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A B S T R A C T   

The mesenchymal-epithelial transition (MET) receptor tyrosine kinase binds the hepatocyte growth factor to 
activate downstream cell signaling pathways involved in cell proliferation, survival, and migration. Several 
genetic mechanisms can result in an aberrant activation of this receptor in cancer cells. One such activating 
mechanism involves the acquisition of gene mutations that cause MET exon 14 skipping (METex14) during 
mRNA splicing. Mutations leading to METex14 are found in approximately 3–4% of patients with non-small cell 
lung cancer (NSCLC). Accumulating evidence suggests that METex14 is a true, independent oncogenic driver in 
NSCLC, as well as being an independent prognostic factor for poorer survival in patients with NSCLC. The 
successes of target therapies have relied on improved understanding of the genetic alterations that lead to the 
dysregulation of the molecular pathways and more advanced molecular diagnostics. Multiple efforts have been 
made to target the MET pathway in cancer; however, real clinical progress has only occurred since the emergence 
of METex14 as a valid biomarker for MET inhibition. Capmatinib is a highly potent and selective type Ib inhibitor 
of MET. Following preclinical demonstration of activity against MET-dependent cancer cell line growth and MET- 
driven tumor growth in xenograft models, data from a phase 1 clinical trial showed an acceptable safety profile of 
capmatinib and preliminary evidence of efficacy in patients with MET-dysregulated NSCLC. The multicohort 
GEOMETRY mono-1 phase 2 trial reported objective response rates of 68% and 41% in treatment-naïve and in 
pre-treated patients with METex14 advanced NSCLC, respectively. These results have supported the approval of 
capmatinib by the US Food and Drug Administration for patients with metastatic NSCLC harboring METex14.   

Introduction 

Lung cancer was the most commonly diagnosed type of cancer in 
2018 and the leading cause of cancer death in both men and women [1]. 
Worldwide, the estimated incidence of lung cancer was over 2 million 
cases and more than 1.7 million deaths in 2018 [1]. Non-small-cell lung 
cancer (NSCLC) accounts for approximately 85% of all lung cancer cases 

[2]. Curative treatment of NSCLC remains a challenge because more 
than 60% of cases are diagnosed at a locally advanced or metastatic 
stage (III or IV), when surgical resection may no longer be a viable op
tion [3]. 

Due to an increased understanding of the molecular pathways 
involved in cancer development, the availability of targeted therapies 
that are more effective for specific genetic alterations (e.g., epidermal 
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growth factor receptor [EGFR] mutation, anaplastic lymphoma kinase 
[ALK] rearrangement, ROS1 rearrangement, BRAF mutation) and the 
evolving techniques for molecular diagnostics, routine testing for a 
number of driver mutations in patients with NSCLC has become part of 
clinical practice [4–6]. The National Comprehensive Cancer Network 
(NCCN), the European Society for Molecular Oncology (ESMO), and the 
Pan-Asian treatment guidelines recommend early, broad molecular 
testing to identify driver mutations and ensure that patients receive the 
most appropriate treatment [5–7]. Targeted therapy is recommended for 
the treatment of advanced/metastatic NSCLC with driver mutations, for 
which effective, approved therapies have been identified. Additionally, 
the goal of broad molecular profiling is to also identify rare driver mu
tations for which effective drugs may already be available within the 
context of trials or recent approvals [5–7]. 

Mesenchymal-epithelial transition (MET) exon 14 skipping mutation 
(METex14) is an oncogenic driver found in approximately 3–4% of pa
tients with NSCLC and is emerging as a biomarker that is associated with 
poor prognosis [6,8–14]. The MET inhibitors, tepotinib and capmatinib 
(INC280), have recently been approved in Japan and capmatinib only in 
the United States of America as the first agents for the treatment of 
patients with advanced/metastatic NSCLC harboring METex14. Savoli
tinib is another MET inhibitor under clinical investigation [15]. Cap
matinib is a highly potent and selective inhibitor of the MET receptor 
tyrosine kinase that has been shown to be effective as a single-agent 
treatment in patients with advanced or metastatic NSCLC harboring 
METex14. The NCCN guidelines recommend molecular testing for 
METex14 in patients with NSCLC and recommend capmatinib as the 
preferred treatment option for patients with metastatic NSCLC with 
METex14 [6]. This review aims to provide an overview of the preclinical 
evidence that underpinned the development of capmatinib for the 
treatment of patients with METex14 NSCLC, as well as outline the results 
from the clinical trials in this indication. 

