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ARTICLE

Identification of proximal SUMO-dependent
interactors using SUMO-ID
Orhi Barroso-Gomila 1, Fredrik Trulsson2, Veronica Muratore1, Iñigo Canosa1, Laura Merino-Cacho 1,

Ana Rosa Cortazar1,3, Coralia Pérez 1, Mikel Azkargorta1,4,5, Ibon Iloro1,4,5, Arkaitz Carracedo 1,3,6,7,

Ana M. Aransay 1,4, Felix Elortza 1,4,5, Ugo Mayor 6,7, Alfred C. O. Vertegaal2, Rosa Barrio 1✉ &

James D. Sutherland 1✉

The fast dynamics and reversibility of posttranslational modifications by the ubiquitin family

pose significant challenges for research. Here we present SUMO-ID, a technology that

merges proximity biotinylation by TurboID and protein-fragment complementation to find

SUMO-dependent interactors of proteins of interest. We develop an optimized split-TurboID

version and show SUMO interaction-dependent labelling of proteins proximal to PML and

RANGAP1. SUMO-dependent interactors of PML are involved in transcription, DNA damage,

stress response and SUMO modification and are highly enriched in SUMO Interacting Motifs,

but may only represent a subset of the total PML proximal proteome. Likewise, SUMO-ID

also allow us to identify interactors of SUMOylated SALL1, a less characterized SUMO

substrate. Furthermore, using TP53 as a substrate, we identify SUMO1, SUMO2 and Ubiquitin

preferential interactors. Thus, SUMO-ID is a powerful tool that allows to study the con-

sequences of SUMO-dependent interactions, and may further unravel the complexity of the

ubiquitin code.
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Ubiquitin-like (UbL) proteins belong to a superfamily of
small proteins that attach covalently to target substrates in
a transient and reversible manner. The UbL family

includes Small Ubiquitin-like Modifiers (SUMOs). The mam-
malian SUMO family consists of at least three major SUMO
paralogues (SUMO1,-2,-3). Human SUMO2 and SUMO3 share
97% sequence identity, whereas they share 47% of sequence
identity with SUMO11. Protein SUMOylation is a rigorously
regulated cycle involving an enzymatic machinery that acts in a
stepwise manner. Briefly, the C-terminal di-glycine motif of
mature SUMOs mediates modification of target lysines in sub-
strates through the sequential action of E1 SUMO-activating
enzyme SAE1/SAE2, E2 conjugating enzyme UBC9 and SUMO
E3 ligases2. If required, SUMO as well as the substrate can be
recycled by the action of sentrin-specific proteases (SENPs) that
cleave the isopeptide bond. Like Ub, SUMO has internal lysines
that can be further modified, extended as SUMO chains, modified
by Ub chains to target degradation, or even modified by smaller
moieties, like acetyl groups3–5. Together, these constitute the
concept of the SUMO code and the ongoing challenge is to
understand how these modifications drive distinct substrate
outcomes and cellular fates.

SUMO plays crucial roles in nuclear processes underlying health
and disease such as the DNA damage response, cell cycle regulation,
transcription and proteostasis6. SUMO is known to control vital
biological processes including development7 and cholesterol
homeostasis8. Improvements in mass spectrometry technology have
led to the identification to date of more than 40,700 SUMO sites
within 6,700 SUMO substrates9. While cell-wide proteomics
approaches can help to understand global SUMO signaling10, better
tools are needed that allow the study of the cause and consequences
of particular SUMOylation events for individual substrates.

SUMO can also interact non-covalently with SUMO interacting
motifs (SIMs) found in some proteins. SIMs are β strands composed
of an hydrophobic core motif that interacts with the hydrophobic
residues of the SIM-binding groove of SUMOs to form an intra-
molecular β-sheet11. A well-characterized role of the SUMO-SIM
interaction concerns the SUMO-targeted Ub ligases (STUbL). The
two described human STUbLs, RNF4 and Arkadia/RNF111,
recognize poly-SUMOylated substrates through their SIMs and
ubiquitylate them, leading to their proteasomal degradation12,13.
The SUMO-SIM interaction also plays critical roles in assembling
protein complexes: interaction of the SIM1 of Ran Binding Protein 2
(RanBP2) with the SUMOylated version of Ran GTPase-activating
protein 1 (RanGAP1) is crucial for the RanBP2/RanGAP1*SUMO1/
UBC9 E3 ligase complex formation14.

Another intriguing function of SUMO-SIM interaction is the
targeting of proteins to Promyelocytic Leukemia Nuclear Bodies
(PML NBs). PML NBs are membrane-less ring-like protein
structures found in the nucleus. They are bound to the nuclear
matrix, make contacts with chromatin fibers15 and associate with
transcriptionally active genomic regions16. They consist of a shell
composed of PML proteins that surround an inner core in which
client proteins localize. Due to the heterogeneity of client pro-
teins, PML NBs have diverse nuclear functions (reviewed in17,18).
The PML gene contains 9 exons and numerous splicing variants.
All PML isoforms contain the N terminal TRIpartite Motif
(TRIM) that is responsible for PML polymerization and NB
formation19, binding to Arsenic Trioxide (ATO)20 and may act as
an oxidative stress sensor18. PML also contains a phospho-SIM
located at its exon 7 and shared by most PML isoforms21. Almost
all PML isoforms contain three putative SUMO sites: K65, K160
and K490. PML SUMOylation is a well-characterized signal for
RNF4-mediated ubiquitylation and degradation22.

Proximity-dependent labeling methods are based on pro-
miscuous labeling enzymes that produce reactive molecules that

covalently bind neighbor proteins. Labeled proteins can be then
purified and identified using affinity-purification coupled to mass
spectrometry methods23. Proximity-dependent biotin identifica-
tion (BioID)24 uses a promiscuously active Escherichia coli biotin
ligase (BirA*) generated by a point mutation (R118G) to bioti-
nylate lysines in nearby proteins within an estimated range of 10
nm25. By fusing BirA* to specific proteins, BioID efficiently
identifies interactors at physiological levels in living cells26. It has
been extensively used in the Ub field, for instance, to identify
substrates of E3 ligases27,28. Recently, a more efficient version of
BioID, termed TurboID, has been developed29, being this more
suitable for transient protein-protein interaction (PPI) detection.
Several studies have developed split-versions and applied protein
fragment complementation to BioID and TurboID, where prox-
imal biotinylation is dependent on the proximity of the fusion
partners, opening new opportunities for spatial and temporal
identification of complex-dependent interactomes30,31.

To study how SUMOylation and SUMO-SIM interactions can
lead to other roles and fates for particular substrates poses par-
ticular challenges. SUMOylation occurs transiently and often in a
small percentage of a given substrate. Modified proteins can be
readily deSUMOylated and SUMO can be recycled and passed to
other substrates. SUMO-SIM interactions are also difficult to
analyze due to their weak affinity (Kd 1–100 µM). To overcome
those technical issues, we developed SUMO-ID, a strategy based
on Split-TurboID to identify interactors of specific substrates
dependent on SUMO conjugation or interaction. Using PML as a
model, we demonstrate that SUMO-ID can enrich for factors that
depend on PML-SUMO interaction. Importantly, the identified
proteins are represented among proximal interactors of PML
identified using full-length TurboID. We also applied SUMO-ID
to a less-characterized SUMO substrate, Spalt Like Transcription
Factor 1 (SALL1), and identified both known and novel inter-
actors that depend on intact SUMOylation sites in SALL1.
Finally, we evaluated the UbL and SUMO-isoform specificity of
SUMO-ID and identified SUMO1, SUMO2 and Ubiquitin-
preferential interactors of TP53. SUMO-ID is thus a powerful
tool to study transient and dynamic SUMO-dependent interac-
tion events. The developed methodology is generic and therefore
widely applicable in the Ub and UbL field to identify readers of
these modifications for individual target proteins to improve our
insight in non-covalent signal transduction by Ub and UbL.

Results
Identification of SUMO-dependent interactions: the SUMO-ID
strategy. We posited that Split-TurboID, in which one fragment
is fused to SUMO and the complementary fragment to a protein
of interest, could identify transient SUMO-dependent interactors
(Fig. 1). Upon covalent SUMOylation or non-covalent SUMO-
SIM interaction, both fragments are brought together, pre-
sumably close enough to allow refolding of the TurboID enzyme.
In the presence of biotin, the reconstituted TurboID can then
label proximal complexes, which can be purified by streptavidin
pull-down and identified by liquid chromatography-mass spec-
trometry (LC-MS). Due to the high affinity of streptavidin-biotin
interaction, harsh cell lysis and stringent washes that significantly
reduce unspecific protein binding can be applied. We named this
approach SUMO-ID.

