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Abstract

Background: Observational studies suggest interconnections between thyroid status, metabolism, and risk of
coronary artery disease (CAD), but causality remains to be proven. The present study aimed to investigate the
potential causal relationship between thyroid status and cardiovascular disease and to characterize the
metabolomic profile associated with thyroid status.

Methods: Multi-cohort two-sample Mendelian randomization (MR) was performed utilizing genome-wide
significant variants as instruments for standardized thyrotropin (TSH) and free thyroxine (fT4) within the reference
range. Associations between TSH and fT4 and metabolic profile were investigated in a two-stage manner:
associations between TSH and fT4 and the full panel of 161 metabolomic markers were first assessed hypothesis-
free, then directional consistency was assessed through Mendelian randomization, another metabolic profile
platform, and in individuals with biochemically defined thyroid dysfunction.
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Results: Circulating TSH was associated with 52/161 metabolomic markers, and fT4 levels were associated with 21/
161 metabolomic markers among 9432 euthyroid individuals (median age varied from 23.0 to 75.4 years, 54.5%
women). Positive associations between circulating TSH levels and concentrations of very low-density lipoprotein
subclasses and components, triglycerides, and triglyceride content of lipoproteins were directionally consistent
across the multivariable regression, MR, metabolomic platforms, and for individuals with hypo- and hyperthyroidism.
Associations with fT4 levels inversely reflected those observed with TSH. Among 91,810 CAD cases and 656,091
controls of European ancestry, per 1-SD increase of genetically determined TSH concentration risk of CAD increased
slightly, but not significantly, with an OR of 1.03 (95% CI 0.99–1.07; p value 0.16), whereas higher genetically
determined fT4 levels were not associated with CAD risk (OR 1.00 per SD increase of fT4; 95% CI 0.96–1.04; p value
0.59).

Conclusions: Lower thyroid status leads to an unfavorable lipid profile and a somewhat increased cardiovascular
disease risk.

Keywords: Thyroid hormones, Coronary artery disease, Metabolomics, Mendelian randomization

Background
Hypothyroidism, defined by high thyroid stimulating
hormone (TSH) and low free thyroxine (fT4) levels, and
subclinical hypothyroidism, defined by high TSH and
fT4 within the reference range, are associated with
higher total cholesterol, low-density lipoprotein choles-
terol (LDL-c), and triglyceride levels [1, 2], and subclin-
ical hypothyroidism has been associated with higher
coronary artery disease (CAD) risk [3]. However, two re-
cent randomized placebo-controlled trials on levothyrox-
ine treatment in older adults with subclinical
hypothyroidism did not find a reduction in cardiovascu-
lar events [4, 5], possibly due to a lack of statistical
power [6].
Mendelian randomization (MR) studies [7] and studies

using metabolomics data can further elaborate on the
possible causal role of thyroid status in CAD [8]. Previ-
ous MR studies on thyroid status and CAD were per-
formed in multi-ancestry populations [9–12], while
thyroid function [13], prevalence of thyroid dysfunction
[13, 14], and risk of myocardial infarction [15] all vary
by ancestry. Moreover, genetic variants for thyroid pa-
rameters were discovered in European-ancestry popula-
tions only [16]. We hypothesized that performing MR in
an exclusively European sample could provide a more
accurate effect estimation. In addition, metabolomic pro-
filing can be used as intermediate phenotype, to investi-
gate early subclinical stages of diseases, especially when
considering the lipoprotein subclasses and their contents
[17, 18]. Recently, findings from a Brazilian cohort
showed already promising results showing subclinical
thyroid function to be related to unfavorable lipid profile
using a metabolomics platform [19, 20].
We aimed to investigate the potential causal role of

thyroid status in cardiovascular disease by assessment of
the association between TSH and fT4 levels and CAD
using MR in European-ancestry cohorts. Additionally,

we investigated the association between thyroid status
and metabolomic profile in two stages. First, associations
between TSH and fT4 concentrations within the refer-
ence range were tested for the complete panel of 161
metabolomic markers. Next, robustness of associations
between TSH and fT4 and the metabolomic markers
identified in stage one, was tested with MR and a differ-
ent NMR-metabolomics platform. Since the
multivariable-adjusted regression and MR analyses
methods are sensitive to different sources of bias, re-
sidual confounding and unbalanced horizontal plei-
otropy respectively, triangulation of evidence can
contribute to causal inference of observational findings
[21]. The consistency of associations with metabolomic
markers was also examined in individuals with thyroid
dysfunction.