MET signaling 

The MET proto-oncogene encodes a receptor tyrosine kinase that 
activates downstream signaling pathways, including MAPK, PI3K/AKT, 
STAT, and NF-κB [16]. In physiological conditions, MET is activated via 
binding of its ligand, hepatocyte growth factor. The MET pathway has an 
essential role during embryogenesis, affecting the development of a 
diverse set of organs and systems. Beyond embryonic development, MET 
signaling is important for wound healing and tissue regeneration, most 
notably liver regeneration [17]. Enhanced MET signaling supports 
tumor cell growth, survival, migration, and invasion. Genomic MET al
terations, including mutations and amplification, can cause activation of 
the MET signaling pathway. Both mutations and amplification of the 
MET gene have been identified in NSCLC and are associated with poor 
prognosis [10,16,18]. MET amplification occurs in up to 20% of patients 
as a mechanism of acquired resistance to EGFR tyrosine kinase inhibitors 
(TKIs), but can also occur de novo in approximately 1–6% of patients 
with NSCLC [9,19–22]. While high-level MET amplification is recog
nized by the NCCN guidelines as an emerging biomarker to guide 
treatment decisions for NSCLC [6], more clinical trials are needed to 
confirm its predictive value and to define suitable detection methods 
and thresholds. Conversely, the predictive value of METex14 is now 
established; it is the clearest proven target for capmatinib activity and is 
a validated biomarker for selecting patients for MET TKI therapies, such 
as capmatinib [6,23]. 

METex14 in non-small cell lung cancer 

The molecular alterations in the MET gene that can cause exon 14 
skipping are diverse, including base substitutions, insertions, and de
letions, which are primarily located in splice donor and acceptor sites of 
exon 14 [12]. These MET mutations are gain-of-function, leading to a 
decrease in internalization and degradation of the MET receptor, and 

thus increasing MET signaling (Fig. 1). Patients with NSCLC harboring 
METex14 usually do not have other known molecular drivers of NSCLC 
(e.g., EGFR, ALK, ROS1, BRAF), which supports the role of METex14 as 
an independent oncogenic driver [8–12,18]. Additionally, METex14 is 
associated with a low tumor mutational burden [12]. METex14 occurs in 
3–4% of NSCLC adenocarcinoma and 8–32% of NSCLC with sarcomatoid 
histologies [8–13,18,24]. A study in Chinese patients (n = 1296; 85% 
adenocarcinoma) identified METex14 in only 0.9% of those patients 
[25]. Notably, METex14 was found to be an independent prognostic 
factor for poorer survival in patients with NSCLC [10,18]. 

The presence of METex14 in NSCLC is not associated with any spe
cific patient characteristics but studies have shown that it occurs more 
frequently in females than males and it is found in a relatively elderly 
population of patients with NSCLC [8,12,14,26]. Patients with METex14 
NSCLC are more likely to have a history of non-smoking [14]. However, 
it is important to note that this mutation is also found in the smoking 
population, and the proportion of smokers in patients with NSCLC 
harboring METex14 is significantly higher than in those harboring EGFR 
mutations, which are classically associated with never/light smokers 
[14,27,28]. This lack of clear clinical association between METex14 and 
patient-specific clinical characteristics supports broad molecular testing 
to determine which patients would benefit most from MET inhibitor 
therapy. MET testing has yet to become common practice; however, this 
will potentially be facilitated with the increasing use of broad molecular 
testing techniques, as well as with guideline recommendations following 
recent regulatory approvals of MET inhibitors. METex14 has become 
part of the molecular testing recommendations in the NCCN guidelines 
for patients with metastatic NSCLC [6]. 

Numerous and diverse alterations that lead to exon 14 not being 
transcribed have been identified and constitute METex14 skipping mu
tations [11]. There are several approaches available to test for these 
known alterations, including Sanger sequencing, quantitative reverse 
transcription PCR (qRT-PCR) and DNA/RNA-based next generation 
sequencing (NGS) [29]. Sanger can sequence a low number of genes 
(1–20 targets) [30] and qRT-PCR can only test one at a time, while NGS 
allows for detection of multiple gene alterations from a single sample, 
providing a higher throughput than traditional methods [31,32]. Given 
the complexity and diversity of the mutations driving METex14, NGS 
represents the most suitable method of testing. In line with this, NCCN 
guidelines recommend NGS testing as the primary method for the 
detection of METex14 [6]. However, targeted NGS panels need to be 
optimized to detect mutations leading to METex14 considering the di
versity in position and size of the METex14 alterations [11,33]. 

