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REVIEW ARTICLE OPEN

The digital scribe in clinical practice: a scoping review and
research agenda
Marieke M. van Buchem 1,2✉, Hileen Boosman2,3, Martijn P. Bauer2,4, Ilse M. J. Kant1,2, Simone A. Cammel1,2 and
Ewout W. Steyerberg2,5

The number of clinician burnouts is increasing and has been linked to a high administrative burden. Automatic speech recognition
(ASR) and natural language processing (NLP) techniques may address this issue by creating the possibility of automating clinical
documentation with a “digital scribe”. We reviewed the current status of the digital scribe in development towards clinical practice
and present a scope for future research. We performed a literature search of four scientific databases (Medline, Web of Science, ACL,
and Arxiv) and requested several companies that offer digital scribes to provide performance data. We included articles that
described the use of models on clinical conversational data, either automatically or manually transcribed, to automate clinical
documentation. Of 20 included articles, three described ASR models for clinical conversations. The other 17 articles presented
models for entity extraction, classification, or summarization of clinical conversations. Two studies examined the system’s clinical
validity and usability, while the other 18 studies only assessed their model’s technical validity on the specific NLP task. One
company provided performance data. The most promising models use context-sensitive word embeddings in combination with
attention-based neural networks. However, the studies on digital scribes only focus on technical validity, while companies offering
digital scribes do not publish information on any of the research phases. Future research should focus on more extensive reporting,
iteratively studying technical validity and clinical validity and usability, and investigating the clinical utility of digital scribes.
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INTRODUCTION
In the past few years, clinician burnout has become an acknowl-
edged problem in healthcare. In a 2017 survey among 5000 US
clinicians, 44% reported at least one symptom of burnout1. To
investigate this problem, the National Academy of Medicine
formed a committee focused on improving patient care by
supporting clinician well-being. The committee’s extensive report,
called Taking Action Against Clinician Burnout, describes reasons
for clinician burnout. An important reason is the increasing
administrative burden2. Since the introduction of the electronic
health record (EHR), the time spent on administrative tasks has
increased to approximately half of a clinician’s workday3–5. These
administrative tasks decrease clinicians’ career satisfaction6 and
negatively affect the clinician–patient relationship7. Other studies
have assessed the relationship between EHR-use and burnout and
found that more time spent on the EHR, especially after-hours, was
linked to a higher risk of burnout8,9.
Recently, clinicians have hired medical scribes to reduce the

administrative burden, i.e., persons who manage administrative
tasks, such as summarizing a consultation. Studies show positive
results for the use of medical scribes, with clinicians spending
more face-to-face time with patients and less after-hour time on
the EHR10,11. Although a medical scribe might seem like the
perfect solution, it shifts the burden to other personnel. As a result,
direct medical costs increase, while the administrative burden
remains substantial. Two recent perspectives12,13 describe the
need for a so-called digital scribe. This digital scribe uses

techniques such as automatic speech recognition (ASR) and
natural language processing (NLP) to automate (parts of) clinical
documentation. The proposed structure for a digital scribe
includes a microphone that records a conversation, an ASR
system that transcribes this conversation, and a set of NLP models
to extract or summarize relevant information and present it to the
physician. The extracted information could, for instance, be used
to create clinical notes, add billing codes, or use the extracted
information for diagnosis support.
Companies like Google, Nuance, Amazon, and many startups

are creating a digital scribe14–16. Although much needed, there are
several concerns about implementing a digital scribe in health-
care. These relate to technical aspects such as the accuracy of
current ASR systems for transcription of spontaneous speech13

and a digital scribe’s ability to extract all the essential information
from a non-linear, fragmented conversation13,17. There are also
concerns related to a digital scribe’s clinical utility, such as the
effect on a physician’s workflow. Such concerns need to be
addressed before digital scribes can be safely implemented in
practice. More specifically, successful implementation of an
artificial intelligence (AI) tool, such as a digital scribe, requires a
thorough investigation of its suitability, technical validity, clinical
validity and usability, and clinical utility (see Box 1). A scoping
review of current evidence is needed to determine the current
status of the digital scribe and to make recommendations for
future research.
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Objective
The purpose of the present study is to perform a scoping review of
the literature and contact companies on the current status of
digital scribes in healthcare. The specific research questions are:

● Which methods are being used to develop (part of) a digital
scribe? (Suitability)

