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A catalogue of 863 Rett-syndrome-
causing MECP2 mutations 
and lessons learned from data 
integration
Friederike Ehrhart   1,2 ✉, Annika Jacobsen   3, Maria Rigau   4, Mattia Bosio4, 
Rajaram Kaliyaperumal3, Jeroen F. J. Laros3, Egon L. Willighagen   1, Alfonso Valencia   4,5, 
Marco Roos   3, Salvador Capella-Gutierrez   4, Leopold M. G. Curfs   2 & Chris T. Evelo   1,2

Rett syndrome (RTT) is a rare neurological disorder mostly caused by a genetic variation in MECP2. 
Making new MECP2 variants and the related phenotypes available provides data for better 
understanding of disease mechanisms and faster identification of variants for diagnosis. This is, 
however, currently hampered by the lack of interoperability between genotype-phenotype databases. 
Here, we demonstrate on the example of MECP2 in RTT that by making the genotype-phenotype data 
more Findable, Accessible, Interoperable, and Reusable (FAIR), we can facilitate prioritization and 
analysis of variants. In total, 10,968 MECP2 variants were successfully integrated. Among these variants 
863 unique confirmed RTT causing and 209 unique confirmed benign variants were found. This dataset 
was used for comparison of pathogenicity predicting tools, protein consequences, and identification 
of ambiguous variants. Prediction tools generally recognised the RTT causing and benign variants, 
however, there was a broad range of overlap Nineteen variants were identified that were annotated 
as both disease-causing and benign, suggesting that there are additional factors in these cases 
contributing to disease development.

Background and Summary
Rett syndrome (RTT) is a rare neurological disorder first described in 1956 by Andreas Rett occurring predom-
inantly in females1. In most cases, the disorder is caused by a loss-of-function variation on the X-bound gene for 
MECP2 (methyl-CpG-binding protein 2)2,3. Phenotypic severity is thought to vary due to X-inactivation, mosa-
icism, severity of the variation (loss of function vs. impaired function), genetic background (ref. 4 and literature 
cited therein) and environmental factors.

On the molecular level, the MECP2 protein recognizes and binds to specific methylated and hydroxymethyl-
ated DNA regions, and attracts several other proteins to form a transcription repression block. This block makes 
the DNA sequence accessible for histone deacetylases, which increases the packing density of these regions, 
reducing their transcriptional activity5. Several metastudies on omics data revealed that the influence of MECP2 
affects dominantly dendritic connectivity, synapse function, glial cell differentiation, mitochondrial function, 
mRNA processing and translation, inflammation, and cytoskeleton6–8.

The MECP2 protein has five different domains: N-terminal domain (NTD), methyl-DNA binding domain 
(MDB), transcription repressor binding domain (TRD), intermediate domain between methyl-DNA binding and 
transcription repressor binding domain also called interdomain (ID), C-terminal domain (CTD)9. Ballestar and 
coworkers found that MECP2 variations that slightly decrease the specific recognition of the binding site on DNA 
are able to cause RTT10. The majority of RTT causing missense variations are found in the methyl-DNA binding 
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domain, but RTT causing variations have been found in all parts of the protein11. Some studies have found a dis-
tinctive correlation of phenotype severity and variation type12, while others found a rather small or insignificant 
correlation13–16.

Due to the rareness of RTT (prevalence about 1:10.000, ref. 17), it is important to share and communicate 
information about disease causing variations to increase the success of identifying genetic causes. In a previous 
study, we investigated the status of RTT genotype-phenotype databases and the methods that different resources 
use to share newly identified genetic variants on the example of RTT18. Thirteen different genotype-phenotype 
databases were identified that are used to collect and share genetic variants annotated with observed or predicted 
effects. Our main conclusion was that databases store and provide information in very different ways, such that 
now it is technically infeasible to query multiple databases and combine the results in an efficient and automated 
way. In line with the IRDiRC aims for rare diseases (http://www.irdirc.org/about-us/vision-goals/), the bioinfor-
matics infrastructure should contribute to store, curate and make data about known disease causing and benign 
variations available. Therefore, the interoperability of these databases needs to improve to be able to efficiently use 
their contents in combination.

