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ABSTRACT  43 

The prevalence of multimorbidity and polypharmacy increases significantly with age, and are 44 

associated with negative health consequences. However, most current interventions to optimize 45 

medication have failed to show significant effects on patient-relevant outcomes. This may be due to 46 

ineffectiveness of interventions themselves, but may also reflect other factors: insufficient sample 47 

sizes, heterogeneity of population. To address this issue, the international PROPERmed collaboration 48 

was set up to obtain/synthesize individual participant data (IPD) from five cluster-randomized trials. 49 

The trials took place in Germany and The Netherlands and aimed to optimize medication in older 50 

general practice patients with chronic illness. PROPERmed is the first database of IPD to be drawn from 51 

multiple trials in this patient population and setting. It offers the opportunity to derive prognostic 52 

models with increased statistical power for prediction of patient-relevant outcomes resulting from the 53 

interplay of multimorbidity and polypharmacy. This may help patients from this heterogeneous group 54 

to be stratified according to risk and enable clinicians to identify patients that are likely to benefit most 55 

from resource/time-intensive interventions. The aim of this manuscript is to describe the rationale 56 

behind PROPERmed collaboration, characteristics of the included studies/participants, development 57 

of the harmonized IPD database and challenges faced during this process. 58 

Registration 59 

PROSPERO ID: CRD42018088129 60 

Keywords (max. 6) 61 

Elderly, hospitalization, meta-analysis, multimorbidity, polypharmacy, prognosis, quality of life. 62 
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INTRODUCTION 64 

Older people with multiple chronic diseases (multimorbidity) are the norm rather than the exception, 65 

and up to 80% of consultations in general practice are devoted to helping them (1, 2). These patients 66 

are frequently treated with multiple drugs (polypharmacy), which increases the risk of both 67 

inappropriate prescriptions and medication underuse (3-7). Both multimorbidity and polypharmacy 68 

are associated with a range of negative health outcomes such as falls, hospital admissions, reduced 69 

health-related quality of life (HRQoL), decreased functionality and loss of autonomy (8-13). 70 

Multimorbidity and polypharmacy have been recognized as major challenges facing health care 71 

systems, as they not only worsen health outcomes in individuals, but lead to higher costs, e.g., for 72 

health care utilization, treatment of adverse drug reactions (ADR), and home care (13-15). 73 

To optimize the care and treatment of chronically ill patients, various interventions have been 74 

developed and tested, of which most were complex and resource intensive. However, most cluster-75 

randomized controlled trials (cRCT) evaluating complex interventions associated with polypharmacy 76 

and multimorbidity in general practice have failed to demonstrate significant effects on patient-77 

relevant outcomes (16). While positive effects have been shown on process parameters (e.g., 78 

outcomes related to prescribing quality), interventions have showed few and inconsistent effects on 79 

clinical outcomes (e.g., falls), and no effect on well-being (e.g., quality of life) (17-21). Several factors 80 

may be responsible for this. Firstly, the intervention may have been ineffective or of inadequate 81 

intensity, or its implementation may have failed, perhaps because the follow-up period was too short 82 

to allow for behavioural change in the prescribers. Secondly, the study design and the methodology 83 

may have been flawed, possibly because cross-sectional data on frequently changing medication 84 

regimens was not collected for long enough, or due to contamination. Thirdly, the Hawthorne effect 85 

may have played a role, and the simple fact of participation in a trial may have resulted in an 86 

improvement in patients’ health (19-24). Furthermore, existing definitions of multimorbidity and 87 

polypharmacy lead to heterogeneity in this patient group because they cover a broad range of patients, 88 
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ranging from the fit and active that are in a good state of health despite their diseases and 89 

prescriptions, to those with a high disease and treatment burden and negative outcomes. 90 

Heterogeneity in this patient population makes it particularly difficult to target the population that 91 

may benefit most from interventions that are time- and resource-intensive and often complex (25). 92 

The use of prognostic models can help predict the risk of specific future outcomes in individual patients 93 

and may therefore help stratify risk and identify patients in need (26). A systematic review of existing 94 

tools to predict risk found models aimed at identifying the risk of adverse events in patients with 95 

multimorbidity, but none of them adequately considered polypharmacy-related risks and the 96 

interrelation of multiple conditions and medication (27-30). In general, prognostic models that have 97 

taken multimorbidity into account have shown only modest predictive accuracy. The authors of the 98 

review identified three main limitations to implementing prognostic models in this setting - ethical and 99 

data privacy issues, a lack of acceptance for such models among health professionals, and a lack of 100 

evidence of their (cost-) effectiveness (31). Using risk assessment tools is felt to be beneficial for 101 

initiating discussion, engaging patients in risk discussions, and guiding both health professionals and 102 

patients around decision-making (32). However, the little effect has been found on patient attitudes 103 

who express difficulties trying to understand the information provided with this type of tools (33). 104 

To support the creation of prognostic models that address the problems mentioned above, a group of 105 

international researchers that are active in the field of multimorbidity and polypharmacy in general 106 

practice set up the PROPERmed collaboration and constructed the first major database of individual 107 

patient information that was drawn from multiple trials in this population. As the approach offers both 108 

statistical and clinical advantages, our aim was to provide a harmonized individual patient database to 109 

support the development and validation of prognostic models, (34). In this manuscript we describe the 110 

rationale behind the PROPERmed collaboration, the characteristics of the included studies and 111 

patients, and the design, development and challenges of creating a harmonized individual participant 112 

data (IPD) database.  113 
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 114 

THE PROPERMED COLLABORATION 115 

The PROPERmed collaboration included trialists from five study centers in Germany and The 116 

Netherlands that shared strong links due to pursuing a common interest in multimorbidity and 117 

polypharmacy research: i) Goethe University Frankfurt/Main (Germany), ii) Amsterdam University 118 

Medical Center (The Netherlands), iii) Maastricht University (The Netherlands), iv) Leiden University 119 

Medical Center (The Netherlands), and v) Ruhr University Bochum (Germany). A collaborative 120 

approach was used in preference to a systematic approach (35) because this was the first time a meta-121 

analysis of data from this population had been conducted, and the ability to confront unknown 122 

difficulties required the expertise of a group of researchers with an established common interest. All 123 

the trials had been registered and approved by the respective Medical Ethics Committees. The 124 