Methods
Study populations for multivariable-adjusted regression
analyses on the metabolomic profile
We strived to include as much cohorts as possible with
data on exposure and outcome being measured in
European-ancestry participants. In the end, data from
six European-ancestry cohorts were used for first stage
analysis of circulating metabolomic marker concentra-
tions and thyroid status; the 500 Functional Genomics
Study (500FG) (n = 421) [22], the Genetics, Arthrosis
and Progression study (GARP) (n = 321) [23], the Leiden
Longevity Study (LLS) (n = 486) [24], the Netherlands
Study of Depression and Anxiety (NESDA) (n = 2906)
[25], PROSPER (n = 5316) [26], and the Rotterdam
Study (RS) (n = 1690) [27] (detailed description in Add-
itional File 1: Supplementary Materials). We used data
from Study of Health in Pomerania (SHIP) as validation
(n = 983) using different metabolomic profiling methods
[28]. Each participating study obtained written informed
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consent from all participants and approval from the ap-
propriate local institutional review boards.

Thyroid parameters for multivariable regression analyses
For the multivariable regression analyses, TSH and fT4
were measured according to a standardized protocol
(See Additional File 1: supplementary Materials). For
analyses on TSH and fT4 within the reference range,
cohort-specific reference ranges were used after which
TSH and fT4 levels were inverse normal transformed to
approximate normal distribution and facilitate compari-
son between cohorts. Biochemical thyroid dysfunction
was also based on cohort-specific reference ranges; overt
hyperthyroidism was defined by TSH levels below the
reference range and fT4 levels above the reference range,
overt hypothyroidism was defined by either TSH > 20
mIU/L or TSH below 20 mIU/L but above the reference
range and fT4 below the reference range.

Genetic instruments for TSH and fT4
Genetic instruments for TSH and fT4 concentrations
were extracted from the largest genome-wide association
studies (GWAS) meta-analysis on thyroid function com-
prising 72,167 European-ancestry participants [16]. A
total of 62 independent single nucleotide polymorphisms
(SNPs) were identified for circulating TSH (GWAS-
based 9.4% explained variance) and 31 independent
SNPs for circulating fT4 (GWAS-based 4.8% explained
variance) [16] (Additional File 1: Online Table 1). Me-
dian F-statistics was 54 (range 32 to 576) for the TSH
instruments and 43 (range 30 to 394) for the fT4
instruments.

Outcome sources for metabolomic profile
Data for MR analyses on thyroid status and metabolo-
mic profile were derived from four sources; MAG-
NETIC consortium (n = 24,925; downloaded from:
http://www.computationalmedicine.fi/data#NMR_
GWAS)) [29], the Oxford Biobank (n = 6616) [30],
the Netherlands Epidemiology of Obesity Study (n =
4734) [31], and PROspective Study of Pravastatin in
the Elderly at Risk (PROSPER) (n = 2343) [26] (Add-
itional File 1: Supplementary Materials). Data of the
MAGNETIC consortium was publicly available. For
the other studies, linear regression analyses were per-
formed between the SNPs and standardized metabolo-
mic marker concentrations (mean = 0, SD = 1),
adjusted for age, sex, and up to ten principal compo-
nents. Findings were validated in the Airwave Health
Monitoring Study (Airwave) (n = 2021) that used a
different NMR platform [32].