In this study, we show how to integrate the available RTT genetic and phenotypic data across multiple data-
bases and use the integrated data for further analysis about RTT, in order to investigate variant abundance and 
distribution and to test variant effect prediction algorithms. We followed the FAIRification workflow19 to make 
the data more findable, accessible, interoperable, and reusable for computer processing. In line with the FAIR 
data point specification, a combination of DCAT and Re3Data vocabularies were used to describe the data set 
[https://github.com/FAIRDataTeam/FAIRDataPoint-Spec/blob/v0.1.0/spec.md]. The resulting ‘FAIR data point’ 
refers to two distribution formats: one in RDF and one in CSV. RDF was used to create a self-describing, machine 
interpretable version of the data using existing global ontologies. The resulting datasets (CSV) are also shared on 
Figshare (see DOI in results). To our knowledge, the dataset created and used in this study is the largest collection 
of annotated disease-causing and benign MECP2 variants available at this moment, and may help researchers 
investigate and test disease models.

Methods
Workflow of genetic variant data integration.  Data selection and retrieval.  In a recent study18, we 
identified thirteen genotype-phenotype databases containing RTT-specific MECP2 variation data. We evaluated 
each of these for specific requirements for data integration. Data should be 1) available and permitted to be 
re-used and redistributed, 2) the given description of genetic variants should be for an unambiguous variation. 
The latter means that the exact position (chromosome build and location) as well as the variation of the genetic 
variants are available or retrievable by conversion, thus, they can be described using the HGVS nomenclature. For 
this study, we selected eight databases and downloaded all MECP2 genetic variants with available linked pheno-
type information from each of these databases: ClinVar20, https://www.ncbi.nlm.nih.gov/clinvar/, DECIPHER21, 
https://decipher.sanger.ac.uk/, EVA (http://www.ebi.ac.uk), EVS (http://evs.gs.washington.edu), ExAC22, http://
exac.broadinstitute.org/, KMD (https://kmd.nih.go.kr), LOVD23, MECP2 collection: https://databases.lovd.nl/
shared/genes/MECP2), and RettBASE24, http://mecp2.chw.edu.au/. Additionally, an anonymized dataset from 
local RTT patients was included (Maastricht Rett dataset, permission granted by Niet-WMO verklaring 2018-
0597, Maastricht University METC approval). Either the integrated download function was used to get the data 
or data was extracted from HTML (see the availability of download functions in ref. 18. Figure 1 shows the data 
processing (step 1–3) and analysis (step 4) workflow of this study.

Liftover to enable compatible genetic variant description formats.  The MECP2 genetic variant descriptions from 
the different sources were made compatible and therefore comparable by application of the HGVS nomencla-
ture and the same reference sequence. This is the first step to make the data interoperable. For this, we used the 
reference sequence for chromosome 23 (X) NC_000023.11, which is part of the current human genome refer-
ence assembly (GRCh38). Genomic descriptions were used to ensure that variations in and outside the gene 
region (exonic, intronic, up- and downstream) were included. The process of re-describing all variants with the 

Fig. 1  Schematic drawing of the workflow of this study: data collection, preparation, FAIRification and 
downstream analysis.
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HGVS nomenclature using the same reference build, liftover, was done by using the Mutalyzer position converter 
webtool [https://mutalyzer.nl/]25. Mutalyzer can perform a conversion between different reference sequences 
and categories (e.g. complete genomic regions NC and mRNA NM) but requires nomenclature-compliant input. 
Manual correction was performed on genetic variant descriptions that did not have the complete and correct 
format for conversion but provided enough information to correct the format.

Creation of phenotype annotated collections.  Genetic variants were assigned by their linked phenotype informa-
tion to three different categories: 1) RTT causing (verified by identification as disease causing variant according 
to the requirements of the databases) (data from DECIPHER, Maastricht Rett dataset, ClinVar, RettBase and 
KMD), 2) benign (verified by finding them in a healthy control subject) (data from ClinVar and RettBase), and 3) 
unknown evidence (only pathogenicity prediction scores provided by database) (EVS, EVA, LOVD, ExAC). The 
exact annotation selection criteria for the RTT causing dataset based on the databases individual annotations are 
given in Sup. Table 1. These lists are collected and used for further analysis.

Data FAIRification.  We made the prepared genetic variant and phenotype data more Findable, Accessible, 
Interoperable, and Reusable for humans and computers following the FAIR guiding principles26. The data 
was made machine-readable (in RDF format) using a semantic data model (see below) and a general-purpose 
FAIRifier tool27 based on the OpenRefine data cleaning and wrangling tool (http://openrefine.org/) and an RDF 
plugin (https://github.com/stkenny/grefine-rdf-extension). Similarly, machine-readable metadata (information 
about the data) was generated using the Metadata Editor27.

We applied and extended the semantic data model of a genetic variant described in ref. 28 to convert the 
prepared data to RDF. The model is available on GitHub (https://github.com/LUMC-BioSemantics/rett-variant) 
and describes the important data elements of the datasets: 1) the genetic variant: HGVS nomenclature, start/end 
position of the variation, and genome build, and 2) the phenotype information that describes whether a variant is 
thought to be RTT causing, benign or unknown.

