. Subsequently, the macrophage detection CNN was
used for the analysis of all artificial brightfield IHC WSI
representing macrophage markers (CD68 and CD163).

Double positivity

Positivity of cells for two markers (double positivity) was
assessed by determining the number of pixels between cell
detections in the different channels. If the distance between
two lymphocyte detections was <4 µm, the cell was con-
sidered double-positive. For macrophages, this was set to
<21 µm. This was used to assess CD3+CD4+, CD3+CD8+,
CD4+Tbet+, CD4+GATA3+, and CD68+CD163+ cells.

Cell numbers were calculated inside the ROIs, and cell den-
sities were based on cell count and the area of the
annotated ROI.

Spatial relationships

Automated cell detection in WSI allows the investigation of
spatial relationships between cells. The mean shortest dis-
tance was determined (in regions excluding the subcapsular
region) for CD68+ cells and CD3+, CD3+CD8+, and
CD20+ cells in the WSI of panel I for both patient groups,
and between CD163+ cells and CD4+, CD4+Tbet+, and
CD4+GATA3+ in the WSI for both patient groups.

Peritubular capillary extent

In order to assess peritubular capillary extent, unmixed
WSIs representing the CD34 channel were analyzed in Fiji
(ImageJ version 2.0.0, U.S., macros and plugins: “Open and
Duplicate”, “ASAP ROI Reader”) [30]. Positive pixels were
determined via automatic thresholding and subsequently
expressed as the percentage of the total number of pixels
inside the ROI.

Statistical analysis

The densities of the following cell populations were cal-
culated in the 6 weeks biopsies: T-lymphocytes (CD3+),
cytotoxic T-lymphocytes (CD3+CD8+), B-lymphocytes
(CD20+), macrophages (CD68+, panels I and II), polarized
macrophages (CD68+CD163+, CD163+), T-helper 1 lym-
phocytes (CD4+Tbet+), and T-helper 2 lymphocytes
(CD4+GATA3+). Spearman’s correlation coefficients were
calculated to assess if a correlation was present between
T-helper 1 and T-helper 2 lymphocyte density (CD4+Tbet+,
CD4+GATA3+) and polarized macrophage density (either
CD68+CD163+ or CD163+). We observed CD68 signal
(fluorophore 540 nm) in the artificial CD4 (fluorophore
520 nm) IHCs of panel I. Therefore, we additionally report
the cell densities for CD3+CD8− cells. To assess differ-
ences between patient groups with different IFTA out-
comes, we report median, minimum, and maximum cell
density values per group. Significant differences in cell
density and peritubular capillary extent (defined as the
CD34-positive pixel percentage) between groups were
assessed using the Mann–Whitney’s U test for independent
samples. Whether patients with different IFTA outcome
show significantly different CD3+CD8−/CD3+CD8+ cell
ratios, was assessed using a t-test for independent samples.
Differences between patient groups in spatial relationships
of CD68+ and CD163+ cells with other immune cells were
assessed for significance using the Mann–Whitney’s U test
for independent samples.
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Results

CNN-based detection of IHC positive cells

In order to apply existing CNNs, which were originally
developed for brightfield microscopy, mTSA fluorescence
images were transformed to artificial brightfield images.
Examples of mTSA-stained regions with their correspond-
ing artificial brightfield IHC images are included in Fig. 2.
An example of an artificial brightfield IHC WSI is
demonstrated in Supplementary Fig. 4. The multi-resolution
WSIs could be opened and viewed in digital slide viewing
software such as ASAP and Aperio ImageScope
[v12.4.3.5008]. As visualized in Fig. 2, the artificial
brightfield IHC WSI were suitable for automated analysis

by CNNs that were originally developed for traditional IHC
WSI.

