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Abstract 

Background: Information on long‑term alcohol consumption is relevant for medical and public health research, 
disease therapy, and other areas. Recently, DNA methylation‑based inference of alcohol consumption from blood was 
reported with high accuracy, but these results were based on employing the same dataset for model training and 
testing, which can lead to accuracy overestimation. Moreover, only subsets of alcohol consumption categories were 
used, which makes it impossible to extrapolate such models to the general population. By using data from eight pop‑
ulation‑based European cohorts (N = 4677), we internally and externally validated the previously reported biomarkers 
and models for epigenetic inference of alcohol consumption from blood and developed new models comprising all 
data from all categories.

Results: By employing data from six European cohorts (N = 2883), we empirically tested the reproducibility of the 
previously suggested biomarkers and prediction models via ten‑fold internal cross‑validation. In contrast to previous 
findings, all seven models based on 144‑CpGs yielded lower mean AUCs compared to the models with less CpGs. For 
instance, the 144‑CpG heavy versus non‑drinkers model gave an AUC of 0.78 ± 0.06, while the 5 and 23 CpG models 
achieved 0.83 ± 0.05, respectively. The transportability of the models was empirically tested via external validation in 
three independent European cohorts (N = 1794), revealing high AUC variance between datasets within models. For 
instance, the 144‑CpG heavy versus non‑drinkers model yielded AUCs ranging from 0.60 to 0.84 between datasets. 
The newly developed models that considered data from all categories showed low AUCs but gave low AUC variation 
in the external validation. For instance, the 144‑CpG heavy and at‑risk versus light and non‑drinkers model achieved 
AUCs of 0.67 ± 0.02 in the internal cross‑validation and 0.61–0.66 in the external validation datasets.
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Introduction
Alcohol consumption is a modifiable lifestyle factor asso-
ciated with morbidity and mortality worldwide [1]. It 
was estimated to be the seventh-leading risk factor for 
disability-adjusted life-years (DALYs) and deaths in 2016, 
accounting for 5.2% (95% CI 4.4–6.0) of deaths globally 
[1]. Various diseases are caused or strongly influenced by 
excessive alcohol consumption, often in a dose-depend-
ent manner, such as different forms of cancer, various 
liver diseases, cardiovascular disease, epilepsy, and uni-
polar depressive disorder [2].

Recent alcohol consumption is detectable by breatha-
lyzers or direct measurement of the alcohol concentra-
tion in blood and urine; however, such measurements 
only provide information on few hours since the last 
alcohol consumption. For example, ethanol can be 
detected in urine within ten to twelve hours after the 
last drink, but not later [3]. Blood-based toxicologi-
cal tests for alcohol consumption are also available, 
which are based on direct or indirect biomarkers. A 
direct biomarker is the result from ethanol metabo-
lism or its reaction with other substances in the body, 
including ethyl glucuronide (EtG), ethyl sulfate (EtS), 
and phospholipid phosphatidylethanol (PEth). Indirect 
biomarkers are derived from cellular processes that 
undergo changes as a response to alcohol consumption, 
including carbohydrate-deficient transferrin (CDT), 
mean corpuscular volume (MCV), aspartate-ami-
notransferase (AST), alanine aminotransferase (ALT), 
and gamma-glutamyl transferase activity (GGT) [4, 
5]. It is important to note that these direct and indi-
rect biomarkers are specifically useful to determine 
the extreme categories, including excessive alcohol 
consumption or abstinence, and for recent alcohol 
consumption [5]. For example, CDT can distinguish 
excessive alcohol consumption of on average > 50–80 g 
ethanol per day over a period of 2  weeks [4]. In con-
trast, there are no reliable biomarkers available that 
can determine overall alcohol consumption habits like 
to distinguish heavy and at-risk drinkers from light and 
non-drinkers, or drinkers from non-drinkers and that 
are informative for alcohol consumption for longer 
periods of time. Therefore, due to the limited progress 
in previous alcohol biomarker research, information 

on long-term alcohol consumption is typically still col-
lected using self-reports, although they are known to 
be unreliable [6]. Accurate and reliable biomarkers that 
reflect habitual alcohol consumption over months and 
years are needed to better diagnose and treat alcohol-
related diseases and for objective exposure assessment 
in studies on alcohol consumption and health [7].

DNA methylation has been proposed as a biomarker 
for the detection of lifestyle factors in general [8] and 
several studies have already shown that alcohol con-
sumption is associated with changes in DNA methyla-
tion levels in particular [9–12]. A few studies have also 
explored the possibility of epigenetic inference of alcohol 
consumption from blood [12–15]. A large benefit from 
epigenetic-based inference is the increasing availability 
of DNA methylation information in study participants, 
as DNA methylation is extensively studied for its associa-
tion with diseases. The most extensive study investigat-
ing the epigenetic association and inference of alcohol 
consumption was done by Liu et al. [12]. In this study, an 
epigenome-wide association study (EWAS) meta-analysis 
on alcohol consumption was conducted in 9643 individu-
als of European ancestry from blood-derived DNA [12]. 
The authors identified 363 CpGs significantly associated 
(P < 1 ×  10−7) with alcohol consumption levels used as a 
continuous variable (grams/day). A meta-analysis was 
performed for prediction marker discovery in a subset of 
6926 participants of European ancestry, which identified 
361 CpGs (P < 5 ×  10−6). The study also reports impres-
sively high prediction accuracies, expressed as area under 
the curve (AUC) estimates, for DNA methylation-based 
prediction models for categorical alcohol consumption 
based on sets of 5, 23, 78, or 144 CpG markers plus age, 
sex, and BMI. These models include pairwise combina-
tions of four alcohol consumption categories with the 
highest AUC obtained for the models with the extreme 
categories. For instance, the reported 144-CpG model 
showed discrimination of heavy drinkers versus (vs.) 
non-drinkers with an AUC of 0.91–1.0 (an AUC of 1.0 
means completely accurate inference) in the discovery 
dataset and all four replication cohorts as well as 0.86–
1.0 for heavy drinkers vs. light drinkers [12]. The authors 
demonstrated increase in AUC with increased number of 
CpG predictors included in the models.

