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Abstract

Statistical models for outcome prediction are central to traumatic brain injury research and

critical to baseline risk adjustment. Glasgow coma score (GCS) and pupil reactivity are cru-

cial covariates in all such models but may be measured at multiple time points between the

time of injury and hospital and are subject to a variable degree of unreliability and/or miss-

ingness. Imputation of missing data may be undertaken using full multiple imputation or by

simple substitution of measurements from other time points. However, it is unknown which

strategy is best or which time points are more predictive. We evaluated the pseudo-R2 of

logistic regression models (dichotomous survival) and proportional odds models (Glasgow

Outcome Score—extended) using different imputation strategies on the The Collaborative

European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI)

study dataset. Substitution strategies were easy to implement, achieved low levels of miss-

ingness (<< 10%) and could outperform multiple imputation without the need for computa-

tionally costly calculations and pooling multiple final models. While model performance was

sensitive to imputation strategy, this effect was small in absolute terms and clinical rele-

vance. A strategy of using the emergency department discharge assessments and working

back in time when these were missing generally performed well. Full multiple imputation had

the advantage of preserving time-dependence in the models: the pre-hospital assessments

were found to be relatively unreliable predictors of survival or outcome. The predictive per-

formance of later assessments was model-dependent. In conclusion, simple substitution
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strategies for imputing baseline GCS and pupil response can perform well and may be a

simple alternative to full multiple imputation in many cases.

Introduction

As a major worldwide cause of death, disability and socioeconomic burden [1], traumatic

brain injury (TBI) continues to be an important area of research into novel or better stratified

interventions or systems of care. Baseline risk adjustment is critical to any outcome-focused

research project aiming to better understand the influence of putative factors or treatments

that may improve outcomes. There have been a number of attempts at baseline characterisa-

tion of which the International Mission on Prognosis and Clinical Trial Design in Traumatic

Brain Injury (IMPACT) [2] and Corticosteroid Randomisation After Significant Head Injury

(CRASH) [3] model are perhaps the best known. In common with other such models the pre-

senting Glasgow coma score (GCS- or its motor component GCSm) and number of unreactive

pupils are both important clinical parameters describing injury severity at presentation.

There is some potential for ambiguity in defining the baseline GCS and pupil reactivity as

both may be confounded by other contributors to unconsciousness such as hypoxia or hypo-

tension before resuscitation. The pre-hospital and resuscitation phase of severely injured TBI

patients is a high-pressure and time-critical period which may additionally involve handover

of care between a number of different individuals, not all of whom may be healthcare profes-

sionals experienced in GCS assessment. Coupled with a general lack of documentation stan-

dardisation between pre-hospital and hospital care, there may be a high proportion of such

early data that will be missing, unreliable or confounded by under-resuscitation [4]. Dealing

with these missing covariates is a critical data curation task since baseline adjustment under-

pins almost all analyses and therefore deserves particular methodological attention.

Complete case analysis is generally statistically undesirable and therefore some form of

imputation strategy will be necessary to deal with missing values. Arrival [5] or post-emer-

gency resuscitation scores may be substitutes, but it is not clear which is best or, when more

than one is present, which to use. Furthermore, the GCS after TBI is not static; instead it may

evolve dramatically in the early phase, and, since it is impossible to define standardised time-

points given the vast heterogeneity of TBI presentations, this may influence the measured level

of consciousness even between similarly injured patients. There is no clear consensus on

which time points to use; for example, IMPACT and Trauma Audit and Research Network

(TARN) models [6] have published different approaches.

The concept of a ‘post-stabilisation’ score (as used in IMPACT) is superficially appealing

but also problematic to unabiguously define clinically. In modern pre-hospital care and emer-

gency medicine systems, anaesthesia and endotracheal intubation are key interventions which

may even occur simultaneously with other resuscitation efforts so that the motor and verbal