Metabolomic profile measurements for multivariable-
adjusted regression and Mendelian randomization
analyses
We used metabolomic profile measurements performed
on a high-throughput proton NMR platform (Nightin-
gale Health Ltd., Helsinki, Finland) [33]. This method
provides quantification of lipoprotein subclass profiling
with lipid concentrations within 14 subclasses, fatty acid
composition and other small molecules including
glycolysis-related metabolites, amino acids, and ketone
bodies [33] (total 161 metabolomic markers). Out of the
161 metabolic markers, 116 were included in the GWAS
of the MAGNETIC consortium. Metabolomic profiling
for SHIP and Airwave was generated by Bruker IVDr
LIpoprotein Subclass Analysis (B.I.-LISA; Bruker Bios-
pin, Rheinstetten, Germany) [34–36]. Out of the 105
quantified lipoprotein subclasses, 57 subclasses over-
lapped with Nightingale. Methodological details are de-
scribed in the Additional File 1: Supplementary
Materials.

Outcome sources for CAD
For MR analyses on thyroid status and CAD, we used
data from three studies with European-ancestry partici-
pants; CARDIoGRAM consortium (22,233 cases and
64,762 controls ; downloaded from: http://www.
cardiogramplusc4d.org/data-downloads/) [37], UK Bio-
bank (52,946 cases and 393,549 controls) [38], and Finn-
Gen (16,631 cases and 197,780 controls; freeze 5;
downloaded from: https://www.finngen.fi/en/access_
results) [39] to perform MR analyses using maximum
sample size and to examine consistency of the MR re-
sults across the different cohorts. Case definitions are
described in the Additional File 1: Supplementary
Materials.

Statistical analyses
For analyses on circulating metabolomic marker concen-
trations, values were natural log-transformed and subse-
quently standardized for analyses.
For the multivariable regression analyses, a prespeci-

fied analysis plan and syntax were distributed among co-
horts. Population characteristics were derived as number
(percentage) for categorical variables, mean and SD for
normally distributed variables and median, and inter-
quartile range (IQR) for non-normally distributed vari-
ables. Multivariable linear regression analyses were
performed locally, and summarized results were col-
lected centrally for quality control and meta-analysis.
The main analysis was adjusted for age, sex, body mass
index (BMI), and smoking (current versus former or
never), which were considered major confounders. Given
potential heterogeneity among cohorts included in the
multivariable regression analyses, the meta-analysis
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comprised a random-effects model according to re-
stricted maximum likelihood (REML). Sensitivity ana-
lyses were done with participants excluded who used
thyroid therapy or lipid-lowering medication (defined by
ATC codes H03 and C10, respectively) or medication
for treatment of diabetes mellitus (DM), reported a his-
tory of thyroid disease or DM, or had fasting glucose >
7 mmol/L. Results for the multivariable regression ana-
lyses are presented as the association between one SD
higher TSH and fT4 levels within the reference range
and metabolomic marker concentrations in SD with 95%
CI. For associations of thyroid dysfunction, regressed dif-
ferences in circulating metabolomic marker concentra-
tions in SD are shown for overt hyper- and hypothyroid
individuals compared to euthyroid individuals. Analyses
in this stage were hypothesis-free, and therefore, Bonfer-
roni correction was applied based on 37 uncorrelated
metabolomic markers (as previously applied [18]), result-
ing in a two-sided p value threshold of less than 1.34 ×
10−3 (0.05/37). Circos plots were used to summarize and
visually compare the fT4 and TSH results. Circos plots
were created using EpiViz (version 0.1.0, https://github.
com/mattlee821/EpiViz/), a Shiny web application and R
package built using R (version 3.6.2) and Shiny (version
1.4.0). EpiViz adapts and builds on the Circlize [40] and
ComplexHeatmap [41] R packages to create Circos plots
compatible with association analysis data.