PROPERmed collaboration further involved German experts from Heidelberg University Hospital and 125 

the University of Freiburg (Cochrane Germany), as well as an international scientific advisory board 126 

that included experts from Bond University, Gold Coast (Australia), as well as the University of Oxford 127 

and the Centre for Prognosis Research, Keele University (UK). Key barriers of successfully implementing 128 

prognostic models not only include a lack of acceptance among health professionals (31), but also a 129 

lack of support by leading stakeholders in the field of application as well as patients’ acceptance . 130 

Furthermore, a timely application of prognostic models in routine care seems to facilitate 131 

implementation (26). Therefore, to ensure the stakeholder perspective was not neglected, the 132 

Techniker Krankenkasse (TK) statutory health insurance fund was also involved in the collaboration. By 133 

collaborating with the TK, we will be able to gain relevant insights with regard to the potential 134 

implementation of our model considering the macro, meso and micro level: i) Macro: German 135 

statutory health insurances are represented in the Federal Joint Committee (G-BA). The G-BA consists 136 

of umbrella organizations of the self-governing healthcare system including patient representatives 137 

and is responsible for the definition of healthcare services to be paid by statutory health insurances, 138 
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and quality assurance of care; ii) Meso: Depending on the model, the included variables and defined 139 

outcomes, the potential application of the prognostic model to data from routine care provided by 140 

statutory health insurances will be discussed; iii) Micro: As not all variables included in the final model 141 

may be available in routine data from statutory health insurances, additional possibilities of data 142 

collection including patients will be discussed (e.g., via patient apps) in order to complement available 143 

data from routine care. 144 

 145 

SOURCE OF DATA – CHARACTERISTICS OF THE PROPERmed STUDIES 146 

The PROPERmed study included IPD from five cRCTs: PRIMUM (24), Opti-Med (36, 37), PIL (Nederlands 147 

Trial Register, NTR2154) (38), ISCOPE (39) and RIME (Deutsches Register Klinischer Studien-ID, 148 

DRKS00003610). The cRCTs were conducted from 2009 onwards in general practices from The 149 

Netherlands (ISCOPE, Opti-Med, and PIL) and Germany (PRIMUM and RIME) and evaluated complex 150 

interventions aimed at optimizing (pharmacological) treatment in older patients with chronic disease. 151 

Practices served as the unit of randomization in all the trials. Four of the five cRCTs used a pragmatic 152 

parallel-group design and one used a stepped-wedge design (PIL). All the trials compared a structured 153 

medication review (complex intervention) with usual care except one (ISCOPE), which compared usual 154 

care with an integrated care plan that used a functional geriatric approach. Table 1 provides an 155 

overview of the characteristics of the included trials.  156 

[About here: Table 1 on Main characteristics of the included trials]. 157 

 158 

DEFINITION OF THE CORE DATA SET 159 

At a kick-off meeting in May 2017, we and the other collaborators decided upon the data to be 160 

collected for the IPD-MA based on the availability of relevant data in the trials. We agreed upon overall 161 

inclusion and exclusion criteria for practices and patients, as well as a core data set covering a variety 162 
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of candidate prognostic factors and patient-relevant outcomes to be predicted in the subsequent 163 

modelling approach. 164 

Participants 165 

Practices 166 

To be included in the trials, general practices had to provide primary care within the framework of the 167 

German or Dutch statutory health insurance systems. In one study (PRIMUM), practices specializing in 168 

unconventional treatments or special conditions (e.g., HIV) were excluded. No additional exclusion 169 

criteria were applied to practices in the other trials. 170 

Patients 171 

Based on the inclusion criteria in the trials, we included patients in PROPERmed that were aged 60 172 

years and older, had been diagnosed with at least one chronic condition, and had at least one chronic 173 

prescription at study baseline. We defined chronic conditions in accordance with O´Halloran et al. (40), 174 

and defined chronic prescriptions in the same way as the trials (two weeks in PRIMUM, two months in 175 

ISCOPE, and three months in Opti-Med, PIL and RIME).  176 

In accordance with the exclusion criteria used in the trials, critically ill patients with a limited life 177 

expectancy were not included. Additional inclusion and exclusion criteria were specified in individual 178 

trials, such as abuse of alcohol or illegal drugs, which was an exclusion criterion in PRIMUM and PIL. 179 

Between-trial heterogeneity resulting from the impact of trial-specific criteria was considered to be 180 

acceptable. 181 

Outcomes and candidate prognostic variables 182 

For the planned prediction models, we agreed upon outcomes signifying deterioration in health-183 

related quality of life (dHRQoL) and all-cause hospital admissions at six-month follow up. Following a 184 

discussion with the co-authors, the outcomes of interest were selected based on their relevance and 185 

availability across the included trials. We also selected a full range of candidate prognostic variables 186 

for the models, including data on socio-demographics and lifestyle, patient morbidity, medication, 187 
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functional status and well-being (HRQoL, physical and cognitive components), and whether patients 188 

had been hospitalized in the 12 months previous to study enrolment. 189 

 190 

DATA COLLECTION AND HARMONIZATION 191 

Regardless of format, IPD for all five included cRCTs, the lists of variables, and information on data 192 

collection, were gathered and stored in a secure data repository. As the measuring instruments used 193 

in the studies varied, ex-post data harmonization procedures were conducted before model 194 

development. As data harmonization aimed to preserve as much information as possible, missing data, 195 

inconsistencies, and errors that occurred during data preparation were queried and discussed with the 196 

original authors. Variables from the original trials were also harmonized using different techniques, 197 

which included the recoding of categories and labels, and the clinical harmonization of variables (e.g., 198 

see ‘morbidity-related candidate prognostic variables’). Whenever necessary, new variables were 199 

created from other available information by, for example, using cut-offs (see ‘depressive symptoms’). 200 