T194/G195 Split-TurboID enables SUMO-ID studies. We
applied the previously described E256/G257 BioID split-point30

to TurboID, but found it unsuitable for SUMO-ID. While
SUMO-dependent reconstitution of the E256/G257 was observed
in our pilot experiments, the NTurboID256-fusions had a sig-
nificant background biotinylating activity (Supplementary Fig. 1).
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This is likely due to residual biotin binding and activation by the
intact NTurboID256 biotin-binding pocket. We examined the
BirA structure to identify a TurboID split-point that would yield
two completely inactive fragments (see Supplementary Note 1).
The biotin-binding pocket of BirA is composed of three β-strands
(strands 5, 8 and 9), the N-terminus of helix E and the 110–128
loop (Fig. 2a). We split TurboID at T194/G195, so that the
resulting NTurboID194 fragment (hereafter called N) carries the
principal 110–128 biotin-binding loop and the β-strands 5 and 8,
while the CTurboID195 fragment (hereafter called C) carries the
β-strand 9 necessary to the formation of the biotin-binding β-
sheet.

We tested T194/G195 Split-TurboID for SUMO-ID. C-SUMOs
were incorporated into substrates in a very efficient manner
(Fig. 2b). N and C alone were catalytically inactive and yielded no
biotinylation. Combining N-substrate and C-SUMOs resulted in
a high-yield biotinylation activity of TurboID after 16 h of biotin
exposure. Modification of N-substrates by C-SUMOs (Fig. 2b,
FLAG blot, black arrowheads) and its corresponding biotinylation
activity (Fig. 2b, biotin blot, black arrowheads) were efficiently
detected, notably in the case of PML protein. Free biotinylated C-
SUMOs, that might come from recycling of previously labeled
moieties, were observed (Fig. 2b, biotin blot, white squares). We
also examined by immunofluorescence, and confirmed that the
streptavidin signal recognizing the biotinylated substrates is
dependent on fragment complementation (Fig. 2c). Thus, T194/
G195 Split-TurboID biotinylation activity is dependent on
fragment complementation, with reduced or no leaky biotinyla-
tion of the two fragments, so it could be useful for SUMO-ID and
for studying other protein-protein interactions.

We applied the rapamycin-inducible dimerization system, based
on FKBP (12-kDa FK506-binding protein) and FRB (FKBP-
rapamycin-binding domain)32, which has been used previously to
evaluate the PPI dependency of Split-BioID reconstitution30. We

fused N and C to FRB and FKBP, respectively, and stably expressed
the constructs in HEK293FT cells. We tested short and long
rapamycin treatments, together with short biotin-labeling times, to
evaluate self-biotinylation activity of the reconstituted TurboID. We
observed that biotinylation activity of the reconstituted TurboID
correlated well with rapamycin and biotin treatments, showing its
dependency on PPI and biotin-labeling times (Fig. 2d). 24 h of
rapamycin treatment led to a 15-fold higher FKBP/FRB PPI-
dependent biotinylation activity at 2 h of labeling time. Altogether,
these data demonstrate that T194/G195 Split-TurboID fragments
have low intrinsic affinity and high biotinylation activity at short
biotin-labeling times when expressed at low levels, making them
suitable for SUMO-ID.

SUMO-ID detects both covalent and non-covalent SUMO-
dependent interactions using short biotin-labeling times.
Interaction of a protein with SUMO can be via covalent
SUMOylation or non-covalent SUMO-SIM interaction. We used
PML, which can both be SUMOylated and has a well-
characterized SIM domain, in conjunction with SUMO wild
type (WT) or mutants that lack the C-terminal di-glycine (ΔGG)
necessary for covalent conjugation. We used a stable HEK293FT
cell line expressing N-PML, into which C-SUMOs were trans-
fected, using short biotin-labeling times (0.5–2 h). We observed
that C-SUMO1/2 transfections led to high SUMO-dependent
biotinylation activity after only 2 h of biotin treatment (Fig. 3a,
biotin blot, black arrowhead). Additionally, ATO treatment,
which induces PML SUMOylation, further enhanced the SUMO-
dependent biotinylation. With 30 min of biotin treatment, C-
SUMO1/2ΔGG induced biotinylation of unmodified N-PML,
likely through SUMO-SIM interactions (Fig. 3a, biotin blot, white
arrowhead). With longer biotin labeling (2 h), biotinylation of
endogenous SUMO-modified N-PML was also detected, more
strongly in the case of ATO treatment (Fig. 3a, biotin blot, black
arrowhead). Biotinylated free C-SUMO1/2ΔGG (which are no
processable by SENPs and thus are higher in MW than WT C-
SUMO1/2) were detected, while the WT counterparts were not
biotynilated at 2 h (Fig. 3a, biotin blot, white squares), supporting
that recycling of biotinylated SUMOs may be linked to longer
labeling times. Indeed, additional experiments showed that
appearance of free biotinylated C-SUMOs increased with longer
labeling times (Supplementary Fig. 2). Altogether, these results
demonstrate that SUMO-dependent biotinylation activity for
specific targets, especially at short biotin-labeling times, may be a
useful strategy for identifying specific SUMO-dependent inter-
actors of those proteins.

Reduced labeling times and lower expression levels reduced
SUMO recycling, but still allowed some degree of recycling (and
therefore loss-of-specificity) to occur, so we incorporated two
further modifications. First, we designed SUMO isopeptidase-
resistant versions of C-SUMOs (SUMO non-cleavable, or
SUMOnc, Fig. 1b)33. This would avoid the unspecificity derived
from recycling of pre-labeled C-SUMOs. In addition, it could also
reduce the target identification derived from SUMO-SIM
interactions involving free unincorporated C-SUMOs, since most
C-SUMOncs would be incorporated into substrates. Furthermore,
the use of C-SUMOncs would increase the efficiency of SUMO-
ID while decreasing biotin-labeling times, as C-SUMOncs will
remain much longer onto the substrate. The same strategy was
applied to Ub (C-Ubnc). Secondly, we transferred non-cleavable
C-SUMOs into pTRIPZ, an all-in-one doxycycline-inducible
(Dox) lentiviral vector (Fig. 1b). Regulated expression would
offset any deleterious effects stemming from non-cleavable
SUMO isoforms, and provide useful experimental control (i.e.,
non-induced versus induced). Inducible TRIPZ-C-SUMOnc

Fig. 1 Identification of SUMO-dependent interactions: the SUMO-ID
strategy. Schematic representation of the SUMO-ID strategy (a) and the
constructs used (b). BLASTR blasticidin resistant cassette, CTurboID
C-terminal TurboID, DOX doxycycline, GSQ repetitive linker, NTurboID
N-terminal TurboID, P2A 2A self-cleaving peptide, PUROR puromycin
resistant cassette, S SUMO, SIM SUMO Interacting Motif, SDI SUMO-
dependent interactor, SUMOnc SUMO non-cleavable, Strep streptavidin.
The sequences of representative constructs are provided in the Source
Data file.
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(see Supplementary Note 1). b Western blot of HEK293FT cells that were transiently transfected with combinations of the FLAG-N or MYC-C fused to
PML, RANGAP1 or SUMO1/2 and treated with 50 μM of biotin for 16 h. Black arrowheads indicate SUMO-ID activity derived from MYC-C-SUMOylated
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reconstituted TurboID was measured and normalized to expression levels (BirA blot). Bar plots show the mean and standard deviation of three
independent experiments. Statistical analyses were performed by 2-way ANOVA: *p < 0.05; **p < 0.01; ****p < 0.0001. Molecular weight markers are
shown to the left of the blots in kDa. Source data and the exact p values are provided in the Source Data file.
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showed enhanced SUMOylation compared to the constitutive
WT SUMO versions (Fig. 3b). Free non-incorporated versions of
SUMO1/2nc and Ubnc were not detectable (Fig. 3b, MYC blot,
white squares). Stable cell populations were established
(HEK293FT, U2OS and RPE-1 cells) for each (SUMO1nc,
SUMO2nc, Ubnc). Validation of TRIPZ-C-SUMO2nc by WB
and immunofluorescence is shown (Supplementary Fig. 3). We
then introduced constitutively-expressed N-PML into TRIPZ-C-

SUMO1nc or -SUMO2nc cells and proved that biotinylation
occurs in PML NBs as expected, in a doxycycline dependent
manner (Supplementary Fig. 4). These data show that the use of
regulated SUMOnc versions leads to both high activity and
specificity needed for the SUMO-ID approach.