● How accurate are these methods? (Technical validity)
● Have any of these methods been evaluated in clinical

practice? (Clinical validity and usability, clinical utility)

METHODS
Data search
We performed a scoping review based on the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses Extension for
Scoping Reviews (PRISMA-ScR) statement18. We searched Medline,
Web of Science, Arxiv, and ACL for all relevant articles until
December 25, 2020. Furthermore, we scanned reference lists of
relevant publications for additional articles. Search terms included
terms describing the setting (clinical conversations) in combina-
tion with relevant methods (NLP, ASR) and usage of the output
(clinical documentation). We also included “digital scribe” and
“automated scribe” as search terms because these incorporate the
setting, method, and goal. The full search queries can be found in
Supplementary Table 1.
Besides, we aimed to include real-world data on existing digital

scribes to bridge the gap between research and practice. Quiroz
et al.13 provided a list of active companies in the digital scribe
space: Robin Healthcare, DeepScribe, Saykara, Sopris Health,
Amazon, Nuance. These companies were requested to provide
unpublished performance data for their digital scribe.

Inclusion and exclusion criteria
Our definition of a digital scribe is any system that uses a clinical
conversation as input, either as audio or text, and automatically
extracts information that can be used to generate an encounter
note. We included articles that describe the performance of either
ASR or NLP on clinical conversational data. A clinical conversation
was defined as a conversation—in real life, over the phone, or via
chat—between at least one patient and one healthcare profes-
sional. Because ASR and NLP are different fields of expertize and

will often be described in separate studies, we chose to include
studies that only focused on part of a digital scribe. Studies that
described NLP models that were not aimed at creating an
encounter note but, for example, extracted information for
research purposes, were excluded. Articles written in any language
other than English were excluded. Because of the rapidly evolving
research field and the time lag for publications, proceedings were
included.

Study selection
Two reviewers (M.M.v.B. and S.A.C.) independently screened all
articles on title and abstract, using the inclusion and exclusion
criteria. The selected articles were assessed for eligibility by
reading the full text.

Data extraction and synthesis
The first reviewer extracted information from the included articles
and the unpublished data provided by companies. The second
reviewer verified the extracted information. The following aspects
were extracted and assessed:

1. Setting and research phase
2. ASR models and performance
3. NLP tasks, models, and performance

RESULTS
Study selection
Our search resulted in 2348 articles. After screening the titles and
abstracts of these articles, we assessed 144 full-text articles for
eligibility. We included 20 articles19–38 for our analysis (Fig. 1 and
Supplementary Table 2). Of these, ten were conference proceed-
ings19–21,23,27,28,32,38, seven were workshop proceedings22,26,29,34–
37, two were journal articles24,25, and three were Arxiv
preprints30,31,33.
Of the six contacted companies, DeepScribe39 was the only one

to provide unpublished data on their digital scribe system’s
performance. We were unable to obtain performance data from
other companies.

Setting and research phase
Although all 20 studies aimed to decrease the administrative
burden of clinical documentation in some way, the specific
approaches and the setting differed greatly among studies. Three
studies focused on improving the ASR for clinical conversations as
the first step towards accurately extracting information from
them19,21,36. Eleven studies chose to manually transcribe the
conversations and performed NLP tasks on the tran-
scripts20,22,24,25,27,30–32,34,35,40. Five studies used input data repre-
sentative of the input of an implemented digital scribe (ASR
transcripts or chat dialogs)26,28,33,37,38.
Settings differed greatly between studies, as most did not

define a specific specialty19,21–23,26,31–36,38, while others were
focused on primary care20,25,27, home hemodialysis24, orthopedic
encounters37, cardiology, family medicine, internal medicine31,
and patient-clinician dialogs via a telemedicine platform28. Fifteen
studies were performed by or in collaboration with a
company19–21,23,25–28,30,33–37.
All included studies focused on the technical validity of the

digital scribe; only two studies investigated the clinical validity and
usability by performing a qualitative evaluation with end-
users24,28. None of the studies investigated the clinical utility.