If specific trials used psychometric instruments based on differing constructs to measure the same 201 

outcome (see ‘functional status and well-being’), the underlying psychometrical constructs were 202 

preserved and standardized mean differences used to render them comparable. Table 2 provides more 203 

detailed information on the data harmonization process. 204 

[About here: Table 2 on Data harmonization]. 205 

Health-related quality of life (HRQoL) 206 

At baseline and after the six-month follow-up, all trials used the EQ-5D-3L index score (41) to measure 207 

generic HRQoL in the dimensions mobility, self-care, usual activities, pain/discomfort, and 208 

anxiety/depression. In two of the Dutch trials (PIL and ISCOPE), the translated question on “mobility” 209 

had to undergo slight linguistic adaptation because the original item in the standardized questionnaire 210 

frequently resulted in missing values in older populations (42). We calculated EQ-5D-3L index scores 211 

based on time trade-off norm values (43) and defined the binary outcome dHRQoL as a decrease in 212 
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the EQ-5D-3L index score of at least five percent between baseline and six-month follow-up. We 213 

considered this cut-off to be clinically relevant because it was derived from observations of the minimal 214 

important difference (MID) in HRQoL deterioration that is perceived by patients. This is a rather 215 

conservative assumption, as MIDs in the populations under investigation varied depending on disease 216 

severity and age (44, 45). 217 

All-cause hospital admissions 218 

We defined hospital admission as the moment when a patient receives inpatient services in a hospital 219 

for any reason between baseline and six-month follow-up. As some trials provided no precise 220 

information on reasons for admission and length of stay, hospitalizations included emergency 221 

admissions and planned admissions from waiting lists, both day and night. Trials either used patient-222 

reported data from questionnaires (Opti-Med, PIL, ISCOPE and RIME) or physician-reported case report 223 

forms (PRIMUM) to collect information on hospital admissions. All trials except Opti-Med collected 224 

baseline information on previous hospitalizations, with PRIMUM, ISCOPE and RIME providing 225 

information on the number of admissions in the twelve-month period before baseline. With respect 226 

to follow-up information, admissions between baseline and six-month follow-up were recorded in 227 

PRIMUM, Opti-Med and RIME, and between baseline and 12-month follow-up in PIL and ISCOPE. The 228 

number of admissions at baseline was considered to be a continuous variable, while the number of 229 

follow-up admissions was operationalized as a binary outcome, as it resulted in fewer missing values.  230 

Sociodemographic and lifestyle-related variables 231 

All trials collected sociodemographic and lifestyle-related variables at baseline using self-administered 232 

questionnaires (PRIMUM, Opti-Med, PIL and ISCOPE), or patient interviews (RIME). Trials recorded the 233 

age of the patient when recruited, and gender. We categorized living situation as “living at home” or 234 

“institutionalized living”. We categorized educational level according to the aggregated levels of the 235 

International Standard Classification of Education (ISCED) issued by the United Nations Educational, 236 

Scientific and Cultural Organization (UNESCO) (46). The UNESCO recognizes seven levels of education 237 
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in ISCED, from Level 0 (pre-primary education) to Level 6 (second stage of tertiary education), which 238 

can be collapsed into three aggregated levels: low, medium and high. Three trials (PRIMUM, PIL, and 239 

RIME) gathered information on the smoking status of their patients. We classified smoking status as 240 

current smoker, ex-smoker, or non-smoker. 241 

Morbidity-related candidate prognostic variables 242 

Information on diagnoses was collected at baseline in all trials except PIL, which reported it at the start 243 

of the intervention. Three studies collected morbidity data using international classifications: Two 244 

studies provided GP-reported data (PRIMUM using ICD-10 codes (47) and PIL using ICPC-1 codes (48)). 245 

ISCOPE took patients’ chronic diagnoses from electronic medical records (EMR), defined them  246 

according to O’Halloran et al. (40), and coded them based on the second version of the International 247 

Classification of Primary Care (ICPC-2)  (49). The remaining two trials used a limited list of conditions, 248 

which were either taken from EMR (Opti-Med, 26 conditions) or during patient interviews (RIME, 28 249 

conditions). In PROPERmed, we clinically harmonized the data on medication and used the ICPC-2 to 250 

describe chronic conditions: ICPC-1 (PIL) and ICD-10 (PRIMUM) codes were thus converted into the 251 

corresponding ICPC-2 codes, and the respective codes were assigned to the list of non-coded chronic 252 

conditions described in Opti-Med and RIME. 253 

Multimorbidity can be expressed in terms of a disease count, based on multimorbidity scores or 254 

multidimensional assessment methods. Before using these instruments in PROPERmed, they had to be 255 

modified according to the common chronic conditions that were assessed in all the trials. See Table 3 256 

for more detailed information on proxies for multimorbidity instruments. 257 

[About here: Table 3 on Proxies for multimorbidity instruments] 258 

Modified Diederichs disease count 259 

The Diederichs list (50) contains 17 chronic conditions, which, according to a systematic review, are 260 

considered in 39 different multimorbidity indexes. Our modified Diederichs list contains 12 (71 %) of 261 

the 17 conditions in the original instrument. 262 
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Modified Physical Component Summary score (PCS) and Mental Component Summary score (MCS) 263 

The recently published Health-related Quality of life Comorbidity Index (HRQoL-CI) consists of two 264 

independent subscales (51-53). The comorbidity subscale for physical HRQoL (PCS) considers 20 groups 265 

of chronic conditions, while the subscale for mental HRQoL (MCS) consists of 15 groups of conditions. 266 

We derived modified PCS and MCS scores (51, 52) depending on the chronic conditions considered in 267 

all five cRCTs. The modified PCS score included 12, and the MCS 6 groups of chronic conditions (60 % 268 

and 40 % respectively of the total count in the original instrument). 269 

Modified Charlson Comorbidity Index  270 

The Charlson Comorbidity Index (CCI) (54) is the most commonly used scale to measure multimorbidity 271 

in hospital admission predicting models (31). The CCI assesses the comorbidity level by considering 272 

both the number and severity of 19 pre-defined comorbid conditions. It provides a weighted score of 273 

a patient’s morbidities, which can be used to predict such short- and long-term outcomes as functional 274 

status, length of stay in hospital, and mortality rates. In general, 0-1 points indicates the absence of 275 

any comorbidity, 2 points indicates mild comorbidity and a score of ≥ 3 indicates severe comorbidity. 276 