To further validate the specificity of SUMO-dependent
biotinylation activity with PML, we generated control cells
carrying N-PML3MAS, a mutated version of PML lacking the

U2OS TRIPZ-C-SUMO2nc
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Fig. 3 SUMO-ID is specific for SUMO-dependent interactions. a Western blot of HEK293FT FLAG-N-PML stable cell line transfected with different
combinations of MYC-C and SUMOWT or SUMOΔGG. Cells were treated or not with 1 μM of ATO for 2 h and 50 μM of biotin at indicated time points.
White square indicates biotinylation of unconjugated MYC-C- SUMOΔGG. White arrowhead points to SUMO-SIM interaction mediated SUMO-ID. Black
arrowhead shows PML-SUMOylation derived SUMO-ID. b Western blot of HEK293FT transfected with constitutive MYC-C-SUMO1/2 or doxycycline-
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1 μg/mL for 24 h. 50 μM of biotin was added at indicated time-points. PML SUMO-ID showed a high PML/SUMO interaction dependency. d Confocal
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DAPI (blue) and biotinylated material with fluorescent streptavidin (Strep, magenta). BirA antibody shows N-PML staining (green). Black and white panels
show the single green and magenta channels. Colocalization of the streptavidin and N-PMLWT signal is observed within PML NBs, that depends on PML-
SUMO interaction. Scale bar: 5 μm. Images are representative of three independent experiments. a–c are representative of 2 biological replicates with
similar results. Molecular weight markers are shown to the left of the blots in kDa. Source data are provided in the Source Data file.
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three principal SUMOylation sites (K65, K160 and K490) and the
best-characterized SIM domain. While strong SUMO-ID bioti-
nylation activity was observed with the WT version of PML, this
biotinylation activity was completely abrogated in the case of
PML3MAS (Fig. 3c). This lack of biotinylation activity was specific
to SUMO, as ubiquitylation-dependent biotinylation activity was
observed in TRIPZ-C-Ubnc / N-PML3MAS double stable cell line
(Supplementary Fig. 5). N-PMLWT forms true NBs, while
N-PML3MAS forms NB-like bodies, as reported previously34

(Fig. 3d). To confirm that NBs formed by N-PMLWT are true
PML NBs, we generated a YFP-PML cell line by inserting YFP
into the endogenous PML locus in U2OS cells (Supplementary
Fig. 6), and looked for co-localization of N-PML by confocal
microscopy. We observed that N-PML colocalizes well with the
endogenous PML at PML NBs (Supplementary Fig. 7a).
N-PMLWT NBs appeared to be smaller and more abundant than
NB-like bodies formed by N-PML3MAS (Supplementary Fig. 7b).
Biotinylation driven by SUMO-ID was observed in NBs contain-
ing N-PMLWT, and it was enhanced after 2 h of ATO treatment,
but not in the NB-like structures containing N-PML3MAS

(Fig. 3d). Thus, these results show that SUMO-ID biotinylation
activity is dependent on substrate-SUMO interaction.

SUMO-ID identifies SUMO-dependent interactors of PML.
Since PML NBs are known hubs of SUMO-dependent signaling17,18,
we wondered which interactions in NBs via PML are SUMO-
dependent, so we performed SUMO-ID using N-PMLWT compared
to N-PML3MAS, each combined with TRIPZ-C-SUMO2nc. Bioti-
nylated proteins were purified by streptavidin pull-down and
sequenced by LC-MS (Supplementary Data 1). 59 high-confidence
SUMO-dependent interactors of PML were enriched in PMLWT

SUMO-ID compared to PML3MAS SUMO-ID (Fig. 4a). Among
those, SUMO E3 ligases (PIAS1, PIAS2, PIAS4, TRIM28), tran-
scriptional regulators (TRIM22, TRIM24, TRIM33, GTF2I,
IRF2BP2, IFI16, ZNF280B, MED23, MEF2D, SNW1, RPAP3), and
DNA repair proteins (RMI1, BLM, SLX4, XAB2) were identified. Of
note, PIAS1 is known to induce PML SUMOylation35 and SUMO-
SIM interaction of BLM is necessary for its targeting to PML
bodies36, which highlights the specificity of the SUMO-ID strategy.
Of particular interest, GTF2I and IRF2BP2, identified here by
SUMO-ID, form fusion proteins with RARA and cause Acute
Promyelocytic Leukemia (APL, see Discussion)37,38. We validated
these two proteins, as well as TRIM33 and UBC9, as SUMO-
dependent interactors of PML by WB (Fig. 4b).

STRING networking of SUMO-dependent interactors of PML
shows a highly interconnected cluster related to protein SUMOyla-
tion, DNA damage response and transcriptional regulation (Fig. 4c),
while GO enrichment also highlighted protein SUMOylation and
transcriptional regulation, as well as DNA repair and stress response
pathways (Fig. 4d; Supplementary Data 2). Collectively, this data
show that the SUMO-ID strategy can efficiently identify SUMO-
dependent interactors of PML, and that SUMO interaction with
PML reinforces essential processes.

PML SUMO-ID hits localize to PML NBs. We checked whether
some of the SUMO-dependent interactors of PML localize to
NBs. We looked for co-localization of selected SUMO-dependent
PML interactors in our U2OS YFP-PML cell line by confocal
microscopy. Within individual cells, we observed frequent and
multiple co-localization events for PIAS4, TRIM24, TRIM33 and
UBC9 in PML NBs (Fig. 5 and Supplementary Fig. 8), whereas
PIAS2, GTF2I and IRF2BP2 colocalizations were less frequent,
suggesting heterogeneity in PML NB composition that may
depend on different factors (including, but not limited to
SUMOylation density, subnuclear localization, cell cycle stage,

other PTMs, or contrastingly, technical limitations with anti-
bodies or fixations).

SUMO-dependent interactions are a subset of PML proximal
proteome. PML NBs are membraneless structures thought to
behave as phase-separated liquids and with high heterogeneity in
composition39. These characteristics make their purification very
challenging, and no proteomic data are nowadays available.
Therefore, to compare the obtained PML SUMO-ID specific sub-
proteome with the regular PML interactome, we decided to
characterize a comprehensive PML and PML3MAS proximity
interactome using standard full-length TurboID (FLTbID). We
generated stable U2OS cell lines for FLTbID-PMLWT, FLTbID-
PML3MAS and FLTbID alone, and treated them or not with ATO
to induce PML SUMOylation. High-confidence PML proximal
proteome was composed of 271 proteins that were enriched in
FLTbID-PMLWT samples compared to FLTbID alone (Fig. 6a,
Supplementary Data 3). STRING networking showed a main core
cluster composed of 73.6% of the identified proteins (Fig. 6b). The
most representative subclusters were composed of (1) RNA
splicing and mRNA processing proteins, (2) transcription, RNA
biosynthesis and DNA damage response proteins and (3) repli-
cation and SUMOylation related proteins. This largely aligned
with Gene Ontology (GO) enrichment analysis, which revealed
that PML proximal interactors participate in replication, tran-
scription, RNA splicing, DNA damage response, cell cycle reg-
ulation, SUMOylation and ubiquitylation, and telomere
maintenance, consistent with fact that PML in U2OS regulates
the ALT mechanism40 (alternative lengthening of telomeres;
Fig. 6c, Supplementary Data 4).

SUMOylation of PML is thought to be a controlling factor for
composition and dynamics of NBs. Are all NB interactions linked to
PML dependent on SUMO? To answer this question, we subdivided
the PML interactome into SUMO-dependent or -independent
interactors, by comparing FLTbID-PMLWT and FLTbID-PML3MAS

samples. We observed some proteins that likely localize to PML
NBs41, such as NCOR-1, STAT3, JUN, BRCA2 and HDAC9, were
also enriched in TurboID-PML3MAS, suggesting SUMO-
independent targeting to PML NBs (Supplementary Data 3).
Importantly, many of SUMO-dependent interactors identified by
SUMO-ID are part of SUMO-dependent PML NBs proteome using
standard TurboID, including PIAS2, PIAS4, TRIM24, TRIM33 and
IRF2BP2 (Fig. 7a; Supplementary Data 3), supporting the validity of
SUMO-ID to identify SUMO-dependent interactors. Interestingly,
scores of some PML interactors decreased after ATO treatment
(TRIM24, TRIM33, SENP5), suggesting that those proteins may
rapidly undergo dissociation or degradation in response to PML
SUMOylation. We confirmed such effect for TRIM24 by WB
(Fig. 7b). Altogether, these data confirm that SUMO-ID identified
hits are a subset of the SUMO-dependent PML proximal proteome.

SUMO-dependent interactors of PML are enriched in SIMs.
We expected that many of the SUMO-dependent PML interactors
might do so via SUMO-SIM interactions and, therefore, should
contain or be enriched in SIMs. To test this, we designed and
executed an in silico SIM enrichment analysis. We generated 1000
random lists of 59 proteins (the size of the SUMO-ID identified
protein list) and evaluated the presence of SIMs (see Source Data
file). The median of single SIM and multiple SIM presence in the
random lists were 45.76% and 23.73%, respectively (Fig. 7c).
SUMO-ID identified proteins showed a much higher content of
SIMs, with single SIM and multiple SIM presence values of
96.61% and 89.83%, respectively. It is noteworthy that around
83% of the identified SIMs in PML SUMO-ID list were preceded
or followed within the first 4 amino-acids by acidic residues (D,
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E) or a Serine. Since longer proteins are expected to have more
SIMs, we then normalized the SIM content with the size of
proteins on the lists to obtain the value of “SIMs per thousand of
amino acids” (STAA) (see Source Data file). The values obtained
with the random lists showed a Gaussian distribution (d’Agostino

and Pearson normality test, K2 value 3.836, p value 0.15)
(Fig. 7d). The median of the values obtained with the random lists
was 4.85 (Log2= 2.28) STAA, while for PML SUMO-ID list was
18.42 (Log2= 4.20) STAA, which translates to a SIM enrichment
value of 3.8 times higher than the random lists (empirical p
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value < 0.001). These results show that SUMO-dependent inter-
actors of PML are highly enriched in SIMs.