Downstream analysis examples.  Network analysis of data distribution in RTT databases.  To analyse the 
distribution of MECP2 variations in the RTT databases, a network was created where the nodes represent data-
bases and the node size the number of available MECP2 variations. The thickness of the lines connecting the data-
bases indicate how many MECP2 variations they share. Network visualization and analysis software Cytoscape29 
was used for this purpose.

Variant annotation and characterization by genomic features.  To characterize all the collected MECP2 variants, 
we developed an automatic analysis pipeline for variant annotation. We used the HGVS corrected variants to 
integrate custom scripts with HGVS conversion tool from https://github.com/counsyl/hgvs and generated VCF 
files for annotation within an automated pipeline available at https://gitlab.bsc.es/inb/fair-rett. Afterwards, we 
proceeded to annotate variants with Ensembl Variant Effect Predictor, VEP30 v94 using the GRCh38 assembly, 
selecting all available features, plus optional plugins to estimate variant pathogenicity (i.e., PolyPhen31, SIFT32, 
MetaLR33, CADD34, FATHMM-MKL35 from dbNSFP and dbscSNV scores36) both in coding and splicing regions.

The resulting VEP annotated data was processed with R scripts, available at https://gitlab.bsc.es/inb/fair-rett, 
to compare RTT causing and benign variants as subsets, and to generate summary statistics for these. The scripts 
allow to compare and visualize the two classes in terms of any of the available VEP annotation features, (e.g. vari-
ant frequency in the population, estimated variant consequence, and conservation score of the genomic location). 
Using this we compared the two datasets of RTT causing and benign variants by pathogenicity scores, impact (i.e. 
estimation of the consequence of each variant on the protein sequence), variant frequency, and genomic location. 
Because a few variations appear both as RTT causing and benign, we represented this subset of variants as a third 
class (“both”) in all visualizations.

Finally, we focused on exonic missense variants and used VEP information about the amino acid change and 
position within the MECP2-e2 transcript to visualize the variation distribution across protein domains and con-
served regions (as described in ref. 37). This allowed us to make a finer characterization of differential distribution 
of RTT causing and benign variants across MECP2 domains.

Data Records
The machine-readable metadata was made available on a FAIR Data Point38 (https://github.com/FAIRDataTeam/
FAIRDataPoint-Spec) available via: http://purl.org/biosemantics-lumc/rettbase/fdp. The FAIR Data Point meta-
data provides URIs that resolve to the RDF and CSV files for each of the nine sources on Figshare (https://doi.
org/10.6084/m9.figshare.c.4769153.v2)39.

Technical Validation
Data integration challenges identified.  We encountered several challenges while integrating data from 
the different RTT databases: 1) different descriptions of genetic variants were used, 2) liftover process and limita-
tions in automated liftover, and 3) findability of terms of use/re-use, detailed below.

1) For the descriptions of genetic variants, the most commonly used nomenclature was HGVS. HGVS still comes 
in different, correct, flavours, e.g. using genomic or cDNA positions or different (versions of) reference sequences, 
which still need conversions from one to the other, using for instance Mutalyzer. The other most common stand-
ard was the RS number (reference SNP identifier, from dbSNP). These are usually linked to loci and can therefore 
not be used as unambiguous identifiers for a variant. Databases that give only RS identifiers were therefore not 
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included in further analysis. The same problem occurred with the annotation of diagnosis and/or phenotypes. As 
described before in ref. 18, only a few databases link original diagnostic information to the genetic information, 
and whenever it was provided, this information was presented using different formats or definitions.

2) For the liftover to one common, comparable variant description (GRCh38 (hg19)), genomic position) 
Mutalyzer was used. It can be used programmatically via API (Application programming interface) or via 
Graphical User Interface (GUI). After liftover to HGVS nomenclature it was possible for the majority of variants 
(90.7–100% per dataset) to use Mutalyzer without further curation (Table 1). Nevertheless, for up to 9.3% of the 
variations in a dataset (Maastricht Rett dataset, the average was 4.3%, Table 1) the data needed curation due to 
typos, incorrect nomenclature (e.g., symbols which are not in the official nomenclature), or outdated/historic 
position description (e.g., Genbank variation description nomenclature). Mutalyzer itself cannot deal with inser-
tions of a number on unknown base pairs (e.g., ins3 instead of insATT), round brackets () to indicate uncertainty 
(they are gone after translation while square brackets [] to indicate different alleles or group alleles are fine), 
asterisk * to indicate stop (protein) according to the official HGVS nomenclature. These variations required man-
ual curation, e.g. changing round brackets to square brackets, use Mutalyzer to do the liftover, changing square 
brackets back to round brackets. Furthermore, it is currently not possible to do a direct liftover from one genomic 
reference sequence to another (e.g., NC_000023.10:g.153282026 G > A to NC_000023.11:g.154016575 G > A) 
due to the size of the reference sequence. At the moment, this must be done in two steps via transcript (NC 
- > NM - > NC).