We considered the sum-scores of the CCI provided in two of the trials (PRIMUM and RIME). The CCI 277 

modified for use in the PROPERmed predicting models did not include dementia, as only one trial 278 

(ISCOPE) included patients with this diagnosis. 279 

Medication-related candidate prognostic variables 280 

All trials obtained medication data as patient-reported data at baseline except PIL and ISCOPE, in which 281 

the general practitioner reported the medications at baseline (ISCOPE), or at the start of the 282 

intervention (PIL).  283 

Potentially inappropriate medications (PIM) and potential prescribing omissions (PPOs) 284 

Medication inappropriateness and omissions were assessed using several instruments: the EU-PIM list 285 

(55), STOPP-START criteria (56), the Dreischulte high-risk prescribing list (57), the Anticholinergic Drug 286 

Scale (ADS) (58, 59), the Drug Burden Index (DBI) (60-62) and the Anticholinergic Drug Burden 287 
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according to Duran et al (63). From those lists, we measured: 1) any PIM or PPO (yes/no); 2) number 288 

of PIMs or PPOs prescribed per patient; 3) individual scores measured by the instruments, when 289 

applicable. Instruments included in PROPERmed were modified, as missing information in (some of) 290 

the trials, such as daily doses, duration of use, and information on severity of disease, meant they did 291 

not represent the full range of PIMs and PPOs considered in the original instruments. 292 

Functional status and well-being 293 

Functional status 294 

All trials used patient questionnaires to obtain patient-reported data on functional status at baseline. 295 

Two trials (ISCOPE and PIL) measured functional status using the Katz-15 (combination of KATZ-6 and 296 

Lawton IADL) questionnaire (64), two trials (PRIMUM and RIME) used the 13-item vulnerable elderly 297 

survey (VES-13) (65) and one trial (Opti-Med) measured functional status using the Geriatric Giants 298 

VAS (GGV) scale (0-10) (66) for mobility problems, which was created ad hoc. We standardized the 299 

original instruments’ scales statistically, thus enabling the information to be included in analysis 300 

models, irrespective of differences in the underlying constructs of the instruments.  301 

Pain 302 

Using different approaches, pain was assessed at baseline in all trials. One trial (PRIMUM) measured 303 

pain using the von Korff index (67), one trial (Opti-Med) used a VAS scale that had been elaborated ad 304 

hoc (from 0 to 10), another (ISCOPE) used a single question (pain yes or no), two trials (Opti-Med and 305 

RIME) used the pain-related question from SF-12 (68, 69) and one (PIL) used the pain-related question 306 

from SF-36 (70). We constructed categorical variables for pain by clinically harmonizing the different 307 

instruments used across trials as follows: a) Pain intensity was classified as “no pain”, “low intensity 308 

pain” and “high intensity pain”, based on data from PRIMUM (67), Opti-Med and PIL (68); b) Pain 309 

disability was categorized as “no disability from pain”, “disability of low intensity” and “disability of 310 

high intensity” based on data from PRIMUM (67), Opti-Med, RIME (68) and PIL (70); c) Binary 311 

classification of pain (i.e. pain vs. no pain)  was based on data from PRIMUM (67), Opti-Med, PIL, 312 
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ISCOPE and RIME (68); and d) Pain according to SF surveys was based on data from Opti-Med, RIME 313 

(68) and PIL (70) and did not require harmonization.  314 

Depressive symptoms 315 

All trials used several questionnaires at baseline to assess depressive symptoms. Three trials used the 316 

Geriatric Depression Scale (GDS) to assess symptoms of depression (PRIMUM and ISCOPE used the 317 

GDS with 15 items (71), and RIME used it with 5 items (72)). Two trials (Opti-Med and RIME) used the 318 

depressive symptoms-related question on SF-12 (68), and PIL used the depressive symptoms-related 319 

question on SF-36 (70). In addition to standardized forms of the various instruments, we also derived 320 

categorical variables by considering the cut-offs of the original instruments as follows: a) A binary 321 

classification of depressive symptoms (i.e. depressive symptoms vs. no depressive symptoms) was 322 

carried out using data from PRIMUM and ISCOPE (GDS-15 cut-off of ≥ 5 for depressive symptoms) (71, 323 

73) and RIME (GDS-5 cut-off of ≥ 2 for depressive symptoms) (72); b) The binary classification of 324 

depressive symptoms was also performed for Opti-Med and RIME (SF-12 cut-off of < 42 for depressive 325 

symptoms) (74) and for PIL (SF-36 cut-off of < 50.2 for depressive symptoms) (75). 326 

 327 

RISK OF BIAS ASSESSMENT 328 

A risk of bias assessment (RoB) was conducted for each included trial in order to assess possible 329 

differences in the definitions and measuring methods of outcomes and variables across all five cRCTs. 330 

The RoB was determined using PROBAST (Prediction model Risk of Bias Assessment Tool), which is a 331 

qualitative assessment tool developed for evaluating both RoB and the applicability of prognostic 332 

prediction models (76). It includes the following domains: 1. participant selection, 2. predictors, 3. 333 

outcomes, 4. sample size and participant flow, and 5. analysis. Since not all domains were relevant to 334 

the included cRCTs, the robustness of evidence was assessed for the relevant ones by one researcher 335 

(DKDG) and checked by another (AIGG). Any inconsistency was resolved by discussion. 336 
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Based on PROBAST, the overall RoB assessment of the included trials was “unclear”, mainly due to 337 

uncertainty about the definition and assessment method of possible predictor variables reported in 338 

the studies. However, differences in definitions and measurement methods were also considered and 339 

accounted for during the data harmonization process. Since the PROPERmed dataset was designed on 340 

the basis of the available data from the trials, the applicability of the data from the cRCTs in the 341 

prognostic models was automatically rated as of “low concern”. 342 

See Table 4 for more detailed information about the RoB assessment. 343 

[About here: Table 4 on Risk of bias assessment with the PROBAST tool]. 344 

 345 

CHARACTERISTICS OF THE PROPERMED STUDY POPULATION 346 

In total, 6,139 patients were potentially eligible for inclusion in the PROPERmed IPD-MA dataset. Two 347 

hundred and eighteen patients did not meet the inclusion criteria and 1,360 patients did not provide 348 

relevant data at baseline. After excluding these patients from the IPD-MA, we finally included 4,561 349 

patients from 307 general practices. See Figure 1 for more detailed information about the selection 350 

and maintenance of PROPERmed participants.  351 

[About here: Figure 1 on Selection and maintenance of PROPERmed participants] 352 