SUMO-ID identifies interactors of SUMOylated SALL1. To test
the sensitivity and discovery potential of the SUMO-ID, we
applied this technique to SALL1, a transcriptional repressor that
is SUMOylated42,43, but of which nothing is known about the
causes or consequences of this modification. Using TRIPZ-
C–SUMO1nc or SUMO2nc HEK293FT stable cell lines, we
introduced N–SALL1WT or SALL1ΔSUMO (with mutations in 4
major SUMOylation consensus sites) and evaluated SUMO-ID by
WB. Efficient SUMO-ID biotinylation activity was observed when
using both SUMO1nc and SUMO2nc (Fig. 8a, black arrowhead).
N–SALL1WT localizes to the nucleus, forming nuclear bodies with
high SUMO-ID activity, and N–SALL1ΔSUMO also forms aggre-
gates in the cytoplasm (Fig. 8b). Specificity of SALL1 SUMO-ID
was confirmed in cells, as biotinylation occurs only in SALL1WT

upon doxycycline induction and biotin supplementation. SALL1
SUMO-ID identified potential SUMO-dependent interactors of
SALL1 such as the transcription factors TLE3, DACH1/2 and
ARID3B, as well as NuRD complex proteins GATAD2A/B,
MTA1/2 and RBBP4/7 (Fig. 8c; Supplementary Data 5), already
known as SALL1 interactors44. We also identified components of
the SUMOylation machinery, such as PIAS1. Interestingly, the
tyrosine kinase BAZ1B was highly enriched in SALL1ΔSUMO

condition. We confirmed that SUMOylated SALL1 was biotiny-
lated and purified via SUMO-ID (Fig. 8d, black arrowheads) as
well as NuRD complex proteins GATAD2B, MTA2 and RBBP4
(Fig. 8d). MCODE subclustering of the STRING interaction
network showed a highly interconnected cluster composed of
NuRD complex proteins (Fig. 8e) that was also enriched as GO
term (p value 2.40·10−4, Supplementary Data 6). Thus, SUMO-ID
is sensitive and specific, allowing the study of SUMO-dependent
interactors for proteins of interest, opening new avenues of
understanding how SUMO can affect their function.

SUMO-ID identifies UbL and SUMO-paralogue preferential
interactors. In order to further define the specificity of SUMO-
ID, we decided to evaluate its capacity to discriminate specific
interactors between different UbLs and SUMO paralogues. The
cellular tumor antigen TP53 is well known as being modified by
SUMO1, SUMO2 and Ub45,46, making it an attractive candidate
to evaluate the specificity of the technique. We thus generated
HEK293FT double stable cell lines for N-TP53 together with
TRIPZ-C-SUMO1nc, -SUMO2nc or -Ubnc. We validated by WB
that N-TP53 was modified with the three different C-UbLnc and
confirmed efficient SUMO1-ID, SUMO2-ID and Ub-ID bioti-
nylating activity (Fig. 9a). We thus sequenced by LC-MS the
streptavidin pull downs obtained in each of the conditions. We
first characterized TP53 SUMO1-ID and SUMO2-ID by com-
paring them to their non-induced counterparts (Fig. 9b, Sup-
plementary Data 7). We observed that TP53 SUMO1-ID
identified many transcriptional regulators and DNA binding
proteins (TRIM24, TRIM33, MED23, GTF2I, ZBTB21, ZBTB33,
TCERG1, NAB1, ARID3B), SUMO E3 ligases (RANBP2/RAN-
GAP1, PIAS1, TRIM28) and DNA repair proteins (PARP1) as
SUMO1-dependent interactors of TP53. In addition to those hits,
many more proteins were enriched when using SUMO2 (Fig. 9b).
Among those, transcriptional regulators (NCOR1, MGA, XAB2,
SNW1, GTF3C4, ARID3A, ADNP, PCBP1) and SUMO E3 ligases
(PIAS2, PIAS3, ZNF451). Other DNA damage-related proteins
were identified as specific SUMO2-dependent interactors of
TP53, such as TOP2A, TOP2B, BRCA2, BLM, RPA1, NFRKB
and CDKN2AIP (Fig. 9b). Importantly, almost all of the identi-
fied hits in SUMO1-ID and SUMO2-ID were enriched while

comparing to TP53 Ub-ID (Fig. 9c), demonstrating the high UbL
type-dependent specificity of the technique. TP53 Ub-ID lead to
low number but consistent identifications (Fig. 9c): PCNA,
BCOR, RNF20, RNF40, RNF220, RFC4, the Ub E1 activating
enzyme UBA1 and the deubiquitylating enzyme USP7. We then
compared TP53 SUMO1-ID to SUMO2-ID to identify SUMO-
paralogue preferences of the interactors (Fig. 9d). Most of the
above-described proteins showed preference for SUMO2-
dependent interaction, the major hits being SATB1, SATB2 and
PCBP1. In the case of SUMO1, two specific interactors were
enriched: the SUMO E3 ligase RANBP2 and SUMO1. Thus,
SUMO-ID identifies specific interactors for different UbLs and
SUMO-paralogues, enabling the understanding of the con-
sequences that each modification might have on the substrate
interactions.

Discussion
The fast dynamics and reversibility of SUMOylation, and the low
affinity of SUMO-SIM interactions pose significant challenges not
only for SUMO research, but for respective studies of Ub and
other UbLs. The use of His-tagged K0-SUMO or bioSUMO
strategy to isolate substrates and map SUMOylation sites has
been instrumental to show the widespread presence of this
modification in the human proteome9,43,47. Direct purification of
SUMOylated proteins using immunoprecipitation is a gold
standard and can be applied to cells and tissues48, but is also
challenging because SUMOylation might affect a small propor-
tion of low abundance proteins, and perhaps only under certain
conditions (e.g., a discrete cell cycle phase or upon DNA
damage). Recently, the NanoBiT-based ubiquitin conjugation
assay (NUbiCA) was described that uses a split-luciferase
approach to allow a quantitative assessment of Ub-modified
proteins49. Bimolecular fluorescence complementation (BiFC)
approaches employ a split fluorescent protein that enables the
localization of UbL-modified proteins in yeast or human cells to
be monitored50–52. If applied to UbLs and substrates, the BiCAP
method53, which allows purification of reconstituted GFP using
GFP nanobodies, could likely enrich modified substrates and
perhaps interactors. However, none of these approaches captures
the dynamic environment of specific UbL-modified proteins,
often characterized by weak and transient interactions.

Here we describe SUMO-ID, a powerful technique that allows
the study of the causes and consequences of SUMO-dependent
interactions for specific proteins of interest. The fast biotinylation
activity of TurboID and the specificity obtained with “protein
fragment complementation” permit SUMO-ID to specifically
biotinylate interactors of substrates in a SUMO-dependent
manner. Combined with sensitive proteomic methods, SUMO-
ID allows the identification of specific interactors, potentially
revealing enzymatic machinery responsible for the SUMOylation
as well as interactors that may be stabilized or recruited as a
consequence of the modification. Like approaches using BiFC, the
subcellular localization of SUMO-modified substrates using
SUMO-ID can also be inferred, through the use of fluorescent
streptavidin. However, caution should be taken with the men-
tioned factors in order to maintain specificity, such is the use of
non-cleavable forms of UbLs or the application of short biotin-
labeling times. This strategy might compromise the identification
of SUMO isopeptidases since their binding to SUMOylated
substrate is likely affected.

At the core of SUMO-ID is Split-TurboID, which individual
halves should ideally have no activity, as with all split-protein
approaches. For SUMO-ID, we initially applied the E256/
G257 split point described for Split-BioID30 to the fast-labeling
TurboID derivative, but found that the N-terminal half (1–256)
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retained substantial biotinylation capacity. We speculate that this
is because the biotin pocket is still intact and might allow leaky
release of biotinoyl-AMP. Leaky biotinylation of TurboID 1–256
was also observed by Cho et al. in their recently published report
on Split-TurboID31. Their final design was based on a L73/

G74 split point which showed efficient proximity-dependent
reconstitution and biotinylation, but still leaves the biotin pocket
intact in C-terminal 74–321 half, opening the possibility of leaky
biotinylation during longer labeling times or in stable cell lines.
To avoid this, we developed and validated T194/G195 Split-
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TurboID that separates the β-strands 5 and 8 from the β-strand 9,
completely abrogating any residual biotinylation activity of the
fragments.