Preliminary clinical evidence has demonstrated that MET-specific 
therapies, including capmatinib, significantly prolonged survival in 
patients with advanced, METex14 NSCLC compared with those treated 
with other therapies [34,35]. These results reinforce the importance of 
an identification of patients with this driver mutation to ensure that 
these patients receive an appropriate targeted therapy in order to 
improve treatment outcomes. 

Capmatinib preclinical development 

Capmatinib is an oral, ATP-competitive, highly potent, and selective 
type Ib inhibitor of the MET receptor tyrosine kinase [15,36,37]. In in 
vitro assays, capmatinib was shown to be more potent than other MET 
inhibitors (half maximal inhibitory concentration [IC50] of 0.6 nmol/L): 
approximately 30 times more potent than crizotinib (IC50 22 nmol/L), 
and five times more potent than tepotinib (IC50 of 3.0 nmol/L) [38]. 
Moreover, capmatinib is highly selective for MET compared with other 
kinases, as demonstrated by testing over large panels of kinases in 
biochemical and binding assays [36,37]. Using a selectivity screening 
platform of 442 kinases and disease-associated variants, capmatinib 
bound to only nine kinases (including wild-type MET and two MET 
variants: MET M1250T and Y1235D). Additionally, binding affinities of 
capmatinib for both wild-type and the two variants of MET were several 
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magnitudes higher than those for other kinases, which corroborates the 
selectivity for MET binding [37]. 

Capmatinib effectively inhibits MET downstream signaling and 
consequently hinders tumor growth and progression [36]. Cancer cell 
growth in MET-dependent cancer cell lines was blocked by capmatinib 
treatment, and hepatocyte growth factor-stimulated cell migration was 
decreased by capmatinib in a concentration-dependent manner [36]. 
MET signaling is known to mediate cell resistance to apoptosis [39–41]. 
Treatment with capmatinib induced apoptosis in MET-dependent cell 
lines, as shown by increased levels of fragmented DNA and by poly 
(ADP-ribose) polymerase activation [36]. In MET-dependent tumor cell 
lines, capmatinib inhibited the phosphorylation of downstream effectors 
of the MET pathway, such as ERK1/2, AKT, FAK, GAB1, and STAT3/5, 
and inhibited tumor cell proliferation and migration [36]. 

Capmatinib has also demonstrated in vivo activity against MET- 
driven tumors in preclinical models [36,37]. MET inhibition by cap
matinib was dose dependent and this was sustained over time [36]. 
Furthermore, capmatinib treatment demonstrated anti-tumor activity in 
xenograft models, with tumor regression shown in some of these models 
[36,37], including in tumors. This included the regression of tumors in a 
patient-derived xenograft model with METex14 [37]. 

Clinical studies 

Early clinical trial 

A multicenter phase 1 clinical trial (NCT01324479) in patients with 
solid tumors (including NSCLC) harboring MET alterations (but not 
METex14) aimed to identify the recommended phase 2 dose regimen 
and evaluate preliminary safety and efficacy of capmatinib as a single 
agent [42]. 

During the dose-escalation phase, a capsule formulation of capma
tinib was used; however, this was replaced by a tablet formulation. The 
recommended phase 2 dose regimen was identified as capmatinib 400 
mg twice daily (BID) tablets, which was found to be equivalent to cap
matinib 600 mg BID capsules. This study showed that capmatinib was 
rapidly absorbed after oral administration, with a median time to peak 
plasma concentration of 1–4 h for the capsule formulation, and cap
matinib exposure increased with dose up to the 600 mg BID level [42]. 