The median age of the PROPERmed population was 78 years and ranged from 60 to 102 years. Women 353 

represented 58% of patients in the IPD-MA. Most participants (95%) lived at home, had a low or 354 

medium educational level (89%) and had smoked (49%), or were current smokers (43%). 355 

The median number of chronic diseases according to the modified Diederichs list (50) was three and 356 

ranged from zero to ten chronic diseases per patient. The most prevalent chronic conditions were 357 

hypertension (67%), diabetes (36%), coronary heart disease (34%), osteoarthritis (34%), and vision 358 

problems (32%).  359 

The median number of drugs per patient was seven and ranged from one to 28. According to the EU-360 

PIM list (55), 2,624 (58%) of 4,561 patients were taking at least one inappropriate medication, with a 361 
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median of one per patient and ranging from zero to seven. The number of patients with at least one 362 

PIM according to the STOPP criteria (56), and one PPO according to START criteria (56) was 3,899 (86%) 363 

and 2,634 (58%) patients respectively. Regarding anticholinergic medication, 1,311 (29%), 1,646 (36%) 364 

and 2,269 (50%) patients were respectively taking at least one drug included on the ADB (63), DBI (60-365 

62) and ADS score (58, 59) lists. The most prevalent ATC codes (3-digit level) representing chronic 366 

prescriptions were B01 – Antithrombotic agents (64%), C09 - Agents acting on the renin-angiotensin 367 

system (63%), C10 - Lipid modifying agents (53%), C07 – Beta blocking agents (53%) and C03 – Diuretics 368 

(41%). 369 

Of the included patients, 68% experienced some pain, and 15% / 21% had symptoms suggesting 370 

depression according to GDS (71) / SF-12 (68, 69) and SF-36 (70), respectively.  371 

Table 5 provides a detailed description of patient characteristics based on variables related to 372 

candidate prognostic variables and outcomes.  373 

The mean EQ-5D-3L index at baseline and six-month follow-up was 0.73 (0.25) in the PROPERmed 374 

population. The number of patients that had been admitted to hospital at least once during the six-375 

month follow-up period was 404 of the 3,296 patients (21%) that participated in PRIMUM, ISCOPE 376 

and RIME. 377 

[About here: Table 5 on Descriptives of outcomes and candidate prognostic variables]. 378 

 379 

DISCUSSION 380 

PROPERmed is the first study to combine the data of older patients with multiple conditions and 381 

chronic medication prescriptions from five cRCTs. Increasing case-mix variability is generally 382 

considered to raise the performance of prognostic models. However, systematic between-study 383 

heterogeneity resulting from different time frames and health care policies may be a problem. Thus, 384 

it is certainly a major advantage that the PROPERmed dataset includes trials completed after the year 385 

2009 in The Netherlands and Germany. The reduction to two countries of origin within a reasonable 386 
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time frame reduces variation between drug markets and ensures that the prescribing preferences and 387 

patterns of GPs vary little and are at low risk of being biased by, for example, differences in the 388 

availability of medicines (77-80). On the other hand, the generalizability of the results from the 389 

PROPERmed prognostic models may be affected by similarities in the inclusion and exclusion criteria 390 

across the cRCTs. External validation in another population from another setting or in another 391 

timeframe is therefore important. 392 

In IPD-based research, data harmonization is absolutely essential to subsequent analyses. This 393 

required enormous effort but resulted in comprehensive data, which is essential if data is to be used 394 

in prognostic models. Furthermore, data harmonization minimizes the potential RoB of individual 395 

studies.  In order to generate comparable morbidity counts or indexes, PIM or PPO lists, and scores 396 

across all the trials, we had to modify some of the validated instruments. In this particular example, 397 

limited information on morbidity (Opti-Med and RIME) and medication (doses, duration of use, and 398 

severity of diseases) were significant obstacles and had to be overcome. We met the challenge of the 399 

use of different scales to measure functional status and depressive symptoms by standardizing the 400 

original instruments. The use of standardized measures means it will be slightly more difficult to 401 

interpret the results. Furthermore, the measures will have to be back translated to the original 402 

instruments for straightforward clinical interpretation.  403 

In projecting the future success of any analysis, a lack of information on specific reasons for 404 

hospitalization may well be significant. Unfortunately, the available information prevents us from 405 

predicting unplanned hospitalizations, although this is highly relevant and would lead to better 406 

performing models. Instead we will only be able to predict emergency admissions and planned 407 

admissions simultaneously, and will not be able to distinguish between day- and night-time 408 

admissions. This may be seen as a limitation to the further use of our model. 409 

Other research collaborations have been confronted with the challenges of data harmonization. The 410 

European Project on Osteoarthritis (EPOSA) (81), which focuses on personal and societal burden and 411 
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the determinants of osteoarthritis, merged the data from cohort studies in five European countries. 412 

They described the entire harmonization processes in a harmonization guideline and highlighted the 413 

difficulties that arose from differences in wording and categories, and in the classifications and absence 414 

of data. They also stressed how important it is to make the original data accessible to ensure the ex-415 

post harmonized data is easy to interpret (81). As in PROPERmed, the design of the International 416 