Three CNNs were used for the quantitative assessment of
inflammatory cells in the 6 weeks mTSA-stained transplant
biopsies: for lymphocyte detection with cytoplasmic (CNN I)
and nuclear (CNN II) IHC staining and for macrophage
detection. Table 2 shows CNN performance (precision, recall,
and F1-scores) for hold-out sets of both DAB-stained IHC
WSIs and artificial brightfield IHC WSIs. CNN performance
was typically as good as, or better than the baseline CNN
described previously (with an F1-score of 0.78), which was
shown to possess performance comparable to experienced
manual observers [22]. Whereas the lymphocyte detection
CNN II showed somewhat reduced performance on virtual
brightfield images as compared to the real DAB images (on

Fig. 2 Regions from two mTSA-stained slides, displaying the
multiplex IHC and the artificial brightfield representation for
every antibody. First and third row: multiplex IHC (left) and artificial
brightfield images for every antibody (brown) combined with

DAPI (blue). Second and bottom row: cell detections performed by
the CNNs (lymphocytes and macrophages, filled circles) and seg-
mented regions through image processing (capillaries, CD34, filled
shapes).

Table 2 Performance of the
CNNs that were used for
quantitative assessment of
inflammatory infiltrates in
this study.

Traditional IHC WSI Artificial brightfield IHC WSI

Precision Recall F1 Precision Recall F1

Lymphocyte detection CNN I [22] 0.76a 0.79a 0.78a 0.92 0.73 0.81

Lymphocyte detection CNN II 0.81 0.88 0.84 0.71 0.84 0.77

Macrophage detection CNN 0.79 0.75 0.77 0.93 0.74 0.82

aData from original research paper [22].
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which the CNN was trained), the opposite was observed for
the CNN for macrophage detection.

An example of successful automatic double positivity
assessment is included in Fig. 3.

Correlation of different cell types

The strongest correlation was observed between
CD4+GATA3+ cell density and CD163+ cell density
(Spearman’s coefficient 0.75, p < 0.001) in the 6 weeks
biopsy (Supplementary Fig. 5A). This correlation was
weaker between CD4+Tbet+ cell density and CD163+

cell density (Spearman’s coefficient 0.61, p < 0.01) (Sup-
plementary Fig. 5B). When limiting the cell population to
double-positive macrophages (CD68+CD163+), Spear-
man’s correlation coefficient was 0.65 (p < 0.01) with
CD4+GATA3+ cells and 0.66 (p < 0.01) with CD4+Tbet+

cells (Supplementary Fig. 5C, D). Including the subcapsular
region in the analyses did not alter the results.

Comparison of inflammatory infiltrates between
patients progressing to IFTA versus non-IFTA

Patients progressing to IFTA at 6 months displayed sig-
nificantly higher CD163+ cell densities in the biopsies taken
6 weeks after transplantation (median 505 cells/mm2) versus

patients that did not progress to IFTA (median 370 cells/mm2;
p= 0.043) (Table 3). Inclusion of the subcapsular region
resulted in a slight reduction of this effect (p= 0.051). CD68
and CD4 were used in both panels. Slides stained with mTSA
panel I showed more CD68 positivity than the slides stained

Fig. 3 Using distance of cell detections to include CD4+GATA3+

cells and exclude GATA3+ epithelial cells from the analysis. Col-
umn A: artificial IHC representing CD4 without (top) and with (bot-
tom) cell detections. The epithelial cells (red circle) are negative for
CD4. Column B: artificial IHC representing GATA3 without (top) and

with (bottom) cell detections. The epithelial cells (red circle) are
positive for GATA3 and detected by the neural network. Column C:
artificial IHC representing GATA3 without (top) and with (bottom)
cell detections closer than eight pixels to a CD4 cell detection. The
epithelial cells (red circle) are removed from the cell detections.

Table 3 Median CD34+ pixel percentages, cell densities cells/mm2

(min–max) and mean cell ratios (standard deviation) in the cortical
tubulointerstitium of the 6 weeks biopsies, excluding the subcortical
region.

