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Editorial
Evidence generation and reproducibility in cell
and gene therapy research: A call to action

The emergence of new cell and gene-based therapies (CGTs) utilizing
innovative technologies has recently intensified. Long-standing ef-
forts in publicly funded biomedical research have resulted in break-
through therapeutic approaches for patients with devastating and
life-threatening diseases. Transformative gene-based therapeutic
tools include human genome editing technologies, refined transposon
systems, and synthetic immunoreceptors, such as chimeric antigen
receptor (CAR) T cell and natural killer cell engineered immunother-
apies. Cancer has been a leading disease target, with the treatment of B
cell malignancies yielding compelling clinical outcomes, resulting in
the regulatory approval of several CAR T cell therapies.1 Concur-
rently, intensive research on solid tumor indications is underway.2

Similarly, rare diseases are prominent targets for gene therapy and
gene editing technologies.3 Founded on these scientific advances,
next-generation CGTs are expected to transform into treatment op-
tions for a wider spectrum of conditions.4,5 Moreover, while these
treatments, to-date, target mostly patients with advanced illnesses,
future therapies may be introduced at earlier disease stages, even as
primary therapeutic options. Here, we highlight some of the obstacles
inherent in CGT evidence generation and research reproducibility
and recommend concerted actions on how they can be overcome.

Developers, regulators, funders and payers involved in the develop-
ment and delivery of next-generation CGTs need to rely on robust ev-
idence of their benefits and risks to support decision making6 and
ensure their translation from promising discoveries to effective ther-
apeutics.7 Inadequate evidence on their comparative efficacy has led
several CGTs to be withdrawn from the European Union (EU) mar-
ket mainly due to inability to satisfy national reimbursement require-
ments.8 This is due, in part, to certain unique attributes of CGTs such
as heterogeneity in treatment response and toxicities, targeting rare
diseases with low patient accrual and lack of suitable comparators
in clinical trials, and the need for long-term safety and efficacy follow
up studies, among others.9 Importantly, the mode of action for gene
therapies, in many cases, relies on introducing permanent changes to
human cells and tissues, which, in turn, increases the risk of unfore-
seen and delayed adverse events. As a result, regulatory agencies
require developers to conduct long-term patient follow-up, amount-
ing to 15 years of observation, with the right infrastructure in place to
collect longitudinal patient data, e.g., through patient registries.10,11

Additionally, CGTs are rarely readily available as “off the shelf” ther-
apies and must be customized, leading to high development costs;
thus, accessibility becomes an issue for patients and health care
providers.

It is also acknowledged that pre-clinical testing of CGTs has, in some
instances, limited capability for generating informative evidence.
In vivo models in highly inbred, specialized mouse strains may not
Molecular Therapy: Methods & Clini
This is an open access article under the CC BY-NC
adequately reproduce features of the target patient population.12

Often, normal donor cells are employed to obtain pre-clinical evi-
dence on the safety and efficacy of genetic engineering strategies,
which may not accurately reflect later findings in treated patients.12

Additionally, some pre-clinical studies, such as toxicokinetics and
mode of action, are technically difficult to perform for CGTs.9 The
use of models that incorporate human cells and tissues and exhibit
highly differentiated features (e.g., organoids, organs-on-chips) could
be beneficial for preclinical validation efforts.13 For instance, patient-
derived organoids that recapitulate clinically relevant features of or-
gan pathophysiology may be useful to test delivery, predict toxicities,
or assert the validity of early clinical findings of a gene therapy
approach,14 particularly for rare genetic disorders. Transcriptomic
technologies would be beneficial for in-depth investigation and vali-
dation of such organoid models.15 Crucially, ethical concerns associ-
ated with deployment of organoids and gene editing approaches
require continuing deliberations.16,17

Ideally, CGT clinical trial design would consider the harmonization of
outcome measures and their reporting to facilitate comparisons
across studies and the pooling of data needed for statistical meta-anal-
ysis.18 Engaging statisticians in the earliest phases of clinical develop-
ment is essential in assuring appropriate study design. Some new
technologies may require preliminary studies with smaller patient co-
horts to demonstrate their feasibility, e.g., phase 0/1 trials, including
the observation of unexpected toxicities, identification of patient pop-
ulations most likely to benefit, and an understanding of key barriers
for implementation.19 This approach is compatible with improving
trial enrollment in subsequent larger clinical studies. It is also impor-
tant to ensure that socioeconomic and racial/ethnic disparities are
considered in CGT trial design and patient enrollment.20 Patient ad-
vocates can play an active role in improving patient recruitment and
retention in CGTs clinical trials.21