Mission for Prognosis and Clinical Trial (IMPACT) database (82) prioritized the extraction of a key set 417 

of variables that existed in the included trials. The harmonization process was also described as labor 418 

intensive and requiring considerable clinical insight. Establishing a consistent set of categories with 419 

which to code each variable, while adhering to the guiding principle of never discarding information, 420 

was a major issue in the IMPACT harmonization process, as in our own. Data harmonization requires 421 

solving all problems on an ongoing basis and sharing updates to the database with trialists and other 422 

project collaborators. 423 

Developing and validating the PROPERmed models using datasets that were originally designed and 424 

conducted for many different purposes was challenging, as we were neither able to control what kind 425 

of data was collected, nor how it was accomplished. However, this concern was more than offset by 426 

the superior quality of the collected data, as well as the low number of missing values that is typical of 427 

controlled trials. 428 

In future trials on multimorbidity and polypharmacy, data collection should be standardized to a 429 

greater degree, e.g., by including the agreed core outcome set proposed by Smith et al. (83). Moreover, 430 

potential studies may benefit from such advance planning, as it would ensure data analyses are of high 431 

quality. 432 

 433 

CONCLUSIONS 434 

In summary, the present manuscript presents the PROPERmed collaboration. It describes the 435 

development of a database for the first IPD-MA-based prognostic model for older patients with chronic 436 
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conditions and chronic prescriptions in general practice that aims to identify patients at risk of 437 

undesirable health-outcomes. IPD-MA are becoming increasingly popular, as they have large sample 438 

sizes and employ high-quality data. However, they also require data harmonization, which is a great 439 

deal of work and may result in the loss of information.  440 
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Figure 1. Selection and maintenance of PROPERmed participants 

HA = Hospital Admissions; IPD = Individual Participant Data; m = months; NA = Not Available 
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Table 1. Main characteristics of the included trials 
 

 PRIMUM Opti-Med PIL ISCOPE RIME 
Title PRIoritizing 

MUltimedication in 
Multimorbidity 

Optimized clinical Medication 
reviews in older people 

Polypharmacy intervention in 
Limburg 

Integrated C 
Care for Older People 

Reduction of potentially 
inadequate Medication in the 
Elderly 

Study region Hesse, Germany Amsterdam, The Netherlands Southern Limburg, The 
Netherlands 

Leiden, The Netherlands Witten and Hanover, Germany 

Start/End 2010-2012 2013-2015 2010-2014 2009-2011 2012-2014 
Design 2-arm parallel cRCT 2-arm parallel cRCT 2-arm parallel cRCT, stepped 

wedge 
2-arm parallel cRCT 2-arm parallel cRCT 

Setting General practices (n=72) General practices (n=22) General practices (n=24) General practices (n=51) General practices (n=139) 
Study 
population 

N=502 
≥60 years 
≥5 chronic prescriptions 
≥3 chronic conditions 

N=518 
≥65 years 
≥1 chronic prescription 
Geriatric giant 

N=727 
≥60 years 
≥5 chronic prescription 
 

N=1,617 
≥75 years 
complex problems on ≥3 
domains 

N=1,197 
≥6 chronic prescriptions 

Exclusion 
criteria 

Life expectancy of ≤12 
months 
Abuse of alcohol or illegal 
drugs 
Inability to fill in 
questionnaires and to 
participate in telephone 
interviews 
Dementia 

Life expectancy of ≤6 months 
Severe psychiatric illness or 
other reasons why GP regards 
patient as unable to 
participate 
Recent medication review (last 
6 months) 
Dementia 

Life expectancy of ≤12 months 
Abuse of alcohol or illegal 
drugs 
Dementia 

Life expectancy of ≤3 months 
or terminal illness 
Dementia 

Life expectancy of ≤6 months 
as assessed by the treating GP 
Dementia 

Intervention Structured medication 
review including several 
intervention components 
(complex intervention) 

Structured medication review 
including several intervention 
components (complex 
intervention) 

Structured medication review 
including several intervention 
components (complex 
intervention) 

Integrated care plan using a 
functional geriatric approach 

Structured medication review 
including several intervention 
components (complex 
intervention) 

Data collection 
(study visits) 

0, 6, 9 months 0, 3, 6 months 0, 3, 6, 12 months 0, 6, 12 months 0, 6, 12 months 

Data collection 
(method) 

CRF, patient questionnaire, 
telephone interview 

CRF, patient questionnaire CRF, patient questionnaire, 
home visit 

Patient questionnaire, home 
visit 

CRF, patient questionnaire, 
telephone interview 
  

cRCT = cluster-randomized controlled trial; CRF = Case Report Form; GP = General Practitioner.
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Table 2. Data harmonization 
 

Type of variable Variable Harmonization PRIMUM Opti-Med PIL ISCOPE RIME 

Sociodemographic 
and lifestyle-
related 

Age No need of harmonization - - - - - 

Sex Recoding of labels - - - - + 

Living situation Recoding of categories and labels + + + + + 

Educational level Recoding of categories and labels - - + + + 

Smoking status Recoding of categories and labels + x + x + 

Morbidity-related Single conditions Clinical harmonization + + + + + 

Disease counta  Creation of new variable  + + + + + 

Multimorbidity 
indexb 

No need of harmonization - x x x - 

Medication-related Medication 
inappropriateness 
and omissionsc  

Creation of new variable + + + + + 

Functional status- 
and well-being-
related 

Depressive 
symptoms 

Dichotomization based on cut-offs + + + + + 

Functional status Standardized mean differences + + + + + 

Quality of life (EQ-
5D-3L index) 

No need of harmonization - - - - - 

Health-related 
quality of life 
comorbidity index 

Creation of new variable + + + + + 

Hospital 
admissions 

Recoding of categories and labels + + x x + 

Legend: + data was harmonized; - no need to harmonized; x systematic missing 

a modified Diederichs list; b modified CCI; c modified EU-PIM list, STOPP-START criteria, Dreischulte high risk prescribing list, ADS, DBI, Anticholinergic Drug Burden 
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Table 3. Proxies for multimorbidity instruments 
 

 Diederichs (50) PCS (51-53) MCS (51-53) Charlson (54) 
Cancer X   X 
Chronic obstructive 
pulmonary disease / asthma X X X X 

Coronary heart disease Xa X X X 
Depression X  X  
Diabetes X X X X 
Degenerative neurological 
disorders (Parkinson)  X X  

Hearing problems X    
Heart failure X  X X 
HIV infection /AIDS   X X 
Hypertension X X X  
Osteoarthritis Xb X X  
Osteoporosis X    
Rheumatoid/seropositive 
arthritis  X X  

