
Multiple testing: when 's many too much?
Groenwold, R.H.H.; Goeman, J.J.; Cessie, S. le; Dekkers, O.M.

Citation
Groenwold, R. H. H., Goeman, J. J., Cessie, S. le, & Dekkers, O. M. (2021). Multiple testing:
when 's many too much? European Journal Of Endocrinology, 184(2), E11-E14.
doi:10.1530/EJE-20-1375
 
Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3235986
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3235986


Published by Bioscientifica Ltd.
Printed in Great Britain

© 2021 European Society of Endocrinologyhttps://eje.bioscientifica.com
https://doi.org/10.1530/EJE-20-1375

Eu
ro

pe
an

 Jo
ur

na
l o

f E
nd

oc
ri

no
lo

gy
184:2 E11–E14R H H Groenwold and 

others
When is many too much?

Multiple testing: when is many too much?
Rolf H H Groenwold1,2, Jelle J Goeman2, Saskia Le Cessie 1,2 and Olaf M Dekkers 1,3

1Department of Clinical Epidemiology, 2Department of Biomedical Data Sciences, and 3Department of Endocrinology, 
Leiden University Medical Center, Leiden, the Netherlands

Abstract

In almost all medical research, more than a single hypothesis is being tested or more than a single relation is being 
estimated. Testing multiple hypotheses increases the risk of drawing a false-positive conclusion. We briefly discuss this 
phenomenon, which is often called multiple testing. Also, methods to mitigate the risk of false-positive conclusions are 
discussed.

Introduction

Is having a high level of growth hormone a risk factor for 
developing breast cancer? Or a high level of testosterone? 
Cortisol perhaps, or thyroid hormone? And if not breast 
cancer, pancreatic cancer perhaps? The more hormones 
you investigate the more likely it becomes that – just by 
chance – at least one of them will appear to be a risk factor, 
even if it is not. It is well-known that many relations 
found in medical research are false-positive signals (1): 
chance findings that do not stand up to replication. Here, 
we discuss the probability of incurring a false-positive 
finding, how this is related to the number of hypotheses 
that are being tested, and how to control the chance of a 
false-positive finding. 

Multiple testing

‘The more you look, the more you see’. This also applies 
to scientific research, particularly to hypothesis testing. In 
medical research, it is common to test a so-called null-
hypothesis and rejecting it when the P value of the test is 
smaller than a predefined threshold. In clinical research, 
this threshold is mostly set at a statistical significance level 
of 0.05. Suppose researchers are interested in the question 
whether high growth hormone (GH) levels cause breast 
cancer. Their investigation results in a P value <0.05 and 
the researchers claim that a significant effect exists (in this 

case, they claim that high GH levels cause breast cancer). 
However, a P value smaller than 0.05 does not imply that 
we have proven with certainty that an effect exists (by the 
way, this also applies to a 95% CI that does not contain 
the null-value) (2). If the null-hypothesis is true (e.g. no 
effect of GH on breast cancer), there still is a probability of 
5% that the null-hypothesis is falsely rejected, a so-called 
type I error. This means that, even when GH does not 
increase breast cancer risk, there is a 5% chance that a 
study using null-hypothesis testing will conclude that it 
does (here we assume no bias). 

Suppose researchers not only investigate GH, but 
also testosterone, and that both of these hormones have 
no true relation with breast cancer. For each hormone, 
the researchers would again incur a 5% chance of 
incorrectly rejecting the null-hypothesis, and thus 
potentially claiming an effect that is not actually there. 
The probability that at least one of the two relations 
mistakenly shows ‘significance’ in the study is between 5 
and 10%, depending on the correlation between the two 
hormone measurements. In most cases, the probability of 
at least one false-positive result is almost doubled to 10%. 
With more than two null-hypotheses, the probability of a 
false-positive result grows rapidly (Fig. 1).