3) The permission to reuse and redistribute was difficult to find for some databases (RettBase, KMD).

Size and content of the FAIR dataset.  Number of disease causing and benign MECP2 genetic variants 
available.  Based on the thirteen genotype-phenotype databases identified in ref. 18, the inclusion criteria for this 
study were not met by DisGeNET, dbSNP, dbVAR, Café Variome, and HGMD. DisGeNET, dbSNP and dbVAR 
did not provide unambiguous descriptions of variations as the RS identifier only indicates a location of pol-
ymorphism and needs evaluation of the, sometimes ambiguous, additional information about the nucleotide 
change. Café Variome provided only protein change information, which, although very relevant itself, cannot be 
translated back to an unambiguous genetic change. HGMD, the only commercial database, did not allow re-use 
and re-distribution of the content. The eight databases that did fulfil our inclusion criteria and data previously 
anonymized from local RTT patients were used in this study (see Table 2). At the time of research, in total 12,158 
MECP2 variation entries were found in these databases. The databases contained between 34 (DECIPHER) and 
4,706 (RettBASE) MECP2 variations (Table 2). Between 15% and 100% of these variations were unique database 
entries (occur only once in one single database). Multiple entries of one variation were found frequently in dis-
ease specific databases, giving an indication of the abundance of this variant and confirming its pathogenicity. In 
total we identified 4,573 RTT causing MECP2 variants (of which 863 were unique) that annotate genetic infor-
mation with diagnosis (RettBase, ClinVar, Maastricht Rett dataset, KMD) and/or clear phenotype descriptions 
(DECIPHER) clearly stating that they cause RTT (or similar e.g., X-linked mental retardation) (intake crite-
ria Sup. Table 1). We identified 617 benign MECP2 variants, of which 209 were unique, from two of the data-
bases that annotate with diagnosis information (RettBase and ClinVar). These were clearly stated to be benign. 
Nineteen variants were found annotated both as RTT causing and benign (Sup. Table 2).

In total, we collected 12,158 MECP2 variants, which resulted in a collection of 10,968 (5,038 unique) curated 
and integrated variants. Out of the 10,968 curated MECP2 variations only eleven occur in more than 1% of all 
database entries, and these account for 53.7% of all database entries (data not shown).

The 863 unique RTT causing variations are distributed over 4,573 database entries. Also here, only twelve 
variations are found in more than 1% of all database entries (Table 3) and these twelve make in total 60% of the 
database entries. The most abundantly found MECP2 variations were found in seven of nine databases (Table 3). 
The majority (eight) of these are C > T transitions at CpG hotspots40. These eight MECP2 hotspot variations con-
tribute to 49.7% of all MECP2 variation entries. The most abundant MECP2 variation in this dataset is NC_0000

Phenotype annotation format Database
Number of MECP2 
or RTT variations

Number of variations 
meeting annotation criteria

Number of variations with sufficient genetic annotation

Using Mutalyzer After manual curation

# % # %

Phenotype DECIPHER 34 25 25 100 25 100

Diagnosis

Maastricht Rett 
dataset 429 428 388 90.7 393 91.8

ClinVar 1,134 743 681 91.7 726 97.7

RettBase 4,705 3,986 3,798 95.3 3,980 99.8

KMD 35 35 35 100 35 100

Pathogencity scores

EVS 190 190 190 100 190 100

LOVD 808 808 738 91.3 804 99.5

EVA 4,226 4,226 4,193 99.2 4216 99.8

ExAC 599 599 559 93.3 599 100

TOTAL 12,158 11,040 10,607 average 95.7% 10,968 average 98.7%

Table 1.  Overview for the different databases, their phenotype annotation format, number of available MECP2 
variants, and data liftover success rates using automated (Mutalyzer) and manual curation.

https://doi.org/10.1038/s41597-020-00794-7
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23.11:g.g.154031355 G > A (NM_004992.3:c.473 C > T, NP_004983.1:p.(Thr158Met)) with 463 counts (Table 3). 
In total 54% of RTT causing variations are a deletion, 9% insertion, 37% substitution, and 9% duplication. Many 
of the database entries contain multiple variations (e.g., a deletion and insertion) on the same or different chro-
mosomes. 452 RTT causing variations have only one single database entry and of these 269 are a deletion, 43 
insertion, and/or 153 substitution.