Cerebrovascular disease X X X X 
Vision problems X X   
Total number of diagnoses 
included in the original list 17 20 15 17 

Total number of diagnoses 
included in PROPERmed (% 
from the total number in the 
original list) 

12 (71 %) 12 (60 %) 6 (40 %) 7 (41 %) 

 
a Includes heart disease, myocardial infarction and angina pectoris from the original list. 
b Includes rheumatoid / seropositive arthritis. 
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Table 4. Risk of bias assessment using the PROBAST tool* 
 

Domain 
 
                          Overall 
                    judgement 

RoB 
 
 
                  Applicability 

(a) Assessment for each trial (b) Combined assessment of all 
trials 

PRIMUM Opti-Med PIL ISCOPE RIME  

Domain 1: Participant 
selection 

RoB Low Unclear a Low Low Low Low e 
Applicability Low concern Low concern Low concern Low concern Low concern Low concern 

Domain 2: Predictors RoB Low Low Low Low Low Unclear b 
Applicability Low concern Low concern Low concern Low concern Low concern Low concern 

Domain 3: Outcomes RoB Low Low Low Low Low Low 
Applicability Low concern Low concern Low concern Low concern Low concern Low concern 

Domain 4: Sample size 
and participant flow RoB Not applicable to single studies, only overall judgement possible Not available c 

Domain 5: Analysis RoB Not applicable to single studies, only overall judgement possible Not available c 
Overall judgment d RoB Low Unclear a Low Low Low Unclear 

Applicability Low concern Low concern Low concern Low concern Low concern Low concern 
 
RoB = Risk of Bias 
a Unclear because analyzed participants had a different state of health at baseline. 
b Unclear due to uncertainty about the definition and assessment method of potential predictor variables across included studies. 
º Data not available at the time the RoB assessment was performed. 
 
* Adapted from PROBAST tool” (Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: A Tool to Assess the Risk of Bias and Applicability of 
Prediction Model Studies. Ann Intern Med [Internet]. 2019;170(1):51)  
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Table 5. Descriptives of outcomes and candidate prognostic variables  

Outcomes (six months follow-up) 
 

Variables Categories PRIMUM Opti-Med PIL ISCOPE RIME PROPERmed 
Outcomes Quality of life: EQ-5D-3L, Index value – Mean 

(SD) 
0.78 (0.24) 0.74 (0.21) 0.76 (0.22) a 0.69 (0.26) a 0.73 (0.25) 0.73 (0.25) 

Hospitalization (at least one) – Number (%) 79 (16.5%) 66 (16.3%) NAb NAb 259 (23.9%) 404 (20.5%) 
 
Candidate prognostic variables – Sociodemographic and lifestyle-related (baseline) 
  

Variables Categories PRIMUM Opti-Med PIL ISCOPE RIME PROPERmed 
Sociodemographic 
and lifestyle-
related 

Age – Mean (SD) 72.18 (6.86) 77.24 (7.86) 73.18 (7.53) 81.83 (5.00) 76.90 (4.93) 77.56 (7.04) 
Sex (female) - Number (%) 262 (52.2%) 334 (65.0%) 356 (47.4%) 1,110 (68.9%) 599 (50.0%) 2,661 (58.2%) 
Living situation - 
Number (%) 

Living at home 496 (98.8%) 486 (98.6%) 698 (95.0%) 1,471 (92.2%) 1,154 (96.4%) 4,305 (94.9%) 
Institutionalized 
living  

1 (0.2%) 27 (1.4%) 37 (5.0%) 125 (7.8%) 43 (3.6%) 233 (5.1) 

Educational level - 
Number (%) 

Low 311 (62.8%) 114 (23.6%) 526 (71.2%) 861 (53.3%) 219 (18.3%) 2,031 (44.9%) 
Medium 145 (29.3%) 225 (45.7%) 126 (17.1%) 616 (28.7%) 882 (73.7%) 1,994 (44.0%) 
High 39 (7.9%) 152 (30.7%) 87 (11.8%) 129 (8.0%) 96 (8.0%) 503 (11.1%) 

Smoking status - 
Number (%) 

Smoker 248 (50.9%) NA 146 (29.4%) NA 543 (45.4%) 937 (43.0%) 
Ex-smoker 193 (39.6%) 284 (51.1%) 583 (48.7%) 1,060 (48.6%) 
Non-smoker 46 (9.4%) 67 (13.5%) 71 (5.9%) 184 (8.4%) 

 
Candidate prognostic variables – Morbidity-related (baseline) 
  

Variables Categories PRIMUM Opti-Med PIL ISCOPE RIME PROPERmed 
Morbidity-related Single conditions - 

Number (%) 
Hypertension 422 (84.1%) 295 (57.4%) 441 (62,9%) 793 (49.7%) 1,054 (88.1%) 3,005 (66.6%) 
Diabetes 267 (53.2%) 115 (22.4%) 291 (41.5%) 398 (24.9%) 547 (45.7%) 1,618 (35.9%) 
Coronary heart 
disease 

215 (42.8%) 127 (24.7%) 293 (41.8%) 388 (24.3%) 515 (43.0%) 1,538 (34.1%) 

Osteoarthritis 268 (53.4%) 160 (31.1%) 186 (26.5%) 366 (22.9%) 542 (45.3%) 1,522 (33.7%) 
Vision problems 72 (14.3%) 190 (37.0%) 215 (30.7%) 407 (25.5%) 573 (47.9%) 1,457 (32.3%) 
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Chronic obstructive 
pulmonary disease 

146 (29.1%) 109 (21.2%) 147 (21.0%) 285 (17.8%) 276 (23.1%) 963 (21.3%) 

Hearing problems 13 (2.6%) 47 (9.1%) 105 (15.0%) 249 (15.6%) 471 (39.3%) 885 (19.6%) 
Cancer 47 (9.4%) 137 (26.5%) 91 (13.0%) 311 (19.5%) 236 (19.7%) 822 (18.2%) 
Heart failure 86 (17.1%) 53 (10.3%) 61 (8.7%) 207 (13.0%) 403 (33.7%) 810 (18.0%) 
Cerebrovascular 
disease 