Conclusions: The outcomes of our internal and external validation demonstrate that the previously reported predic‑
tion models suffer from both overfitting and accuracy overestimation. Our results show that the previously proposed 
biomarkers are not yet sufficient for accurate and robust inference of alcohol consumption from blood. Overall, our 
findings imply that DNA methylation prediction biomarkers and models need to be improved considerably before 
epigenetic inference of alcohol consumption from blood can be considered for practical applications.

Keywords: Epigenetics, DNA methylation, Alcohol inference, Prediction, Inference, Blood
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The high prediction accuracies reported by Liu 
et  al. [12] were questioned based on methodological 
grounds by Hattab et  al. [16]. Liu et  al. were particu-
larly criticized for not having used the coefficients from 
the discovery dataset to determine prediction accura-
cies in the replication datasets, but instead, they re-
estimated these coefficients in each replication cohort 
using the same dataset for model training and testing. 
Hattab et  al. [16] concluded that the prediction accu-
racies published by Liu et  al. represent overestimates. 
However, Hattab et al. based their conclusions entirely 
on simulated data instead of empirical data. In a sub-
sequent study, Yousefi et al. [17] found only half of the 
alcohol consumption variance explained by the DNA 
methylation markers in their independent data, com-
pared to the explained variance values reported by 
Liu et al. [12]. In addition, Yousefi et al. [17] generated 
DNA methylation-derived scores using the coefficients 
made available by Liu et al.; based on these coefficients, 
they obtained much lower AUCs for the same mod-
els as reported by Liu et  al. For instance, for adults at 
midlife, the reported AUCs were between 0.48 to 0.57 
for distinguishing heavy drinkers from non-drinkers 
and AUCs between 0.55 to 0.57 for heavy drinkers vs. 
light drinkers. Although the Yousefi et  al. study used 
empirical data, an important limitation of the study is 
their relatively small sample size, comprising only of 14 
heavy drinkers, 67 at-risk drinkers, 748 light drinkers, 
and 54 non-drinkers.

Another source for the Liu et al. [12] AUCs putatively 
reflecting overestimations is their use of category sub-
sets, and therewith participant subsets, in their predic-
tion modeling approach. For instance, for estimating 
AUC for heavy drinkers vs. non-drinkers, Liu et al. only 
used data from heavy and non-drinkers thereby exclud-
ing the data from light drinkers and at-risk drinkers. Such 
use of partial data in prediction modeling is expected to 
result in overestimated prediction outcomes compared 
to a model that would include all available categories. 
Moreover, models that exclude participants based on 
their non-considered categories cannot be applied to the 
general populations where people with the excluded cat-
egories exist but can never be inferred correctly because 
their category was excluded from the model.

In the current study, we firstly aimed at replicating the 
association between alcohol consumption and the 363 
CpGs previously identified by Liu et  al. [12], using data 
from 2042 independent participants from five cohorts 
[18–22]. Then, by using a total of 4677 individuals from 
eight European cohorts [18–25], we aimed to thoroughly 
validate the DNA methylation biomarker sets and predic-
tion models for the epigenetic inference of alcohol con-
sumption from blood previously used by Liu et  al. [12]. 

In addition, we trained and validated two new models 
including all alcohol consumption categories.

Results
Study populations and data sets
For replicating the association between alcohol consump-
tion and the 363 CpGs previously reported by Liu et al. 
[12], we used data from 2042 individuals of five European 
cohorts as part of the Biobank-based Integrative Omics 
Study (BIOS) consortium [18–22, 26].

For prediction model building and internal validation, 
we employed a total dataset of 2883 Europeans, includ-
ing the 2042 individuals from the BIOS consortium [26] 
together with 841 participants from The Cooperative 
Health Research in the Region of Augsburg (KORA) 
study (F4) [23]. Only participants with complete alcohol 
consumption data and DNA methylation data of all 144 
predictive CpGs were included. Notably, there is no over-
lap between these data and those used by Liu et al. [12] 
in their prediction marker discovery EWAS. This makes 
our model building dataset completely independent from 
that of Liu et al. The KORA data included here were pre-
viously used by Liu et al. for prediction replication analy-
sis; thus, its use for model building here provides no data 
dependency problem.

For external validation, we applied data from three 
European cohorts not applied for model training and 
internal validation: i.e., participants from the Rotterdam 
Study (sub-cohort RS-III-1) [18] (N = 648) not included 
in the BIOS consortium, from the Study of Health in 
Pomerania (SHIP)-Trend cohort (N = 433) [24], and two 
datasets from the TwinsUK Study, TwinsUK (N = 713) 
and TwinsUK2 (N = 442) [25]. The TwinsUK2 (N = 442) 
dataset comprises a subset of the TwinsUK (N = 713) par-
ticipants but with re-processed DNA methylation dataset 
and a different alcohol consumption collection method 
(Additional file 1: Supplementary Methods). Of note, the 
TwinsUK and RS-III-1 data were previously used by Liu 
et al. [12] in their prediction marker discovery EWAS that 
identified the 361 associated CpGs (P < 5 ×  10–6). Testing 
the inference ability of these 361 alcohol-associated CpGs 
by Liu et  al. was solely conducted in the Framingham 
Heart Study data [27], which identified the 5, 23, 78, and 
144 CpG marker sets used for prediction modelling by 
Liu et al. and therefore here as well. However, since these 
data were used in the initial marker discovery EWAS, we 
cannot exclude an overestimation effect in our prediction 
accuracy estimates obtained from these two cohorts (see 
below).

An overview of the datasets included in each analysis 
step of our study is provided in Fig. 1, their characteris-
tics are summarized in Table 1 and described in detail in 
Additional file 1: Supplementary Methods.
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Replication of alcohol consumption associations
We aimed at replicating the association between alco-
hol consumption and the 363 CpGs previously identi-
fied by Liu et  al. (P < 1 ×  10–7) [12], using data from the 
BIOS consortium (N = 2042), which does not overlap 
with the Liu et al. data. This analysis revealed successful 
replication of 106 (29%) of these 363 CpGs after apply-
ing the Bonferroni-corrected significance threshold 
of P < 1.4 ×  10−4 (0.05/363) and 283 (78%) CpGs based 
on the uncorrected nominal significance threshold of 
P < 0.05. All but one (cg06603309) of the 106 CpGs rep-
licated after Bonferroni correction showed an inverse 
relationship with alcohol consumption, i.e., lower DNA 
methylation levels were associated with higher alcohol 
consumption, in line with the findings from the initial 
discovery EWAS by Liu et al. [12].