Distribution of the variants across databases.  Table 2 shows the number of unique MECP2 variations 
for each investigated database. The different databases contain very different numbers of unique MECP2 varia-
tions. The number of unique MECP2 variations in a database gives an indication whether it is a database focusing 
on collecting pathogenic variations (RettBase, ClinVar, Maastricht Rett dataset, DECIPHER) (exception KMD) or 
general population sequencing results (no disease annotation) (EVA, LOVD, ExAC) (exception EVS). LOVD, for 
example, lists all different variations and provides background information about the abundance of one variation 
in the variations’ information sheet. RettBase also gives the reference where a specific entry is from. From Table 2 
it also becomes clear that every database has unique MECP2 variations, which are found in no other database. The 
number of such unique variants differ between 3,329 (EVA) and one (EVS).

Figure 2 shows the size of MECP2 variation collections in the different databases, their shared and their unique 
variations. There are databases that focus on collections of genome and/or exome sequencing data of mostly 
healthy individuals (EVA, EVS, ExAC), curated collections of disease causing variants (LOVD, RettBase, ClinVar, 
Decipher), and hospital derived collections (KMD, Maastricht Rett dataset). The overlap or shared MECP2 vari-
ations between databases can be explained by the occurrence of this variation in multiple patients, data exchange 
between databases, or by recruitment from the same resources. For instance, ExAC and LOVD share 559 unique 
variants, LOVD and ClinVar 546, LOVD and RettBase 512, RettBase and ClinVar 504.

Database
Number of total MECP2 
variation entries

Number of unique MECP2 variations Number of unique variations which 
occur only in this database# % of total MECP2 variation entries

EVA 4,226 4,192 99.2 3,329

LOVD 808 802 99.3 144

RettBase 4,705 740 15.7 209

ExAC 599 599 100.0 40

ClinVar 1,134 716 63.1 126

EVS 190 95 50.0 1

Maastricht Rett dataset 429 68 15.9 34

KMD 35 35 100.0 9

DECIPHER 34 23 67.6 2

Table 2.  Numbers of total and unique MECP2 variations in each database.

Genomic position† count % cDNA‡ and protein change § Effect and previous reports

g.154031355 G > A 463 10.1 c.473 C > T, p.(Thr158Met)¶ Missense variation24,43,44

g.154031326 G > A 409 8.9 c.502 C > T,
p.(Arg168*)¶ Nonsense variation, leading to truncation24,43,44

g.154031065 G > A 345 7.5 c.763 C > T,
p.(Arg255*)¶ Nonsense variation, leading to truncation24,43,44

g.154031020 G > A 309 6.8 c.808 C > T,
p.(Arg270*)¶ Nonsense variation, leading to truncation24,43,44

g.154030948 G > A 281 6.1 c.880 C > T,
p.(Arg294*)¶ Nonsense variation, leading to truncation24,44

g.154030912 G > A 279 6.1 c.916 C > T, p.(Arg306Cys)¶ Missense variation24,43,44

g.154031431 G > A 249 5.4 c.397 C > T,
p.(Arg133Cys)¶ Missense variation24,44,53

g.154032268 G > A 161 3.5 c.316 C > T,
p.(Arg106Trp)¶ Missense variation24,44

g.154031373 G > C 80 1.7 c.455 C > G,
p.(Pro152Arg) Missense variation54

g.154031022delC 67 1.5 c.806delG,
p.(Gly269fs) Frameshift deletion leading to missense41

g.154030621_154030664del44 50 1.1 c.1164_1207del44, p.(Pro389*) Frameshift deletion leading to truncation

g.154030631_154030671del41 49 1.1 c.1157_1197del41, p.(Leu386fs) Deletion leading to frameshift

Table 3.  Most abundant RTT causing variants in this study. RefSeq †NC_000023.11, ‡NM_004992.3, 
§NP_004983.1. ¶one of the eight hotspot variations40.
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Advantages of making the MECP2 genetic variant data FAIR.  The FAIR guiding principles have 
emerged from analysing the general, and often repeated, process that data scientists go through when preparing 
data from multiple sources for data integration and analysis. The MECP2 genotype-phenotype data from this 
study were retrieved from nine heterogeneous resources, which we prepared for analysis by making them more 
FAIR. This was first and foremost done to enable integration of the data for analysis as correctly as possible, which 
also facilitates integration with other interoperable data such as protein functionality data from, for instance, 
UniProt, NextProt or Phyre databases. Another reason was to ensure reusability of the integrated data for other 
research studies. Note, all the FAIRified resources allow redistribution.