Here we used SUMO-ID to unravel the role of PML
SUMOylation in PML NBs function. We identified 59 proteins as
SUMO-dependent PML interactors that participate in essential
nuclear processes such as protein SUMOylation, transcriptional
regulation, DNA repair and stress response. There is growing
evidence that PML interaction with SUMO might allow partners
to localize into PML NBs through SUMO-SIM interactions36,54.
We demonstrated that most of the proteins identified by SUMO-
ID are indeed part of the proteome of SUMO-dependent PML
NBs and that they are enriched in SIMs, suggesting SUMO-SIM
interaction dependency. It has been proposed that, after such
partner recruitment, proteins might undergo SUMOylation by
the PML NB-localized SUMO machinery that reinforces their
sequestration55. In fact, PML NBs are, together with the nuclear
rim, the major targets of active SUMOylation56. Our data rein-
force this enzyme/substrate co-concentration model as we
observed that SUMOylation machinery enzymes (UBC9, PIAS1,
PIAS2, PIAS4 and TRIM28) localize to PML NBs in a SUMO-
dependent manner and 80% of the SUMO-dependent PML
interactors (47 out of 59) are SUMO substrates9,10.

To compare our list of SUMO-dependent versus general
interactors of PML, we performed a TurboID assay for PML, with
cells alone or treated with ATO, and identified 271 proteins. ATO
induces PML NB formation, subsequent PML SUMOylation,
partner recruitment and finally PML degradation22,57. It is used
to treat APL, a type of Acute Myelocytic Leukemia (AML), which
is mainly caused by the t(15;17) translocation that fuses PML to
RARA. Interestingly, two of our SUMO-ID hits, IRF2BP2 and
GTF2I, also form fusion proteins with RARA and cause APL,
albeit less commonly than PML fusions37,38. We validated that
both localize to PML NBs. While many of the SUMO-ID can-
didates show increased peptide intensity in PML NBs after ATO
treatment, we observed that some of them decreased. IRF2BP2
and TRIM24, which has also been linked to AML58,59, showed
reduced levels after ATO treatment, suggesting that they might
undergo degradation. In line with this idea, the 11S proteasome
components are recruited into mature PML NBs and their loca-
lization is enhanced with ATO treatment60, suggesting that
mature PML NBs may also act as proteolytic sites. In fact, inhi-
bition of ubiquitylation accumulates SUMOylated proteins within
PML NBs61, suggesting that many clients that are targeted to
PML NBs and that are SUMOylated, might undergo ubiquityla-
tion and degradation. Altogether, these data provide further
insight into the role of PML SUMOylation in NB biology and

open new ways of looking at the mechanisms of ATO in APL
treatment.

The successful application of SUMO-ID to SALL1, a poorly
characterized SUMO substrate, illustrates the sensitivity and
utility of SUMO-ID. Although SALL1 SUMOylation levels are
vanishingly low under physiological conditions, SUMO-ID
revealed SUMO-dependent enrichment of the NuRD complex
proteins GATAD2A/B, MTA1/2 and RBBP4/7. The association
between SALL1, a transcriptional repressor, and the NuRD
complex, a repressive histone deacetylase complex, has been
previously described44. The interaction is mediated by an
N-terminal 12 amino acid motif of SALL144. Once recruited,
SUMOylation of SALL1 might serve to stabilize the repressor
complex via SUMO-SIM interactions, with predicted SIMs pre-
sent in multiple NuRD complex subunits. As histone SUMOy-
lation is also linked to transcriptional repression62, SUMO-SIM
interactions might further reinforce the SALL1/NuRD complex
and drive histone deacetylation at SALL1 targets. In addition, we
also found TLE3, DACH1/2 and ARID3B transcription factors as
SUMO-dependent interactors of SALL1. TLE3, a transcriptional
repressor of the Groucho/TLE family, interacts with HDAC2
(another NuRD complex component) and can regulate acetyla-
tion levels63. Both TLE3 and the tumor suppressor DACH1 are
negative regulators of Wnt signaling64,65. Interestingly, SALL1
has been shown to enhance Wnt signaling66. Perhaps interaction
with SUMOylated SALL1 serves to counteract these negative
effects. BAZ1B, a tyrosine-protein kinase that acts as a tran-
scriptional regulator, was highly enriched in SALL1ΔSUMO com-
pared to SALL1WT. BAZ1B is highly SUMOylated with at least 5
putative SUMO sites identified (K826, K853, K1043, K1089 and
K1107)9. Our data suggest that interaction between SUMOylated
BAZ1B and SALL1 might be enhanced when SALL1 SUMOyla-
tion is inhibited. It would be of potential interest to study if that
interaction leads to SALL1 phosphorylation.

We evaluated the capacity of SUMO-ID to discriminate
interactors among different UbLs and SUMO paralogues by
performing SUMO1-ID, SUMO2-ID and Ub-ID on TP53. We
identified many transcriptional regulators, DNA binding proteins,
SUMO E3 ligases and DNA damage response proteins as SUMO-
dependent interactors of TP53. Interestingly, many of those
interactors overlap with those of PML, consistent with the fact
that TP53 localizes to PML NBs17. While comparing SUMO1-ID
to SUMO2-ID, most of the identified proteins showed preferences
to SUMO2-dependent interaction except for the SUMO E3 ligase
RANBP2 and RANGAP1. This is in line with a recent screening
of non-covalent SUMO interactions that showed much more
preferential interactors of SUMO2 than SUMO167. Of particular

Fig. 7 Proteins identified by PML SUMO-ID are a subset of the SUMO-dependent PML NBs proteome and are enriched in SIMs. a Volcano plot of LC-
MS analysis comparing streptavidin pull-downs of U2OS stable cell lines for TurboID-PMLWT or TurboID-PML3MAS. Cells were treated with 50 μM of
biotin for 2 h. Proteins enriched in TurboID alone compared to TurboID-PMLWT were previously removed for the comparison. PML SUMO-ID identified
proteins (including 1 peptide identified proteins) are highlighted in orange. LC-MS data on the effect of the ATO treatment (1 μM; 2 h) for TurboID-PMLWT

enriched proteins is represented with symbols as described. Statistical analyses were performed by two-sided Student’s t test. Data are provided as
Supplementary Data 3. b WB validation of the effect of ATO treatment (1 μM; 2 h) on TRIM24 by PML SUMO-ID. Cells were treated with 1 μg/mL of
doxycycline for 24 h and 50 μM of biotin for 2 h. After streptavidin pulldown, decreased levels of SUMO-PML interacting TRIM24 upon ATO treatment is
observed. Dotted lines indicate different exposures of the same blot. Data are representative of three independent pull-down experiments. Molecular
weight markers are shown to the left of the blots in kDa. IN: input; St PD: streptavidin pull-down. c Violin plots comparing the percentage of single SIM and
multiple SIM presence in 1000 random lists and PML SUMO-ID list. Horizontal solid and dotted lines represent the median and quartiles (Q1, Q3),
respectively. The 1000 random lists contain the same number of proteins (59) as the SUMO-ID list. d SIM presence was normalized by the length of the
proteins to obtain the value of SIMs per thousand of amino acids (STAA). Gaussian distribution of STAA median values of the random lists was validated
(d’Agostino and Pearson normality test, p value= 0.15), and PML SUMO-ID SIM enrichment factor with its corresponding empirical p value was calculated.
The dotted black line represents the median STAA value of random lists. The dotted blue line represents the STAA value of the PML SUMO-ID list. Source
data for b, c and d are provided in the Source Data file.
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interest, we identified ZNF451, TOP2A and TOP2B as SUMO2-
specific interactors of TP53. ZNF451 is a DNA repair factor and
poorly characterized SUMO E3 ligase that SUMO2ylates Topoi-
somerase 2 (TOP2A and TOP2B) and controls cellular responses
to TOP2 damage68. Importantly, we also identified known
interactors of TP53 as SUMO2-dependent specific interactors,
such as BRCA2, BLM, RPA1 and DDX5, while the strongest hits

were SATB1/SATB2 and PCBP1. Ub-ID also identified consistent
Ub-dependent interactors of TP53 when comparing to SUMO1-
ID or SUMO2-ID. Among those, enzymes from the ubiquitin
machinery (UBA1 and USP7), as well as potential interesting
interactors such as PCNA, and the ubiquitin ligase complex
RNF20/RNF40, were enriched. Interestingly, PCNA has been
shown to interact with TP53 and regulate its polyubiquitylation
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and stability together with MDM269. In addition, TP53 mediates
the recruitment of RNF20/ RNF40 ubiquitin ligase complex to
TP53 target gene loci to regulate transcription through H2B
ubiquitylation70. Perhaps TP53 ubiquitylation regulates the sta-
bility of such complex formation. Thus, SUMO-ID appear to be
highly specific, enabling the identification of specific interactors
of SUMO1, SUMO2 and ubiquitin-modified substrates.

