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ABSTRACT
Background IgAnephropathy (IgAN) is themostcommonprimaryglomerulardiseaseworldwideand isa lead-
ing cause of renal failure. The diseasemechanisms are not completely understood, but a higher abundance of
galactose-deficient IgA is recognizedtoplayacrucial role in IgANpathogenesis.Althoughbothtypesofhuman
IgA (IgA1 and IgA2) have several N-glycans as post-translational modification, only IgA1 features extensive
hinge-regionO-glycosylation. IgA1 galactose deficiency on the O-glycans is commonly detected by a lectin-
based method. To date, limited detail is known about IgAO- andN-glycosylation in IgAN.

Methods Togain insights into the complexO- andN-glycosylation of serum IgA1 and IgA2 in IgAN,we used
liquid chromatography-mass spectrometry (LC-MS) for the analysis of tryptic glycopeptides of serum IgA
from 83 patients with IgAN and 244 age- and sex-matched healthy controls.

Results Multiple structural features ofN-glycosylation of IgA1 and IgA2 were associated with IgAN and glo-
merular function inour cross-sectional study. These features includeddifferences ingalactosylation, sialylation,
bisection, fucosylation, and N-glycan complexity. Moreover, IgA1 O-glycan sialylation was associated with
both the disease and glomerular function. Finally, glycopeptides were a better predictor of IgAN and glomer-
ular function than galactose-deficient IgA1 levels measured by lectin-based ELISA.

Conclusions Our high-resolution data suggest that IgA O- and N-glycopeptides are promising targets for
future investigations on the pathophysiology of IgAN and as potential noninvasive biomarkers for disease
prediction and deteriorating kidney function.

JASN 32: 2455–2465, 2021. doi: https://doi.org/10.1681/ASN.2020081208

IgA nephropathy (IgAN), or Berger disease, is the
most common GN worldwide.1 The disease course
is complex, varying from a mild form to a progres-
sive disease leading to renal failure in up to 40% of
patients within 20 years.1,2 Clinical presentation
also differs greatly with sex, ethnicity, and age.1

IgAN is diagnosed by the presence of IgA domi-
nant or codominant mesangial deposits on renal
biopsy.3 Improved noninvasive biomarkers of dis-
ease severity and progression to CKD are needed
to appropriately stratify patient treatment and
develop novel, effective therapies.
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IgAN pathogenesis is generally considered to follow the
“four-hit hypothesis.”4 In this hypothesis, the pathogenesis
is initiated by increased levels of circulating galactose-
deficient IgA1 (gd-IgA; hit 1). gd-IgA is then recognized by
antiglycan autoantibodies (hit 2), leading to the formation
of immune complexes (hit 3) that may deposit in the kidney
(hit 4) and cause glomerular inflammation, complement acti-
vation, and kidney injury.4

IgA1, unlike IgA2, has a unique hinge region located
between conserved regions 1 and 2 of the heavy chain.5

The hinge region has nine potential sites for O-glycosylation,
of which three to six are reported to be consistently glycosy-
lated.6–8 O-glycans located in the hinge region of IgA1 are
typically core 1 glycans with the structure galactose b1–3N-
acetylgalactosamine (GalNAc), which may be extended
with up to two sialic acid residues6 (Figure 1). The IgA1 hinge
region of patients with IgAN is characterised by an increased
presence of aberrantly glycosylated O-glycans, which termi-
nate with GalNAc or sialylated GalNAc rather than galac-
tose.9–13 The levels of degalactosylated IgA (gd-IgA) are
elevated in patients with progressive IgAN compared with
stable patients, and a negative correlation between gd-IgA
level and eGFR has been found.12

Measurement of gd-IgA in blood samples is typically
achieved by ELISA incorporating the use of a lectin, Helix
aspersa agglutinin (HAA), which recognizes terminal Gal-
NAc residues on O-glycans. Another lectin, Jacalin, is often
used to isolate IgA from samples for further analysis.
Although lectin-based approaches are useful tools in this
aspect, variability in their specificities and interferences,
especially by the copresence of sialic acids, limits their
robustness.14–16