Patients with NSCLC (n = 55) in the expansion phase included two 

groups: the original cohort, with patients who completed the dose 
escalation phase, and an additional cohort, which differed based on 
slightly different molecular diagnostic criteria for inclusion. The original 
cohort had MET alterations defined as an H-score ≥ 150 or a ratio of 
MET/centromere ≥ 2 or MET gene copy number (GCN) ≥ 5, or ≥ 50% of 
tumor cells with an immunohistochemistry score of 2 + or 3+, with 
either local or central testing. However, in the additional expansion 
cohort, patients had to be EGFR wild-type and to have centrally tested 
MET with ≥ 50% of tumor cells with an immunohistochemistry score of 
3+ [43]. Enrollment in this study was completed in February 2016, and 
the results for the primary analysis with a cut-off date of July 17, 2017 
have been published; all patients had discontinued treatment [43]. The 
median age of the patients was 60 years (range: 29 to 84 years), and all 
patients had an Eastern Cooperative Oncology Group performance sta
tus ≤ 2 (≤1 in 96% of patients). Approximately 90% of patients had non- 
squamous histology and 95% of patients had received prior therapy 
[43]. Treatment with capmatinib resulted in an overall response rate 
(ORR) of 22%, as determined by a Blinded Independent Review Com
mittee (BIRC), including 11 partial responses (PR) and one complete 
response (CR). In addition, 16 patients (29%) had BIRC-assessed stable 
disease (SD) as their best response, resulting in an overall disease control 
rate of 51%. Notably, it was clear that the response rates were higher in 
the subgroup of patients with higher MET amplification: the proportion 
of patients with a PR in the subgroup with MET GCN ≥ 6 (n = 15) was 
47% (compared with 22% overall). Notably, the single CR was reported 
in the MET GCN ≥ 6 subgroup. The median progression-free survival 
(PFS) was 3.7 months (95% CI 1.9–7.4, 67% PFS events), but this was 
doubled in the subgroup with GCN ≥ 6, with a PFS of 7.9 months (95% 
CI 3.6–12.8, 67% PFS events) [43]. Retrospectively, four patients have 
been identified as having METex14 (central next-generation sequencing 
[NGS] testing), all of whom had demonstrated tumor shrinkage (one CR, 
two PR, and one SD confirmed by the BIRC) [43]. Despite the low 
number of patients, these results provided the first evidence of capma
tinib efficacy in patients with advanced NSCLC with METex14. 

Phase 2 trial 

GEOMETRY mono-1 (NCT02441439) is an ongoing multicenter, 
open-label, multicohort, phase 2 study of capmatinib with the recom
mended 400 mg BID tablet dose, in patients with advanced or metastatic 

Fig. 1. Schematic representation of the effect of METex14 on MET stability and signaling. Abbreviations: HGF, hepatocyte growth factor; MET, mesenchymal- 
epithelial transition; METex14, MET exon 14 skipping mutation. 
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NSCLC (stage IIIB and IV). Eligible patients were EGFR wild-type, ALK 
fusion-negative, and had METex14 or MET amplification [44]. METex14 
testing was performed by a central laboratory with reverse transcriptase 
polymerase chain reaction (RT-PCR) and MET amplification was 
detected by fluorescence in situ hybridization (FISH) using tissue-based 
samples. Patients were assigned to one of several cohorts to assess which 
patients may benefit most from capmatinib treatment (e.g., METex14, 
different levels of MET GCN gain, and line of therapy), with each cohort 
analyzed separately (Table 1). Patients were treated with capmatinib in 
fasting condition in Cohorts 1 to 5, whereas the food restriction was 
removed in the expansion Cohorts 6 and 7 based on pharmacokinetic 
and safety data collected in a separate study [44,45]. The primary 
endpoint was ORR (defined as the proportion of patients with a best 
overall response of PR or CR), assessed by the BIRC, and the key sec
ondary endpoint was duration of response (DOR) by BIRC. Other sec
ondary endpoints included ORR and DOR by investigator assessment, 
disease control rate, time to response, PFS by investigator and BIRC 
assessment, overall survival, pharmacokinetics, and safety. 

As of January 6, 2020, 364 patients had been enrolled in the study. 
Efficacy results have been reported for the 128 patients with METex14 
advanced NSCLC from Cohort 4 (1 or 2 prior lines of treatment [2/3L], n 
= 69), Cohort 5b (treatment-naïve [1L], n = 28), and Cohort 6 (1 prior 
line of treatment [2L], n = 31) [44]. The responses were consistent 
whether assessed by the BIRC or by the investigator, and here we 
mention responses assessed by the BIRC. The ORR (95% CI) was 68% 
(48–84) in treatment-naïve patients in Cohort 5b. In pretreated patients, 
the ORR was 41% (29–53) in 2/3L (Cohort 4), and 48% (30–67) in 2L 
(expansion Cohort 6). In treatment-naïve patients, the median DOR 
(95% CI) was 12.6 (5.6–not estimable [NE]) and the median PFS (95% 
CI) was 12.4 months (8.2–NE). The median DOR in 2/3L was 9.7 months 
(5.6–13.0) and the median PFS was 5.4 months (4.2–7.0). In the 
expansion cohort in a 2L setting, the median DOR was 6.9 months 
(4.2–NE) and the median PFS was 8.1 months (4.2–9.9) in patients with 
METex14; however, these results were not mature (Table 2) [44]. This 
differential benefit observed between treatment-naïve and pre-treated 
patients highlights the need for an early diagnosis in patients with 
METex14, advanced NSCLC, given that this trial clearly shows very high 
response rates in the first-line setting, as well as a small increase in ORR 
in the 2L setting compared with the 2/3L setting. 

