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Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare progressive genetic disease
effecting one in a million individuals. During their life, patients with FOP progressively
develop bone in the soft tissues resulting in increasing immobility and early death. A
mutation in the ACVR1 gene was identified as the causative mutation of FOP in 2006. After
this, the pathophysiology of FOP has been further elucidated through the efforts of
research groups worldwide. In 2015, a workshop was held to gather these groups and
discuss the new challenges in FOP research. Here we present an overview and update on
these topics.
Keywords: fibrodysplasia ossificans progessiva (FOP), trials, therapy, disease models, inflammation, angiogenesis
INTRODUCTION

Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare
progressive genetic disease characterized by heterotopic
ossification (HO) of muscles, tendons and ligaments, often
preceded by periodic painful soft tissue swellings called flare-
ups. During their lives, patients develop a “second” skeleton,
resulting in increasing immobility and early death often due to
thoracic insufficiency, infectious diseases, and traumatic falls (1).

Progress of FOP research (Figure 1) has been slow due to
three main factors. Firstly, obtaining tissue samples to examine
the pathophysiology is difficult. Biopsies are contraindicated
because of the increased risk for flare-ups in FOP. Secondly,
FOP is frequently misdiagnosed, and so systematic data on early
pathophysiology has been difficult to obtain. Finally, for a long
time there were no cell or animal models for FOP as the causative
genetic mutation was unknown. In 2006, the genetic cause of
FOP was identified to be a missense mutation (R206H) in the
ACVR1 gene encoding the activin receptor-like kinase (ALK2)
(2). The mutation induces hyperactivity of the ALK2 in response
to bone morphogenetic protein (BMP) ligands as well as
constitutive activity in the absence of ligands (3, 4). Also, while
activing A induces ALK4-mediated canonical SMAD 2/3
n.org 2
signaling, the mutated ALK2 causes activin A to induce SMAD
1/5/9 signaling too, resulting in a skeletogenic signal instead of
the usual response to activin A (5).

To date, there are no approved treatments to stop or reverse
this disease, no biomarker to quantify FOP activity and many
unanswered questions regarding pathophysiology.

In 2015, a Lorentz workshop was held, bringing international
experts with a range of scientific backgrounds relevant to FOP
research together for a week of scientific workshops discussing
complex research problems and stimulating new initiatives for
FOP treatment. Here we provide a comprehensive survey about
the recent developments of basic and translational research
on FOP.
IDENTIFICATION OF HETEROTOPIC
OSSIFICATION PROGENITOR CELLS

HO is a complex, multi-stage process involving various cell types
(6), but the exact progenitor cells that form the heterotopic bone
are yet to be identified. Multiple populations of progenitor cells
associated with muscle tissue have demonstrated osteogenic
FIGURE 1 | Highlights and key discoveries in FOP research leading up to the 2015 Lorentz meeting and after.
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differentiation. Muscle stem cells (MuSCs) are muscle-resident
stem cells essential for muscle growth and regeneration (7) and
were initially a leading candidate for the HO progenitor cell.
However, in vivo lineage tracing studies have shown that these
cells do not significantly contribute to BMP-induced HO (8, 9),
strongly arguing against MuSCs inducing HO in FOP (10).

Endothelial cells (EC) have also been proposed as a
progenitor cell candidate. The endothelial marker Tie2 has
been found in chondrocytes and osteoblasts in histological
examination of HO tissues from individuals with FOP (11)
and lineage tracing studies have identified Tie2 expression in
roughly half the chondrocytes and osteocytes in heterotopic bone
(11). However, Tie2 is not specific to ECs and more than 90% of
the Tie2+ cells found in heterotopic bone are also platelet-
derived growth factor receptor (PDGFR)a+Sca1+ indicating a
mesenchymal rather than an endothelial origin (12).