Although aberrant O-glycosylation of gd-IgA in IgAN has
been widely reported, not much is known about the role of
N-glycans. Both IgA1 and IgA2 are N-glycosylated. IgA1 con-
tains two N-linked glycosylation sites on each heavy chain
(Asn263/Asn459), and IgA2 contains an additional two or
three N-glycans (Figure 1). The N-glycans on IgA are reported
to be mainly complex-type, digalactosylated diantennary
structures.6,8 Elevated levels of sialylation17 and mannosyla-
tion18 of serum IgA1 N-glycans from patients with IgAN
have been identified. Moreover, mice with a gene knockout
(b4GalT) leading to agalactosylated N-glycans developed
IgAN-like glomerular lesions upon IgA deposition.19

Despite the involvement of IgA glycosylation in the
pathogenesis of IgAN, it is still largely unclear how IgA gly-
cosylation changes with the disease. The molecular nature of
IgA O- and N-glycosylation in IgAN has hitherto been
incompletely explored. Here, we used our new mass spec-
trometry (MS)–based approach for IgA O- and N-glycosyla-
tion analysis in a sizable patient-control cohort to obtain a
more complete picture on the IgA glycosylation changes in
IgAN at an unprecedented level of detail and resolution
and to further investigate the relationship of IgA glycosyla-
tion and kidney function.

METHODS

Study Populations
Samples from patients with IgAN were collected as part of the
Causes and Predictors of Outcome in IgA Nephropathy Study,
a retrospective cohort study ethically approved by the U.K.
National Research Ethics Service Committee. All individuals
provided informed written consent (14/LO/0155). Here, we
investigated 83 unrelated patients from the United Kingdom
with serum samples available and complete clinical follow-up
at the time of recruitment (Supplemental Table 1). eGFR, esti-
mated by the Chronic Kidney Disease Epidemiology Collabo-
ration equation, and corrected for body surface area, was
used as a biomarker of renal function.12

The control samples were randomly ascertained among
healthy British twins from the TwinsUK adult twin registry20

and age- and sex-matched with the patients with IgAN
(Supplemental Figure 1). The sample included 244 individu-
als (49 monozygotic and 64 dizygotic twin pairs and 18 sin-
gletons) (Supplemental Table 1). St. Thomas’ Hospital
Research Ethics Committee approved this study, and all
twins provided informed written consent.

Measurement of Serum IgA and gd-IgA Levels
Serum IgA levels were measured using ELISA as previously
described.21 The capture antibody was the F(ab’)2 fragment
goat anti-human IgA (Jackson Immuno-Research, West
Grove, PA), and the detection antibody was the F(ab’)2 frag-
ment biotinylated goat anti-human IgA1 (invitrogen, CA,
USA).

Serum gd-IgA1 levels were measured using a lectin-based
ELISA as previously described.21 The capture antibody was a
polyclonal rabbit antihuman IgA (Dako, Glostrup, Den-
mark). The detection involved HAA-biotin (Sigma, Darm-
stadt, Germany), followed by polystreptavidin horseradish
peroxidase (Pierce, Waltham, MA).

The intraclass correlation coefficient for the IgA assay was
0.74 (95% confidence interval, 0.63 to 0.83), and that for the
gd-IgA1 assay was 0.89 (95% confidence interval, 0.73 to 0.95).

Significance Statement

IgA nephropathy (IgAN) is the most common primary glomerular
disease worldwide, with galactose-deficient IgA (gd-IgA) consid-
ered to play a key role in its pathogenesis. Although this associa-
tion is widely reported, it is unclear how IgA glycosylation changes
with the disease. A novel mass spectrometry–based approach pro-
vided a more complete picture of IgA glycosylation changes in
IgAN and of the relationship between IgA glycosylation and kid-
ney function. Multiple structural features of both O- and N-linked
glycans were associated with the presence and severity of IgAN
and kidney function. Our high-resolution data suggest that IgA
O- and N-glycopeptides are promising targets for future studies
on the pathophysiology of IgAN and as potential noninvasive bio-
markers for disease prediction.
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IgA Glycopeptide Analysis by MS
A detailed description of the material and methods can be
found in Supplemental Material. Briefly, serum samples from
patients and controls together with 22 pooled plasma standards
were pipetted onto 96-well plates in a randomized manner. IgA
was captured from 10 ml of serum using CaptureSelectTM IgA
affinity beads (ThermoFisher). (Glyco-)peptides were generated
by reduction, alkylation, and digestion of the protein with tryp-
sin. Tryptic digests were separated by reversed-phase nanoli-
quid chromatography (nano-LC) on a C18 column (75 mm 3
100 mm, particle size 1.7 mm) and analyzed by MS using an

Impact HD quadrupole time-of-flight MS system (Bruker Dal-
tonics, Bremen, Germany) equipped with a nanoBooster, as
described previously22 and in the Supplemental Material.