Automatic speech recognition (ASR)
In total, seven of 20 studies used ASR to automate clinical
documentation19,21,23,26,33,36,38, and one company provided data

Box 1: Four research phases

Suitability: The first step aims to create a clear overview of the problem and find a
suitable solution. In the digital scribe field, the problem is the administrative
burden. Deciding on a suitable solution (e.g., symptom list, summary) is the next
step towards determining the required model’s output and a reliable ground
truth52. When the problem and solution are clear, researchers can find a suitable
dataset or collect data themselves. Researchers should also check if the dataset
contains any unintended bias or underrepresented groups.
Technical validity: Next, various models may be created and the best performing
model determined55. Apart from determining the model’s overall performance,
researchers should assess in which situations the model performs well and in
which it performs less adequately. This includes assessing if the model performs
consistently across different patient groups, for example gender56. The data
source, model, and context in which the model was tested should all be
described transparently50. Sharing data and code help the community better
understand the models and enables researchers to build on past work52.
Clinical validity and usability: Once the model passes the technical validation, the
researchers should perform a qualitative evaluation of the output with the end-
user. This evaluation has two goals: first, to evaluate whether the output makes
sense and is clinically relevant; second, to evaluate how the output affects clinical
practice. This includes the presentation of the output, the most appropriate
timing, and the effect on end-users’ decision making57.
Clinical utility: In this last step, the researchers should prospectively study the
model in clinical practice. First, the model might run in clinical practice without
showing the output to the end-users. At specific time points, end-users analyze
the output to identify any errors. If no new problems arise, a prospective study
can be set up to determine clinical impact.
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on their ASR system. Of these, two studies and the company
presented a new ASR model19,21, four used ASR to transcribe
conversations as input for NLP models26,33,37,38, one presented a
model to correct ASR errors36, and one compared the perfor-
mance of existing ASR systems on clinical conversations23 (see
Supplementary Table 3).
In all studies, the metric used to evaluate the ASR transcripts

was the word error rate (WER, see Box 2). The lowest WER was
14.1%, according to the unpublished data provided by Deep-
Scribe. This ASR system combines Google Video Model41, IBM
Watson42, and a custom-made Kaldi model43. The best performing
published (as opposed to the unpublished data provided by
DeepScribe) ASR system had a WER of 18%19. Four studies23,26,33,36

used existing ASR systems and found WERs between 38% (IBM
Watson) and 65% (Mozilla DeepSpeech44).
One study36 presented a postprocessing model to correct ASR

errors. By using an attention-based neural network, WERs were
improved from 41 to 35% (Google Speech-to-Text45) and 36 to
35% (off-the-shelf open-source model46).

Natural language processing (NLP) tasks and models
The NLP tasks that were performed could be split into three
categories: entity extraction20,25–27,30,32,35,38, classification22,24,30–35,
and summarization22,24,28,29,31,37 (see Fig. 2 and Supplementary
Table 4). All except one study used word embeddings (see Box 3)
as input to their model. This study did not use word embeddings
as input but used a clustering model to create 2000 clusters24. The
model’s input consisted of the current words’ clusters, the number
of words, and the previous words’ clusters.

Entity extraction
The eight studies using entity extraction focused on extracting
symptoms20,25,27,32,38, medication regimen20,26,27,32,35, and condi-
tions27. However, the studies differed in the combination of
entities and properties they extracted. Several studies examined
the possibility of extracting symptoms and identifying whether a
symptom was present or not20,27,38, while only one study focused
on all the other combinations (i.e., medication dosage, frequency,
symptom properties). Almost all studies reported their results as
F1 scores (see Box 2). The tasks of extracting the medication,
medication dosage, and symptom resulted in the highest
F1 scores and thus showed the best performance (see Fig. 3).
All studies used neural networks, although the type of neural

network differed. Some studies used general neural net-
works22,30,35, but most used neural network-based sequence
models with attention (see Box 3). In the studies that compared
different types of models, the neural networks with attention layer
achieved higher F1 scores than the neural networks without
attention layer (see Fig. 3).
Three studies27,32,38 performed an error analysis of which one

investigated the symptoms that were incorrectly labeled as
“absent”. The authors reported that these symptoms were often
discussed in multiple talk-turns. In the other study27, ten human
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Fig. 1 Inclusion flowchart. The four phases of article selection following the PRISMA-ScR statement.
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Fig. 2 Overview of a digital scribe. Scope of the different aspects
and techniques of the included digital scribes.
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annotators categorized the cause of all labeling errors and the
impact on the clinical note. They concluded that 16 to 32% of the
errors did not affect the clinical note’s content. Furthermore, most
errors were caused by a failure of the model to take context into
account or the lack of knowledge about a patient’s medical
background. In 29 to 42% of the errors, the human annotators
agreed with the model, showing the difficulty of annotating the
data. One study reported that most errors originated from
informal language use and describing symptoms in physical
manifestations (“I only sleep for 4 h”)32.
Two studies26,38 made a comparison between manually

transcribed and automatically transcribed data regarding the
performance of their entity extraction model. Both found that
models trained on manually transcribed data outperform the
model trained on the automatically transcribed data. The
difference in F1 for extracting symptoms was 0.79 versus 0.72,
whereas the difference in ROUGE-1 (see Box 2) for extracting
medication dosage was 85 versus 7926.