In fact, these markers are also present in fibro/adipogenic
progenitors (FAPs), another muscle tissue-resident progenitor.
Cre/lox lineage tracing showed that FAPs can cause injury-
induced and spontaneous HO in a FOP mouse model, greatly
dependent on activin A signaling (13). Given the complexity of
bone formation, perhaps cells from multiple origins are present
and involved in ultimately forming the heterotopic bone.
INFLAMMATORY TRIGGERS OF HO

The contribution of the immune system in FOP is a keen focus of
research. HO lesions harbor many cells of the immune system,
such as lymphocytes, macrophages and mast cells (14, 15).
Depletion of mast cells and macrophages have been reported
to reduce HO volume in a FOP mouse model (16). The role of
macrophages in HO has been investigated in different in vivo
models with differing results (17, 18), leading to the idea that
macrophage populations in FOP lesions are more heterogeneous
than often presumed and may be responding to different types of
injury signals.

The ALK2 mutation is also present in other cell types. Thus,
the mutated ALK2 likely also affects immune responses. ECSIT
(Evolutionarily Conserved Signal Intermediate in the Toll
pathway) has been reported as a possible mechanism linking
toll-like receptor activation in the innate immune response to
aberrant SMAD signaling in FOP (19).

Blood samples taken frompatientswithFOPwithout symptoms
of a flare-up have shown significantly elevated levels of pro-
inflammatory interleukins indicating that patients with FOP may
be in a constant pro-inflammatory state. Monocytes derived from
patients with FOP, when stimulated with lipopolysaccharide,
showed prolonged and increased cytokine and chemokine
secretion, and prolonged activation of nuclear factor (NF)-kB (20,
21). A study of peripheral blood mononuclear cells from patients
with FOP showed increased expression levels of DNAX accessory
molecule-1 (DNAM-1) inmonocytes, suggesting a functional effect
in monocyte migration, and could represent a biomarker for the
inflammatory state in FOP (22). Monocytes are also precursors for
circulating osteogenic cells found in FOP lesions (23).
Frontiers in Endocrinology | www.frontiersin.org 3
The hypoxic condition in inflamed tissues is another factor
contributing to FOP pathogenesis, possibly through hypoxia
inducible factor-1-a (HIF-1-a) which has been reported to
promote amplification of BMP signaling through retention of
the mutated ALK2 receptor in signaling endosomes (24). The
fibroproliferative stage with extracellular matrix production that
normally occurs after injury also appears to be overactive in FOP,
leading to tissue stiffening and increased mechano-sensitivity in
favor of osteogenic processes (25).
VASCULARIZATION IN FOP

Angiogenesis is an important process involved in the
development of FOP lesions. The inflammation, soft tissue
destruction, and subsequent infiltration of immune cells all
depend on vascularization. In the fibroproliferative phase the
inflamed tissue is infiltrated by chondrocytes promoting a
proteoglycan-enriched environment, which becomes
progressively hypoxic. Hypoxic conditions favor chondrocyte
differentiation partially by sustaining BMP signaling activation
(24), and induce expression of vascular endothelial growth factor
(VEGF), promoting the infiltration of blood vessels, which in
turn drives endochondral bone formation. Interestingly,
monocytes isolated from FOP patients showed increased VEGF
secretion upon an inflammatory trigger compared to
controls (18).

BMP and VEGF signaling play key roles in regulating blood
vessel homeostasis; gene mutations in components of the BMP
signaling pathway are associated with cardiovascular conditions
(26), and disturbances in the angiogenesis-osteogenesis axis can
cause bone disorders (27). Whether the mutant FOP ALK2 also
disturbs EC function through aberrant BMP signaling is
currently under investigation.

Angiogenesis is initiated by the formation of tip cells
supported by proliferating stalk cells to forming new sprouts
from pre-existing vessels. This process is coordinated by VEGF-,
BMP2- and BMP6 signaling. During angiogenesis, BMP2
primarily signals through ALK3, whereas BMP6 signals
through ALK2. Upon ALK2 knockdown, hypersprouting was
observed in in vitro EC models, whereas ALK3 knockdown
appeared to have the opposite effect (28). Recent data showed
that EC’s derived from human induced pluripotent stem cells
(hiPSC) follow the same principle and hiPSCs derived from
patients with FOP show activin A induced SMAD 1/5
signaling (29).