ΔIFTA < 10%
(n= 9)

ΔIFTA ≥ 10%
(n= 13)

p value

Panel I

CD34+ 7.77 (6.30–12.35) 8.17 (6.62–11.07) 0.74

CD3+ 413 (90–861) 303 (93–905) 0.65

CD3+CD4+ 70 (8–186) 39 (2–300) 0.56

CD3+CD8+ 23 (7–235) 32 (8–268) 0.19

CD3+CD8− 296 (79–821) 221 (81–827) 0.70

CD20+ 6 (0–59) 8 (2–211) 0.21

CD68+ 203 (90–532) 328 (142–578) 0.07

Panel II

CD4+ 88 (13–680) 197 (27–1215) 0.39

CD4+Tbet+ 3 (0–58) 6 (0–102) 0.29

CD4+GATA3+ 11 (0–241) 51 (1–249) 0.24

CD68+ 92 (8–459) 72 (27–351) 0.90

CD163+ 370 (105–625) 505 (112–781) 0.04

CD68+CD163+ 74 (8–368) 64 (24–315) 1

Cell ratios

CD3+CD8−/CD3+CD8+ 17.47 (9.05) 9.80 (7.55) 0.04
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with mTSA panel II. CD4 cell density is higher in mTSA
panel II compared to mTSA panel I (Table 3).

Peritubular capillary extent was similar in 6 weeks
biopsies of DGF patients with different IFTA outcomes
(Table 3), both when excluding (p= 0.74) and including
(p= 0.90) the subcapsular region from/in the analysis.

Assessment of CD3+CD8−/CD3+CD8+ cell ratios
showed a significantly higher ratio in patients with <10%
IFTA development 6 months post-transplantation (ratio of
17.5) than in patients with ≥10% IFTA development (ratio
of 9.80; p= 0.043) (Table 3).

The mean shortest distance from CD68+ cells to CD3+,
CD3+CD8+, and CD20+ cells (panel I) and from CD163+

cells to CD4+, CD4+Tbet+, and CD4+GATA3+ cells (panel
II) did not differ significantly between patient groups. The
results are visualized in Fig. 4.

Discussion

In this study, we developed a method for the accurate and
objective quantification of inflammatory cell infiltrates in
graft biopsies of kidney transplant patients with DGF that
circumvents extensive serial cutting of kidney biopsy
material. For this purpose, we combined multiplex IHC,
tyramide signal amplification, multispectral imaging, and
quantification by CNNs. We were the first to convert tiled
multispectral data to one single artificial chromogenic
image per cell marker, facilitating WSI analysis and appli-
cation of CNNs designed for brightfield IHC. We designed
two new CNNs for the detection of nuclear-stained lym-
phocytes and macrophages and demonstrated the general-
izability of CNNs developed on traditional IHC WSI to
artificial brightfield IHC WSI. The applicability of our
method was demonstrated by using the quantitative results
obtained by the CNNs to study correlations of the inflam-
matory microenvironment in 6 weeks biopsies of DGF

patients with the development of IFTA 6 months post-
transplantation.

We used a commercially available manual staining kit
for multiplex IHC to visualize immune cells and peritubular
capillaries in surveillance biopsies obtained 6 weeks post-
transplantation. The multiplex staining procedure consisted
of multiple washing, incubation, and tissue boiling steps
and involves several reagent solutions. Extensive method
validations and quality controls are therefore of great
importance, and use of specific antibodies that yield con-
sistent staining intensity are recommended. Despite the
performed validation steps, macrophage-like staining pat-
terns were seen in the CD4 channels of slides from mTSA
panel I and II. CD4 and CD68 staining cycles were not
performed consecutively, thus this phenomenon could not
be caused by incomplete stripping of the CD68 antibody
(Supplementary Table 1). Although rare occurrences of
macrophage dual-positivity with CD4 has been described
[31], a more plausible explanation lays in the proximity of
the fluorophores’ emission spectra that were used for CD4
(520 nm) and CD68 (540 nm) visualization, both covered
by the FITC filter cube of the fluorescence microscope. This
can cause “bleeding” of the strong CD68 signal into the
CD4 channel. Much of this signal was excluded from
analysis in panel I, because only CD4+ cells that were
double-positive with CD3 were used for general T-helper
cell analysis. Nonetheless, we decided to indirectly assess
general T-helper cells as well, using CD3+CD8− as a
replacement. In panel II, CD4 was solely used in combi-
nation with Tbet and GATA3, limiting the risk for the use
of false positive detections.