Brain metastases are frequent in metastatic NSCLC, occurring in up 
to 40% of patients, and represent a challenge to effective treatment 
[46,47]. The frequency of brain metastases in METex14 NSCLC is similar 
to this proportion [34]. As such, the availability of targeted systemic 
therapies that can cross the blood–brain barrier and reach the brain is an 

important unmet need. Patients with asymptomatic brain metastasis 
were allowed in this trial. Capmatinib can cross the blood–brain barrier 
and has shown preliminary activity in brain metastasis. A neuro
radiologic review was retrospectively conducted by the BIRC on 13 
evaluable patients with brain metastasis at baseline (10 pretreated and 
three treatment-naïve). Seven patients (54%) attained an intracranial 
response, of which four patients had a complete resolution of their brain 
lesions. Intracranial responses occurred by the first assessment at week 
6. Remarkably, 12 of the 13 patients with intracranial disease experi
enced disease control [44]. Despite being a very small sample size, these 
results are encouraging, and further evidence is being pursued to 
confirm the efficacy of capmatinib in the brain (NCT04427072). 

As described above, the GEOMETRY mono-1 trial also included co
horts of patients with MET amplification without METex14. Previously 
treated patients (2/3L) with MET amplification were assigned to cohorts 
based on their GCN: Cohort 1a (GCN ≥ 10, n = 69), Cohort 1b (GCN 6–9, 
n = 42), Cohort 2 (GCN 4 or 5, n = 54), and Cohort 3 (GCN ≤ 4, n = 30). 
The expansion Cohort 6 (n = 34) enrolled patients with one previous line 
of treatment (2L) and either MET GCN ≥ 10 or METex14, but only 
enrolled three METex14 patients. The study also included one cohort of 
patients with no previous treatment (1L) and MET amplification: Cohort 
5a (GCN ≥ 10, n = 15). Capmatinib showed anti-tumor activity in pa
tients with and without prior treatment with MET amplification of GCN 
≥ 10. The ORR (95% CI) as assessed by BIRC was 40% (16–68) in the 15 
treatment-naïve patients in Cohort 5a and 29% (19–41) in the 69 pre
treated patients who had 2/3L in Cohort 1a. However, neither responses 
in treatment-naïve or pretreated patients met the prespecified threshold 
for clinically relevant activity. In treatment-naïve patients, the median 
DOR (95% CI) was 7.5 (2.6–14.3) and the median PFS (95% CI) was 4.2 
months (1.4–6.9). The median DOR in pretreated patients was 8.3 
months (4.2–15.4) and the median PFS was 4.1 months (2.9–4.8). The 
same cutoff date of January 6, 2020 was used for the efficacy analyses in 
patients with MET amplification and GCN ≥ 10. The three cohorts in 
which patients had a GCN < 10 were closed earlier for futility. These 
results suggest that patients with high MET amplification may benefit 
from treatment with capmatinib, but further investigation to determine 
the threshold level of MET amplification is required. Therefore, to date, 
METex14 remains the most relevant biomarker [44]. 

Safety profile of capmatinib 

The safety of capmatinib as a single agent in advanced NSCLC was 
assessed in the phase 1 trial and in the phase 2 GEOMETRY mono-1 
study, with similar findings in both studies. Most treatment-related 
adverse events (AEs) were grade 1 or 2 in these trials [43,44]. 

During the dose-escalation part of the phase 1 study, doses ranging 
from capmatinib 100 mg BID to 600 mg BID in capsule formulation were 
evaluated. Dose-limiting toxicities were observed at 200 and 450 mg BID 

Table 1 
GEOMETRY mono-1 study cohorts [34].  