Vascular leakage and edema have also been described in HO
lesions in FOP (30). BMP6 stimulation in ECs causes
internalization of VE-cadherin changing the endothelial
architecture. VE-cadherin in turn appears to interact with
ALK2 in a ligand-dependent manner by stabilizing the BMP
receptors in the EC junctions (31). ECs from patients with FOP
appear to have decreased expression of vascular endothelial
(VE)-cadherin under inflammatory conditions (32), possibly
due to an altered interaction of VE-cadherin signaling with the
mutated ALK2 receptor complex.
November 2021 | Volume 12 | Article 732728
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SUITABILITY OF FOP DISEASE MODELS

Since the discovery of the mutation (2), several cellular and animal
models have been developed to examine the effects of FOP ALK2
mutations on BMP signaling and chondro/osteogenesis.

Availability of human cell models is limited due to restrictions
on obtaining patient material and our incomplete knowledge of
the progenitor cell types relevant to FOP HO. Dermal fibroblasts
derived from patients with FOP have been successfully
transdifferentiated to cells of an osteogenic lineage (33).
Periodontal ligament fibroblasts have also been isolated and
induced to osteogenesis and osteoclastogenesis (34). hiPSCs
obtained from patients with FOP are able to differentiate to
ECs (29, 35, 36) and pericytes with increased mineralization, but
did not develop into mature osteoblasts (36). Connective tissue
progenitor cells from discarded primary teeth have been used to
examine the effects of FOP mutations on BMP signaling and
chondrogenic/osteogenic differentiation (19, 24, 37, 38). C2C12
myoblasts have been altered to express ALK2R206H with
doxycycline dependent promoter to simulate FOP (39).

A fruit fly model carrying the classical R206H mutation
demonstrated over activation of BMP signaling by the
ALK2R206H receptor but also ligand independent signaling of
the receptor (40), consistent with earlier in vitro analyses (41–
43). An embryonic chicken model was used to study the role of
several ALK2 mutations and demonstrated that the FOP
ALK2Q207E and ALK2R206H mutation, along with the
engineered constitutively active ALK2Q207D mutation, caused
FOP-like phenotypes with skeletal malformations and HO (44).

In mice, activating mutations in ALK2 are lethal during
embryonic development (45), therefore investigations of the in
vivo effects of ALK2 activating mutations have required either
chimeric/mosaic expression of mutant cells or a conditional gene
expression model. The first such mouse model, using a Cre-Lox
inducible ALKQ207D transgene was developed prior to the
identification of ALK2 as relevant to FOP (45). Later, this
model was used with adenovirus expressing Cre and
tamoxifen-responsive Cre alleles to induce postnatal activation
of the ALK2Q207D transgene (46). Although the ALK2Q207D

substitution is not a naturally occurring FOP mutation in
humans, these mouse models provided the first mammalian
systems to study the effects of excessive BMP signaling by
ALK2, importantly demonstrating a requirement for tissue
injury and inflammation in addition to mutant ALK2
expression for the development of heterotopic bone (47).

Subsequently, researchers have developed mouse models
harboring the common FOP ALK2R206H mutation. A chimeric
model with a variable proportion of cells expressing a
heterozygous ALK2R206H allele yielded intermittent live births,
mimicking classic FOP features such as HO development in
response to muscle injury, hind limb digit malformation, and
joint fusions (48). A Cre-dependent knock-in model with
inducible ALK2R206H expression has been used to mimic HO
formation in response to various injuries, highlighting the
importance of activin A in ALKR206H signaling function (49–
52). The progression of HO formation in ALK2R206H mouse
models appears to closely reproduce the events of HO formation
Frontiers in Endocrinology | www.frontiersin.org 4
from an early-stage immune cell response to a robust
fibroproliferative stage that transitions to endochondral
ossification (15, 16, 48). These models also feature the distinct
patterns of HO within the axial and extra-axial skeleton and
exhibit both injury-dependent and spontaneous progression of
HO (50, 52).