Consistent and high-quality evidence on the health benefits of a new
therapeutic modality is not only needed to justify regulatory licensing
but also health insurance coverage and reimbursement decisions.22

CGT prices are often elevated on the basis of their high development
costs and anticipated curative value as a one-time treatment. Addition-
ally, the clinical benefits of curative therapies are associated with signif-
icant uncertainties, complicating their appraisal using traditional
economic evaluation methods such as cost-effectiveness analysis,
which may require methodological recalibration.23 Ensuring and
monitoring long-term data collection through post-approval studies
and surveillance as a regulatory prerequisite can help overcome this
limitation.24 Where feasible, data should be collected and curated to
facilitate access and analysis by independent investigators. These
efforts could also benefit from initiatives such as the National
cal Development Vol. 22 September 2021 ª 2021 The Author(s). 11
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Patient-Centered Clinical Research Network (https://pcornet.org/), the
National Institutes of Health Collaboratory (https://commonfund.nih.
gov/hcscollaboratory), or the European Data Analytics and RealWorld
Interrogation Network (DARWIN) initiative to capture real world ex-
periences. While the exploration of new alternative financing mecha-
nisms and innovative insurance schemes for CGTs are certainly
welcome,22 health technology assessments should be flexible enough
and adapt to evidence uncertainties associated with the potential cura-
tive benefits of CGTs for serious or life threatening illnesses when no
alternative therapies exist. Given all these challenges, robust scientific
evidence based on reproducible and replicable research is critically
needed to inform decision-making throughout the CGT life cycle.

In summary, the development of highly effective CGTs offers hope
to millions of patients with severe and previously incurable diseases.
However, providing an evidence base for their effective and safe
deployment must be a priority. Goals for optimal product develop-
ment should include: (1) avoiding marketed products being with-
drawn by manufacturers or regulators due to lapses in evidence gen-
eration; (2) systematic monitoring for potentially new and/or
delayed adverse events not identified during clinical research phases
(especially in orphan diseases with small pre-authorization studies);
and (3) limiting the instances in which post-approval real-world ev-
idence fails to confirm therapeutic benefits.25 Additionally, the high
upfront costs of some CGTs and their reimbursement challenges
could potentially jeopardize their continued use and undermine
confidence in the broader therapeutic category. In a field with
such strong scientific prospects but also high degree of vulnerability
due to limited clinical experience and evidence, transparency
throughout research and development stages is key. Some of these
issues have been raised in the International Society for Stem Cell
Research (ISSCR) guidelines governing clinical translation of novel
stem cell-based therapeutics26 intended to protect patients against
false hopes or potential harms that can result from unproven
stem cell interventions.27

We call for increased attention to methodological improvements in
pre-clinical and clinical study designs, including robust data collec-
tion and evaluation, together with the complete disclosure of proto-
cols and publication of results, be they positive or negative. Exper-
imental replication/validation should be achieved at the pre-clinical
stage to maximize the prospects of successful clinical translation.
This will require a change in culture of the scientific ecosystem,
including the need to both conduct and publish the findings of
meaningful attempts to reproduce results (that is, computational
reproducibility from the same data) or to replicate findings through
new sets of experiments, to either strengthen or challenge current
evidence.28 Assessing both the quality of evidence and experimental
replicability requires accurate reporting of the original study’s
methods and a sample population that can be accessed or recre-
ated,29 including access to deidentified patient data to underpin sec-
ondary analyses.30 Multiple stakeholders, particularly research fund-
ing agencies and academic institutions, will be required to support
these efforts and provide tools and infrastructure, ultimately
12 Molecular Therapy: Methods & Clinical Development Vol. 22 Septem
enabling researchers to achieve these goals.28 An investment in ev-
idence generation and reproducibility of results will pay off with
improved efficiency in the development and application of CGTs
and will eventually save resources. The multidisciplinary approaches
discussed here could strengthen evidence, reduce uncertainties, and
diminish potential biases, thus enhancing clinical, regulatory, and
payers decision making. This proposed blueprint for CGTs relies
on rigorous research to meet pressing clinical needs while gener-
ating the societal support required for delivering these promising
therapies across the globe.
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