One solution to reduce the probability of false-
positive conclusions is to simply reduce the number of 
hypotheses being tested, by specifying before analyzing 
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the data which hypothesis is most important and 
refraining from testing less important hypotheses. When 
the number of hypotheses that require testing is still large, 
the probability of false-positive findings can be reduced 
by statistical corrections. An easy way to preserve the 
overall type I error (aiming for an overall 5% probability 
of a false-positive finding within a study), is to divide 
the significance level by the number of tests that are 
performed. This is commonly known as a Bonferroni 
correction. For two tests this means that the significance 
level would be 0.05/2 = 0.025, instead of 0.05, while for 
25 tests it would be 0.05/25 = 0.002. Note that even if 
researchers did not apply a correction for multiple testing, 
a reader could easily apply the Bonferroni correction, 
provided it is reported how many hypotheses were tested.

A trade-off between false-positives 
and false-negatives

Obviously, corrections for multiple testing reduce the 
number of false-positive conclusions. There is, however, 
an immediate consequence of applying a Bonferroni 
correction: the probability that a true relation may go 
unnoticed will increase (we call this a type 2 error). The 
probability to detect an existing true effect is commonly 
known as the power of the study. In a study in which a 
single test has a power of 80%, the power of each of 25 

Bonferroni corrected tests would be less than 39%. This 
is intuitively clear, as the significance boundary is now 
much lower. Figure 2 shows how the power of each test 
goes down as the number of Bonferroni corrected tests 
increases.

For this reason, many researchers may be hesitant to 
perform a Bonferroni correction, fearful that interesting 
findings may be disregarded. Indeed, the Bonferroni 
correction can be conservative (too strict), when the data 
about the different hypotheses are strongly positively 
correlated. For example, if high glucose levels are 
mistakenly shown to be related to hip fractures, this will 
likely also be the case for HbA1c; effectively less than two 
tests are performed, so the probability of making at least 
one mistake is much less than two times 5%.

Let us consider a study performing 100 statistical 
tests (a number not unusual for clinical studies). Figure 3 
shows the 15 smallest P values of this hypothetical 
study in which 100 different null-hypotheses are tested, 
of which 90 null-hypotheses are true (i.e. there truly is 
no relation), and 10 times it is not (i.e. there truly is a 
relation). If no correction for multiple testing is made, 13 
out of 100 null-hypotheses would be rejected, of which 
four rejections are wrong, because the null-hypotheses are 
actually true (hence, false-positive conclusions are made). 
Also, one false null-hypothesis would not be rejected 
(false-negative). Applying a Bonferroni correction reduces 
false-positive conclusions but reduces the power as well. 

Figure 1
Relation between the number of independent hypothesis tests 
performed at a significance level of 0.05 and the probability of 
at least one true hypothesis being rejected.

Figure 2
Relation between the number of independent hypothesis tests 
performed and the power of each test after Bonferroni 
correction. It is assumed that, without Bonferroni correction, each 
test has a power of 0.8.
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Using the more stringent Bonferroni correction in the 
hypothetical study leads to zero false-positive conclusions, 
yet five false-negative conclusions.

False discovery rate

To maintain power, while still limiting the number of false-
positive conclusions, the concept of the false discovery rate 
(FDR) was proposed by Benjamini and Hochberg (3). FDR 
procedures aim for controlling the proportion of false-
positive conclusions, instead of controlling the probability 
of at least one false-positive conclusion (as, e.g. Bonferroni 
correction does). A researcher who performs a Bonferroni 
correction in each paper that she writes, may expect to 
have false-positive results in at most 5% of her papers. A 
researcher who always uses FDR, however, could have false-
positive results in every paper, but has the guarantee that 
on average these false-positive results comprise no more 
than 5% of all positive results obtained. The idea behind 
FDR procedures is that if many hypotheses are tested, and 
therefore many findings are presented in one paper, it is 
not so important that we can guarantee that every finding 

is correct, as long as the majority of findings is. FDR 
procedures are, for example, used in gene expression studies, 
in which hypotheses are tested for tens of thousands of 
genes and Bonferroni correction would reduce the already 
limited power too much. Results obtained using FDR are 
less certain than those using Bonferroni and therefore 
require follow-up studies for confirmation.