In summary, we demonstrate here that SUMO-ID, based on
the 194/195 Split-TurboID reconstitution, can facilitate the
identification of SUMO-dependent interactions with a protein of
interest. It has little or no background, with high biotinylation
activity when expressed at low levels and with short biotin
incubation time. We believe that this technique improves sensi-
tivity and selectivity when applied to infrequent SUMOylation
events and low-affinity of SUMO-SIM interactions. This strategy
can be applied to other UbL modifications (e.g., Ub-ID shown in
Fig. 9), and the 194/195 Split-TurboID may be useful for other
applications in cell biological studies. We recommend the use of
“SUMO-dead” versions of the substrates as negative controls
while performing SUMO-ID studies. Otherwise, the use of ΔGG
versions of C-SUMOs could also represent a correct negative
control. A non-induced vs induced strategy, or comparing dif-
ferent UbL-IDs would be convenient controls when the SUMO
sites of the substrate are not known. We also recommend the use
of the GSQ linker between the C and SUMOs as well as between
the N and substrates to enable efficient SUMO-ID activity. The
length of the linker could be modified depending on the distance
of the SUMO site and the N-terminus of the substrate.

Methods
Cell culture. U2OS (ATCC HTB-96) and HEK293FT (Invitrogen) were cultured at
37 °C and 5% CO2 in Dulbecco’s modified Eagle Medium (DMEM) supplemented
with 10% fetal bovine serum (FBS, Gibco) and 1% penicillin/streptomycin (Gibco).
Human telomerase reverse transcriptase immortalized retinal pigment epithelial
cells (hTERT-RPE1, ATCC CRL-4000) were cultured in DMEM:F12 (Gibco)
supplemented with 10% FBS, 2 mM L-Glutamine and 1% penicillin and strepto-
mycin. Cultured cells were maintained through 20 passages maximum and tested
negative for mycoplasma.

Cloning. TurboID was a kind gift of A. Ting (Addgene #107171)29. PMLIVaWT

and PMLIVa3MAS were previously described21. SUMO1, SUMO2, Ub, RANGAP1
and UBC9 ORFs were amplified from U2OS cell cDNA by high-fidelity PCR
(Platinum SuperFi DNA Polymerase; Invitrogen). A GSQ linker
(GGGSSGGGQISYASRG) was placed between the C-terminal part of TurboID and
the UbLs as well as between the N-terminal part and the substrates. All constructs
were generated by standard cloning or by Gibson Assembly (NEBuilder HiFi

Assembly, NEB) using XL10-Gold bacteria (Agilent). Depending on the con-
struction, plasmid backbones derived from EYFP-N1 (Clontech/Takara), Lenti-
Cas9-blast (a kind gift of F. Zhang; Addgene #52962) or TRIPZ (Open Biosystems/
Horizon) were used. After assembly, all vectors were validated by sequencing.
Additional details for constructs are described in Supplementary Table 1. Oligo-
nucleotides sequences are shown in Supplementary Table 2. The sequences of
representative constructs are in the Source Data file. Cloning details about other
constructs are available upon request.

Lentiviral transduction. Lentiviral expression constructs were packaged in
HEK293FT cells using calcium phosphate transfection of psPAX2 and pMD2.G
(kind gifts of D. Trono; Addgene #12260, 12259) and pTAT (kind gift of P. Fortes;
for TRIPZ-based vectors). Transfection media was removed after 12–18 h and
replaced with fresh media. Lentiviral supernatants were collected twice (24 h each),
pooled, filtered (0.45 µm), and supplemented with sterile 8.5% PEG6000, 0.3 M
NaCl, and incubated 12–18 h at 4 °C. Lentiviral particles were concentrated by
centrifugation (1500 × g, 45 min, 4 °C). Non-concentrated virus (or dilutions
thereof) were used to transduce HEK293FT, and 8× concentrated virus was used
for U2OS and hTERT-RPE1 cells. Drug selection was performed as follows: 1 μg/
ml puromycin (Santa Cruz) for U2OS and HEK293FT cells, 5 μg/ml for hTERT-
RPE1 cells; 5 μg/ml blasticidin (Santa Cruz) for U2OS, HEK293FT and hTERT-
RPE1 cells.

CRISPR-Cas9 genome editing. Human PML encodes multiple isoforms, but most
differ at the 3’ end. To target EYFP into the first coding exon, shared by most PML
isoforms, an sgRNA target site was chosen (CTGCACCCGCCCGATCTCCG)
using Broad institute GPP sgRNA Designer71. Custom oligos were cloned into
px459v2.0 (a kind gift of F. Zhang; Addgene #62988). A targeting vector was made
by amplifying 5’ and 3’ homology arms using U2OS genomic DNA, as well as the
EYFP ORF (see Supplementary Table 2 for details on the oligonucleotides). These
fragments were assembled by overlap extension using high-fidelity PCR and the
resulting amplicon was TOPO-cloned and sequence-confirmed. Lipofectamine
2000 (Invitrogen) was used to transfect U2OS with linear targeting vector and
px459 encoding SpCas9, puromycin resistance, and the PML-targeting sgRNA.
24 h post-transfection, cells were selected for additional 24–36 h with 2 µg/ml
puromycin. Cells were plated at low density and clones were examined by fluor-
escence microscopy. Clones with clear nuclear body signals were manually picked
and expanded. YFP-PML insertions and copy number were validated by PCR,
sequencing, and Western blotting.

Transient transfections and drug treatments. HEK293FT cells were transiently
transfected using calcium phosphate method. U2OS cells were transiently trans-
fected using Effectene Transfection Reagent (Qiagen). After 24 h of transfection,
cells were treated with biotin (50 μM; Sigma-Aldrich) for the indicated exposure
times. For stably transduced TRIPZ cell lines, induction with doxycycline (1 µg/ml;
24 h; Sigma-Aldrich) was performed prior to biotin treatment. ATO (1 µM; 2 h;
Sigma-Aldrich) treatments were performed (with or without biotin, depending on
experiment) prior to cell lysis or immunostaining.

Western blot analysis. Cells were washed 2× with PBS to remove excess biotin
and lysed in highly stringent washing buffer 5 (WB5; 8 M urea, 1% SDS in 1X PBS)
supplemented with 1× protease inhibitor cocktail (Roche) and 50 μM NEM.

Fig. 8 SUMO-ID identifies interactors of SUMOylated SALL1. a WB of HEK293FT stable cell lines for TRIPZ-MYC-C-SUMO1nc/SUMO2nc transfected
with FLAG-N-SALL1WT or the SUMO site mutant FLAG-NTurboID194-SALL1ΔSUMO. Cells were treated or not with 1 μg/mL of doxycycline for 24 h and
50 μM of biotin at indicated time points. Efficient SALL1 SUMO-ID biotinylating activity was detected for SUMO1nc and SUMO2nc (black arrowhead). Dots
indicate endogenous carboxylases that are biotinylated constitutively by the cell. Results are representative of two independent transfection experiments
on the same stable cell lines. Source data are provided in the Source Data file. b Confocal microscopy of U2OS stable cell line for TRIPZ-MYC-C-SUMO2nc
transfected with FLAG-N-SALL1WT or the SUMO site mutant FLAG-N-SALL1ΔSUMO. Cells were treated or not with 1 μg/mL of doxycycline for 24 h and
50 μM of biotin for 4 h. Nuclei are stained with DAPI (blue) and biotinylated material with fluorescent streptavidin (Strep, magenta). BirA antibody shows
N-SALL1 staining (green). Black and white panels show the single green and magenta channels. Nuclear colocalization of FLAG-N-SALL1WT and
streptavidin signal was observed. Images are representative of three independent transfection experiments performed on cover slips on the same stable
cell line. Scale bar: 10 μm. c Volcano plot of LC-MS analysis comparing streptavidin pull-downs of HEK293FT TRIPZ-MYC-C-SUMO2nc stable cell line
transfected with FLAG-N-SALL1WT or the SUMO site mutant FLAG-N-SALL1ΔSUMO. Cells were treated with 1 μg/mL of doxycycline for 24 h and 50 μM of
biotin for 4 h. Potential interactors of SUMOylated SALL1 are depicted. Statistical analyses were performed by two-sided Student’s t test. Data are provided
as Supplementary Data 5. d Western blot validations of SUMOylated SALL1 interactors found in c. NuRD complex proteins GATAD2B, MTA2 and RBBP4
were confirmed. Black arrowheads point to SUMOylated SALL1 signal. Dots indicate endogenous carboxylases that are biotinylated constitutively by the
cell. Dotted lines indicate different exposures of the same blot. Data are representative of three independent transfection experiments. IN input, St PD
streptavidin pull-down. Source data are provided in the Source Data file. e STRING network analysis of the SALL1 SUMO-ID list and MCODE clustering
identifies the NuRD complex as a highly interconnected subcluster. Gene ontology analysis also identified the NuRD complex as an enriched term. Color,
transparency and size of the nodes were discretely mapped to the Log2 enrichment value as described. The border line type was discretely mapped to the p
value as described. Data are provided as Supplementary Data 6. Molecular weight markers are shown to the left of the blots in kDa in a and d.
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Fig. 9 SUMO-ID identifies UbL and SUMO-paralogue preferential interactors of TP53. a Western blot of HEK293FT double stable cell lines for FLAG-N-
TP53 together with doxycycline-inducible TRIPZ-MYC-C-SUMO1nc, -SUMO2nc or -Ubnc. Doxycycline was added or not at 1 μg/mL for 24 h. 50 μM of
biotin was added for 2 h. TP53 SUMO1-ID, SUMO2-ID and Ub-ID showed specific biotinylation patterns corresponding to each modification (black
arrowhead). Dots indicate endogenous carboxylases that are biotinylated constitutively by the cell. Dotted lines indicate different exposures of the same
blot. Results are representative of three independent pull-down experiments. Molecular weight markers are shown to the left of the blots in kDa. IN: input;
St PD: streptavidin pull-down. Source data are provided in the Source Data file. Volcano plots of LC-MS analysis of (b) TP53 SUMO1-ID and SUMO2-ID,
(c) SUMO1-ID or SUMO2-ID vs Ub-ID and (d) SUMO1-ID vs SUMO2-ID, from samples in a. SUMO-ID and Ub-ID of TP53 identified preferential
interactors of each type of modification. Statistical analyses were performed by two-sided Student’s t test. Data are provided as Supplementary Data 7.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26807-6 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6671 | https://doi.org/10.1038/s41467-021-26807-6 | www.nature.com/naturecommunications 15