The top CpG in the Liu et  al. discovery EWAS was 
cg02583484, annotated to the heterogeneous nuclear rib-
onucleoprotein A1 gene (P = 1.50 ×  10–19, β = -0.0004), 
which was replicated in our independent dataset with 
a P-value of 1.16 ×  10–13 and β = -0.0055. In our data-
set, this CpG had a methylation range with a minimum 
DNA methylation beta-value of 0.1457 and a maximum 
of 0.4189. However, this marker was not among the 
144 CpGs used by Liu et  al. for inference and thus was 
not used by us for prediction validation (see below). 
Out of the 144 predictive CpGs, we replicated 29 CpGs 
(P < 1.4 ×  10−4), which were all included in the 144-CpG 
model, 19 in the 78-CpG model, 6 in the 23-CpG model, 

External model validation (N=1794) 

SHIP-Trend (N = 433) TwinsUK (N=713) TwinsUK2 (N=442) RS (N=648) 
RS-III-1

Model building and internal model validation (N= 2883)

RS (N=611) 
RS-II-3 and RS-III-2 CODAM (N=159 NTR (N=617) LLS (N=491) PAN (N=164) KORA (N= 841)

Replication of the 363 CpGs associated with alcohol intake (N=2042)

RS (N= 611)
RS-II-3 and RS-III-2 CODAM (N=159) NTR (N=617) LLS (N=491) PAN (N=164)

Fig. 1 Use of study populations in each analysis. The 363 
alcohol‑associated CpGs previously identified by Liu et al. were 
replicated using data from 2042 participants of five cohorts 
studies embedded within the BIOS consortium. An additional 841 
participants from the KORA F4 study were combined with these 2042 
participants and together comprise our model building dataset. 
The model building dataset was used to train the prediction models 
and to test the reproducibility of the prediction models via internal 
cross‑validation. The transportability of the models was tested in 
the external validation phase based on 1794 participants from 
three cohorts that were independent from the data used for model 
building and internal validation. Abbreviations: CODAM, Cohort on 
Diabetes and Atherosclerosis Maastricht; KORA, Cooperative Health 
Research in the Region of Augsburg study; LLS, Leiden Longevity 
Study; NTR, Netherlands Twin Register; PAN, Prospective ALS Study 
Netherlands; RS, Rotterdam Study; SHIP‑Trend, Study of Health in 
Pomerania‑Trend; TwinsUK‑ The TwinsUK Study; TwinsUK2‑ Subset of 
the TwinsUK Study

Table 1 Dataset characteristics used in model building, internal and external validation

The total model building dataset was also used for internal ten-fold cross-validation. BMI, body mass index; CODAM, Cohort on Diabetes and Atherosclerosis 
Maastricht; KORA F4, The Cooperative Health Research in the Region of Augsburg study; LLS, Leiden Longevity Study; NTR, Netherlands Twin Register; PAN, 
Prospective ALS Study Netherlands; RS, Rotterdam Study; SD, standard deviation; SHIP, Study of Health in Pomerania-Trend cohort; TwinsUK, The TwinsUK Study; 
TwinsUK2, Subset of the TwinsUK Study. The alcohol categories were defined as; non-drinkers were defined as participants with no alcohol consumption; light drinkers 
with an alcohol consumption of 0 < g per day ⩽28 in men and 0 < g per day ⩽14 in women; and heavy drinkers with an alcohol consumption of ⩾42 g per day in men 
and ⩾28 g per day in women

Study N Age 
(years), 
mean (SD)

Men (%) BMI mean 
(SD)

Alcohol gr/
day, Median 
(min, max)

Non-drinkers 
(%)

Light drinkers 
(%)

At-risk 
drinkers (%)

Heavy drinkers 
(%)

Model building and internal validation dataset

RS‑II‑3/III‑2 611 67 (6) 275 (45) 27.8 (4) 8.6 (1, 57) 0 (0) 545 (89) 52 (9) 14 (2)

CODAM 159 66 (7) 86 (54) 28.9 (4) 7.9 (0, 72) 12 (8) 117 (74) 23 (14) 7 (4)

NTR 617 39 (14) 188 (31) 24.6 (4) 5.1 (0, 69) 195 (32) 348 (56) 44 (7) 30 (5)

LLS 491 58 (6) 231 (47) 25.3 (3) 13.0 (0, 90) 36 (7) 309 (63) 98 (20) 49 (10)

PAN 164 62 (9) 100 (61) 26.0 (4) 11.0 (0, 77) 1 (1) 127 (77) 20 (12) 16 (10)

KORA F4 841 61 (9) 415 (49) 28.0 (5) 7.6 (0, 150) 251 (30) 354 (42) 133 (16) 103 (12)

Total dataset 2883 57 (14) 1295 (45) 26.7 (4) 8.0 (0, 150) 495 (17) 1800 (62) 370 (13) 218 (8)

External validation datasets

SHIP‑Trend 433 51 (14) 205 (47) 27.2 (4.1) 3.6 (0, 82) 47 (11) 346 (80) 28 (6) 12 (3)

TwinsUK 713 58 (10) 0 (0) 26.7 (5) 2.3 (0, 101) 187 (26) 423 (59) 67 (9) 36 (5)

TwinsUK2 442 59 (9) 0 (0) 26.6 (5) 5.3 (0, 94) 36 (8) 311 (70) 46 (10) 49 (11)

RS‑III‑1 648 59.6 (8) 298 (46) 27.7 (5) 6.4 (0, 57) 64 (10) 495 (76) 79 (12) 10 (2)
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and 3 in the 5-CpG model. A summary of the results is 
presented in Additional file 2: Table S1.

A total of 77 genes were annotated to the 106 replicated 
CpGs after Bonferroni correction. Gene ontology enrich-
ment analysis via http:// geneo ntolo gy. org/ page/ go- enric 
hment analy sis showed that these 77 genes were enriched 
in two biological processes. The ‘negative regulation of 
cellular macromolecule biosynthetic process’ included 
enrichment of 16 genes (3.49-fold, FDR = 4.91 ×  10–2) 
and 25 genes were enriched in the ‘cellular response to 
chemical stimulus’ (2.63-fold, FDR = 3.80 ×  10–2).