Lower CD68 positivity was observed in panel II com-
pared to panel I. We hypothesize that this is the result of
steric inhibition by tyramide deposit belonging to CD163
(“umbrella effect”) [32]. We observed significantly more
CD163-positive cells in the studied cohort than in tonsil
tissue that was used to check for steric inhibition, possibly

Fig. 4 Mean shortest cell distances. Boxplots representing the mean
shortest distance (measured in pixels (px)) from CD68+ cells (panel I)
and CD163+ cells (panel II) to other immune cells, based on analyses

excluding the subcapsular region, according to ΔIFTA percentages
6 weeks and 6 months post-transplantation.
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explaining why this effect was not discovered during
validation.

Multiplex IHC has been combined with multispectral
imaging for the examination of the tumor microenvironment
in several oncology studies, and recently also for the ana-
lysis of kidney allograft rejection [33–35]. To extract the
contribution of all markers in mTSA slides, sections are
imaged with a Vectra system or a similar fluorescence
microscope with a multispectral set up. After recording a
low-magnification overview image, the Vectra system
divides the tissue into tiles and automatically scans the tiles
multi spectrally. This results in image tiles with multiple
contributing spectra. Because the spectra of the single
fluorophores are known from the prerecorded spectral
“library”, it is possible to decompose the multiplex tiles into
multiple single tiles representing the contribution of each
fluorophore (“unmixing”). In most studies, the unmixed
images are subsequently analyzed with commercial soft-
ware. In many cases, these programs do not support WSI
analysis, have difficulty analyzing clustered cells and are
often not resilient to artifacts and staining variations. Con-
verting the unmixed tiles to artificial brightfield IHC WSIs,
enabled us to apply an existing CNN specifically designed
for lymphocyte detection in IHC [22] (referred to as lym-
phocyte detection CNN I). This network can detect indivi-
dual and clustered lymphocytes with high accuracy while
being resilient to background staining (Fig. 2, CD3). In
addition, we trained two new CNNs for the detection of
cells with nuclear staining patterns (Tbet, GATA3) (lym-
phocyte detection CNN II) and for the detection of mac-
rophages. Macrophages are notoriously difficult to detect
due to their scattered staining pattern. The macrophage
detection CNN was therefore trained using the annotations
of four different experts. Prior to making the annotations,
multiple meetings were planned where the criteria for
annotating macrophages were discussed and assessed. This
resulted in a network that can detect macrophages in a
reproducible fashion while being robust for non-specific
staining (Table 2, Fig. 2, and Supplementary Fig. 6). To our
knowledge, this is the first algorithm for macrophage
detection in scanned histopathological sections. We tested
the performance of all three networks on a test set com-
prised of traditional IHC WSI (similar to those used during
training) and on a secondary test set that consisted of arti-
ficial brightfield IHC WSI, generated from the multi
spectrally recorded images. All CNNs show very good
performance on the primary test sets and similar F1-scores
on the secondary test sets. The performance metrics of
lymphocyte detection CNN I were calculated on normal
tissue, artifacts, and cell clusters. The artificial brightfield
IHC of the secondary test set contained no tissue artefacts
and less cell clusters. This can explain the overall better
performance of this network on the secondary test set. The

macrophage detection CNN was trained and tested on
annotations from four different annotators. While annota-
tion criteria were particularly discussed, variations in
annotation style were observed nonetheless. The CNN’s
sensitivity is therefore probably somewhere in the middle of
the annotation style extremes. The annotations for the sec-
ondary test set were generated by one annotator, seemingly
matching the CNN sensitivity.