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Samples were then sonicated and cleared by centrifugation (25,000 × g, 30 min,
RT). 10–20 μg of protein was loaded for SDS-PAGE and transferred to nitro-
cellulose membranes. Blocking was performed in 5% milk in PBT (1× PBS, 0.1%
Tween-20). Casein-based blocking solution was used for anti-biotin blots (Sigma).
Primary antibodies were incubated over-night at 4 °C and secondary antibodies 1 h
at room temperature (RT). Antibodies used: anti-biotin-HRP (1/1000; Cat#7075S),
anti-Myc (1/1000; Cat#2276S), anti-alpha-Actinin (1/5000; Cat#6487S) (Cell Sig-
naling Technology); anti-Flag (1/1000; Cat#F1804), anti-GTF2I (1/1000;
Cat#HPA026638) (Sigma-Aldrich); anti-BirA (1/1000; Cat#11582-T16; SinoBio-
logical); Proteintech antibodies: anti-IRF2BP2 (1/1000; Cat#18847-1-AP), anti-
UBC9 (1/1000; Cat#14837-1-AP), anti-TRIM24 (1/1000; Cat#14208-1-AP), anti-
TRIM33 (1/1000; Cat#55374-1-AP), anti-PIAS2 (1/1000; Cat#16074-1-AP), anti-
PIAS4 (1/1000; Cat#14242-1-AP), anti-GATAD2B (1/1000; Cat#25679-1-AP),
anti-MTA2 (1/1000; Cat#17554-1-AP), anti-RBBP4 (1/1000; Cat#20364-1-AP),
anti-PML (1/1000; Cat#21041-1-AP), anti-GAPDH (1/5000; Cat#60004-1-Ig), anti-
beta-Actin (1/5000; Cat#66009-1-Ig), anti-alpha-Tubulin (1/5000; Cat#66031-1-
Ig); anti-PML (1/1000; Cat#A301-167A) (Bethyl); anti-GFP (1/1000; Cat#sc-8334)
(SantaCruz); anti-Mouse-HRP (1/5000; Cat#115-035-062), anti-Rabbit-HRP (1/
5000; Cat#111-035-045) (Jackson ImmunoResearch). Proteins were detected using
Clarity ECL (BioRad) or Super Signal West Femto (ThermoFisher). Quantification
of bands was performed using ImageJ (v2.0.0-rc-69/1.52n) software and normal-
ized against loading/expression controls. 2 way ANOVA with Tukey correction for
multiple comparisons was performed and the data is available in the Source Data
file. All uncropped blots are provided within the Source Data file.

Immunostaining and confocal microscopy. U2OS and HEK293FT cells were
seeded on 11 mm coverslips (25,000 cells per well; 24 well plate). HEK293FT
coverslips were pre-treated with poly-L-lysine. After washing 3 times with 1× PBS,
cells were fixed with 4% PFA supplemented with 0.1% Triton X-100 in PBS for
15 min at RT. Then, coverslips were washed 3 times with 1× PBS. Blocking was
performed for 30 min at RT in blocking buffer (2% fetal calf serum, 1% BSA in 1×
PBS). Primary antibodies were incubated for 2 h at 37 °C and cells were washed
with 1× PBS 3 times. Primary antibodies used: anti-BirA (1/500; Cat#11582-T16;
SinoBiological); anti-Myc (1/200; Cat#2276S; Cell Signaling Technology); anti-
GTF2I (1/100; Cat#HPA026638; Sigma-Aldrich); Proteintech antibodies: anti-
IRF2BP2 (1/100; Cat#18847-1-AP), anti-UBC9 (1/100; Cat#14837-1-AP), anti-
TRIM24 (1/100; Cat#14208-1-AP), anti-TRIM33 (1/100; Cat#55374-1-AP), anti-
PIAS2 (1/100; Cat#16074-1-AP), anti-PIAS4 (1/100; Cat#14242-1-AP), anti-CBX4
(1/100; Cat#18544-1-AP); anti-B23 (1/100; Cat#sc-271737; Santa Cruz); anti-SC35
(1/100; Cat#556363; BD biosciences); anti-SUMO2 (1/100; Cat#SUMO-2 8A2;
DSHB). Then secondary antibodies (together with fluorescent streptavidin) were
incubated for 1 h at 37 °C, followed by nuclear staining with DAPI (10 min, 300 ng/
ml in PBS; Sigma Aldrich). Secondary antibodies (ThermoFisher) were all used at
1/200: anti-Rabbit Alexa Fluor 488 (Cat#A-11034), anti-Mouse Alexa Fluor 568
(Cat#A-11031), anti-Rabbit Alexa Fluor 568 (Cat#A-11036). Streptavidin Alexa
Fluor 594 (1/200; Cat#016-290-084; Jackson ImmunoResearch) was used. Fluor-
escence imaging was performed using confocal microscopy (Leica SP8 Lightning)
with 63x Plan ApoChromat NA1.4. To obtain the signal histograms for co-
localization studies in Fig. 5, we used the plot profile tool in ImageJ (v2.0.0-rc-69/
1.52n). Colocalization was further confirmed using the Colocalization_Colormap
and JACoP (Just Another Colocalization Plugin) plugins in ImageJ and the Coloc 2
tool in FIJI. Values were calculated using autothreshold or the Costes’ automatic
threshold options72, point spread function= 3 and number of interactions= 20.

PML NBs comparison. The mean area and the number of PML NBs per cell of 40
U2OS cells stably expressing EFS–FLAG-NTurboID194–PMLIVaWT or -PMLI-
Va3MAS were analyzed in FIJI. After removing outliers (ROUT method, Q= 1%),
two-sided unpaired t-test with Welch’s correction was applied. Data are available in
the Source Data file.

Pulldown of biotinylated proteins. Cleared lysates from WB5 lysis buffer were
adjusted to the same protein concentration before incubating them with 1/50
(vbeads/vlysate) equilibrated NeutrAvidin-agarose beads (ThermoFisher) over-night
at RT. Due to the high-affinity interaction between biotin and streptavidin, beads
were subjected to stringent series of washes, using the following WBs (vWB/2vlysate),
all made in 1× PBS: 2× WB1 (8M urea, 0.25% SDS); 3× WB2 (6M Guanidine-
HCl); 1× WB3 (6.4 M urea, 1 M NaCl, 0.2% SDS); 3× WB4 (4M urea, 1 M NaCl,
10% isopropanol, 10% ethanol and 0.2% SDS); 1× WB1; 1× WB5; and 3× WB6 (2%
SDS). Biotinylated proteins were eluted in 80 μl of Elution Buffer (4× Laemmli
buffer, 100 mM DTT) through heating at 99 °C for 5 min and subsequent vor-
texing. Beads were separated by centrifugation (25,000 × g, 2 min).