GCS sub-scores may be unavailable in the ‘best resuscitated’/‘post stabilisation’ case. Again,

this mandates some form of imputation. One simple ‘shorthand’ approach used by clinicians

is to rate these components a ‘1’ but this approach may over-estimate injury severity. Some

form of imputation is desirable, and, whilst a regression model for the estimation of missing

values has been published [7], such a univariate approach does not include other covariates

and also discards discriminating pre-intubation information which might be prognostically

important.
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Multiple imputation is perhaps the most appropriate approach for dealing with missingness

when constructing prediction models [8] and is likely to be less biased than complete case

analysis if performed carefully. However, the computation of many large datasets may be com-

putationally expensive and reproducibility will be determined by choice of covariates for the

imputation as well as the imputation method chosen and the random seed. Multiple imputa-

tion offers the advantage of creating a complete dataset of covariates, avoiding combining

data across various time-points. However, the variance from the various imputations must be

incorporated in some way into the uncertainty of the final estimator. Methods for pooling

results across imputations exist for many simpler model types but may not be established in

other cases in general (in which case researchers may need to instead use a single imputation

or alternative strategy).

The Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain

Injury (CENTER-TBI) study [9, 10] is a large, pan-European observational study which aims

to better understand the determinants of outcome and optimal treatment by better clinical

phenotyping through deep data collection. Detailed data on early neurological assessments as

well as outcome data (including, inter alia, the extended Glasgow outcome score—GOSE) was

collected. For all the reasons above there is considerable uncertainty in how best to robustly

define the most ‘reliable’ GCS (or sub-score) to use in such observational research and what

difference different imputation assumptions might make. It is therefore likely to be critical to

establish this to ensure a consistent, principled and reproducible approach, and such consider-

ations will be equally appropriate to other studies.

The CENTER-TBI dataset is particularly complex. The GCS and pupil response variables in

CENTER-TBI are recorded at several time points: pre-hospital, arrival at any referring hospital

(for secondary transfers), arrival at study hospital and post-stabilization. The objective of this

work was to determine a clinically and statistically plausible method to obtain a derived base-

line GCS for prognostic analyses in CENTER-TBI. We investigated different substitution

methods for dealing with missing GCS and pupil reactivity data as well as comparing these

strategies to more numerically cumbersome multiple imputation. Furthermore, we set out to

determine the effect of different strategies for imputing missing motor and verbal sub-scores

in anaesthetised and ventilated patients.

Materials and methods

We assessed the performance of these strategies and their combinations by comparing McFad-

den’s pseudo-R2 for both logistic regression (for dichotomous alive/dead outcome) and pro-

portional odds logistic regression (for the ordered categorical modelling of GOSE) using the

other IMPACT predictors as additional covariates.

Patients and data

Like many TBI studies, the IMPACT model was based on patients with moderate and severe

TBI (i.e., GCS� 12). By contrast, the CENTER-TBI study is instead stratified into ‘emergency

department’, ‘hospital admission’, ‘ICU admission’ strata. These strata are not directly compa-

rable to the traditional ‘mild’, ‘moderate’ and ‘severe’ categorization. Since re-stratification

would require the use of an optimal GCS, which is itself the goal of this work, we instead

created models for all patients and for the ICU stratum only to avoid this circular logic. The

latter stratum is likely to best approximate combined moderate/severe categories modelled in

IMPACT.

We used release 1.0 of the CENTER-TBI data set with local data hosting, management and

extraction on the Opal platform [11]. GCS component and number of unreactive pupils data
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from the original data set were available for the following time-points: pre-hospital, arrival at

referral centre ED (where a secondary transfer took place), arrival at study hospital and ED

discharge (‘post-stabilisation’). IMPACT covariates were extracted from the electronic case

report form data.

Ethics

The study was authorised by the CENTER-TBI management committee. The ethical approvals

for the CENTER-TBI study have been previously described [9, 10] and a full list of ethical

approvals is available at https://www.center-tbi.eu/.

Imputation by substitution strategies

We considered five approaches for obtaining a derived GCS, GCS motor score and pupil

reactivity:

• ‘IMPACT’ approach: start with ED discharge assessments (approximates the ‘post-stabilisa-

tion’ score used in IMPACT). If absent, substitute with the next available value going back in

time. I.e., ED discharge! study hospital ED arrival! referring hospital ED arrival! pre-

hospital.

• ‘TARN’ approach: start with the value on arrival to the referring hospital ED. If absent, find

most reliable score going forward in time. I.e., referring hospital ED arrival (for secondary

transfers)! study hospital ED arrival. If this is missing then the prehospital score is used.