The FAIRified data was described with machine-readable metadata and distributed at a new location, which 
prospectively allows other researchers to reuse this data. Thus, as data users, we made the data FAIR after retriev-
ing them from their respective distributions. This was necessary, because the way that the data were provided by 
the different sources was not sufficiently uniform for machines to integrate multiple sources. The disadvantage 
of leaving the implementation of FAIR principles to data consumers is that they are more likely to make mistakes 
in the interpretation of the meaning of the data, which may not be the same as the sources. Ideally, data are made 
FAIR at the source to minimize that risk and optimize transparency. This would have allowed us to directly use 
the data in automated workflows that can be run regularly to update our findings.

Usage Notes
General use of the data.  The CSV formatted files.  The CSV formatted files contain in the first column 
genetic variants generated and used in this effort, which were described with the HGVS nomenclature, a common 
format to describe genetic variants. The second column indicates the source (name of the database) and the third 
column classifies the variations into RTT causing, benign or NA (not applicable). Any analysis or visualization 
tool that can deal with HGVS formatted files like VCF can work with this format.

The RDF files.  The RDF output of this dataset is serialized in the Turtle format. To use these RDF files, we 
need to upload it to a triple store, which is a special database designed to store and query RDF files. We can use 
the SPARQL query language to query the RDF files. We linked our RDF to external RDF data sources such as 
Ensembl RDF and Orphanet Rare Disease ontology. Within a SPARQL query we can also exploit these links to 
do further integration queries.

Visualization in genome browsers.  Broadly used genome browsers, e.g. UCSC accepts HGVS vari-
ant descriptions in their interactive interface for visualization purposes, e.g., see the result [Link] of 
NC_000023.11:g.1000000 C > T. In addition, conversion from the CSV formatted file to a “BED detail” formatted 
file [Link] should be relatively straightforward prior to its ingestion by the genome browsers. This alternative 
format can also be used in most modern genome browsers.

Biological questions answered using this data.  Variant pathogenicity prediction vs. curated datasets.  
To explore differences between RTT causing and benign MECP2 genetic variants we analyzed the annotated 

ExAC

LOVD

EVA

EVS

MRD

KMD

RettBase

ClinVar

DECIPHER

Fig. 2  Network illustrating the number of unique and overlapping MECP2 variations within and between nine 
Rett syndrome databases: DECIPHER, Maastricht Rett dataset (MRD), ClinVar, Rettbase, KMD, EVS, LOVD, 
EVA, and ExAC. Each node (circle) represents a database. The node size correlates with the number of variants 
(between 30 and 4775), the edge thickness correlates with the number of overlapping/shared variants between 
the two databases (between 0 and 500). The colour of the charts in the nodes represent the proportion of unique 
variants (blue) versus variants shared with other databases (yellow).
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results from VEP (see Methods) from six descriptive features (Fig. 3). We chose to visualize the obtained 
scores about conservation (i.e., PolyPhen), pathogenicity estimation scores (i.e., SIFT, CADD, MetaLR, 
FATHMM-MKL), and the variant frequency in normal population from GnomAD22 (i.e., GnomAD_AF).

We classified variants by benign, RTT causing and “both”, as we identified a subset of 19 variants appearing 
in both datasets. The detailed list of the MECP2 variations, which occur in both, can be found in Sup. Table 2. 
Overall, we see expected results: the RTT causing variants were found to be in positions significantly more con-
served than the benign or both variants (Fig. 3, PolyPhen (Wilcoxon test)), as well as less frequent than benign 
variations even though, all variants presented here are not abundant in the normal population (Fig. 3, GnomAD_
AF). Analysis of the obtained estimation of pathogenicity from multiple scores (Fig. 3 panels SIFT, CADD, 
MetaLR and FATHMM-MKL), shows that RTT causing variants are on average predicted as more damaging than 
the benign and both variants (p < 0.0001 in all cases after applying Wilcoxon test). Note that SIFT associates more 
pathogenic variants to lower scores, whereas CADD, MetaLR and FATHMM-MKL associates more pathogenic 
variants to higher scores. MetaLR is better than the other three pathogenicity scores in distinguishing benign and 
RTT causing variant types. This may be because this novel meta-score integrates more features than the other 
three prediction tools, amongst other pathogenicity scores and frequency information.

The pathogenicity estimates of the both group place the variants between the benign and RTT-causing in three 
out of five predictions, while in the other two give a prediction more similar to the benign group.