Classification. Six studies performed a type of classifica-
tion22,24,30,33–35, which varied greatly: in which summary section
it belonged22,24,33,34; if a sentence was said by the patient or the
phycisian33; relevant diagnoses of the patient22,30; if any
abnormalities were found in the medical history30 (see Supple-
mentary Table 4). A greater variety of models was used for
classification than for entity extraction, although neural networks
were used most often. The classification tasks resulting in the
highest F1 scores were the classification of primary diagnosis,
utterance type, and entity status (see Supplementary Table 4). In
two of these tasks, support vector machines were used.
One study33 tested their classification model on manually

transcribed data and automatically transcribed data. The model
performed better on the manually transcribed data, with a
difference in F1 score ranging from 0.03 to 0.06, although they
did not mention if the difference was significant.
One study assessed possible disparities of their classification

model towards disadvantaged groups34. They formed 18 dis-
advantaged and advantaged groups based on gender, ethnicity,
socioeconomic status, age, obesity, mental health, and location. In
7 of 90 cases, there was a statistically significant difference in favor
of the advantaged group. The main reason for the disparity is a
difference in the type of medical visit. For example, “blood” is a
strong lexical cue to classify a sentence as important for the “Plan”
section of the summary, but this word is said less often in
conversations with Asian patients.

Summarization. Six studies22,24,28,29,31,37 used NLP to summarize
the conversation between patient and healthcare professional
automatically. Four studies used pointer generator networks to
create a hybrid extractive and abstractive summary28,29,31,37. One
of these studies approached the summarization problem as a
machine translation problem, where the transcript has to be
“translated” to a summary37. This study compared the pointer
generator network to three other attention-based models (see
Supplementary Table 4).

The other two studies used extractive methods, where the
output of the classification or entity extraction models was used to
extract the most important utterances from the conversation22,24.
The combination of these utterances formed the summary. One of
these studies did not compare their summaries to a gold
standard24; the other study asked physicians to extract the most
important utterances as gold standard22. The F1 score for the
latter study was 0.61.
All studies using pointer generator networks reported their

results as ROUGE-scores. However, one study only reported their
results as ROUGE-L relative error rate reduction37, limiting the
comparability with the other studies.
The ROUGE-L scores in the other three studies were 0.4231,

0.5528, and 0.5529. One study also presented a model that returned
summaries with a ROUGE-L of 0.58, but this was based on
manually extracting noteworthy utterances31. When using the
same model with automatically extracted noteworthy utterances,
the performance dropped to 0.42.
The best performing model used a pretrained pointer generator

network (see Box 3) fine-tuned on medical dialog summarization,
with an added penalty for the generator distribution to force the
model to favor copying text from the transcript over generating
new text28. The other models were: a topic-aware pointer-
generator network using embeddings (see Box 3)29, which takes
the topic of the current segment into account when copying or
generating the next word; an LSTM architecture with BERT
embeddings to extract noteworthy utterances (see Box 3)31; a
combination of a transformer and pointer generator network that
creates a summary per summary section (see Box 3)37.
Two studies included physicians to evaluate their summa-

ries24,28. One study examined physicians’ ability to answer
questions about patient care based on the automatic summary24.
They did not find any significant difference in physicians’ answers
using the human-made summaries compared to the automatic
summaries. Another study asked physicians to rate the amount of
relevant information in the summaries28. Physicians found that
80% of the summaries included “all” or “most” relevant facts. The
study did not specify which parts were deemed relevant or not or

Box 2: Explanation of metrics

WER: This metric counts the number of substitutions, deletions, and insertions in
the automatic transcript, compared to the manual transcript. The lower the WER,
the better the performance.
F1 score: The F1 score is the harmonic mean between the precision (or positive
predictive value) and the recall (or sensitivity).
ROUGE: This is a score that measures the similarity between the automatic
summary and the gold standard summary, in unigrams (ROUGE-1), bigrams
(ROUGE-2), or the longest common subsequence (ROUGE-L). The ROUGE-L score
considers sentence-level structure, while the ROUGE-1 and ROUGE-2 scores only
examine if a uni- or bigram occurs in both the automatic and gold standard
summary.