• ‘Best score’ approach (to reflect the severity of primary injury without neuroworsening/once

resuscitated): Best neurological status (highest GCS sum or GCS motor score, fewest unreac-

tive pupils) across all time points (pre-hospital/referring hospital (secondary transfers)/study

hospital ED arrival/post-stabilization).

• ‘Erasmus’ approach: start with the study hospital arrival GCS score (reflects complete pre-

hospital/referring centre stabilisation). If this is missing, use sequence study hospital arrival

! referring hospital arrival (for secondary transfers)! pre-hospital.

• ‘Worst score’ approach (most pessimistic assessment): Worst neurological status (lowest

GCS sum or GCS motor score, most unreactive pupils across all time points.

The outcome of interest was 6 month survival or GOSE. Where this was missing, it was

imputed (as explained below).

Statistical analysis

We used the same predictors as were found to be significant in the IMPACT model, viz. we

added candidate GCS/GCSm and pupil unreactivity to a set of ‘fixed’ baseline characteristics;

age, glucose, haemoglobin and CT characteristics (Marshall score, the presence of traumatic

subarachnoid haemorrhage or epidural haematoma). We used 6 month GOSE as our outcome

of interest.

To evaluate ‘simple’ imputation by substitution strategies for GCS, GCSm and pupil reac-

tivity it was necessary to first obtain a fully imputed set of the remaining covariates and out-

comes so that we did not have additional missingness in these parameters that varied between

models. Linear regression was used for imputation of haemoglobin and glucose which were

approximately normally distributed. Logistic regression was used for dichotomous presence or

absence of an extradural haematoma or traumatic subarachnoid haemorrhage. Marshall score

and 6 month GOSE (the outcome of interest) was imputed using a proportional odds model
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which also included 3 and 12 month GOSE for the imputation to better approximate 6 month

GOSE. Cases in which no GOSE was available were deleted after imputation for statistical effi-

ciency. Age, hypoxia and hypotension were included in the imputation as predictors but did

not need to be imputed themselves: age data was complete and hypoxia and hypotension were

assumed to not have been present if the data were missing.

The putative GCS, GCSm and pupil reactivity scores were then calculated as described

above using Opal. The similarity among these scores was compared by pairwise Spearman’s

correlation analysis. We then used proportional odds logistic regression to build models with 6

month GOSE as an ordinal outcome evaluating all combinations of GCS or GCSm and pupil

versions. We also constructed equivalent logistic regression models for 6 month survival sta-

tus. Model performance was compared using their (McFadden’s) pseudo-R2 values.

To evaluate the performance of models with a completely imputed data set, similar imputa-

tions were performed for the complete data set by also including the GCS and GCS motor

score as well as pupils for pre-hospital, study or referring hospital ED arrival score and ulti-

mate ED discharge time points. Because the ‘referring’ ED time point applies only to the subset

of patients who underwent a secondary transfer to the study centre, the imputed ‘referring’

and ‘study hospital’ arrival assessments were then combined into a single ‘presenting ED

arrival’ time point representing the neurological assessment at the first ED to which the patient

presented.

In all cases, 200 imputed data sets were obtained using 5 iterations using the MICE (version

3.3.0) package [12] for the R statistical programming language [13]. MASS (version 7.3.50) was

used to build the proportional-odds model. The imputations were run on the machine (Intel

Xeon Silver 4110 2.1G, 8C/16T, 10 GB RAM, 240 GB Hard disk) running Ubuntu 16.04.5 LTS

(Xenial). Cases with no GOSE at any of the time points were included in the imputation but

subsequently deleted before modelling for statistical efficiency in accordance with the method-

ology of [14]).

Results

The patient characteristics of the CENTER-TBI data set will be published elsewhere. However,

for all strata there were (n = 4, 509) patients and the ICU stratum subset consisted of (n = 2,

138) patients. Multiple imputations each took approximately 6 hours of dedicated machine

time.

Imputation by substitution

The above substitution strategies were implemented and the percentage missing for different

imputation by substitution strategies for GCS and GCSm are shown in Table 1.

Fig 1 shows how the resulting imputed data sets using different imputation strategies are

weighted across time points. The distribution of GCS between ‘mild’, ‘moderate’ and ‘severe’

categories was similar and is presented in the Supporting information for all strata and the

ICU stratum (S1 and S2 Figs). The GCS and GCSm and also pupils were highly correlated

between imputation strategies (Fig 2) illustrating their degree of equivalence.