Raw LC-MS data were converted to mzXML using MSCon-
vert. LaCyTools23 (version 1.0.1) was used to align the LC
runs, to calibrate (Supplemental Table 2) the mass spectra, and
to extract glycopeptide signal intensities. For the extraction
step, a previously reported list of potential IgA glycopeptide ana-
lytes was used,24–26 in addition to manual identification of glyco-
forms in the averaged spectra of 20 samples of both healthy
individuals and patients.
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Figure 1. Schematic representation of IgA1 and IgA2 with examples forO- andN-glycan structures. (A) Each IgA1 heavy chain contains
twoN-glycosylation sites (i.e., at N144 and N340), which are occupied by complex-typeN-glycans, next to sixO-glycosylation sites (i.e.,
at T106, T109, S111 , S113, T114, and T117). All sixO-glycosylation sites in the hinge region of IgA1 are present on a single tryptic pep-
tide (HYT).6,8 (B) With our MS-based approach, we observed three different N-glycosylation sites on IgA2 (i.e., at N131, N205, and
N327), which were occupied with complex-type N-glycans. Glycopeptides indicating glycosylation on the two other potential N-glyco-
sylation sites were not detected in our study. (C) Symbols and example structures of O- and N-glycans. In this work, we refer to the first
three letters of the tryptic peptide sequence of the detected glycopeptides: HYT for the multiplyO-glycosylated hinge-region peptide;
LSL for the glycopeptide with the N-glycosylation site N144 or N131 on IgA1 or IgA2, respectively; TPL for the glycopeptide with the
IgA2 N-glycosylation site N205; and LAG for the glycopeptide with the N-glycosylation site N340/N327 on IgA1/IgA2, which was
detected with either a terminal tyrosine (LAGY) or as the truncated form (LAGC). Glycosylation site numbering was according to Uni-
ProtKB. Modified from reference 55, with permission.

www.jasn.org BASIC RESEARCH

JASN 32: 2455–2465, 2021 IgA Glycans in IgA Nephropathy 2457

http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020081208/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020081208/-/DCSupplemental
https://www.jasn.org


Quality control was performed on the basis of signal to
noise, exact mass deviation, and isotopic pattern as described
previously23 and in the Supplemental Material. Sixty-nine
glycopeptides were retained and quantified. Their absolute
signal intensities were normalized to the intensity sum of
all glycopeptide species sharing the same tryptic peptide
sequence, resulting in relative intensities. In this manuscript,
IgA1 and IgA2 glycopeptide names are composed of the letter
codes of the first three amino acids of the peptide sequence:
HYT, LSL, TPL, and LAG, the last detected in two variants
(i.e., as LAGC and LAGY) (Figure 1). The peptide name is
followed by the glycan composition indicating the number
of hexoses (H), N-acetylhexosamines (N), fucoses (F), and
sialic acids (S) (Supplemental Table 2).

Structurally similar glycopeptides were summarized into
52 derived traits calculated from the relative intensities, as
illustrated in Supplemental Table 3. For example, the derived
trait TPL_A2FB, bisection of fucosylated diantennary gly-
cans, was calculated as the sum of all bisected diantennary
structures within the TPL glycopeptide cluster divided by
the sum of the abundances of all structures within the TPL
cluster, i.e., A2FB 5 (H4N5F1S0 1 H5N5F1S0 1
H4N5F1S1 1 H5N5F1S1 1 H5N5F1S2)/(H4N5F1S0 1
H5N5F1S0 1 H5N4F1S1 1 H4N5F1S1 1 H5N5F1S1 1
H5N4F1S2 1 H5N5F1S2). Because each measured glyco-
peptide structure carries different types of monosaccharides,
derived traits can give a more composite and robust measure
of the different glycosylation features (i.e., for N-glycans,27

complexity/branching [diantennary versus triantennary],
bisection, and fucosylation and for both O- and N-glycans,
galactosylation and sialylation).