Mendelian randomization analyses
Two-sample MR analyses were conducted using
summary-level data from relatively independent GWAS
from exposure and outcomes [42]. We extracted the as-
sociation of each genetic variant for TSH and fT4 from
summary data of GWAS for circulating metabolomic
markers and CAD. All palindromic SNPs, which are
SNPs with an effect allele frequency close to 0.5 in com-
bination with alleles that correspond to nucleotides that
pair with each other, were excluded prior to analyses, as
being default in the TwoSampleMR package. Further-
more, to prevent overestimation of the precision of the
causal effects, we excluded all SNPs in linkage disequi-
librium at R2 > 0.001 from analyses as well. From each
of the remaining SNPs, we calculated the explained vari-
ance (as (β x √(2 × minor allele frequency × (1 − minor
allele frequency)))2 × 100) and F-statistics (as (β/stand-
ard error)2).
Our main analyses were inverse variance-weighted

(IVW) analyses, which provide a weighted mean esti-
mate of the association of the genetically determined ex-
posure and the outcome assuming none of the
instruments were invalid using additive random effects
[43]. We performed weighted median estimator (WME),
MR Egger regression, and MR pleiotropy residual sum
and outlier (MR-PRESSO) analyses as sensitivity analyses

to take into account possible bias caused by directional
pleiotropy [43, 44]. MR-Egger is similar to IVW but does
not force the regression line (i.e., of the SNP-thyroid sta-
tus trait association on the SNP-metabolomic measure
association) through the intercept. MR-Egger is statisti-
cally less efficient (providing wider confidence intervals)
but provides a causal estimate (i.e., the regression slope)
that is corrected for directional horizontal pleiotropy
and a non-zero intercept which is an indication of the
existence of directional pleiotropy. The weighted-median
estimator is valid if more than 50% of the weight of the
genetic instrument is from valid variants (i.e., if one sin-
gle SNP or several SNPs jointly contributing 50% or
more of the weight in the MR analysis exhibit horizontal
pleiotropy the calculated effect estimate may be biased).
We first performed MR analyses on each dataset separ-
ately and subsequently meta-analyzed the summary esti-
mates using fixed-effects models. Effect estimates for
MR analyses with metabolomic profile represent the
mean difference in metabolomic marker concentration
in SD per 1-SD increase in TSH and fT4 levels with 95%
CI. For MR analyses on CAD, results are presented as
odds ratio (OR) per 1-SD genetically determined in-
crease in circulating TSH and fT4 levels with 95% confi-
dence interval (CI). As all MR analyses were hypothesis-
driven, a conventional two-sided p value of less than
0.05 was considered statistically significant.
All analyses and data visualization were performed in

R version 3.6.1 [45] supplemented with the following
packages; MRCIEU/TwoSampleMR [46], rondolab/MR-
PRESSO [44], metafor [47], ggplot2 [48], and ggforest-
plot [49].

Results
Associations between TSH and fT4 within the reference
range and metabolomic profile
Participant characteristics of the stage 1 cohorts
For the multivariable regression analyses, 11,140 adults
from six cohorts were included. A total of 9432 (84.7%)
were euthyroid, 194 (1.7%) had hypothyroidism, 721
(6.5%) had subclinical hypothyroidism, 263 (2.4%) had
subclinical hyperthyroidism, and 54 (0.5%) had hyperthy-
roidism (Additional File 1: Online Table 2). Among eu-
thyroid individuals, the median age varied from 23.0 to
75.4 years and 54.5% of these participants were women
(Table 1). Median TSH levels ranged between 1.73 and
2.13 mIU/L, mean fT4 levels ranged between 15.6 to
16.4 pmol/L, and thyroid medication was used by 185 in-
dividuals (2.0%) and lipid-modifying medication by 2694
individuals (28.6%).

Stage 1 analyses
TSH levels were associated with 52/161 metabolomic
marker concentrations and fT4 levels associated with
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21/161 metabolomic markers (Fig. 1; Additional File 1:
Online Table 3). Higher TSH levels were predominantly
associated with higher concentrations of very low-
density lipoprotein (VLDL) subclasses and components,
higher triglyceride concentrations, and higher triglycer-
ide content of lipoproteins. Associations with fT4 were
largely an inverse reflection of those observed with TSH.
Fluid balance parameters (creatinine and albumin) ap-
peared specific for TSH, while ketone bodies appeared
specific for fT4.