Fig 3 shows the variation of McFadden’s pseudo-R2 for logistic regression models for alive/

dead constructed using differing ‘simple’ imputation by substitution schemes and using differ-

ent strategies for handling motor and verbal scores for intubated or sedated patients. There

was a variation in pseudo-R2 between models that was often statistically significant but small

in absolute value. For all stratum models, the optimal model (with R2� 0.44) was obtained by

using the full GCS sum score and using the IMPACT methodology for imputation (although

combining IMPACT GCS with ERASMUS pupils performed marginally better still) with
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deletion of patients where motor or verbal subscores could not be assessed. For the ICU stra-

tum only (S3 Fig), the optimal strategy (R2� 0.38) was to use the best-neurology motor score

although the best-neurology pupils was consistently sub-optimal across the models. In this

group, treating un-assessed/untestable verbal or motor subscores as ‘1’ produced comparable

or possibly marginally better models than a deletion strategy.

Table 1. Percent missing data for GCS sum score, GCS motor component and pupil reactivity for different imputation by substitution strategies (all strata).

BEST WORST IMPACT TARN ERASMUS

GCS sum score

NC if missing either v or m 3.97 3.97 3.97 5.74 5.74

NC if missing m, missing v = 1 2.77 2.77 2.77 4.72 4.72

NC if missing v, missing m = 1 3.95 3.95 3.95 5.70 5.70

Missing v or m = 1 2.46 2.46 2.46 4.37 4.37

GCS motor score

NC if missing m 2.48 2.48 2.48 4.46 4.46

Missing m = 1 2.02 2.02 2.02 3.90 3.90

Pupil reactivity

Missing pupil response 5.81 5.81 5.81 8.56 8.56

For the sum score, where either or both of the GCS verbal of motor scores were missing (i.e., if endotracheally intubated or when under deep sedation/paralyzed

respectively), the GCS was either not calculated (NC) or calculated by substituting 1 for either m or v according to the logic above. For the motor component, the effect

of either not calculating (NC) a score or replacing this with 1 is presented. Data is for all strata.

https://doi.org/10.1371/journal.pone.0253425.t001

Fig 1. Distribution of data choices across time points by imputation by substitution strategy reflecting

completeness of the underlying data. For example, although the ERASMUS and IMPACT approaches are heavily

dominated by data from the ED arrival, the IMPACT method is also weighted by a similar proportion of assessments

made at ED discharge. In contrast, the best and worst neurological assessments were weighted towards earlier, pre-

hospital and ED arrival, time points.

https://doi.org/10.1371/journal.pone.0253425.g001
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The equivalent results for proportional odds models for GOSE are shown in Fig 4. Again,

there was variability in model performance that was typically statistically significant but small.

Values of R2� 0.16 were much lower than for the dichotomous/logistic models. For the all

strata models, the optimal model was obtained by combining the IMPACT method full GCS

sum scores with either IMPACT or ERASMUS imputed pupil responses. In this group, imput-

ing unavailable motor component as 1 but deleting cases for which verbal component was not

assessable gave the best model (with R2� 0.165). For the ICU stratum, the best model (with

R2� 0.14) was obtained using the best-neurology full GCS sum and by imputing missing

motor and verbal components as 1 (S4 Fig). There was little to choose between pupil imputa-

tion strategies except that the best neurology strategy performed consistently badly.

Full multiple imputation models

Fig 5 compares the performance of logistic regression (alive/dead) models using GCS and

pupil time points that are fully imputed. For the all strata group, the optimal strategy for han-

dling missing motor or verbal components was deletion and imputation. Model performance

was typically better using the GCS sum rather than motor sub-score and there was a consistent

trend to better model performance using neurological assessments from later time points

(although using pupil assessments at ED discharge was marginally inferior). The best possible

R2 was�0.44. For the ICU group, deleting and imputing missing motor or verbal GCS time

Fig 2. Spearman’s correlations between imputed data for all patients (complete case analysis with verbal/motor scores for intubated/sedated

patients treated as missing). The figure shows that GCS, GCSm and pupil reactivity variables are highly correlated between substitution

imputation methods. Furthermore, the GCS sum and motor component are also highly correlated. There is a modest negative correlation between

imputed versions of pupil reactivity and GCS sum or motor score (the negative correlation reflecting the coding of pupils as the number of

unreactive pupils).

https://doi.org/10.1371/journal.pone.0253425.g002
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points was also a good strategy, yet substituting missing motor as 1 was marginally better still.