Statistical Analyses
The relative intensities of the detected glycopeptides and the
derived trait values were corrected for batch effects (plate,
plate row, and column) in R (version 3.3.3) using the
function ComBat from the R package sva (release 3.2) on
log-transformed data. Outliers, defined as measurements
deviating more than three SDs from the mean of each trait,
were removed. To ensure the normality of their distribution,
the relative intensities of the detected glycopeptides as well as
of the derived traits were quantile normalized.

gd-IgA level and IgAN status (patients versus control)
were tested for association with glycopeptides and derived
traits using a linear mixed model using the function lmer
from the R package lmerTest (version 3.1), including age,
sex, and their interaction term as fixed effects and family
structure as a random effect to correct for the nonindepend-
ence of the twin observations. To avoid potential spurious
associations due to differences in glycan composition
between patients and controls, association with gd-IgA levels
was assessed using healthy individuals only. eGFR (assessed
in patients with IgAN only) was tested for association using
a linear regression model (function lm, from the stats R

package, version 3.6.1). Age, sex, and their interaction term
were included as covariates.

We considered an association significant when its P value
passed a Bonferroni-derived threshold of 0.05/Neff, where
Neff is the effective number of independent tests taking into
account the strong correlation among glycan relative intensi-
ties. Neff was calculated using the approach proposed by Li
and Ji29 and multiplied by the number of phenotypes ana-
lyzed in this study. Neff was 23(33) for measured glycopep-
tides and 16(33) for derived traits.

Power calculation was performed using the pwr R package
(version 1.3) and asking for the power to detect, in a sample
of 83 patients and 244 controls, a Cohen conventional
medium effect size28 of 0.5 of an SD at a-levels of 0.05/
(233 3)57.33 1024 and 0.05/(163 3)51.03 1023 for
measured and derived traits, respectively.

We further evaluated, for both IgAN and glomerular func-
tion, the predictive power of a model including only the
gd-IgA serum levels and a model including either the glyco-
peptides or derived traits significantly associated with IgAN/
glomerular function. In this second model, because of the
high correlation among traits, if two traits had a Pearson cor-
relation larger than 0.9, only the most significantly associated
was used. Predictive powers were evaluated using the McFad-
den adjusted pseudo-R230 (evaluated via the function Pseu-
doR2, from the DescTools R package, version 0.99.39) for
the binary trait IgAN and adjusted R2 for the continuous trait
eGFR (evaluated via the lm function). The adjusted values
allow for penalizing for the number of predictors in the
model (k51 when only gd-IgA levels are used and k.1
when the glycopeptides or derived traits are used).

RESULTS

Glycosylation Features Are Associated with the Level of
gd-IgA in Healthy Individuals
As a first comparison of the traditional lectin-based method
and our MS-based approach for measuring IgA glycosylation,
we assessed the cross-sectional associations between gd-IgA
values and MS-detected glycosylation traits. Using data
from 236 healthy individuals, we found associations between
gd-IgA, 26 of 30 detectedO-glycopeptides (HYT cluster), and
all seven derived O-glycan traits (Supplemental Table 4). The
strongest associations were observed with decreased sialyla-
tion (HYT_nS, HYT_nS . nG, HYT_SperG) and galactosy-
lation (HYT_GalperGalNAc and HYT_nGal), along with a
relative increase of GalNAcylation (HYT_nGalNAc . nG
and HYT_nGalNAc) (Figure 2), which showed a similar
trend in patients with IgAN (Supplemental Figure 2). N-gly-
cosylation traits from the LAGC cluster were also associated
with gd-IgA, although to a lesser extent than O-glycosylation
(Supplemental Table 4).

Moreover, we compared the associations between gd-IgA
and glycopeptides with and without correction for IgA1 titer
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in a subset of 156 healthy individuals for whom IgA1 titer was
available. IgA1 titer correction had negligible effects on the
associations (Supplemental Table 5).

O- and N-Glycosylation of IgA Is Associated with IgA
Nephropathy
We used a patient-control study design, including 83 patients
with IgAN and 244 healthy controls, to investigate cross-
sectional associations between IgAN and IgA O- and N-gly-
cosylation features detected by MS. This sample has $70%
power to detect a difference of 0.5 of an SD between groups
at Bonferroni-derived P values of 0.05/(233 3)57.33 1024
and 0.05/(163 3)51.03 1023 for measured and derived
traits, respectively.