Stage 2 analyses
For the metabolomic markers associated with TSH in
the first stage, second-stage analyses with MR and/or
Bruker platform were performed to assess directional
consistency of the results (Fig. 2; Additional File 1: On-
line Table 4). For the MR meta-analysis of TSH and
metabolomic markers, 41/52 metabolomic markers iden-
tified in the first stage were available. For the majority of
these (34/41), associations observed with MR and multi-
variable regression were directionally consistent. These
markers included various subclasses of VLDL choles-
terol, fatty acids, and triglyceride subclasses. Inconsistent
associations between MR and multivariable regression

comprised associations of TSH with triglyceride content
of IDL- and small HDL-cholesterol particles, albumin,
various amino acids, glycolysis related metabolites, and
inflammatory markers. Overlapping coverage between
Nightingale and Bruker was found for 23/52 of the
metabolomic markers identified in the first stage that all
showed comparable associations in multivariable regres-
sion analyses across both platforms.
For the metabolomic markers associated with fT4 in the

first stage, second-stage analyses were performed to assess
robustness (Additional File 1: Online Figure 1; Add-
itional File 1: Online Table 4). Of the only 4/21 metabolomic
markers from the first stage present in available genetics data,
the association with acetoacetate was directionally consistent
in MR, but the observations with the amino acids and trigly-
ceride content of IDL-cholesterol were not. A total of 9/21
markers were present on both the Nightingale and Bruker
platforms (e.g., VLDL cholesterol subclass, HDL and LDL tri-
glyceride content); all showed directional consistency with
similar effect estimates.
Restricting the study sample to those without thyroid or

lipid-lowering medication use or metabolic disease, produced
similar results as observed in our main analyses (Add-
itional File 1: Online Table 5). Sensitivity analyses for MR

Table 1 Population characteristics of biochemically euthyroid individuals in included cohorts (n = 9432)

500 FG GARP LLS NESDA PROSPER RS

N = 362 N = 230 N = 419 N = 2467 N = 4513 N = 1441

Age in years (median (IQR)) 23.0 (21.0–26.0) 59.8 (55.1–
65.5)

65.7 (61.8–70.4) 43.0 (30.0–53.0) 75.4 (72.9–78.3) 68.9 (65.2–
73.3)

Women 200 (55.2) 181 (78.7) 202 (48.2) 1594 (64.6) 2195 (48.6) 773 (53.6)

Current smoker 47 (13.1)a 38 (16.5) 51 (12.2)c 984 (39.9) 1231 (27.3)g 204 (14.2)h

BMI (median (IQR)) 22.3 (20.8–
24.2)b

26.0 (24.0–
29.0)

26.3 (24.2–
28.6)d

24.6 (22.0–
28.0)f

26.2 (23.8–
28.9)g

26.4 (24.2–
29.0)

TSH (median (IQR)) 2.09 (1.59–2.79) 1.76 (1.27–
2.34)

2.13 (1.54–2.89) 2.07 (1.47–2.80) 1.73 (1.22–2.44) 1.76 (1.27–
2.51)

fT4 (mean (SD)) 16.4 (2.1) 15.8 (1.8) 15.6 (1.9) 15.6 (2.0) 15.6 (1.9) 15.7 (1.8)

History of diabetes mellitus 0 (0.0) 3 (1.3) 20 (6.0)e 103 (4.2) 471 (10.4) 149 (10.4)i

Lipid-lowering medication use 0 (0.0) 8 (3.5) 55 (16.6)e 184 (7.5) 2248 (49.8) 199 (14.7)j

History of thyroid disease 0 (0.0) N.A. N.A. 62 (2.5) N.A. 111 (7.7)

Thyroid medication use 0 (0.0) 3 (1.3) 7 (2.1)e 34 (1.4) 113 (2.5) 28 (1.9)

Medication use influencing the thyroid
gland

0 (0.0) N.A. 1 (0.3)e 3 (0.1) 12 (0.3) N.A.