Treatment-naïve (1L) Pre-treated (2/3L) 

METex14 regardless 
of MET 
amplification 

MET 
amplification 

METex14 
regardless of MET 
amplification 

MET 
amplification 

Cohort 5b 
Cohort 7 
(expansion) 

Cohort 5a 
(GCN ≥ 10) 

Cohort 4 
Cohort 6a 

(expansion) 

Cohort 1a (GCN 
≥ 10) 
Cohort 1bb (GCN 
6–9) 
Cohort 2b (GCN 4 
or 5) 
Cohort 3b (GCN 
< 4) 
Cohort 6a 

(expansion; GCN 
≥ 10) 

GCN, gene copy number; L, line of treatment; MET, mesenchymal-epithelial 
transition; METex14, MET exon 14 skipping mutation. 

a Cohort 6 enrolled patients with either METex14 (regardless of MET ampli
fication) or MET amplification with a GCN ≥ 10). 

b Cohorts 1b, 2, and 3 were closed for futility. 

Table 2 
Key efficacy outcomes from patients with METex14 in Cohorts 4, 5b, and 6 of the 
GEOMETRY mono-1 trial [34].  

Efficacy outcomes 
(BIRC assessment) 

Cohort 5b 
(treatment-naïve) 
N = 28 

Cohort 4 (pre- 
treated 2/3L)a N 
= 69 

Cohort 6 (pre- 
treated 2L) N =
31 

ORR, % (95% CI) 68 (48–84) 41 (29–53) 48 (30–67) 
DOR, median (95% 

CI) 
12.6 (5.6–NE) 9.7 (5.6–13.0) 6.9 (4.2–NE) 

PFS, months, 
median (95% CI) 

12.4 (8.2–NE) 5.4 (4.2–7.0) 8.1 (4.2–9.9) 

Data cut-off: January 6, 2020. 
BIRC, blinded independent review committee; CI, confidence interval; DOR, 
duration of response; L, line of treatment; METex14, MET exon 14 skipping 
mutation; NE, not estimable; ORR, objective response rate; PFS, progression-free 
survival. 

a Two patients in Cohort 4 had received three prior lines of therapy. 
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(both grade 3 fatigue, one patient each), and at 250 mg BID (grade 3 
bilirubin increased, one patient), with no dose-limiting toxicity at the 
maximum dose tested of 600 mg BID capsules, and the maximum 
tolerated dose was not reached. 

The most frequent AEs (≥20%) in the phase 1 study were nausea, 
peripheral edema, vomiting, decreased appetite, fatigue, and increased 
blood creatinine levels. Study-drug related AEs in ≥ 10% of patients 
were nausea, vomiting, peripheral edema, fatigue, decreased appetite, 
and diarrhea [43]. 

The reported safety results for GEOMETRY mono-1 included 364 
patients across Cohorts 1 to 7 (cut-off data for analysis January 6, 2020), 
with a median exposure to capmatinib of 15.3 weeks. Peripheral edema 
(42.9%), nausea (34.3%), vomiting (18.7%), and increased blood 
creatinine levels (18.4%) were the most frequent treatment-related AEs 
reported in the GEOMETRY mono-1 study [44]. Grade 3/4 treatment- 
related AEs were reported in 137 patients (37.6%), including 30 cases 
of peripheral edema (8.2%). Treatment-related AEs leading to discon
tinuation occurred in 39 patients (10.7%) [44]. When looking at the 
safety results from the expansion Cohort 6 and Cohort 7 (n = 57), in 
which capmatinib was given without food restrictions, compared with 
the cohorts with fasting conditions (n = 307), there may be a decrease in 
all-cause gastrointestinal AEs when taking capmatinib without food 
restrictions: nausea (36.8% versus 46.3%), vomiting (21.1% versus 
29.3%), decreased appetite (12.3% versus 22.5%), and diarrhea (5.3% 
versus 19.9%) [44]. 

Both peripheral edema and gastrointestinal toxicity seem to occur as 
AEs associated with the MET inhibitor class [48]. Indeed, gastrointes
tinal AEs are among the most common side effects observed with tyro
sine kinase inhibitors, and several management strategies have been 
developed and applied across different types of cancer with diverse 
drugs [49,50]. Nevertheless, awareness of all possible AEs and close 
monitoring and management, according to the clinical practice pro
tocols in place at the different institutions, can make a difference in 
improving patient tolerability. 