Using the described CNNs allowed us to investigate the
inflammatory infiltrate with unprecedented accuracy in a
unique series of rigorously selected early surveillance
biopsies of transplant patients with DGF.

Unfortunately, multiple samples had to be excluded from
analysis, mostly due to insufficient residual tissue after
diagnostic work-up. Even with the limited size of the data
set, we found significantly higher CD163+ cell densities in
biopsies of DGF patients who progressed to the develop-
ment of IFTA, which is in line with the potentially pro-
fibrotic role of these cells [11]. While the observed trend
was consistent with published data, we could not confirm
the detrimental effect of early presence of CD68+ macro-
phages that has been previously reported for other kidney
transplant patient groups [7, 36, 37]. We found a positive
correlation between the densities of CD4+GATA3+ cells
and CD163+ cells, which might confirm the contribution of
T-helper 2 lymphocytes toward a pro-fibrotic micro-
environment. While no new predictive biomarkers for IFTA
development in DGF patients were discovered in this study,
we successfully developed methods for the accurate,
reproducible, and scalable assessment of inflammatory
infiltrate in sparse tissue such as transplant biopsies. These
methods are valuable for future quantitative studies on
inflammation in histopathological tissue.

Data availability

Collaboration requests involving the use of data presented
in this study can be addressed to the corresponding author
(jeroen.vanderlaak@radboudumc.nl) or FF (Feuerhake.
Friedrich@mh-hannover.de).

Acknowledgements We thank Mark Gorris and Kiek Verrijp for their
advice on mTSA staining and imaging, Merijn van Erp for developing
customized ImageJ functionality, and Sophie van den Broek, Milly
van de Warenburg, and Martijn Otten for generating ground truth for
the macrophage detection network. In addition, we thank Irina
Scheffner for her help with the clinical data collection.

Author contributions MH, VV, JS, WG, FF, BS, LBH, and JAWML
designed the study. Patient material and clinical data were collected
and provided by JS, WG, and FF. FF coordinated the efforts performed
at MHH. JHB, EJS, and JK scored the PAS slides for IFTA percen-
tage. MH performed the mTSA stainings, validations of panels I and
II, and the imaging and unmixing of panel I. VV imaged and unmixed
panel II. DJG developed the methods for converting mTSA tiles to
artificial brightfield WSI. MH performed the conversions. ZS-C

980 M. Hermsen et al.



developed the lymphocyte detection CNNs and wrote the scripts for
lymphocyte quantifications. JL developed the macrophage detection
CNNs and wrote the scripts for macrophage quantifications. MH
performed the cell and capillary quantifications. NSS calculated the
cell distances. MH, BS, LBH, and JAWML analyzed the data. MH
made the figures and drafted the paper. The final version of the
manuscript was revised and approved by all authors.

Funding This work was supported by the ERACoSysMed initiative
(project SysMIFTA) as part of the European Union’s Horizon 2020
Framework Programme offered by ZonMw (grant no. 9003035004),
with co-funding by the German Ministry of Research and Education
(BMBF), grant no. FKZ031L-0085A (SysMIFTA), FKZ01ZX1710A
(MicMode-I2T), and FKZ01ZX1608A (SYSIMIT). JAWML received
consultancy fees from Philips (The Netherlands), and grants from
ContextVision, Philips (The Netherlands), and Sectra (Sweden), out-
side of the submitted work. JK received financial support from the
Dutch Kidney Foundation (project DEEPGRAFT, Grant No.
17OKG23).

Compliance with ethical standards

Conflict of interest The authors declare no competing interests.

Ethics approval and consent to participate Data collection and ana-
lysis were performed with informed patient consent and with approval
of the ethics board (no. 2765) of Hannover Medical School.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Siedlecki A, Irish W, Brennan DC. Delayed graft function in the
kidney transplant. Am J Transplant. 2011;11:2279–96.