98 (19.5%) 79 (15.4%) 111 (15.8%) 278 (17.4%) 165 (13.8%) 731 (16.2%) 

Osteoporosis 53 (10.6%) 98 (19.1%) 108 (15.4%) 167 (10.5%) 259 (21.6%) 685 (15.2%) 
Depression 85 (16.9%) 46 (8.9%) 53 (7.6%) 138 (8.6%) 143 (11.9%) 465 (10.3%) 
Rheumatoid arthritis 25 (5.0%) 15 (2.9%) 40 (5.7%) 64 (4.0%) 224 (18.7%) 368 (8.2%) 
Parkinsonism 7 (1.4%) 22 (4.3%) 6 (0.9%) 41 (2.6%) 26 (2.2%) 102 (2.3%) 
HIV/AIDS 0 1 (0.2%) 0 0 0 1 (0.02%) 

Disease count according to modified Diederichs 
– Median (IQR) 

4 (1) 3 (2) 3 (2) 2 (2) 4 (2) 3 (2) 

Modified Charlson comorbidity index – Median 
(IQR) 

3 (2) NA NA NA 3 (3) 3 (3) 

 
Candidate prognostic variables – Medication-related (baseline) 
  

Variables Categories PRIMUM Opti-Med PIL ISCOPE RIME PROPERmed 
Medication-
related 

No. of drugs† - Median (IQR) 9 (3) 5 (4) 7 (3) 5 (5) 9 (4) 7 (5) 
No. of Potentially Inappropriate Medications 
(PIM) according to the modified EU-PIM list - 
Median (IQR) 

1 (1) 1 (1) 1 (2) 1 (1) 1 (2) 1 (1) 

STOPP criteria (modified) – Median (IQR) 2 (1) 1 (1) 1 (1) 1 (1) 2 (1) 1 (1) 
START criteria (modified) – Median (IQR) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 
Dreischulte criteria (modified) – Median (IQR) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
Drug Burden Index (DBI, modified) - Median 
(IQR) 

0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 

Anticholinergic Drug Burden (ADB) according to 
Duran - Median (IQR) 

0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 

Anticholinergic Drug Scale (ADS) according to 
Carnahan - Median (IQR) 

0 (1) 0 (1) 1 (2) 1 (1) 1 (1) 1 (1) 

 
Candidate prognostic variables – Functional status and well-being-related, plus hospital admissions (baseline) 
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Variables Categories PRIMUM Opti-Med PIL ISCOPE RIME PROPERmed 

Functional status 
and well-being-
related 

Functional status and frailty – Mean (SD)  2.83 (2.81) c 5.04 (2.83) d 1.71 (2.44) e 3.13 (3.01) e 2.86 (2.57) c 
 

Depressive symptoms 
(binary) – Number (%) 

GDS 15/5  
73 (14.8%) k 

 
NA 

 
NA 

 
233 (15.2%) k 

 
183 (15.3%) k 

 
489 (15.2%) 

SF 12/36 NA 148 (30.9%) j 33 (4.9%) j NA 298 (28.0%) j 479 (21.6%) 
Depression (Score) – 
Mean (SD) 

GDS 15/5 2.39 (2.29) k NA NA 2.16 (2.50) k 0.73 (0.94) k 1.67 (2.17) 
SF 12/36 NA 63.87 (22.83) j 76.85 (17.85) j NA 54.03 (9.50) j 63.21 (18.73) 

Pain (binary) – Number (%) 439 (87.5%) f 372 (75.0%) g 537 (77.8%) h 801 (50.3%) i 888 (74.9%) h 3,037 (68.0%) 
Pain Intensity – Mean (SD) 1.23 (0.65) f 1.15 (0.79) g 1.18 (0.77) h NA NA 1.19 (0.74) 
Pain Disability – Mean (SD) 0.60 (0.79) f 0.94 (0.61) j 0.78 (0.65) j NA 1.07 (0.75) j 0.89 (0.73) 
Pain SF – Mean (SD) NA 2.39 (1.05) j 2.18 (1.10) j NA 2.74 (1.39) j 2.5 (1.27) 
Modified health-related quality of life 
comorbidity index, mental – Median (IQR) 

2 (2) 1 (2) 1 (2) 1 (2) 2 (2) 1 (3) 

Modified health-related quality of life 
comorbidity index, physical – Median (IQR) 

8 (4) 4 (4) 5 (4) 4 (4) 7 (5) 5 (5) 

Quality of life: EQ-5D-3L, Index value 
(baseline) – Mean (SD) 

0.79 (0.23) 0.74 (0.21) 0.77 (0.21) a 0.68 (0.27) a 0.73 (0.26) 0.73 (0.25) 

Hospital 
admissions 

Hospitalization (at least once in past 12 
months) – Number (%) 

81 (16.1%) NA 574 (78.1%) 412 (25.8%) 435 (36.4%) 1,502 (37.3%) 

 
 
Legend: †No. of drugs refer to ATC codes (i.e., single active ingredients or fixed combinations as listed in ATC version 2012). 
NA = not available. 
a EQ-5D was used in an experimental version in PIL and ISCOPE; b at 12 months from baseline; c VES-13; d Scale for Mobility problems; e Katz-15; f von Korff (cut-off ≥ 1 for 
categorical variable); g VAS (cut-off ≥ 1 for categorical variable); h PIL SF-36 and RIME SF-12; i single question; j Opti-Med and RIME MCS score SF-12 (cut-off < 50.2 for categorical 
variable), and PIL MCS score SF-36 (cut-off < 42 for categorical variable); k PRIMUM and ISCOPE GDS 15 (cut-off ≥ 5 for categorical variable), RIME GDS 5 (cut-off ≥ 2 for categorical 
variable). 
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Table 6. Knowledge gaps addressed by the PROPERmed collaboration  
 

A harmonized individual participant data database of older patients with multimorbidity and polypharmacy 
in general practice 
A prognostic model for deterioration in health-related quality of life in older patients with multimorbidity 
and polypharmacy in general practice 
A prognostic model for hospital admissions in older patients with multimorbidity and polypharmacy in 
general practice 
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