Discussion 

MET pathway activation through METex14 is an important onco
genic mechanism in NSCLC. METex14 is not currently part of routine 
molecular testing in NSCLC. However, the recent approvals of two MET 
inhibitors and the accumulation of data showing that METex14 is 
strongly predictive of responses to MET inhibition may influence testing 
levels, as an assessment of temporal trends of tumor biomarker testing 
identified dramatic uptakes in testing for specific biomarkers following 
publication of seminal clinical trials and regulatory approvals [51]. 
Additionally, METex14 testing is now recommended by the NCCN 
guidelines, which state capmatinib as the preferred treatment option for 
patients with advanced or metastatic NSCLC whose tumors harbor 
METex14 [6]. 

Although there are several testing methodologies able to detect MET 
gene alterations, the complexity and diversity of the METex4 mutations 
leading to constitutive activation of MET requires testing methods that 
can detect these alterations with high sensitivity and specificity, such as 
NGS [11,29]. Early, broad molecular testing is recommended to select 
the optimal treatment for each patient [6]. Upfront, multiplex molecular 
profiling (including NGS) could avoid testing delays and tissue shortages 
associated with sequential testing and facilitate early, appropriate 
upfront targeted treatment [31,52]. Most patients with NSCLC are 
diagnosed with advanced metastatic disease [53]. Many of these pa
tients may have tumors that are difficult to biopsy, are very small, and 
biopsies with minimal tumor content [54,55]. NGS allows detection of 
multiple gene alterations from a single sample, avoiding tissue exhaus
tion. Furthermore, modeling analysis of newly diagnosed patients with 
metastatic NSCLC demonstrated that NGS was associated with the same 
(versus hotspot panel) or shorter (versus exclusionary and sequential 
testing) time-to-test results, with lower testing costs than sequential, 

exclusionary, and hotspot panel testing [31,56]. 
Prior to the approval of additional MET inhibitors, crizotinib was 

recommended for patients with METex14; crizotinib is indicated for the 
treatment of patients with advanced NSCLC harboring ALK trans
locations or ROS1 rearrangements [5–7]. Data from the PROFILE 1001 
clinical trial showed that the ORR with crizotinib treatment in patients 
with METex14 was 32.3% [57]. However, one important aspect to 
consider is the poor blood–brain barrier penetration of crizotinib, which 
may limit its effectiveness in patients with brain metastases [58]. 

Capmatinib is a highly potent and selective MET inhibitor with in 
vitro and in vivo anti-tumor activity against NSCLC. Results from the 
GEOMETRY mono-1 study in patients with advanced/metastatic NSCLC 
harboring METex14 showed that capmatinib was highly effective for 
treating these patients, with particularly good results in the first-line 
treatment setting, where an ORR of 68% was observed [44]. Nonethe
less, in patients who have received one to two prior lines of therapy, the 
ORR was 41%, and 48% with only one prior line of treatment, demon
strating that pre-treated patients can also derive a benefit from capma
tinib treatment [44]. These results reinforce the importance of an early 
molecular diagnosis in patients with METex14. Furthermore, scope for 
improvement in overall efficacy across all treatment settings also un
derpins the need for ongoing research into intrinsic and acquired 
mechanisms for resistance to MET inhibition. Regarding intrinsic resis
tance, a recent preliminary analysis of patients with METex14 NSCLC 
who were treated with MET inhibitors demonstrated that the absence of 
either MET protein expression or the activation of the RAS pathway at 
baseline had negative predictive value for treatment response, with no 
responses reported in patients with either undetectable MET protein 
expression (by mass spectroscopy; n = 6) or a concordant RAS pathway 
mutation (n = 5) [59]. A preliminary biomarker analysis of the GE
OMETRY mono-1 study identified concurrent KRAS alterations in 7% of 
METex14 patients before capmatinib treatment; there was no associa
tion of KRAS alterations with differences in ORR or PFS [60]. Knowledge 
of acquired resistance is steadily accumulating, with both on-target and 
off-target mechanisms known to be involved. MET kinase domain, KRAS 
and RASA1 mutations, as well as EGFR, HER2, HER3, KRAS, and BRAF 
gene amplifications have been identified [59,61]. 