We found that galactosylation of the N-glycopeptides in
the TPL and LSL clusters, next to sialylation in TPL and sia-
lylation of the HYT O-glycopeptides, was lower in patients
with IgAN compared with controls, whereas bisection and
sialylation in LSL; diantennary glycans in LAGCa, TPL, and
LAGCb; and fucosylation in LAGCb were higher in patients
(Figure 3, Supplemental Table 6).

O- and N-Glycosylation of IgA Is Associated with
Renal Function
Using data from patients with IgAN, we sought association
between glycan traits and eGFR, a marker of renal function.
N-glycosylation features from all detected IgA glycopeptide
clusters were associated with eGFR: bisection of LAGY,
LSL, LAGC, and TPL was lower, whereas galactosylation
and sialylation of TPL and LSL were higher in patients
with higher eGFR (Figure 4, Supplemental Table 7). Regard-
ing O-glycosylation, only sialylation showed significant, pos-
itive associations with eGFR (HYT_nS, HYT_SperG, and

HYT_nS . nG), reflected in low levels of mono- or disialy-
lated glycopeptides (e.g., HYT_H4N4F0S1) and high levels
of multisialylated ones (e.g., HYT_H4N4F0S4) (Figure 4,
Supplemental Table 7).

Glycopeptides and Derived Traits Are Better Predictors
of IgAN Status and Renal Function Than gd-IgA Levels
Using McFadden adjusted pseudo-R2,30 we found that glyco-
peptides and derived traits that were associated with IgAN
from our analyses were better predictors of the disease than
gd-IgA levels, with pseudo-R2 values of 0.14, 0.12 and 0.02
for glycopeptides, derived traits, and gd-IgA levels, respec-
tively. Analogously, glycopeptides and derived traits associ-
ated with eGFR showed pseudo-R2 values of 0.23 and 0.22,
respectively, versus 0.07 of gd-IgA levels. These results sug-
gest that MS glycosylation data may not only give insights
into the pathophysiology of IgAN but can also provide leads
for noninvasive biomarkers for disease and deteriorating kid-
ney function.

A summary of the major associations with gd-IgA, IgAN,
and glomerular function is visualized in Figure 5 for derived
traits and Supplemental Figure 3 for measured glycopeptides.

DISCUSSION

This study is the first detailed report on site-specific O- and
N-glycosylation signatures of serum IgA1 and IgA2 in
IgAN. We analyzed a reasonably large cohort of 83 patients
and 244 age- and sex-matched controls. Our high-
resolution MS-based method features the relative quantita-
tion of, in total, 69 O- and N-glycopeptide species, further
summarized in 52 derived traits. Our data revealed disease
associations with O-glycan sialylation and with all main N-
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Figure 2. Main associations between derived glycosylation traits and gd-IgA1 levels detected by HAA lectin in 236 healthy individuals.
Quantile-normalized age- and sex-corrected values are plotted, and each scatterplot reports effect size (b), SE, and P value (P) of the linear
regression analysis. Derived traits HYT_nS, HYT_nGal, and HYT_nGalNAc correspond to average numbers of sialic acids, galactoses, and
N-acetylgalactosamines, respectively. Monosaccharide symbols are depicted, in black and white, according with the nomenclature of the
Consortium for Functional Glycomics and were generated using GlycoWorkbench.56 AU, arbitrary units; * indicates derived traits.
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glycosylation features, which include complexity, bisection,
galactosylation, fucosylation, and sialylation.

Altered glycosylation of IgA1 O-glycans in IgAN is widely
reported. Our MS data reflect relative shifts of different glyco-
sylation features due to total area normalization within a gly-
copeptide cluster. This is different to terminal GalNAc
abundance detected by the lectin-based gd-IgA assay. Never-
theless, our MS data on relative O-glycan galactosylation and
on the relative abundance of GalNAc on O-glycopeptides can
be related to the traditional lectin-based detection of trun-
cated O-glycans with terminal GalNAc (GalNAca1-Ser/Thr;