Internal validation of alcohol consumption prediction 
models
To test the reproducibility of the seven prediction mod-
els reported by Liu et  al. [12], we performed internal 
validation in our model building dataset via ten-fold 
cross-validation. The CpGs included per marker set and 
their average DNA methylation β-value per alcohol con-
sumption category are presented in Additional file  3: 
Table S2. The mean AUC ± SD obtained by the ten logis-
tic regression models are denoted as ‘Internal Validation’ 
in Fig. 2, Additional file 4: Figures S1-S5 and Additional 
file 5: Tables S3-S9. The highest mean AUC of 0.83 ± 0.05 
was obtained for both the 5 and 23-CpG model for heavy 
drinkers vs. non-drinkers (Fig.  2A and Supplemen-
tal Table  S3). For the other six models, we obtained for 
all marker sets an average AUC ≤ 0.75 in three models 
and ≤ 0.70 in the other three models (Fig. 2). Among all 
predictive marker sets, the lowest AUC of 0.61 ± 0.04 
was obtained for the 144-CpG model for light drink-
ers vs. non-drinkers (Supplemental Table  S9 and Sup-
plemental Figure S5). In all seven prediction models, 
we obtained lower mean AUCs based on 144-CpGs 
compared to the models with lower numbers of CpG 
predictors. For example, the 144-CpG model for heavy 
drinkers vs. non-drinkers yielded an AUC of 0.78 ± 0.06 
compared to 0.83 ± 0.05 obtained in the 5 and 23-CpG 
models (Fig.  2A and Supplemental Table  S3). Similar 
results were obtained in the other models, and for some 
of the 78-CpG models, as shown in Additional file  4: 
Figures S1-S5 and Additional file 5: Tables S3-S9. Nota-
bly, these findings contrasts with that of Liu et  al., who 
reported increased prediction accuracies with increased 
numbers of CpG predictors [12].

External validation of alcohol consumption prediction 
models
Aiming to test the transportability of the prediction 
models trained in our complete model building dataset 
(N = 2883), we performed external validation using data 
from three European cohorts (N = 1794) not considered 
for model building and internal validation: the Rotterdam 

study (RS-III-1), SHIP-Trend, and two datasets from 
the TwinsUK study. The obtained AUCs are denoted 
as ‘External Validation’ in Fig.  2, Additional file  4: Fig-
ures S1-S5 and Additional file 5: Tables S3-S9. The AUCs 
obtained from external validation varied strongly per 
model between the external validation datasets and dif-
fered with those obtained in the internal cross-valida-
tion. For example, the 144-CpG model for the heavy vs. 
non-drinkers yielded an AUC of 0.80 in RS and 0.84 in 
SHIP-Trend, while in TwinsUK and TwinsUK2 they 
were considerably lower with 0.68 and 0.60, respectively, 
and the mean AUC in the internal cross-validation was 
0.78 ± 0.06 (Fig. 2A and Additional file 5: Tables S3). Sim-
ilarly, the 23-CpG heavy vs. non-drinker model yielded 
AUCs of 0.81, 0.87, 0.65, 0.61, and 0.83 ± 0.05, respec-
tively. The high variance between obtained AUCs in the 
different external validation datasets was also observed in 
several other models as shown in Additional file  4: Fig-
ures S1-S5 and Additional file 5: Tables S3-S9. The high 
AUC variance we observed in the external validation 
between datasets indicate non-robust performance of 
these prediction models, when applied to independent 
datasets.

New models for epigenetic inference of alcohol 
consumption using all categories
Finally, we developed two new models for epigenetic 
inference of alcohol consumption from blood by consid-
ering all data from all individuals of all four alcohol con-
sumption categories in our prediction models, thereby 
refraining from excluding categories from prediction 
modeling as was done by Liu et al. [12]. To this end, we 
used all individuals from the model building dataset to 
build and internally validate via ten-fold cross-validation 
the models, as well as all individuals from our external 
validation datasets to externally validate the models. This 
was done for two different models. Model 1 comprised all 
heavy and at-risk drinkers combined vs. all light and non-
drinkers combined. Model 2 included all heavy, at-risk, 
and light drinkers combined (i.e., all drinkers no matter 
the level of alcohol consumption) vs. all non-drinkers. 
The average AUCs ± SDs from internal cross-validation 
in the model building dataset were denoted as ‘Internal 
Validation’ and the four AUCs from the four external val-
idation datasets as ‘External Validation’ (Fig. 3 and Addi-
tional file 5: Tables S10 and S11).

Regarding model 1 for inferring heavy and at-risk vs. 
light and non-drinkers, the (mean) AUCs from internal 
cross-validation and from external validations ranged 
between 0.67–0.68 and 0.60–0.70, respectively across 
all marker sets (Fig. 3A and Additional file 5: Table S10). 
Regarding model 2 for inferring all drinkers (heavy plus 
risk plus light) vs. non-drinkers, the AUCs from the 

http://geneontology.org/page/go-enrichmentanalysis
http://geneontology.org/page/go-enrichmentanalysis
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two validation approaches based on the 5-CpG and the 
23-CpG models were between 0.54–0.55 and 0.54–0.61, 
respectively. For the 78-CpG and the 144-CpG models, 
similarly low AUCs were seen in the internal validation, 
between 0.55–0.56, with slightly higher AUCs in the 
external validation datasets, between 0.57–0.63 (Fig.  3B 
and Additional file 5: Table S11). Thus, compared to the 
Liu et  al. models based on an approach that leaves out 
data, the new models based on all data achieved gener-
ally lower AUCs, while the AUC variance in the external 

validation was much less pronounced between the data-
sets than observed for the Liu et al. models (Fig. 2, Addi-
tional file  4: Figures  S1-S5, and Additional file  5: 
Table S3-S9).