2. Khalkhali HR, Ghafari A, Hajizadeh E, Kazemnejad A. Risk
factors of long-term graft loss in renal transplant recipients with
chronic allograft dysfunction. Exp Clin Transplant.
2010;8:277–82.

3. Yarlagadda SG, Coca SG, Formica RN, Poggio ED, Parikh CR.
Association between delayed graft function and allograft and
patient survival: a systematic review and meta-analysis. Nephrol
Dial Transplant. 2009;24:1039–47.

4. Schröppel B, Legendre C. Delayed kidney graft function: from
mechanism to translation. Kidney Int. 2014;86:251–8.

5. Mengel M, Reeve J, Bunnag S, Einecke G, Jhangri GS, Sis B,
et al. Scoring total inflammation is superior to the current Banff
inflammation score in predicting outcome and the degree of

molecular disturbance in renal allografts. Am J Transplant.
2009;9:1859–67.

6. Cosio FG, Grande JP, Wadei H, Larson TS, Griffin MD, Stegall
MD. Predicting subsequent decline in kidney allograft function
from early surveillance biopsies. Am J Transplant.
2005;5:2464–72.

7. Toki D, Zhang W, Hor KLM, Liuwantara D, Alexander SI, Yi Z,
et al. The role of macrophages in the development of human renal
allograft fibrosis in the first year after transplantation. Am J
Transplant. 2014;14:2126–36.

8. Ikezumi Y, Suzuki T, Yamada T, Hasegawa H, Kaneko U, Hara
M, et al. Alternatively activated macrophages in the pathogenesis
of chronic kidney allograft injury. Pediatr Nephrol.
2015;30:1007–17.

9. Biswas SK, Mantovani A. Macrophage plasticity and interaction
with lymphocyte subsets: cancer as a paradigm. Nat Immunol.
2010;11:889–96.

10. Anders H-J, Ryu M. Renal microenvironments and macrophage
phenotypes determine progression or resolution of renal inflam-
mation and fibrosis. Kidney Int. 2011;80:915–25.

11. Ordikhani F, Pothula V, Sanchez-Tarjuelo R, Jordan S, Ochando
J. Macrophages in organ transplantation. Frontiers Immunol.
2020;11:582939.

12. Loverre A, Divella C, Castellano G, Tataranni T, Zaza G, Rossini
M, et al. T helper 1, 2 and 17 cell subsets in renal
transplant patients with delayed graft function. Transpl Int.
2011;24:233–42.

13. Klauschen F, Müller K-R, Binder A, Bockmayr M, Hägele M,
Seegerer P, et al. Scoring of tumor-infiltrating lymphocytes: from
visual estimation to machine learning. Seminar Cancer Biol.
2018;52:151–7.

14. Lauronen J, Häyry P, Paavonen T. An image analysis-based
method for quantification of chronic allograft damage index
parameters. AMPIS. 2006;114:440–8.

15. Malpica N, Solórzano CO, de, Vaquero JJ, Santos A, Vallcorba I,
García-Sagredo JM, et al. Applying watershed algorithms to the
segmentation of clustered nuclei. Cytometry. 1997;28:289–97.

16. Lai Y-K, Rosin PL. Efficient circular thresholding. IEEE Trans
Med Imaging. 2014;23:992–1001.

17. Litjens G, Kooi T, Ehteshami Bejnordi B, Setio AAA, Ciompi F,
Ghafoorian M, et al. A survey on deep learning in medical image
analysis. Med Image Anal. 2017;42:60–88.

18. Madabhushi A, Lee G. Image analysis and machine learning in
digital pathology: challenges and opportunities. Med Image Anal.
2016;33:170–5.

19. Ehteshami Bejnordi B, Veta M, Diest PJ, van, Ginneken B, van,
Karssemeijer N, Litjens G, et al. Diagnostic assessment of deep
learning algorithms for detection of lymph node metastases in
women with breast cancer. JAMA. 2017;318:2199–210.