Use of the full GCS sum again marginally outperformed the models based on the motor com-

ponent alone. A similar consistent pattern to improved models at later time points (again, with

ED discharge pupils performing marginally worse than the ED arrival values). For the ICU

group (S5 Fig), the best R2� 0.38. Models based on pre-hospital neurological assessments

were the worst performing for both all strata and ICU stratum groups.

The results for the fully-imputed proportional odds models are shown in Fig 6. Again,

model performance was lower than that of the logistic regression model overall but slightly

higher for the all strata group (best R2� 0.155) compared to the ICU subgroup (best R2�

0.135; S6 Fig). Deletion and imputation of missing motor and verbal sub-components was the

best strategy in both groups. However, in contrast with the results of the logistic regression

model, as summarised in Fig 5, the optimal time for prediction (in both groups) of the propor-

tional odds model was at the time of arrival to the presenting hospital rather than at ED dis-

charge. Again, using the pre-hospital time-point consistently generated the worst performing

models.

Discussion

These results from CENTER-TBI are broadly in agreement with the performance of those

previously quoted [15]. It is important to point out that the (pseudo)variance is highly depen-

dent on model choice (e.g., dichotomous alive/dead vs proportional odds model for ordered

GOSE categories, which is a more difficult modelling task, statistically speaking and has a

Fig 3. Comparison of logistic regressions for dichotomous 6 month survival/death for different combinations of GCS, GCS-motor score and pupil

response imputation choices. The boxes/whiskers reflect the variability from the 200 imputed data sets used. Data shown for all strata (data for the ICU

stratum was similar and is presented in the S3 Fig).

https://doi.org/10.1371/journal.pone.0253425.g003
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commensurately smaller R2). Similarly, it is perhaps not surprising that model performance

varies between patient subgroups; models for all strata generally performed better than those

for the ICU subgroup (see Supporting information for figures) although the difference in R2

was much smaller than the difference between the choice of logistic or proportional odds mod-

els. This is presumably because the all strata group contains a proportionately higher contribu-

tion from less severely injured patients who are more homogeneous.

Our results also demonstrate a sensitivity of model performance to choice of imputation

strategy. This sensitivity is typically statistically significant (even accounting for the very large

number of comparisons in this work) but small in absolute R2 terms. Therefore for applica-

tions, such as baseline risk adjustment, where a truly optimal R2 is not of primary importance,

there is little to choose between these strategies. Broadly speaking, using the full GCS sum per-

forms better than the motor score alone. Furthermore, a very simple imputation by substitu-

tion strategy based on filling in missing values using other available time-points outperforms

full multiple imputation and is computationally far more straightforward. The IMPACT strat-

egy (working backwards from the ED discharge) seems to generally work well, though ‘best

GCS’ and ‘best GCSm’ approaches perform extremely well on the ICU stratum subset of

patients presumably because these parameters best reflect the degree of primary neurological

injury. In contrast, however, use of the best (i.e., highest number of reactive) pupils was a con-

sistently poor strategy. This is interesting and presumably reflects a comparatively dispropor-

tionate effect of even an episode of one or two unreactive pupils on outcome.

For applications (e.g., in generating a prediction tool) where optimal model performance is

important, the sensitivity to imputation strategy may be more important, and it is likely that

the optimal choice will depend on the details of the task at hand. Furthermore, the inclusion

Fig 4. Comparison of pooled proportional odd regressions for GOSE for different combinations of GCS, GCS-motor score and pupil

response imputation choices. The explanatory value of the prehospital time point is consistently limited. The boxes/whiskers reflect the

variability from the 200 imputed data sets used. Data shown for all strata (data for the ICU stratum was similar and is presented in the S4 Fig).

https://doi.org/10.1371/journal.pone.0253425.g004
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criteria, patient group and precise structure or missingness in the CENTER-TBI data set is

likely to be different from other data sets, and it is likely that our findings will not generalise.