Results are shown as n (%) unless indicated otherwise. Abbreviations: 500 FG 500 Functional Genomics Study, GARP the Genetics, Arthrosis and Progression study,
LLS the Leiden Longevity Study, NESDA the Netherlands Study of Depression and Anxiety, PROSPER PROspective Study of Pravastatin in the Elderly at Risk, RS the
Rotterdam Study, BMI body mass index, TSH thyroid stimulating hormone, fT4 free thyroxin, N.A. not available
aInformation on 360 individuals
bInformation on 356 individuals
cInformation on 410 individuals
dInformation on 407 individuals
eInformation on 331 individuals
fInformation on 2465 individuals
gInformation on 4511 individuals
hInformation on 1435 individuals
iInformation on 1438 individuals
jInformation on 1352 individuals
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and the MR findings on the Bruker platform were consistent
with the main findings (Additional File 1: Online Table 6).

Association between biochemical thyroid dysfunction and
metabolomic markers identified in relation to TSH and
fT4
Consistency of the observed metabolomic profile was
additionally explored in individuals with hyperthyroid-
ism (n = 54) and hypothyroidism (n = 194). Virtually all

metabolomic markers identified in the first stage ana-
lyses with TSH and fT4 were directionally consistent
with hypo- and hyperthyroidism (Additional File 1: On-
line Figure 2). For TSH, 44/52 and 5/52 and for fT4, 14/
21 and 2/31 metabolomic markers reached nominal sig-
nificant associations (p < 0.05) with respectively
hypothyroidism and hyperthyroidism (Additional File 1:
Online Table 7). Overall, the VLDL subclasses and com-
ponents associated with TSH and fT4 within the

Fig. 1 First stage associations between standardized TSH and fT4 within the reference range and 161 Nightingale platform metabolomic markers (N =
9353). Point estimates represent the standardized change in metabolomic marker concentration per standard deviation change in TSH, adjusted for
age, sex, body mass index, and smoking. Red bars indicate positive associations; blue bars indicate negative associations. Hollow effect estimates were
not statistically significant after correction for multiple testing (p value < 1.34 × 10−3). (1) Extreme large VLDL. (2) Very large VLDL. (3) Large VLDL. (4)
Medium VLDL. (5) Small VLDL. (6) Very small VLDL. (7) IDL. (8) Large LDL. (9) Medium LDL. (10) Small LDL. (11) Very large HDL. (12) Large HDL. (13)
Medium HDL. (14) Small HDL. (15) Lipoprotein particle size. (16) Cholesterol. (17) Glycerides and phospholipids. (18) Apolipoproteins. (19) Fatty acids.
(20) Glycolysis-related metabolites. (21) Amino acids. (22) Branched-chain amino acids. (23) Aromatic amino acids. (24) Ketone bodies. (25) Fluid
balance. (26) Inflammation. HDL, high-density lipoprotein; LDL, low-density lipoprotein; VLDL, very-low density lipoprotein
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Fig. 2 Second stage associations between TSH and 52 metabolomic markers using multivariable and Mendelian randomization analyses on
Nightingale platform and multivariable analysis on Bruker platform. Point estimates represent the standardized change in metabolomic marker
concentration per standard deviation change in TSH; error bars indicate 95% confidence intervals. Multivariable analyses were adjusted for age,
sex, body mass index, and smoking, Mendelian randomization analyses are inverse variance-weighted (IVW) estimate. Hollow effect estimates refer
to associations with p value > 0.05
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reference range appeared to associate stronger with
hypothyroidism than with hyperthyroidism.