Discussion
In this study, we firstly performed replication analysis in 
an independent dataset of the EWAS results on alcohol 
consumption previously reported by Liu et al. [12], which 
delivered Bonferroni-corrected significant replication of 

Fig. 2 Epigenetic inference of alcohol consumption from blood based on Liu et al. biomarkers and models. Prediction accuracy for alcohol 
consumption expressed as Area Under the Curve (AUC) for A heavy drinkers vs. non‑drinkers and B heavy drinkers vs. light drinkers using the CpG 
marker sets from Liu et al. [12]. Data from participants who do not fit the inferred categories were excluded from the respective prediction models 
following the approach used by Liu et al. ‘Internal Validation’: Mean AUC and SD from internal validation using ten‑fold cross‑validation in our model 
building dataset. ‘External Validation’: AUCs from external validation by applying our models trained in the model building dataset to independent 
data from three external validation cohorts (Rotterdam Study, N = 648; SHIP‑Trend, N = 433; and TwinsUK, N = 713 and N = 442). Based on interview 
or self‑reported information, non‑drinkers were defined as participants with no alcohol consumption; light drinkers with an alcohol consumption 
of 0 < g per day ⩽28 in men and 0 < g per day ⩽14 in women; and heavy drinkers with an alcohol consumption of ⩾42 g per day in men and 
⩾28 g per day in women. Abbreviations: RS‑ The Rotterdam Study; SHIP‑ Study of Health in Pomerania‑Trend cohort; TwinsUK‑ The TwinsUK Study; 
TwinsUK2‑ Subset of the TwinsUK Study
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close to one-third of the previously identified CpGs. Our 
smaller sample size of 2042 compared to 9642 in the Liu 
et  al. study might be the reason why we only replicated 
one-third of the previously identified CpGs. However, 
using the nominal significance threshold (P < 0.05), we 
replicated the association of close to 80% of these CpGs.

Secondly, by using data from eight population-based 
cohorts, we performed in-depth validation of the bio-
markers and models reported by Liu et  al. [12] to infer 
alcohol consumption from blood. Reproducibility 
assesses the degree to which the model fits the real pat-
terns rather than random noise in the data [28]. To test 

for reproducibility of the models, we performed inter-
nal model validation by implementing a ten-fold cross-
validation scheme. The heavy vs. non-drinkers model 
obtained the highest average AUCs of the seven mod-
els in the cross-validation. Interestingly, the 144 and 
78-CpG models obtained a lower average AUC than the 
5 and 23-CpG models. In addition, in all models, we 
observed a higher AUC for the models including less 
CpGs compared to the 144-CpG model and to some 
extent also for the 78-CpG models. In contrast, Liu et al. 
reported increased prediction accuracies for models with 
increased number of CpG predictors [12]. Our findings 

Fig. 3 Epigenetic inference of alcohol consumption from blood based on newly developed models including all categories. Prediction accuracy for 
alcohol consumption expressed as Area Under the Curve (AUC) for A heavy and at‑risk drinkers vs. light and non‑drinkers and B heavy, at‑risk and 
light drinkers vs. non‑drinkers. In these models, all available participants from all categories were included, in contrast to Fig. 2. ‘Internal Validation’: 
Mean AUC and SD from internal validation using ten‑fold cross‑validation in our model building data set. ‘External Validation’: AUCs from external 
validation by applying our model trained in the model building dataset to independent data from three external validation cohorts (Rotterdam 
Study, N = 648; SHIP‑Trend, N = 433; and TwinsUK, N = 713 and N = 442). For phenotype definition, see legend of Fig. 2. Abbreviations: RS‑ The 
Rotterdam Study; SHIP‑ Study of Health in Pomerania‑Trend cohort; TwinsUK‑ The TwinsUK Study; TwinsUK2‑ Subset of the TwinsUK Study
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provide evidence that these 144-CpG models are over-
fitted and thus, likely not reproducible. This increased 
risk for overfitting by including an increasing number of 
CpGs was also suggested by Hattab et al. [16]. Overfitting 
of a model is more likely to be observed when the ratio of 
the number of variables to the number of samples is small 
[29]. In this context, Harrell et al.  [30] suggested that for 
generalizable binary models, no more than one predic-
tor per ten participants in the smallest outcome category 
should be examined when fitting a regression model. As 
some of the findings of the analysis come from partially 
fitting to the noise on top of the true signal, noise fea-
tures may be assigned nonzero coefficients due to chance 
associations with response to the training set [31]. Over-
all, the AUCs we achieved via internal cross-validation 
for the different models and marker sets were consider-
ably lower than those reported by Liu et  al. [12]. Also, 
the results obtained in our internal validation were much 
lower compared to the results we obtained when apply-
ing the same methods as Liu et al., e.g. training and test-
ing the model in the same dataset, in our model building 
dataset (see Additional file  6 for results). This confirms 
previous conclusions [16] that the prediction accuracies 
reported by Liu et al. represent overestimates.

The transportability of the prediction models was 
tested by applying the models (trained in the model 
building dataset) to four validation datasets from three 
cohorts. Three models yielded an AUC ≤ 0.75 in the 
internal validation and in all four external validation 
datasets across all marker sets. For the other four mod-
els, a large variability in AUCs was obtained between 
the different datasets. Overall, in these four models, 
we obtained similar to higher AUCs for the Rotterdam 
Study and SHIP-Trend compared to the internal valida-
tion, while both TwinsUK datasets provided lower AUCs 
than the internal validation. It is important to note that 
the datasets from the Rotterdam Study and the TwinsUK 
(N = 713) were both included in the EWAS for predictive 
marker discovery by Liu et al. [12]. The use of the same 
participants here and by Liu et  al. could have led to an 
overestimation of the prediction accuracies. Surprisingly, 
the AUCs we obtained in the TwinsUK (N = 713) in the 
current study are in most models much lower than the 
AUCs we obtain in SHIP-Trend and the Rotterdam study. 
The results obtained in the Rotterdam Study were over-
all more similar to those obtained by SHIP-Trend. These 
results suggest that the use of the same participant, here 
and by Liu et al., did not positively impact the prediction 
accuracies obtained in our study. The subset of the Twin-
sUK (N = 442) includes re-processed DNA methylation 
data and a different FFQ-based approach for alcohol con-
sumption information. Nevertheless, also in this dataset 
we obtain lower AUCs compared to the Rotterdam Study 

and SHIP-Trend, with very similar result as for the total 
TwinsUK (N = 713) dataset. Notably, the AUCs from 
external validation were generally lower than the AUCs 
reported by Liu et al. [12] and as the similarly high AUCs 
we obtained from our model building dataset, when 
applying the same methods as Liu et  al. (see Additional 
file 6 for results), providing further evidence that the pre-
diction accuracies reported by Liu et al. represent overes-
timates. This is in line with our conclusion from internal 
validation and as suggested by Hattab et al. [16].