Therefore, for specific applications where high model performance is mission critical, we rec-

ommend that a bespoke evaluation, analogous to that presented here, is undertaken to ensure

the best strategy is obtained.

We have demonstrated that simple strategies for imputation of of GCS/pupil reactivity

can outperform formal multiple imputation in terms of R2, simplicity of use and computing

requirements. As demonstrated in Table 1, very low levels (<10%) can be achieved with

such simple approaches, and therefore, imputation by substitution using, say, an ‘IMPACT’

approach has merit over a multiply-imputed strategy for general purposes. Having said this,

such simple models achieve imputation by sacrificing the temporal data, and fully imputed

models allow predictions at multiple time-points which may be of interest in some applica-

tions. Indeed, our findings from the multiply-imputed case are interesting. The models based

on the pre-hospital time-point consistently perform worse than for those using later time

points. This finding may be because pre-hospital clinical assessment is intrinsically less predic-

tive with outcome being dominated by subsequent neuroworsening events. However, another

equally plausible explanation is that this is simply a reflection of the high degree of missingness

and variable accuracy of pre-hospital data. In either case, our results demonstrate the unreli-

ability of pre-hospital data which is an important result when analysing studies or planning

future studies.

It is interesting that there is a monotonic increase in logistic regression performance with

neurological assessments at later time points being more predictive of outcome. Thus, the ED

Fig 5. Comparison of pooled logistic regressions for 6 month GOSE for fully imputed time points. The ‘presenting’ ED arrival time

point was a composite formed from the ‘referring’ and ‘study hospital’ ED time points to reflect the first contact with the ED irrespective

of whether the patient underwent secondary transfer. The boxes/whiskers reflect the variability from the 200 imputed data sets used.

Data shown for all strata (data for the ICU stratum was similar and is presented in the S5 Fig).

https://doi.org/10.1371/journal.pone.0253425.g005
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discharge time point is, broadly speaking, recommended from our findings (although the

trend was perhaps a little less pronounced in the ICU subgroup). This is perhaps not surprising

since ED discharge is temporally closest to outcome and occurs after a period where the

patients are maximally ‘differentiated’. However, we have demonstrated that this is also

model-specific. When a proportional odds model is used to model GOSE instead, the ED dis-

charge time point performs almost as poorly as the pre-hospital one, and predictions are better

based on the neurology at arrival at the presenting hospital. It is hard to be certain why this

might be but clearly there is some factor that is predictive of intermediate outcomes but not

gross survival that is diluted by the time of ED discharge. It is noteworthy that that ED dis-

charge methods are heavily weighted towards ED arrival GCS measures, as illustrated in Fig 1.

Again, this reinforces the need to individualise the time points of neurological assessment

when planning TBI studies.

It is important to stress that what we have herein referred to as the ‘TARN’ imputation

refers only to the order in which we choose substitutes for this ‘simple’ imputation. The actual

TARN model uses a more sophisticated range of covariates (with GCS polytomised to reflect

predictive power and additional categories to reflect injury severity and intubation status). In

this work we have instead used the IMPACT model structure for all evaluations. This facilitates

direct comparison as we are not interested necessarily in finding a new model but instead in

comparing the predictive information content of different GCS/pupil response formulations.

However, this may account for the slightly poorer performance of the TARN imputation in

absolute terms; optimum imputation strategies for other bespoke models, such as that of

Fig 6. Comparison of pooled proportional odds regressions for 6 month GOSE for fully imputed time points. The ‘presenting’ ED arrival time

point was a composite formed from the ‘referring’ and ‘study hospital’ ED time points to reflect the first contact with the ED irrespective of whether the

patient underwent secondary transfer. The boxes/whiskers reflect the variability from the 200 imputed data sets used. Data shown for all strata (data for

the ICU stratum was similar and is presented in the S6 Fig).

https://doi.org/10.1371/journal.pone.0253425.g006
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TARN, would need to be evaluated on a case-by-case basis if achieving the highest possible R2

were of importance.