A zebrafish FOP model has also been developed and
embryonic development assays have been used to investigate
the mechanism through which mutant ALK2 receptors enhance
BMP-phosphorylated (p)SMAD 1/5 signaling (53–55).

A novel approach is a computational disease model.
Computational models of endochondral ossification have
previously been developed (56, 57). In these models the
interplay between growth factors, angiogenesis, oxygen,
recruitment, proliferation and differentiation of osteoprogenitor
cells can be considered. These models could be adapted to simulate
endochondral ossification in FOP and provide an additional way
to evaluate the effect of therapeutic interventions in FOP.

In summary, there are numerous in vitro and in vivo models
available with the potential to further investigate and understand
FOP. It will also be important to establish how closely these
model systems reflect the pathophysiology of FOP in humans
and how well they address the various complexities of the FOP
phenotype. Acknowledging the advantages and disadvantages of
each of these models can allow them to complement each other,
maximizing the information gained in preclinical FOP research.
POSSIBLE TARGETS FOR
THERAPY IN FOP

Despite many efforts, still there is no effective and specific
treatment approved for FOP. Therapy is focused on treating
flare-ups with glucocorticoids and nonsteroidal anti-
inflammatory drugs upon presentation (58). Taking the
different stages of HO in FOP into consideration it is possible
to identify different processes which can be considered as targets
to develop therapies by different approaches (Figure 2).

Saracatinib, a kinase inhibitor targeting src-family kinases
originally developed as a treatment for various solid tumors, is a
potent ALK2 inhibitor with efficacy against HO in preclinical
models and is now being repositioned as a potential treatment
for FOP in an ongoing phase 2 clinical trial (NCT04307953) (59).
Several other ALK2 inhibitors have been developed with the goal
of improving potency and selectivity for ALK2 receptor
inhibition, with promising safety in phase 1 studies and are
anticipated to advance to phase 2 efficacy studies in the
near future.

Alternatively, the stimulation of the ALK2 receptor by ALK2
ligands can be prevented. A neutralizing antibody specific for
activin A (garetosmab) has been evaluated in a phase 2 clinical
trial (NCT03188666) after promising preclinical results (49).
Recently, mTOR (mammalian target of rapamycin) has been
identified as a key factor in the early hypoxic and inflammatory
stages of HO (21). Besides its important immunoregulatory
function, mTOR signaling is required for chondrogenesis and
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osteogenesis induction. Crosstalk between mTOR signaling and
BMP signaling may amplify HO in FOP (60). In preclinical
studies, rapamycin successfully inhibited HO in a mouse model
and a clinical trial is being performed to evaluate its efficacy and
safety in patients with FOP (UMIN000028429) (60, 61).

Downstream signaling initiated by activation of ALK2 also
offers opportunities to prevent HO. Palovarotene, a retinoic acid
receptor-gamma (RAR-g) agonist, inhibits HO in FOP mouse
models by blocking chondrogenic differentiation of the
progenitor cells and is currently being investigated in multiple
phase 2 and phase 3 trials (NCT02279095, NCT02190747,
NCT03312634) (51, 62, 63). Other therapies being investigated
are VEGF inhibitors, ligand traps, phosphoinositide 3-kinases
(PI3K)-inhibitors, siRNAs, HIF1-a blockers and transforming
growth factor-b activated kinase (TAK)1 inhibitors. Once a
successful therapeutic strategy for preventing HO in FOP is
available, surgical intervention may become feasible for excising
heterotopic bone and restoring function.
CLINICAL TRIALS IN
ULTRA-RARE DISEASES

Therapeutic development in FOP shares many challenges faced
by other ultra-rare diseases such as a limited understanding of
natural history to inform trial design, dearth of validated and
surrogate outcome measures to quantify the disease during the
Frontiers in Endocrinology | www.frontiersin.org 5
limited time span of a clinical trial, and small numbers of patients
available for clinical trials (64, 65).