Yousefi et al. [17] estimated DNA methylation-derived 
scores using the coefficients made available by Liu et al. 
[12] in participants of the Accessible Resource for Inte-
grated Epigenomic Studies (ARIES) parental genera-
tion at midlife cohort (N = 1049, mean age = 50.2 ± 5.4 
SD) as discovery dataset. A limitation of the study by 
Yousefi et al. [17] was the relatively small sample size in 
the higher alcohol consumption categories, with only 14 
heavy drinkers and 67 at-risk drinkers. As a result, the 
lower AUCs obtained by Yousefi et al. [17] compared to 
Liu et al. [12] could possibly be due to the small sample 
size rather than an accurate representation of the true 
model prediction accuracies. In the current study, how-
ever, we have implemented 2883 participants, includ-
ing 495 non-drinkers, 1800 light drinkers, 370 at-risk 
drinkers, and 218 heavy drinkers, with an age range of 
19–87  years (mean age 57.4 ± 13.8 SD). By including 
more participants, especially in the categories with higher 
alcohol consumption, we overcome this possible sample 
size limitation and thus provide a more reliable repre-
sentation of the models’ prediction accuracies. Yousefi 
et  al. [17] obtained low AUCs from 0.48 to 0.57 to dis-
tinguish heavy drinkers vs. non-drinkers and 0.55 to 0.57 
for heavy drinkers vs. light drinkers in adults at midlife. 
In our external validation, we obtained AUCs from 0.80 
to 0.89 in the Rotterdam Study, 0.68 to 0.87 in SHIP-
Trend, 0.52 to 0.68 in TwinsUK (N = 713), and 0.50–0.63 
in TwinsUK2 (N = 442) for distinguishing heavy vs. non-
drinkers and 0.72 to 0.84 in the Rotterdam Study, 0.71 to 
0.89 in SHIP-trend, 0.56 to 0.57 in TwinsUK (N = 713), 
and 0.52–0.55 in TwinsUK2 (N = 442) for heavy drink-
ers vs. light drinkers. The results in the Rotterdam Study 
and SHIP-Trend are overall higher than those obtained 
by Yousefi et al., while the results obtained in the Twin-
sUK are very similar to those obtained by Yousefi et  al. 
In addition, the high variability in the obtained AUCs in 
our study and the close to random inference obtained 
by Yousefi et al. [17] study suggest that the tested CpGs 
are not as suitable as previously suggested for achieving 
transportable and accurate alcohol consumption predic-
tion models.

The exclusion from prediction modelling of data from 
participants who did not fit the inferred categories, as 
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done by Liu et al. [12], means that such models cannot be 
applied to the general population, where individuals with 
the excluded categories exist and can never be inferred 
correctly because their category was not considered in 
the prediction model. Therefore, for a prediction mod-
els to be applicable in cohort studies used in epidemiol-
ogy research, or any practical applications in the clinic 
and beyond, should be designed in data that realistically 
reflects the general population. For that reason, we have 
developed two additional models in which data from all 
individuals of all alcohol categories were included and 
validated them internally via cross-validation as well as 
externally in independent datasets. The first model for 
heavy and at-risk drinkers vs. light and non-drinkers 
provided cross-validated AUCs between 0.67 and 0.68 
across all four CpG marker sets. These results are close 
to the lower 95% CI of the 450-CpG based model previ-
ously developed by McCartney et al. [15], which had an 
AUC of 0.73 (95% CI = 0.69–0.78) to distinguish light-to-
moderate drinkers from heavy drinkers. Four CpGs over-
lap between this 450-CpG model and the 23-CpG model: 
cg00252472, cg06690548, cg11613559, and cg12825509. 
In addition, two more CpGs overlap with the 144-CpG 
model; cg11376147 and cg18032812. In the external 
validation, we obtained AUCs in the range of 0.60–0.70 
across all marker sets and all external validation cohorts. 
In the second model, which distinguishes heavy, at-risk, 
and light drinkers vs. non-drinkers, we obtained AUCs at 
0.54–0.63 in both internal and external validation. Thus, 
when applying appropriate prediction methodology by 
not excluding participant data and performing external 
validation, the CpG marker sets reported by Liu et al. [12] 
yield much lower prediction accuracies as compared to 
the AUCs previously published and obtained here based 
on the previous approach.

Our study has strengths and limitations that should 
be considered when interpreting the results. The main 
strengths of our study are the use of a large dataset from 
several cohorts with similar numbers for the different 
categories as Liu et al. [12], and the use of four datasets 
for external model validation. Moreover, our findings 
agree with a previous validation study based on a differ-
ent methodology [17], while our larger dataset improved 
the limitations of the limited data used in the previous 
validation study. The main limitation of our study, as well 
as in the previous studies, is that the alcohol consump-
tion information is based on interviews or self-reported 
questionnaires, which are generally considered unreliable 
in terms of underestimating actual alcohol consump-
tion. Regarding the putative inaccuracy of interviews and 
self-reported alcohol consumption used here as pheno-
types, we cannot know how error-prone these reports 
are. In particular, it is possible that heavy drinkers might 

not be able to or might be hesitant or unwilling to accu-
rately recall or report their high alcohol consumption. 
Also, there is variability in the questionnaires regarding 
the reference time window. For example, KORA par-
ticipants were asked about alcohol consumption in the 
past few days, which may or may not be representative 
of the participants’ long-term alcohol consumption hab-
its. Also, non-drinkers may include lifetime non-drinkers 
but also sober alcoholics; however, it is not yet clear how 
this could affect the obtained DNA methylation patterns. 
Because all available studies, including the EWAS that 
identified CpGs associated with alcohol consumption, 
used interviews or self-reported alcohol consumption 
information, this is a general limitation that cannot be 
easily solved, as methods to empirically measure alcohol 
concentrations are not suitable for estimating long-term 
alcohol consumption. Another source of uncertainty may 
lie in the calculation for alcohol consumption in grams/
day, which presents a slight variation in the formula used 
between the different cohorts. The variation in alcohol 
consumption data collection between the cohorts might 
also play a role in the variance we obtain in the prediction 
AUCs.

Another shortcoming of our study was the inclusion 
of only participants from European ancestry. As DNA 
methylation patterns might differ between populations 
[32], the absence of non-European participants during 
marker discovery and model building might prohibit 
accurate model transportability to non-European popula-
tions. Hence, future studies would benefit from a trans-
ethnic prediction marker discovery, model building, and 
validation.