Associations between genetically determined TSH and fT4
and coronary artery disease
Within the multi-cohort MR study comprising 91,810
cases with CAD and 656,091 controls, per 1-SD increase
of genetically determined TSH concentration CAD risk
increased with an OR of 1.03 (95% CI 0.99–1.07; p value
0.16) (Fig. 3). Genetically determined fT4 concentrations
were not associated with CAD (OR 1.00 per 1-SD in-
crease of genetically determined fT4; 95% CI 0.96–1.04;
p value 0.89). Heterogeneity between cohorts was low;
all study-level effect estimates were congruent and I2 <
21.00%. The MR Egger and WME were consistent with
the IVW estimates (Fig. 3), although some evidence was
observed in the meta-analysis that higher TSH was

associated with higher CAD risk (OR 1.06 per 1-SD in-
crease of genetically determined TSH; 95% CI 1.00–
1.10). The MR Egger intercepts did not deviate from
zero and MR-PRESSO did not indicate distortion by
outliers (Additional File 1: Online Table 8).

Discussion
Using a mixed-methods approach of multi-cohort multi-
variable regression analysis and MR, we identified a ro-
bust metabolomic profile associated with lower thyroid
status within the reference range, comprising higher
concentrations of VLDL subclasses and components,
higher triglyceride concentrations, and higher triglycer-
ide content of lipoproteins. These associations were dir-
ectionally consistent in patients with thyroid disorders.
In addition, in this multi-cohort MR study on thyroid
status and CAD in an exclusively European-ancestry

Fig. 3 Associations between genetically determined standardized TSH and fT4 within the reference range and coronary artery disease (91,810
CAD cases and 656,091 controls of European ancestry). Odds ratios (ORs) shown (per 1 s.d. increase in TSH/fT4 concentration) are inverse
variance-weighted (IVW) estimate, MR Egger, and weighted-median estimator; error bars indicate 95% confidence intervals
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population, genetically determined higher TSH concen-
trations were associated with a slightly higher CAD risk
(particularly in the WME analysis).
As far as we are aware, this is the first multi-cohort

study investigating the association between thyroid sta-
tus and metabolomic profile. Although various smaller
studies were performed previously, results were difficult
to compare due to the variety of platforms, techniques,
and sample types (i.e., plasma, serum, urine) [50]. Never-
theless, in line with our results, most studies indicated a
role of thyroid hormones in lipid metabolism. No MR
studies on thyroid status parameters and detailed meta-
bolomic profile have been published to date.
Previous multi-ancestry MR studies found no evidence

for an association between thyroid status and CAD [9–
11]. While one MR study found evidence for an associ-
ation between hypothyroidism and CAD, no associations
were observed between genetically determined TSH or
fT4 concentrations and CAD [12]. We hypothesize that
the difference between our and previous studies might
be because we restricted our analyses to European-
ancestry individuals to decrease the risk of population
stratification bias. Future research should assess the ex-
tent of confounding by population stratification in MR
studies on thyroid status.
Multiple mechanisms may underlie the observed asso-

ciations between thyroid status, CAD, and metabolomic
profile. An important function of thyroid hormone is to
stimulate the mobilization and breakdown of cholesterol
and bile acids as well as the de-novo synthesis of fatty
acids and their uptake by peripheral tissues, especially
oxidative tissues such as skeletal muscle, heart, and liver
[51]. Thyroid status could alter hepatic clearance of lipo-
proteins and reverse transport of cholesterol [52]. Con-
sequently, disturbances in thyroid hormone availability
and action may result in disturbances in the balance be-
tween lipid mobilization/synthesis on the one hand and
uptake/clearance on the other hand (reviewed by Duntas
et al. [53]). In case of higher TSH/lower thyroid hor-
mone, the rate of cholesterol mobilization will be higher
than the rate of its degradation, resulting in higher circu-
lating cholesterol levels, which form a substrate for lipid
peroxidation and may enhance oxidative stress as well as
low grade chronic inflammation. In parallel, higher
TSH/lower fT4 may also result in a decreased clearance
of TG-rich lipoproteins, which may further aggravate
the adverse lipid profile. Lower thyroid status could
therefore result in accumulation of fatty acids in VLDL
particles and free triglycerides in the circulation, result-
ing in the observed metabolomic profile. Interestingly,
the metabolomic profile that we observed for lower thy-
roid status resembles that identified previously for myo-
cardial infarction [54]. Therefore, a plausible pathway
would be from low thyroid status via unfavorable lipid