20. Hermsen M, Bel T, de, Boer M, den, Steenbergen EJ, Kers J,
Florquin S, et al. Deep-learning based histopathologic assessment
of kidney tissue. J Am Soc Nephrol. 2019;30:1968–79.

21. Rijthoven M van, Swiderska-Chadaj Z, Seeliger K, Laak J van
der, Ciompi F. You only look on lymphocytes once. Proceedings
of MIDL. 2018. https://openreview.net/forum?id=S10IfW2oz.

22. Swiderska-Chadaj Z, Pinckaers H, Rijthoven M, van, Balkenhol
M, Melnikova M, Geessink O, et al. Learning to detect lympho-
cytes in immunohistochemistry with deep learning. Med Image
Anal. 2019;58:101547.

23. Ginley B, Lutnick B, Jen K-Y, Fogo AB, Jain S, Rosenberg A,
et al. Computational segmentation and classification of diabetic
glomerulosclerosis. J Am Soc Nephrol. 2019;30:1953–67.

24. Racusen LC, Solez K, Colvin RB, Bonsib SM, Castro MC,
Cavallo T, et al. The Banff 97 working classification of renal
allograft pathology. Kidney Int. 1999;55:713–23.

Quantitative assessment of inflammatory infiltrates in kidney transplant biopsies using multiplex. . . 981

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://openreview.net/forum?id=S10IfW2oz


25. Bobrow MN, Litt GJ, Shaughnessy KJ, Mayer PC, Conlon J. The
use of catalyzed reporter deposition as a means of signal amplifi-
cation in a variety of formats. J Immunol Methods. 1992;150:145–9.

26. Geijs DJ, Intezar M, Laak JAWM vander, GJS Litjens. Automatic
color unmixing of IHC stained whole slide images. Med Imaging.
2018;10581:10581L.

27. Laak JAWM vander, Pahlplatz MM, Hanselaar AG, Wilde PCde.
Hue-saturation-density (HSD) model for stain recognition in
digital images from transmitted light microscopy. Cytometry.
2000;39:275–84.

28. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks
for biomedical image segmentation. Med Image Comput Comput
Assist Interv. 2015;9351:234–41.

29. Redmon J, Farhadi A. YOLO9000: better, faster, stronger. 2016.
https://arxiv.org/abs/1612.08242.

30. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M,
Pietzsch T, et al. Fiji: an open-source platform for biological-
image analysis. Nat Methods. 2012;9:676–82.

31. Klinge U, Dievernich A, Tolba R, Klosterhalfen B, Davies L.
CD68+ macrophages as crucial components of the foreign body
reaction demonstrate an unconventional pattern of functional
markers quantified by analysis with double fluorescence staining.
J Biomed Mater Res Part B Appl Biomater. 2020;108:3134–46.

32. Surace M, DaCosta K, Huntley A, Zhao W, Bagnall C, Brown C,
et al. Automated multiplex immunofluorescence panel for

immuno-oncology studies on formalin-fixed carcinoma tissue
specimens. J Vis Exp. 2019;143:e58390.

33. Calvani J, Terada M, Lesaffre C, Eloudzeri M, Lamarthée B,
Burger C, et al. In situ multiplex immunofluorescence analysis of
the inflammatory burden in kidney allograft rejection: a new tool
to characterize the alloimmune response. Am J Transplant.
2019;20:942–53.

34. Gorris MAJ, Halilovic A, Rabold K, Duffelen A, van, Wickra-
masinghe IN, Verweij D, et al. Eight-color multiplex immuno-
histochemistry for simultaneous detection of multiple immune
checkpoint molecules within the tumor microenvironment. J
Immunol. 2018;200:347–54.

35. Stack EC, Wang C, Roman KA, Hoyt CC. Multiplexed immu-
nohistochemistry, imaging, and quantitation: a review, with an
assessment of Tyramide signal amplification, multispectral ima-
ging and multiplex analysis. Methods. 2014;70:46–58.