The Benjamini–Hochberg method is illustrated in Fig. 
3. For this method, one first orders the P values from small 
to large. The smallest P value is compared to the stringent 
Bonferroni threshold of 0.05 divided by the number of 
hypotheses tested, the second smallest to a much less 
stringent value of twice that threshold, the third smallest 
P value to three times the Bonferroni threshold, etc. 
The researcher now finds the largest P value that makes 
its threshold and rejects all null-hypotheses with that 
P value or smaller P values. In this way, the proportion 
of false discoveries (false-positive conclusions) can be 
controlled. Since the threshold becomes less and less 
stringent as we go from the smallest to larger P values, the 
power is larger than for Bonferroni-type methods, where 
all P values are compared against the same (stringent) 
threshold. Hence, when many null-hypotheses are in fact 
not true, FDR-type procedures will often detect more. Let 
us have a look at the example in Fig. 3, where Bonferroni 
correction resulted in zero false-positive conclusion, 
yet five false-negative conclusions. Instead, when the 
Benjamini–Hochberg method is applied, there is still no 
false-positive conclusion, but instead only three false-
negative conclusions.

Reporting multiple testing

Let us return to the example of a study that investigates 
the relations between different hormones and different 
cancer types. It is relatively easy to recognise multiple 
testing, if each of the investigated relations is reported, 
for example, listed in a single table. Obviously, this will 
be much harder, if only those relations are reported that 
reached statistical significance. In the case of such bad 
practice, it will be difficult for the reader to get an idea 
of what the risk of false-positive results is, and whether 
corrections for multiple testing should have been made. 
Likewise, when results of different analyses of one study 
(e.g. different analyses based on data from one ongoing 
cohort study) are reported in different articles, it will likely 
be unclear whether results should be judged in isolation, 
or whether the increased risk of false-positive results due 
to multiple testing should be considered.

Figure 3
Illustration of methods to correct for multiple testing. The 
smallest 15 out of 100 P values are presented. Open circles 
represent null-hypotheses that are true (no effect exists), solid 
dots null-hypotheses that are false (there exists an effect). The 
solid, dotted, and dashed lines represent the thresholds used 
for conventional statistical significance testing (no correction 
for multiple testing), used after Bonferroni correction, and 
used in the Benjamini–Hochberg method, respectively.
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When is many too much?

Before analyzing the data, researchers can try to avoid 
the problem of multiple testing, for example, by making 
(well-considered) choices about which hypotheses to test. 
Alternatively, they could make a distinction between 
primary and secondary null-hypotheses. In that case, 
however, it might be unclear what to conclude when 
the primary null-hypothesis is not rejected, while the 
secondary is. The issue of multiple testing is sometimes 
avoided by calling analyses ‘exploratory’. In that case, 
the results of such an analysis should indeed be clearly 
reported as such (and any claims of (strong) evidence for 
reported effects or relations avoided). Authors and readers 
should be aware that studies marked as exploratory have a 
substantial risk of containing false-positive findings.

If researchers nevertheless want to test a large number 
of null-hypotheses, such as in research on genes or 
metabolites, the risk of drawing a false-positive conclusion 
is inflated unless a proper correction is carried out. It 
is worth mentioning that also the estimates of those 
relations that reach statistical significance are biased, 
which – unfortunately – cannot easily be corrected for. We 
have described two fairly simple methods, Bonferroni and 
Benjamini–Hochberg, that can be used to correct P values 
for multiple testing. They can even be applied by the reader 
of an article if the authors did not perform the correction 
themselves, provided the number of hypotheses that 
were studied is transparently reported. A statistician may 

be consulted for more advanced and powerful methods 
for specific research designs, for example, when there are 
primary and secondary hypotheses (4), or when the data 
for different hypotheses are strongly correlated (5).
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