Tn antigen). Both gd-IgA and IgA titers represent absolute
concentrations but become more comparable with our rela-
tive quantitation of MS data when gd-IgA is adjusted for
IgA titers. Accordingly, we found a strong positive association
of HAA lectin binding with the glycosylation trait HYT_nGal-
NAc . nG, which reflects the presence of terminal GalNAc,
and consequently, a negative association with hinge-region
galactosylation (HYT_GalperGalNAc, HYT_nGal) that is
supposed to cap the HAA binding motif. Similarly, sialylation
(HYT_nS. nG) was also inversely associated with the gd-IgA
level. This can partly be explained by the fact that terminal
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Figure 3. Main associations between derived glycosylation traits in serum IgA from healthy controls and individuals with IgAN (n5327).
Quantile-normalized age- and sex-corrected values are plotted, and each box plot reports effect size (b), SE, and P value (P) of the
regression analysis. Glycopeptide-derived trait nomenclature refers to the first three letters of the tryptic amino acid sequence followed
by the glycosylation features as calculated from detected glycopeptides (Supplemental Table 3). Glycosylation traits: A2FS0G, galac-
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were generated using GlycoWorkbench.56 * indicates derived traits.
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a2,3-linked sialic acids can only be present when a galactose
has been attached to the core GalNAc. This could also be
explained by virtue of the lectin-based assay simply detecting
gd-IgA as exposed GalNAc. In 2017, the first GWAS for aber-
rant O-glycosylation of IgA1 identified variants in the
C1GALT1 and C1GALT1C1 genes that had large effects on
gd-IgA1 levels31 These genes encode, respectively, the enzyme
core 1 b1–3-galactosyltransferase (C1GalT1) and COSMC, its
molecular chaperone—molecular partners that are essential
for the galactosylation of IgA1 O-glycans.32 Decreased

expression and activity of C1GalT1 have been demonstrated
in the B cells of patients with IgAN.33–35 Further studies have
also demonstrated that genetic variation at CIGALT1 influen-
ces gd-IgA levels.36,37 A recent study has also shown that
decreased expression of Golgi matrix protein GM130, which
is involved in glycosyltransferase tethering, is associated with
reduced C1GalT1 protein level and increased galactose defi-
ciency of IgA1.38 It is therefore likely that downregulated
expression of CIGALT1 in patients with IgAN leads to reduced
levels of galactosylation and subsequent reduced levels of
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Figure 4. Main associations between IgA glycosylation traits and eGFR in 75 patients with IgAN. Quantile-normalized age- and sex-
corrected values are plotted, and each scatterplot reports effect size (b), SE, and P value (P) for the linear regression analysis.
Glycopeptide-derived trait nomenclature refers to the first three letters of the tryptic amino acid sequence followed by the glycosylation
features as calculated from detected glycopeptides (Supplemental Table 3). Glycosylation traits: A2FB, bisection of fucosylated dianten-
nary glycans; A2SB, bisection of sialylated diantennary; A2F0B, bisection of nonfucosylated diantennary; A2FSG, galactosylation of sia-
lylated fucosylated diantennary; CS, sialylation within complex glycans; and nS, average number of sialic acids. Glycan structures are
reported below each panel. Monosaccharide symbols are depicted, in black and white, according to the nomenclature of the Consor-
tium for Functional Glycomics and were generated using GlycoWorkbench.56 * indicates derived traits.
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sialylation and increased levels of exposed GalNAc, as detected
in the lectin ELISA and reflected in our results.

The relative abundance of sialic acids was the only derived
O-glycosylation trait that associated with IgAN and renal
decline in patients with IgAN. Our data suggest that
decreased sialylation may also lead to increased presentation
of terminal GalNAc, as lower sialylation significantly corre-
lates with higher gd-IgA levels. It is unclear from our study
if decreased sialylation is an alteration of IgA glycosylation
in itself or a product of reduced galactosylation. Data on
O-linked sialylation in IgAN are conflicting. In agreement
with our findings two small-scale MS-based studies without

quantitation reported decreased numbers of galactose,
GalNAc, and especially, sialic acid residues in both glomeru-
lar and serum IgA1 in pooled samples from patients with
IgAN as compared with control serum pools.39,40 Conversely,
increased expression of ST6GALNAC2, a gene encoding an
enzyme that mediates sialylation of O-glycans, has been
reported to be positively correlated with IgAN.41 Interest-
ingly, increased expression of another enzyme, ST6Gal1,
correlates with gd-IgA levels.42 Further studies are required
to disentangle the relationship between sialylation and IgAN.