The randomized controlled trial (RCT) is the gold standard
for determining drug efficacy in a clinical trial setting.
Randomization minimizes selection bias and distributes
potential confounders between study groups. RCT power
decreases rapidly with diminished smaller cohorts as inter-
individual differences become more pronounced, increasing the
risk of known and unknown covariates affecting the trial results.

An uncontrolled trial may be feasible when the natural history
of a disease is well-established. In this design, the effect of the
intervention can be compared against the natural history of the
disease. In FOP however, the natural history of the disease is still
being investigated and it is known that disease progression varies
between individuals (66). Additionally, subject may report less
adverse events in a non-interventional natural study than in an
interventional clinical trial, creating bias against the drug.
However, studies have been performed to mitigate this
potential bias (67).

Both trial designs have their drawbacks but remain important
options for determining drug efficacy in FOP. Future trials in
FOP should acknowledge these disadvantages, implementing
smart trial designs and statistical methods to address inherent
limitations of a small and heterogeneous population, thus
maximizing the information obtained while supporting patient
safety (65, 68). There is an urgent need to establish an
imaginative and equitable approach towards clinical trials in
FOP given the multitude of drugs being developed and the
limited number of patients.
DETERMINATION OF DISEASE
ACTIVITY IN FOP

Another problem that FOP faces is the difficulty to evaluate
individual disease activity. Clinical symptoms of a flare-up such
as pain, swelling, erythema and warmth are non-specific, and it is
not possible to predict whether the acute phasewill end upwithHO
orwill resolve (66).Amultitudeof inflammatory, chondrogenicand
osteogenic bone markers have been investigated, and although
some were markedly elevated in patients with FOP, none have
shown an association with disease activity or been able to predict
HO formation adequately (69–71).

Conventional imaging techniques are only able to detect HO
after formation of bone tissue. MRI (magnetic resonance
imaging) and ultrasonography are suitable to detect soft tissue
edema associated with the inflammatory stage of HO but are
non-specific and unable to reveal bone formation (72, 73).
Nucleotide imaging such as the [18F]-sodium fluoride (NaF)
PET (positron emission tomography) scan can detect bone
formation before it is visible on conventional CT (computed
tomography). Interestingly, PET/CT and MRI scanning revealed
that not every flare-up resulted in HO and showed continuous
FOP activity not related to a flare-up (74).

Determination of disease activity with a suitable biomarker
and imaging techniques is necessary for evaluation of potential
FIGURE 2 | Schematic overview of drugs and investigational compounds
currently used and/or evaluated in FOP treatment and their respective targets.
November 2021 | Volume 12 | Article 732728

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


de Ruiter et al. Fibrodysplasia Ossificans Progressiva Research Perspective
therapies in FOP. A combination of markers may be needed to
reflect the multiple stages of HO in FOP; ongoing efforts exist on
FOP biomarker development (20).
DISCUSSION AND FUTURE RESEARCH

Looking back at the topics discussed in 2015, the meeting
identified key issues in which progress has been made through
collaborative approaches (Figure 1). However, it is also clear that
FOP research and treatment still face many challenges. Big
questions remain regarding the pathophysiology of FOP such
as the identity of the HO progenitor cell and the effect of the
ALK2 mutation on the immune response and angiogenesis. Also,
with the advent of clinical trials for FOP, it has become clear that
we still need to obtain as much information as possible in the
preclinical phase including cell and molecular mechanisms. This
requires further use and development of in vitro and in vivo disease
models, and perhaps exploring options such as computational
modelling. During clinical trials, the information gained must be
maximized through means of careful trial design and proper
evaluation of disease activity. To achieve this in FOP,
international collaboration is paramount and has to be fostered.
Maybe the time is ripe tomake a point and gather the FOP research
community in a new meeting to share and discuss the most recent
research strategies again.
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