Liquid chromatography-mass spectrometry (LC-MS/MS). A stable
TRIPZ–MYC-CTurboID195–SUMO2nc U2OS cell line was transduced with either
EFS–FLAG-NTurboID194–PMLIVaWT or EFS–FLAG-NTurboID194–PMLIVa3MAS

for PML SUMO-ID experiments. Selection in blasticidin (5 µg/ml) and puromycin
(1 µg/ml) was performed. Expression was validated by Western blot and immu-
nostaining prior to scale-up for mass spectrometry. The TurboID-PML experi-
ments used U2OS stable cell lines expressing low and equivalent levels of

PMLIVaWT–TurboID, PMLIVa3MAS–TurboID and TurboID alone, selected by
blasticidin (5 µg/ml), and treated or not with ATO for 2 h. For SALL1 SUMO-ID, a
HEK293FT stable cell line expressing low levels of TRIPZ–MYC-
CTurboID195–SUMO2nc (selected with puromycin, 1 µg/ml) was transiently
transfected with EFS-FLAG-NTurboID194–SALL1WT or EFS-FLAG-
NTurboID194–SALL1ΔSUMO (a mutant carrying Lys>Arg mutations at K571, K592,
K982, K1086). For TP53 SUMO1-ID, SUMO2-ID and Ub-ID experiments, stable
TRIPZ–MYC-CTurboID195–SUMO1nc, -SUMO2nc or -Ubnc HEK293FT cell
lines were transduced with EFS–FLAG-NTurboID194–TP53. Selection in blas-
ticidin (5 µg/ml) and puromycin (1 µg/ml) was performed. Expression was vali-
dated by Western blot prior to scale-up for mass spectrometry. Three independent
pulldown experiments (8 × 107 cells per replicate, 8 ml of lysis) were analyzed by
LC-MS/MS.

Samples eluted from the NeutrAvidin beads were separated in SDS-PAGE (50%
loaded) and stained with Sypro Ruby (Invitrogen) according to manufacturer’s
instructions. Gel lanes were sliced into 3 pieces as accurately as possible to
guarantee reproducibility. The slices were subsequently washed in milli-Q water.
Reduction and alkylation were performed using dithiothreitol (10 mM DTT in
50 mM ammonium bicarbonate) at 56 °C for 20 min, followed by iodoacetamide
(50 mM chloroacetamide in 50 mM ammonium bicarbonate) for another 20 min in
the dark. Gel pieces were dried and incubated with trypsin (12.5 µg/ml in 50 mM
ammonium bicarbonate) for 20 min on ice. After rehydration, the trypsin
supernatant was discarded. Gel pieces were hydrated with 50 mM ammonium
bicarbonate, and incubated overnight at 37 °C. After digestion, acidic peptides were
cleaned with TFA 0.1% and dried out in a RVC2 25 speedvac concentrator (Christ).
Peptides were resuspended in 10 µl 0.1% formic acid (FA) and sonicated for 5 min
prior to analysis.

PML and TP53 samples were analyzed in a hybrid trapped ion mobility
spectrometry – quadrupole time of flight mass spectrometer (timsTOF Pro with
PASEF, Bruker Daltonics) coupled online to a nanoElute liquid chromatograph
(Bruker). This mass spectrometer takes advantage of a scan mode termed parallel
accumulation – serial fragmentation (PASEF). Sample (200 ng) was directly loaded
in a 15 cm Bruker nanoelute FIFTEEN C18 analytical column (Bruker) and
resolved at 400 nl/min with a 100 min gradient. Column was heated to 50 °C using
an oven.

For the analysis of SALL1 samples peptides were eluted from stage-tips in a
solvent composed of deionized water/acetonitrile/FA at a ratio of 50/50/0.1 v/v/v.
Peptides were lyophilized and dissolved in solvent A composed of deionized water/
FA at a ratio of 100/0.1 v/v and subsequently analyzed by on‐line C18 nano-HPLC
MS/MS with a system consisting of an Ultimate 3000 nano gradient HPLC system
(ThermoFisher), and an Exploris 480 mass spectrometer (ThermoFisher).
Fractions were loaded onto a cartridge precolumn (5 mm × ID 300 μm, C18
PepMap 100 A, 5 μm particles (ThermoFisher)), using solvent A at a flow of 10 μl/
min for 3 min and eluted via a homemade analytical nano-HPLC column
(50 cm × ID 75 μm; Reprosil-Pur C18-AQ 1.9 μm, 120 A; Dr. Maisch GmbH). The
gradient was run from 2% to 40% solvent B (water/acetonitrile/FA at a ratio of 20/
80/0.1 v/v/v) in 40 min. The nano-HPLC column was drawn to a tip of ∼10 μm and
acted as the electrospray needle of the MS source. The temperature of the nano-
HPLC column was set to 50 °C (Sonation GmbH). The mass spectrometer was
operated in data-dependent MS/MS mode for a cycle time of 3 s, with a HCD
collision energy at 28 V and recording of the MS2 spectrum in the orbitrap, with a
quadrupole isolation width of 1.6 Da. In the master scan (MS1) the resolution was
set to 60,000, and the scan range was set to 300–1600, at an Automatic Gain
Control (AGC) target of 3 × 106 with automated fill time. A lock mass correction
on the background ion m/z= 445.12 was used. Precursors were dynamically
excluded after n= 1 with an exclusion duration of 30 s, and with a precursor range
of 10 ppm. Charge states 2–6 were included. For MS2 the first mass was set to
120 Da, and the MS2 scan resolution was 30,000 at an AGC target of 75,000 with
automated fill time.

Mass spectrometry data analysis. Raw MS files were analyzed using MaxQuant
(version 1.6.17)73 matching to a human proteome (Uniprot filtered reviewed H.
sapiens proteome, UP000005640 [https://www.uniprot.org/uniprot/?
query=proteome:UP000005640%20reviewed:yes]) with a maximum of 4 missed
cleavages and with precursor and fragment tolerances of 20 ppm and 0.05 Da.
Label-Free Quantification was enabled with default values except for a ratio count
set to 1. Slices corresponding to same lanes were considered as fractions. Bioti-
nylation on lysine and on protein N-term was included as a variable modification
for SALL1 SUMO-ID data, and biotinylated peptides were set to be included for
quantification. Matching between runs and matching unidentified features were
enabled. Only proteins identified with at least one peptide at FDR < 1% were
considered for further analysis. Data were loaded onto the Perseus platform
(version 1.6.14)74 and further processed (Log2 transformation, imputation, median
normalization when needed). A two-sided Student’s t test was applied in order to
determine the statistical significance of the differences detected. Data were loaded
into GraphPad Prism 8 version 8.4.3 to build the corresponding volcano-plots.
Proteins detected with at least 2 peptides (except when otherwise specified) and in
at least 2 of the 3 replicates were included. High confidence hits are considered
when differences in Log2 of LFQ intensities are higher than 1 or statistically
significant (p < 0.05).
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Network analysis was performed using the STRING app version 1.4.275 in
Cytoscape version 3.7.276, with a high-confidence interaction score (0.7).
Transparency and width of the edges were continuously mapped to the String score
(text mining, databases, coexpression, experiments, fusion, neighborhood and
cooccurrence). The Molecular COmplex DEtection (MCODE) plug-in version
1.5.177 was used to identify highly connected subclusters of proteins (degree cutoff
of 2; Cluster finding: Haircut; Node score cutoff of 0.2; K-Core of 2; Max. Depth of
100). Gene ontology analysis was performed using g:Profiler web server version
e104_eg51_p15_3922dba78.

SIM enrichment analysis. A thousand lists with the same number of proteins as
PML SUMO-ID list (59) have been randomly generated from the human proteome
(Uniprot filtered reviewed H. sapiens proteome, UP000005640). All those lists have
been analyzed by adapting the script from79 and running it on Python version
2.7.5, to obtain the content and number of SIM motifs per protein (ψ-ψ-X-ψ; ψ-X-
ψ-ψ; ψ-ψ-ψ; where ψ is either a L, I or V and X is any amino acid) and the number
of SIMs per thousand of amino acids (STAA). After removing three outliers (lists
46, 782, 794; ROUT method, Q= 1%), STAA values from the random lists were
normalized to Log2 and validated for Gaussian distribution (d’Agostino and
Pearson normality test). Enrichments were computed using R software v3.6.0 and
calculated as the ratio between PML SUMO-ID STAA value and the median of
STAA values from the random lists. Empirical p values have been calculated by
counting the number of random lists whose STAA values were as extreme as the
PML SUMO-ID STAA value. The raw data from the SIM enrichment analysis and
the script can be found in the Source Data file.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data supporting the findings are provided within the paper, the Supplementary Data,
Source Data file and the Supplementary Information. The crystal structure of E. coli
BirA80 is available under PDB entry number 1HXD. The fasta file of the human
proteome (Uniprot filtered reviewed H. sapiens proteome, UP000005640) was
downloaded from Uniprot. In addition, the mass spectrometry proteomics raw data have
been deposited to the ProteomeXchange Consortium via the PRIDE partner repository81

with the following dataset identifiers: PML SUMO-ID data, accession code PXD021770,
PML-TurboID data, accession code PXD021809, SALL1 SUMO-ID data, accession code
PXD021923 and TP53 SUMO-ID/Ub-ID data, accession code PXD027759. Processed
LC-MS/MS data as well as their corresponding gene ontology source data are provided as
Supplementary Data files. Source data are provided with this paper.

Code availability
The script for the SIM enrichment analysis can be found in the Source Data file.
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