Regarding serum IgA N-glycosylation in IgAN, only a few
small studies exist, and the possible implication of N-
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glycosylation in pathogenesis or renal decline is unknown.
Here, we present the first detailed report on associations
between serum IgA N-glycan galactosylation, sialylation,
bisection, and fucosylation with IgAN and related clinical
parameters. Previously, lower IgA1 Fc-region galactosylation
and lower IgA2 sialylation in patients with IgAN were
detected by lectin-based assays.43 Intriguingly, our findings
of decreased N-linked sialylation and galactosylation and
increased bisection in IgAN and with worsening renal func-
tion are similar to the N-glycosylation differences reported
for human salivary versus plasma IgA.25 With this in mind,
it is possible that our findings might partly reflect a
disease-related increase of IgA molecular species connected
to mucosal immune response, which has previously been
suggested for IgAN.44

It is also feasible that our results could reflect a causal rela-
tionship of IgA N-glycosylation and IgAN pathogenesis via
increased formation of polymeric IgA. In comparison with
monomeric, polymeric IgA is increased in patients with
IgAN, and it has been implicated in higher immune complex
formation and glomerular deposition.45 Strikingly, mice with
impaired terminal N-glycan galactosylation due to a knock-
out of the b4-galactosyltransferase I gene were shown to
develop human IgAN-like glomerular lesions, with an
increased serum IgA, especially the polymeric form.19 Our
finding of decreased sialylation in IgAN and with worsening
renal function might also reflect a higher abundance of poly-
meric IgA, which was reported to exhibit a lower degree of
sialylation compared with its monomeric form and thereby,
enhance binding to mannose-binding lectin as well as to
mesangial cells.46–48 Similarly, a higher abundance of fucose
and terminal GlcNAc (e.g., bisecting GlcNAc or ungalactosy-
lated antenna GlcNAc) might also be involved in enhanced
binding to mannose-binding lectin and subsequent comple-
ment activation via the lectin pathway.48 Desialylation and
to a lesser extent, additional degalactosylation have been
shown to enhance the binding of polymeric IgA1 to human
mesangial cells, as compared with untreated IgA1 in vitro.49

Of note, it is unclear to which extent this effect was attributed
to O- or N-glycosylation or a combination thereof. Notably,
the ST6GAL1 gene, coding for an enzyme responsible for
the terminal sialylation of N-glycans on different proteins
including IgA, was associated with IgAN in Han Chinese.50

Large-scale O-glycomic studies, other than the one
reported here and a site-specific O- and N-glycosylation asso-
ciations study with rheumatoid arthritis,24 are hitherto lack-
ing due to the technologically challenging nature of these
studies. Although a few reports do exist that associate N-gly-
cosylation of IgG with kidney disease or glomerular func-
tion,51–53 none are available for IgAN, hampering our
ability to compare IgAN glycosylation signatures displayed
by different molecules. Analogously, linking phenotypic
associations of the total plasma N-glycome with those found
here for IgA glycosylation is complicated as many different

glycoproteins contribute to the total plasma N-glycome,
with mostly overlapping structures.54 An analysis of total
serum glycans in kidney disease showed eGFR to be associ-
ated with higher absolute levels of biantennary digalactosy-
lated disialylated glycans with and without bisection,53 yet
information on the glycoproteins and glycosylation sites con-
tributing to this signature is lacking. In comparison, our
novel approach for specific IgA glycosylation analysis pre-
sented here provides these extra layers of information by cov-
ering all main glycosylation features present on 69 measured
glycopeptides of IgA.54

We have made a first attempt to elucidate the complex O-
and N-glycosylation of human serum IgA in relation to IgAN
in a comprehensive fashion with direct detection using high-
resolution MS. Because of the small sample size, we could not
build and validate a predictive model for IgAN pathogenesis
and renal decline. However, we have shown that directly
measured glycopeptide-level IgA glycosylations are better
predictors of both IgAN status and renal function than
gd-IgA levels alone. Our results widen the current view on
the potential role of IgA glycosylation in IgAN pathogenesis
and in renal decline and open new opportunities for investi-
gations on glycopeptides as potential biomarkers for disease
onset and progression. We envisage that these results,
together with the increasing interest in the use of glycomics
in clinical settings, will encourage increased inclusion of
IgA glycomics in studies, which will promote the develop-
ment of targeted analysis panels and of absolute quantifica-
tion approaches, currently hindered by the lack of stable
isotope-labeled glycopeptide standards.

In summary, we provide the first evidence of a possible
role for IgA N-glycosylation in IgAN pathogenesis, which
should be taken forward in mechanistic studies and could
result in novel therapeutic and preventive approaches in
the future.
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