Distribution of pathogenic and benign missense variations to protein domains.  In this experiment the position 
of RTT causing and benign missense variants in different domains and conserved regions of MECP2 are com-
pared (Table 4 and Fig. 4). Most RTT causing missense variations are found in the methyl-DNA binding domain 
(MDB) (68.3%) and in the transcription repressor binding domain (TRD). However, at lower frequencies, RTT 
causing missense variations can also be found in the other domains. The benign variants are most frequent in the 
C-terminal domain (55.1%) and the interdomain (28.1%), but can likewise also be found in the other domains 
at lower frequencies. The distribution across the conserved regions of MECP2 shows that 93.6% of the missense 
RTT causing variants are found in conserved regions while only 16.3% of the benign variants are found in con-
served regions.

Regarding mutations affecting the protein sequence, in 1350 cases, which is about half of the RTT-causing sin-
gle nucleotide mutations, the variations are truncating, changing an Arginine into a stop codon. Also frequently, 

Fig. 3  Boxplots comparing prediction score value distribution calculated by different tools from the benign, 
both and RTT causing MECP2 genetic variants. The effect prediction was done based on conservation score 
(PolyPhen), four pathogenicity scores (SIFT, CADD, MetaLR, and FATHMM.MKL), and the variant allele 
frequency in the GnomAD dataset.
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Arginine is changed into a Cysteine (533) or Tryptophan (179) which are major changes in protein 3D structure. 
The average BLOSUM62 value of all amino acid changes for the RTT causing dataset is −1.8. For the benign 
MECP2 variations, the most abundant variations are silent ( = not amino acid changing), coding for Serine (65), 
Threonine (44) and Proline (40). The most abundant amino acid change is Glutamic acid to Lysine (33) and the 
average BLOSUM62 value of all amino acid changes indicates with −0.3 less severe consequences for the protein 
structure than the RTT causing group.

Added-value of integration of data across different sources.  This is to our knowledge the first study that integrates 
genetic variation data from multiple databases on MECP2. Despite best efforts of individual sources to reach 
the largest possible coverage, our results demonstrate that the number of usefully annotated variants increases 
when databases are combined. The greatest advantage of the integrated approach is therefore that more variants 
become available for further research and diagnosis. This is especially interesting for rare diseases which have 
relatively small study populations. By mapping to a common reference sequence, the information of different 
sources becomes comparable and we are getting closer to the “true” number of variants known. In this study, we 
were able to increase the previously estimated numbers of a few hundred RTT causing unique sequence varia-
tions to 863. However, databases, at least the active ones, get regular updates and input of data. In the time from 
the beginning of this study the number of variants in e.g. RettBase increased from 4,738 (March 201818) to 4,757 
(November 2018) to 4,806 (NM_004992.3, April 2020). Consequently, the number of 863 known RTT causing 
variants is likely outdated when this study is published. We argue that it is unrealistic to assume that any single 
database will ever be completely comprehensive, unless it automatically pulls in updates from other databases. A 
possible contribution to the solution of this problem would be to create the combined list of pathogenic variants 
by automated workflows that find and summarize data from across databases on demand or continuously. To 
make that possible we need to standardize how databases provide data for machine processing. The role of FAIR 
data principles to achieve this is discussed later in more detail.

This integrated dataset gives the possibility to study abundance and prevalence of certain variations in a larger 
population than any of the study populations published before. There are several studies on relatively small41,42 or 
large populations (e.g43,44.) that have published their data in the previous years. Study ref. 43 analysed 301 different 
MECP2 alleles in a French population and found 69 different variations, which cause 64% of RTT. They identified 
NP_004983.1:p.R168*, R255*, R270*, T158M, and R306C (Table 5) as the most abundant variations and 59 var-
iations were found in only one or two patients. In the list from the US national history study (819 participants44) 
the variations R106W, R133C, T158M, R168*, R255*, R270*, R294*, and R306C were responsible for more than 
60% of RTT. The MECP2 variation content of RettBase was analyzed recently by ref. 24 and the following eight 
hotspot variations are responsible for a total of 47% of RTT cases (of total number of MECP2 entries was at that 
time 4668, disease causing and benign): R106W, R133C, T158M, R168*, R255*, R270*, R294*, and R306C. ref. 3 
provides information about eleven more datasets from different countries.

Although our study resulted in a different ranking of the eight hotspots, we could confirm these as the most 
abundant ones which occur in our dataset in 54.6% of all RTT causing database entries. All eight hotspot muta-
tions are C > T transitions leading in seven of eight cases to a change from Arginine to a stop codon, Cysteine 
or Tryptophan which are changes with a high probability to change the 3D structure of the protein. The special 
vulnerability of certain Cytosine positions to errors in base excision repair was described before45.