Overall, our extensive validation testing of the dif-
ferent CpG sets reported by Liu et  al. [12] for inferring 
alcohol consumption from blood demonstrates that using 
appropriate prediction methodology regarding both 
separating datasets for model building and model test-
ing by performing internal cross-validation and external 
validation, and including all alcohol consumption catego-
ries and individuals in the prediction modelling, yields 
much lower prediction accuracies and with a high vari-
ance between validation cohorts for the Liu et al. models 
as were previously published. This allows us to conclude 
that the currently available DNA methylation predictors 
for alcohol consumption need to be improved consider-
ably before epigenetic inference of alcohol consumption 
from blood can be considered for practical applications 
in the clinic and beyond. Our study implies that, cur-
rently, we are far away from epigenetic inference of alco-
hol consumption from blood in research and practical 
applications, despite EWASs having already delivered 
hundreds of associated CpGs. Thus, further EWASs 
on alcohol consumption are necessary to increase the 
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number of associated CpGs, including replication stud-
ies for the identified CpGs. Established CpGs replicated 
in several independent studies could provide better pre-
dictive markers than CpGs identified in one large meta-
analysis. These CpGs will need to be carefully tested for 
their value to improve the low accuracy in inferring alco-
hol consumption from blood achieved with the currently 
available marker sets.

Methods
Study populations
This study was embedded within the Biobank-based Inte-
grative Omics Study (BIOS) consortium [26], by includ-
ing participants from the Rotterdam Study (sub-cohorts 
RS-II-3 and RS-III-2) (N = 611) [18], Cohort on Diabe-
tes and Atherosclerosis Maastricht (CODAM) (N = 159) 
[19], the Netherlands Twin Register (NTR) (N = 617) 
[20], the Leiden Longevity Study (LLS) (N = 491) [21], 
and the Prospective ALS Study Netherlands (PAN) 
(N = 164) [22]. Additionally, we included 841 participants 
from The Cooperative Health Research in the Region 
of Augsburg (KORA) study (F4) [23]. External valida-
tion was conducted in independent samples (i.e., not 
used for model building and internal validation) from 
the Study of Health in Pomerania (SHIP)-Trend cohort 
(N = 433) [24], two datasets from the TwinsUK Study 
with overlapping participants; TwinsUK (N = 713) and 
TwinsUK2 (N = 442) [25], and participants from the Rot-
terdam Study sub-cohort RS-III-1 (N = 648) that are not 
included in the BIOS consortium. Alcohol consumption 
information was obtained via interviews or self-reported 
questionnaires. Cohort-specific data collection and 
dataset characteristics are summarized in Table  1 and 
described in detail in the Supplementary Methods (Addi-
tional file 1).

Microarray-based DNA methylation quantification
DNA was extracted from whole peripheral blood and 
analyzed with the Illumina Infinium Human Methylation 
450 K BeadChip (Illumina Inc, San Diego, CA, USA) or 
the Infinium MethylationEPIC BeadChip (Illumina Inc, 
San Diego, CA, USA) to obtain the DNA methylation 
measurements. Details on cohort-specific methods are 
provided in Supplementary Methods (Additional file  1). 
The methylation proportion of a CpG site was reported 
as the methylation β-value in the range of 0 to 1.

Candidate-CpG association study for alcohol consumption 
and gene annotation
Using the data from the BIOS Consortium (N = 2042), we 
tested the association of the 363 CpGs previously found 
to be significantly associated (P < 1 ×  10–7) with alcohol 
consumption [12]. Alcohol consumption levels (grams/

day) were right-skewed and contained non-drinkers; 
therefore, the log-transformed alcohol consumption (log 
(g per day + 1)) was used as the independent variable. The 
β-values of the 363 CpGs were included as the depend-
ent variable and the analysis was adjusted for age, sex, 
BMI, batch effects (plate, plate location, and cohort ID), 
and Houseman-imputed white blood cell counts (WBC) 
for CD4T cells, CD8T cells, natural killer cells, B-cells, 
granulocytes, and monocytes [33]. The Bonferroni mul-
tiple-test corrected 5% significance level of P < 1.4 ×  10−4 
(0.05/363) was applied. All analyses were performed 
using the statistical package R, version 3.4.3.

We obtained the genes annotated to the replicated 
CpGs using the annotation file provided by Illumina 
and performed Gene ontology (http:// geneo ntolo gy. org/ 
page/ go- enric hment analy sis) enrichment analysis for 
these genes.

Validation of the previously published prediction models
The BIOS and KORA DNA methylation data were com-
bined as the model building dataset (N = 2883) using 
the “ComBat” function [34] (R-package “sva” [35]) to 
adjust for the known batches via an empirical Bayes-
ian framework adjusting for age and sex. Then, possible 
confounders were regressed out using linear regression 
models, obtaining the residuals for each CpG adjusted 
for age, sex, BMI, batch effects (plate, plate loca-
tion, and cohort ID), and Houseman-imputed WBC 
(CpG = age + sex + BMI + batch effects + WBC).

The self-reported phenotypic data on alcohol con-
sumption were categorized according to their alcohol 
consumption levels for which we used the same cut-off 
categories as described by Liu et  al. [12], to allow for 
direct comparison of the models’ performance; non-
drinkers: participants with no alcohol consumption; light 
drinkers: participants with alcohol consumption of 0 < g 
per day ≤ 28 in men and 0 < g per day ≤ 14 in women; 
at-risk drinkers: participants with alcohol consumption 
of 28 < g per day < 42 in men and 14 < g per day < 28 in 
women; heavy drinkers: participants with alcohol con-
sumption of ≥ 42 g per day in men and ≥ 28 g per day in 
women.