Guidelines recommend broad molecular testing of patients with 
advanced NSCLC to guide treatment decisions since several targeted 
therapies are available for established or emerging biomarkers that are 
efficacious in the specific sub-group of patients that they are intended 
for[5–7]. A more ubiquitous use of diagnostic platforms such as NGS 
may facilitate the identification of patients with driver mutations 
(including the ones with rare incidence) and allow a prompter treatment 
with appropriate targeted therapies, if available. These diagnostic 
platforms also enable comprehensive genomic profiling of tumors to 
identify the landscape of concurrent alterations; therefore, they can 
facilitate even more personalized future treatment options. In the GE
OMETRY mono-1 study, tumor samples from 73 patients with METex14 
(as detected by RT-PCR) enrolled into Cohorts 4 and 5b were retro
spectively analyzed using a Foundation Medicine NGS panel, Founda
tionOne® CDx (https://www.foundationmedicine.com/genomic-testi 
ng/foundation-one-cdx). NGS testing detected METex14 in 72 of those 
samples, indicating a 99% concordance between the two tests [44]. The 
additional patient had a non-canonical METex14 rearrangement [44]. 
Overall, these results are reassuring and indicate that both RNA-based 
and DNA-based techniques can be used to detect METex14 in tumor 
samples from patients with NSCLC. 

Data from the GEOMETRY mono-1 study suggest a potential bene
ficial effect of treatment with capmatinib in high MET-amplified pa
tients, including both treatment-naïve and pretreated (2/3L) patients, 
with ORRs of 40% and 29%, respectively. However, the endpoint of ORR 
was not reached in these cohorts [45]. These results were inconclusive 
with regards to the use of MET amplification as a biomarker for selecting 
patients for MET-targeted therapy. 

In a recent study of 373 unselected patients with NSCLC who were 
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consecutively tested for GCN by FISH, the molecular subgroup with 
GCN ≥ 10, which represented 2.1% of all patients, had a significantly 
shorter overall survival (HR = 3.61; median 8.2 months versus 23.6 
months) compared with those with GCN < 10 and MET FISH-negative, 
nearly independent of chemotherapy and immune-checkpoint inhibi
tor treatment [21]. In a phase 1 clinical trial investigating capmatinib 
treatment in 55 MET-amplified patients (MET/CEP7 ≥ 2 or GCN ≥ 5 by 
FISH) with NSCLC refractory to currently available therapies or for 
which no effective treatment is available, the highest ORR to capmatinib 
of 47% was observed in patients with GCN ≥ 6 (n = 15) [43]. The 
definition of MET amplification as either GCN gain or MET/CEP7 ratio 
and appropriate cut-offs to predict response to treatment are still under 
debate and there are limited data on the frequency of different ampli
fication levels in patients with NSCLC [62,63]. Therefore, a key chal
lenge in interpreting efficacy data for patients with MET amplification is 
to further refine an appropriate, standardized, methodology for detec
tion and defined cut-off value. For the reasons stated above, NGS may be 
the preferable approach for selecting patients who may benefit from 
treatment with MET inhibitors. 

While MET TKIs hold promise for use in clinical practice, develop
ment of resistance has the potential to diminish their clinical efficacy. To 
improve clinical efficacy through the early identification of resistance, it 
is of utmost importance to understand the molecular mechanisms that 
regulate it. However, molecular mechanisms of acquired resistance to 
MET TKIs are poorly understood. On-target single and polyclonal 
genomic mutations in the MET kinase domain have been shown to 
mediate resistance to type I kinase inhibitors (such as crizotinib) in 
patients with NSCLC and METex14 [64,65]. Some off-target mechanisms 
of resistance, including mutations and amplifications in KRAS, EGFR, 
HER 3, and BRAF have also been reported [65]. Activation of the EGFR 
pathway due to overexpression of transforming growth factor α, 
bypassing the need for MET signaling to activate downstream signaling, 
and inactivation of NF2 concurrent with NRG1 overexpression have also 
been demonstrated in in vitro studies [66,67]. Further understanding of 
these molecular mechanisms is required to devise sequential or combi
natorial therapeutic strategies to overcome resistance. 

Conclusions 

Although no specific clinical characteristics have been identified in 
patients with METex14, patients are generally older than the general 
NSCLC population and have a poorer prognosis. Available evidence has 
demonstrated that patients with METex14 benefited from MET-targeted 
therapy with capmatinib, with preliminary evidence of activity against 
brain metastases in patients with NSCLC. These results, therefore, sup
port the inclusion of METex14 testing in clinical panels to ensure that the 
benefit of this medicine that has been recently approved by the US FDA 
is extended to the appropriate patients. Currently, METex14 has the best 
predictive value for response to MET inhibitors, including capmatinib. 
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