In our integrated dataset most pathogenic mutations in MECP2 occur in the methyl-DNA or transcription 
repressor binding domain. This finding has been described and confirmed before24,46–48. The functionality of 
the methyl-DNA binding domain is reported to be extremely sensitive to changes46. The importance of the 
domain also shows from the observation that a construct consisting only of methyl-DNA binding and tran-
scription repressor domain could preserve some basic functions of MECP249. There is also a clear distinction 
between conserved and non-conserved regions. As expected, disease-causing mutations occur much more often 
in the conserved regions. However, the data shows clearly that mutations in all domains, both conserved and 
non-conserved regions, can cause RTT. The open question here remains how much influence does a particular 
mutation have and how much is contributed by other genetic aspects or environmental influences. This question 
becomes more important considering the discovery of variants that in one individual can be benign and RTT 
causing in another.

How can the same variation be benign AND cause RTT in different individuals.  The majority of the MECP2 
genetic variations, which are described as RTT causing in one, and benign in another database entry, are pre-
dicted to be benign (Fig. 3). Possible explanations why a variant can be disease causing in one individual and 

Domain length (% of total)

RTT causing Benign

% of missense variations per region

Domains

N-terminal domain 78 (16.0) 0.2 1

Methyl-DNA binding domain 84 (17.3) 68.3 1.5

Interdomain 45 (9.3) 1.9 28.1

Transcription repressor domain 103 (21.2) 24.1 14.3

C-terminal domain 176 (36.2) 5.5 55.1

Conserved regions 93.6 16.3

Table 4.  Location of RTT causing and benign missense variants in different domains and conserved regions of 
MECP2.
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benign in another could be due to the location of the gene on the X chromosome which may result in a subclinical 
phenotype in females but a fully-fledged RTT in male patients. The sex of patients is usually not given in these 
genotype-phenotype databases. In addition, X-inactivation patterns50 and genetic background related to other 
participating genes in MECP2 related pathways4 influence the severity of a rare monogenic (X-linked) disease and 

Fig. 4  Distribution of RTT causing and benign MECP2 missense variations. Amino acid positions correspond 
to isoform MECP2-e2 (the result of translation initiated at exon 2). Frequency is represented as the percentage 
of missense variations falling in each position, from the total of missense variations in cases or controls. 
In a) each MECP2 domain is coloured differently, while in b) conserved deletions are coloured in yellow. 
Domain abbreviations: N-terminal domain (NTD), methyl-DNA binding domain (MDB), interdomain (ID), 
transcription repressor binding domain (TRD), C-terminal domain (CTD).
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can possibly even save individuals with a documented pathogenic variation from disease development51. In prin-
ciple, patients could also have an unreported second mutation that could cause the effect either alone or through 
epistatic interaction. Another reason for misinterpretation of a variant may be due to linkage disequilibrium, 
where the causal mutation is not the reported one but another unreported.

For several variations, a high pathogenicity score was predicted but they were still documented in healthy 
individuals. This has been observed before in a girl with RTT who inherited a germline disease causing MECP2 
c.1160 C > T (P387L, NC_000023.11:g.154030668 G > A) variation from a healthy (!) father52. We found exactly 
this variant only in our RTT causing dataset (documented in ClinVar and RettBase), the annotation with the 
benign outcome was not added to one of these databases yet. These effects may contribute to the limited pene-
trance of some mutations. To unravel the different influences of MECP2 variations in the context of an individual 
patient, we need to evaluate how genetic background (ancestry) can affect other process related genes. For this, 
genotype-phenotype databases with detailed phenotype capture will be highly important and data integration 
tools and methods must be developed to investigate this further.

There is a possibility that a gene carries more than one variation. Indeed, in our integrated dataset we found 
a total 54 individuals with multiple variants. However, multiple variants are difficult to predict, there may be 
positive or negative epistatic effects if these variants occur on the same allele or two mutations affecting the same 
codon, one cancelling out to another. All of these possibilities may lead to wrong classification of variants.

Code availability
Any custom code used to generate and analyse this dataset is openly available on Git-based repositories. For 
data FAIRification see https://github.com/stkenny/grefine-rdf-extension and https://github.com/LUMC-
BioSemantics/rett-variant, for VEP data analysis see https://github.com/counsyl/hgvs, and https://gitlab.bsc.es/
inb/fair-rett for _summary_plots and HGVS pipelines.
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