Our analysis was conducted on data from the CENTER-TBI study in order to determine

the optimal imputation strategy in this case. Other studies are likely to have differing patient

demographics, and the numbers and structural determinants of patterns of missingness may

well differ in alternative medical systems. Indeed the patient populations we used are not

directly comparable to the IMPACT group as the latter was developed on a group of moderate

and severe TBI patients whereas CENTER-TBI was designed to be stratified by ICU, hospital

or ED admission instead. As a result, we cannot be sure that our results will generalise directly.

However, we believe that we have presented a statistical framework which other studies may

wish to follow as a first step when considering their best baseline risk adjustment variables.

Conclusions

Simple imputation of missing GCS, GCS motor score or pupil reactivity using substitution

strategies are computationally trivial and can outperform full multiple imputation in terms of

higher pseudo-R2 and achieve data missingness of less than 10%. For both logistic regression

survival and proportional odds GOSE models, the R2 is sensitive to imputation strategy and

patient subgroup. However, this variability is small in absolute terms, and a strategy based on

using assessments at discharge from the ED and choosing earlier time points if these are miss-

ing generally performs well. Full imputation using chained equations may be useful if tempo-

rally-sensitive predictions are to be made. In this case, pre-hospital assessments are unreliable

predictors.

Supporting information

S1 Fig. GCS distribution between ‘mild’, ‘moderate’ and ‘severe’ categories for all strata.

(TIF)

S2 Fig. GCS distribution between ‘mild’, ‘moderate’ and ‘severe’ categories for the ICU

stratum.

(TIF)

S3 Fig. Comparison of logistic regressions for dichotomous 6 month survival/death for

different combinations of GCS, GCS-motor score and pupil response imputation choices.

The boxes/whiskers reflect the variability from the 200 imputed data sets used. Data shown for

the ICU stratum.

(TIF)

S4 Fig. Comparison of pooled proportional odd regressions for GOSE for different combi-

nations of GCS, GCS-motor score and pupil response imputation choices. The explanatory

value of the prehospital time point is consistently limited. The boxes/whiskers reflect the vari-

ability from the 200 imputed data sets used. Data shown for the ICU stratum.

(TIF)

S5 Fig. Comparison of logistic regressions for dichotomous 6 month survival/death for

different combinations of GCS, GCS-motor score and pupil response imputation choices.

The boxes/whiskers reflect the variability from the 200 imputed data sets used. Data shown

from the ICU stratum.

(TIF)

S6 Fig. Comparison of pooled proportional odds regressions for 6-month GOSE for fully

imputed time points. The ‘presenting’ ED arrival time point was a composite formed from
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the ‘referring’ and ‘study hospital’ ED time points to reflect the first contact with the ED irre-

spective of whether the patient underwent secondary transfer. The boxes/whiskers reflect the

variability from the 200 imputed data sets used. Data shown for the ICU stratum.

(TIF)
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rick57, Ezer Erzsébet66, Fabricius Martin67, Feigin Valery L.68, Feng Junfeng61, Foks Kelly62,

Fossi Francesca14, Francony Gilles31, Frantzén Janek69, Freo Ulderico70, Frisvold Shirin71, Fur-

manov Alex72, Gagliardo Pablo73, Galanaud Damien25, Gao Guoyi74, Geleijns Karin41, Ghuy-

sen Alexandre75, Giraud Benoit24, Glocker Ben76, Gomez Pedro A.42, Grossi Francesca59,

Gruen Russell L.77, Gupta Deepak78, Haagsma Juanita A.46, Hadzic Ermin64, Haitsma Iain79,

Hartings Jed A.80, Helbok Raimund21, Helseth Eirik81, Hertle Daniel28, Hill Sean82, Hoede-

maekers Astrid83, Hoefer Stefan51, Hutchinson Peter J.1, Haberg Asta Kristine84, Jacobs

Bram85, Janciak Ivan86, Janssens Koen58, Jiang Ji-yao74, Jones Kelly87, Kalala Jean-Pierre88,

Kamnitsas Konstantinos76, Karan Mladen89, Karau Jana20, Katila Ari69, Kaukonen Maija90,

Keeling David52, Kerforne Thomas24, Ketharanathan Naomi41, Kettunen Johannes91, Kivisaari

Riku90, Kolias Angelos G.1, Kolumbán Bálint92, Kompanje Erwin93, Kondziella Daniel67, Kos-
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