The alcohol categories used in each model were 
inferred using the same seven prediction models as pre-
viously applied by Liu et  al. with heavy drinkers vs. all 
other categories separately, i.e., heavy drinkers vs. (1) 
non-drinkers, (2) light drinkers, (3) pooled individuals 
of light or non-drinkers, (4) at-risk drinkers, as well as 
two-category combinations between the other catego-
ries including (5) at-risk drinkers vs. non-drinkers, (6) at-
risk drinkers vs. light drinkers, and (7) light drinkers vs. 
non-drinkers. In all models, the former category was the 
‘cases’ (coded as “1”) and the latter was the ‘control’ group 

http://geneontology.org/page/go-enrichmentanalysis
http://geneontology.org/page/go-enrichmentanalysis


Page 11 of 13Maas et al. Clin Epigenet          (2021) 13:198  

(coded as “0”). Selecting a subset of categories in predic-
tion modeling and AUC estimation, as was done by Liu 
et  al., may limit the possibility to extrapolate the result 
to the general population. Hence, we replicated this 
approach solely for outcome compatibility reasons. All 
seven models were trained for the null model, which only 
includes age, sex, and BMI, and subsequently the null 
model combined with the residuals of the four CpG sets 
(5, 23, 78, or 144 CpGs). The CpGs included per model 
and the average DNA methylation β-values per category 
are presented in Additional file 3: Table S2.

Internal and external validation of the previously 
published prediction models
We tested the reproducibility (internal validation) and 
transportability (external validation) of the prediction 
models conducted by Liu et al. [12, 28]. First, we adopted 
a tenfold cross-validation scheme [36] in which the whole 
model building dataset (N = 2883) was randomly dis-
tributed into ten non-overlapping subsets. The logistic 
regression model was trained in a combination of nine 
subsets (90% of the data), which was then applied to the 
remaining subset (10% of the data) to infer the partici-
pants’ alcohol status. This method results in ten differ-
ent training (90%) and testing (10%) sets. We trained the 
seven models in the training sets (90%) using binomial 
regression analysis with the alcohol categories (coded 
as 1/0) as the dependent variable and age, sex, and BMI 
without (the null model) or with a set of (the residuals 
of the) CpGs as the independent variables (Alcohol cat-
egory = age + sex + BMI (+  ResCpGs5, 23, 78, 144)). For this 
purpose, the “glm” function with “binomial” as family and 
“logit” as link were used. The models were then applied to 
the test set (10%) using the “predict” function. The pre-
diction performance of the models was assessed using 
“roc” (R-package “pROC”) that calculates the AUC per 
model. This method resulted in ten logistic regression 
models and consequently, ten AUCs from which aver-
age values were estimated and standard deviation were 
obtained.

Secondly, we externally validated the models that 
were trained in the complete model building dataset 
(N = 2883) by testing them in four external validation 
datasets, using the “predict” function. The “roc” func-
tion (R-package “pROC”) was again used to calculate the 
AUC per model. The independent cohorts used our pre-
viously described pre-processing procedure by regressing 
out the potential covariates. The TwinsUK study used a 
linear mixed model to additionally adjust for twin fam-
ily structure and zygosity using random effects. Also, sex 
was not included in the pre-processing steps because 
solely women were included in the TwinsUK analysis. 
Notably, according to the above-described scenarios, 

both internal and external validations followed the same 
approach previously applied by Liu et al. [12] in that indi-
viduals not fitting the inferred categories were excluded 
from the prediction analysis.

Prediction modeling without excluding categories 
and data
Finally, we trained as well as internally and externally val-
idated two new prediction models comprising all individ-
uals in the prediction modeling, i.e., (1) heavy and at-risk 
drinkers vs. light and non-drinkers and (2) heavy, at-risk 
and light drinkers (i.e. all drinkers no matter how much) 
vs. non-drinkers. These two models were internally vali-
dated via tenfold cross-validation and externally vali-
dated in four datasets. As age, sex, and BMI are already 
accounted for in the residuals we solely included the four 
CpG marker sets in these models. The coefficients for 
these models are presented in Additional file 7: Table S21.

Abbreviations
ARIC: The Atherosclerosis Risk in Communities study; ARIES: Accessible 
Resource for Integrated Epigenomic Studies; AUC : Area under the curve; BIOS 
Consortium: Biobank‑based Integrative Omics Study Consortium; BMI: Body 
mass index; CODAM: Cohort on Diabetes and Atherosclerosis Maastricht; 
DALYs: Disability‑adjusted life‑years; EWAS: Epigenome‑wide association 
study; FHS: The Framingham Heart Study; KORA study: The Cooperative Health 
Research in the Region of Augsburg; LBC1936: The Lothian Birth Cohort 1936; 
LLS: Leiden Longevity Study; MESA: The Multi‑Ethnic Study of Atherosclerosis; 
NTR: The Netherlands Twin Register; PAN: Prospective ALS Study Netherlands; 
SD: Standard deviation; SHIP‑Trend: Study of Health in Pomerania‑Trend; vs.: 
Versus; WBC: White blood cell counts.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13148‑ 021‑ 01186‑3.

Additional file 1: Supplementary methods. Comprising the study 
cohort characteristics.

Additional file 2: Table S1. Which shows the replication results for the 
candidate‑CpG association study on alcohol consumption.

Additional file 3: Table S2. Presenting the CpGs incorporated in the four 
prediction marker sets, together with the mean DNA methylation residual 
β‑value per alcohol consumption category per CpG in the model building 
dataset, and in the four external validation datasets.

Additional file 4: Figures S1–S5. Figure S1 shows the results for heavy 
drinkers vs. light and non‑drinkers; Figure S2 shows the results for 
heavy drinkers vs. at‑risk drinkers; Figure S3 shows the results for at‑risk 
drinkers vs. non‑drinkers; Figure S4 shows the results for at‑risk drinkers 
vs. light drinkers; and Figure S5 shows the results for light drinkers vs. 
non‑drinkers.

Additional file 5: Tables S3–S11. Table S3 shows the results for heavy 
drinkers vs. non‑drinkers; Table S4 shows the results for heavy drinkers 
vs. light drinkers; Table S5 shows the results for heavy drinkers vs. light 
and non‑drinkers; Table S6 shows the results for heavy drinkers vs. at‑risk 
drinkers; Table S7 shows the results for at‑risk drinkers vs. non‑drinkers; 
Table S8 shows the results for at‑risk drinkers vs. light drinkers; Table S9 
shows the results for light drinkers vs. non‑drinkers; Table S10 shows 
the results for heavy and at‑risk drinkers vs. light and non‑drinkers; 

https://doi.org/10.1186/s13148-021-01186-3
https://doi.org/10.1186/s13148-021-01186-3


Page 12 of 13Maas et al. Clin Epigenet          (2021) 13:198 

and Table S11 shows the results for heavy, at‑risk and light drinkers vs. 
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