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Medication (SAT [27])

Medication dosage (Seq2Seq [26])

Symptom (Seq2Seq [38])

Medication frequency (NN [35])

Symptom + status (SAT [38])

Conditions (SAT [27])

Medication route (NN [35])

Conditions + status (SAT [27])

Medication + property (R-SAT [20])

Symptom + property (R-SAT [20])

Medication change (NN [35])

F1 best performing model

Fig. 3 Performance of entity extraction models. Highest F1 scores
per entity extraction task, with best performing model.
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if the model missed specific information.
DeepScribe did not provide information on the models used for

summarization but included how often a summary needed to be
adjusted in practice. They report that 77% of their summaries do
not need modification by a medical scribe before being sent to
the physician. Furthermore, 74% of their summaries do not need
modification from a medical scribe or a physician before being
accepted as part of the patient’s record, saving time on
administrative tasks.

DISCUSSION
This scoping review provides an overview of the current state of
the development, validation, and implementation of digital
scribes. Although the digital scribe is still in an early research
phase, there appears to be a substantial research body testing
various techniques in different settings. The first results are
promising: state-of-the-art models are trained on vast corpora of
annotated clinical conversations. Although the performance of
these models varies per task, the results give a clear view of which
tasks and which models yield high performance. Reports of clinical
validity and usability, and especially clinical utility are, however,
mostly lacking.
All studies focusing on ASR used physician–patient dialogs

without further specification of the setting. In general, existing
ASR systems not explicitly trained on clinical conversations did not
perform well, with WERs up to 65%. The speech recognition
systems trained on thousands of clinical conversations had WERs
as low as 18%. This WER is still high compared to the claimed
WERs of general, state-of-the-art, available ASR systems that attain
WERs as low as 5%47. The difference in performance can be
explained by the uncontrolled setting of clinical conversations
with background noise, multiple speakers, and the spontaneity of
the speech13. However, these aspects were not reported by any of
the studies, complicating the comparison of WERs. Two new
approaches decreased the WER by postprocessing the automatic
transcript36 and combining multiple ASR systems (DeepScribe).
These approaches are promising new ways to decrease the WER.
However, what is most important is whether the WER is good
enough to extract all the relevant information. Currently, the NLP
models trained on manually transcribed data outperform those
trained on automatically transcribed data, which means there is
room for improvement of the WER.

When comparing the different NLP tasks, the diverseness in
both tasks and underlying models was large. The classification
models focused mainly on extracting metadata, such as relevance
or structure induction of an utterance, and used various models
ranging from logistic regression to neural networks. The entity
extraction models were more homogeneous in models but
extracted many different entities, complicating the comparison,
whereas the summarization task was mostly uniform, both in
models and in metrics. One notable aspect of the NLP tasks overall
is the use of word embeddings. Only one study did not use word
embeddings, but this was a study from 2006 when context-
sensitive word embeddings were not yet available. All the other
studies were published after 2019 and used various word
embeddings as input. The introduction of context-sensitive word
embeddings has been essential for extracting entities and
summarizing clinical conversations.
In the entity extraction task, the specific tasks, such as extracting

symptoms, led to better performance than more general tasks, such
as extracting symptoms and their properties. An explanation for this
is the heterogeneity in, for example, symptom properties, which
entail the location, severity, duration, and other characteristics of a
symptom. These properties can be phrased in various ways, in
contrast to medication or frequency, which will be much more
homogeneous in phrasing. Therefore, this homogeneity leads to
many more annotations per entity, increasing performance.
The same pattern was observed in the models, where the

addition of an attention layer increased performance. This finding
is in line with previous studies on neural attention48,49, which
describe the decrease in neural networks’ performance with
increased input length. By adding weights to the input text, the
model knows which parts of the text are important for its task.
Adding attention not only improves performance; it also
decreases the amount of training data needed, which is useful
in a field such as healthcare, where gathering large datasets can
be challenging.
In the studies performing the entity extraction task, the error