profile which could provide a substrate for oxidative
stress and inflammatory processes to CAD. Although
several other potential mediating factors should be con-
sidered, including endothelial dysfunction, hypertension
and alterations in coagulation [55].
The stronger effect of TSH compared to fT4 on CAD

risk in our study should be interpreted with caution.
Though the genetic variants for fT4 were all strongly as-
sociated with higher circulating fT4 levels, some of these
genes do not result in higher intracellular thyroid hor-
mone signaling [56]. These shortcomings of the fT4 gen-
etic risk score were also demonstrated previously in
context of thyroid status and atrial fibrillation [57]. Fur-
thermore, interpretation of the association for genetically
determined higher TSH with CAD cannot be specified
to either variation within the reference range or includ-
ing (sub)clinical hypothyroidism, as many of the genetic
variants associated with higher TSH within the reference
range also associated with TSH levels above the refer-
ence range [16].
The present study has a number of strengths. Owing

to the multi-cohort setting, we could compile large study
populations for our analyses. Beside the statistical bene-
fits of large sample sizes, multi-cohort studies allow for
surpassing cohort-specific effects and therefore contrib-
ute to identifying robust and generalizable associations.
Apart from assessing consistency of associations be-
tween study populations and the possibility of neglecting
some important confounders not present in all contrib-
uting cohorts (e.g., specific drug use), we made efforts to
triangulate our findings, using different epidemiological
research methods, on the metabolomic profile. To assess
(biological) consistency and robustness, the metabolomic
markers associated with variation in TSH and fT4 within
the reference range were tested in individuals with thy-
roid disorders and in studies using another NMR meta-
bolomic profiling platform. The directional consistency
among these different approaches indicates robust
results.
Our study also has certain limitations. The MR study

on the association of TSH and fT4 with CAD was per-
formed in European-ancestry individuals only and is
therefore not directly extrapolatable to other ethnicities.
Furthermore, although we attempted to include as much
cohorts as possible in our study, cohorts with both ex-
posure and outcome were scarce and therefore the
power of some of the analyses, in particular the valid-
ation analyses, is limited. Despite claims for causal infer-
ence in MR studies, caution is warranted for bias due to
horizontal pleiotropy, selection bias and latent structure
[58–60]. The study population used for first stage ana-
lyses of associations between TSH and fT4 and metabo-
lomic profile included a considerable proportion of
individuals using lipid-lowering medication (30%) or
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with a history of DM (8%). Nevertheless, results from
our second stage and sensitivity analyses excluding par-
ticipants with thyroid or lipid-lowering medication and
those with a history of thyroid disease or DM were in
line with our first stage results. However, not all metabo-
lomic markers could be tested in the second stage ana-
lysis due to low overlap of markers in available data and
platforms. Furthermore, both the MR study on genetic-
ally determined TSH and fT4 with CAD and with circu-
lating metabolites suffered from some sample overlap
between exposure and outcome study populations,
which might cause bias, though the extent appears lim-
ited [61]. Moreover, multivariable MR to formally assess
mediation of the association between TSH and CAD by
metabolomic profile was not possible, as specific genetic
instruments for separate metabolomic markers are cur-
rently unavailable due to the high (genetic) correlation
between the different components and subclasses.

Conclusions
We found indications for potentially causal elevated
risks of unfavorable lipid profile and a somewhat in-
creased risk cardiovascular disease in individuals with
TSH on the upper limits of the reference range. How-
ever, the effect sizes were small and therefore do not jus-
tify widespread treatment with levothyroxine for
prevention of cardiovascular disease. Nevertheless, the
present study adds novel insights in the cardiovascular
risk profile of those with altered thyroid hormone levels.
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