36. Bräsen JH, Khalifa A, Schmitz J, Dai W, Einecke G, Schwarz A,
et al. Macrophage density in early surveillance biopsies
predicts future renal transplant function. Kidney Int.
2017;92:479–89.

37. Bergler T, Jung B, Bourier F, Kühne L, Banas MC, Rümmele P,
et al. Infiltration of macrophages correlates with severity of allo-
graft rejection and outcome in human kidney transplantation.
PLoS ONE. 2016;11:e0156900.

Affiliations

Meyke Hermsen1
● Valery Volk2 ● Jan Hinrich Bräsen2

● Daan J. Geijs1 ● Wilfried Gwinner3 ● Jesper Kers4,5,6 ●

Jasper Linmans1 ● Nadine S. Schaadt 7
● Jessica Schmitz2 ● Eric J. Steenbergen1

● Zaneta Swiderska-Chadaj1,8 ●

Bart Smeets1 ● Luuk B. Hilbrands9 ● Friedrich Feuerhake 2,10
● Jeroen A. W. M. van der Laak 1,11

1 Department of Pathology, Radboud University Medical Center,
Nijmegen, The Netherlands

2 Institute for Pathology, Hannover Medical School,
Hannover, Germany

3 Department of Nephrology, Hannover Medical School,
Hannover, Germany

4 Department of Pathology, Amsterdam University Medical Centers,
Amsterdam, The Netherlands

5 Department of Pathology, Leiden University Medical Center,
Leiden, The Netherlands

6 Center for Analytical Sciences Amsterdam (CASA), Van ‘t Hoff
Institute for Molecular Sciences (HIMS), University of Amsterdam,
Amsterdam, The Netherlands

7 Institute of Diagnostic and Interventional Neuroradiology,
Hannover Medical School, Hannover, Germany

8 Faculty of Electrical Engineering, Warsaw University of
Technology, Warsaw, Poland

9 Department of Nephrology, Radboud University Medical Center,
Nijmegen, The Netherlands

10 Institute for Neuropathology, University Clinic Freiburg,
Freiburg, Germany

11 Center for Medical Image Science and Visualization, Linköping
University, Linköping, Sweden

982 M. Hermsen et al.

https://arxiv.org/abs/1612.08242
http://orcid.org/0000-0001-7685-8087
http://orcid.org/0000-0001-7685-8087
http://orcid.org/0000-0001-7685-8087
http://orcid.org/0000-0001-7685-8087
http://orcid.org/0000-0001-7685-8087
http://orcid.org/0000-0002-1234-982X
http://orcid.org/0000-0002-1234-982X
http://orcid.org/0000-0002-1234-982X
http://orcid.org/0000-0002-1234-982X
http://orcid.org/0000-0002-1234-982X
http://orcid.org/0000-0001-7982-0754
http://orcid.org/0000-0001-7982-0754
http://orcid.org/0000-0001-7982-0754
http://orcid.org/0000-0001-7982-0754
http://orcid.org/0000-0001-7982-0754

	Quantitative assessment of inflammatory infiltrates in kidney transplant biopsies using multiplex tyramide signal amplification�and deep learning
	Abstract
	Introduction
	Materials and methods
	Tissue samples
	IFTA assessment
	Multiplex TSA staining
	Multiplex TSA validation
	Multiplex TSA imaging
	Conversion to artificial brightfield IHC
	Image analysis
	Regions of interest (ROIs)
	Lymphocyte detection CNN I
	Lymphocyte detection CNN II
	Macrophage detection CNN
	Double positivity
	Spatial relationships
	Peritubular capillary extent
	Statistical analysis

	Results
	CNN-based detection of IHC positive cells
	Correlation of different cell types
	Comparison of inflammatory infiltrates between patients progressing to IFTA versus non-IFTA

	Discussion
	Supplementary information

	ACKNOWLEDGMENTS
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References
	A7