analyses showed that often, symptoms, medications, or properties are
hard to interpret even by human annotators. This result is in line with
the concerns discussed in the introduction, questioning if a model
would accurately extract all relevant information from a non-linear,
fragmented conversation. However, this takes the concern one step
further, namely how the “gold standard” will be determined if there is
ambiguity between human annotators. More research is needed to
define methods for developing gold standards. Shafran et al.27 have
taken an exciting first step towards such a method by publishing an
article about the development of their corpus, including how they
dealt with ambiguity and labeling errors.
The studies investigating summarization of the clinical con-

versation used both extractive and abstractive summarization
techniques. However, the extractive techniques resulted in a list of
the most important utterances instead of a new, full summary.
Therefore, the studies performing abstractive summarization are
more interesting to discuss. All four studies used the same model,
the pointer generator network28,29,31,37. This network’s advantage,
especially with the studies’ additions, makes sure it copies more
words than it generates, keeping the summary as close to the
conversation as possible. Two studies also included a quality check
by physicians, which gives more insight into the possibility of
implementation24,28. However, it would have been interesting to
include error analyses to investigate the models’ blind spots.

Future work
First of all, we believe it is vital to improve the ASR for clinical
conversations further and use them as input for NLP models. A
remarkable finding was that most studies used manually transcribed
conversations as input to their NLP model. These manual transcripts
may outperform automatically transcribed conversations regarding

Box 3: Neural network-based sequence models with attention
and word embeddings

Attention-based neural networks: These models specifically take the sequence of
the words into account, and have an attention layer. This layer acts as a filter,
only passing the relevant subset of the input to the next layer.

– Sequence2sequence (seq2seq)58: the seq2seq model uses a bidirectional
encoder LSTM to include context, and has an attention mechanism to focus
on the relevant parts of the input.

– Span-attribute tagging model (SAT)38: the sat model extracts symptoms and
classifies them as present or not. It first identifies the relevant parts of the
text and then classifies those relevant parts into symptoms that are or are
not present. The relation-span-attribute tagging model (R-SAT) is a variant of
the SAT that focuses on relations between attributes.

– Pointer generator network (PGNet)59: PGNets are based on the seq2seq
architecture. The added value of a PGNet is that it has the ability to generate
new words or copy words from the text, increasing the summary’s accuracy.

Word embeddings: Word embeddings are used to numerically represent words
in a way that similar words have similar representations. For example, the words
“physician”, “clinician”, and “doctor” will have similar representations. There are
different types of word embeddings, but the most important distinction for this
review is between context-sentitive and context-insensitive embeddings.
Context-sensitive embeddings have different representation for words that have
multiple meanings. For example, the word “bank” can mean a riverbank, or a
financial institution. Some word embeddings, like word2vec60, allow only one
representation per word, whereas context-sensitive embeddings like ELMo61 and
BERT62 can distinguish the different meanings of the word “bank”.
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data quality, leading to an overestimation of the results. NLP models
that require manual transcription may increase administrative
burden when implemented in clinical practice.
Secondly, the current body of research is mostly focused on

improving the performance of different models. Although some
studies performed error analyses and qualitative analyses of the
model’s output, most did not. Moreover, most studies did not fully
cover the technical validity phase because of insufficient reporting
on the setting, data, and situations in which the model succeeded
and failed. This information is essential to describe for a model
that could potentially be implemented in clinical practice. The
proposed models might contain bias or lead to unintended
results, as Ferracane and Konam34,37 show. This study is an
inspirational example of how researchers can investigate the
strengths and weaknesses of their model. A recent paper by
Hernandez-Boussard et al.50 proposes reporting standards for AI in
healthcare, which should be the basis for reporting on digital
scribes as well.
Although most studies are in an early development phase,

including qualitative analyses of the model’s output is necessary
to know if the solution researchers or developers are working on is
applicable in practice. The lack of implementation following the
development of an AI model is common in healthcare51, which
can be limited by investigating clinical validity and usability while
working on technical validity. A good example is the study by
Joshi et al.28, where physicians qualitatively analyze the model’s
output. These results lead to new insights for improving technical
validity. Studying these two research phases iteratively leads to a
solution that is well-suited for clinical practice.
Most of the presented models need to be technically and

clinically validated before moving on to the clinical utility phase.
However, the companies already offering digital scribes seem to
have skipped all four research phases, including clinical utility. We
urge these companies to publish data on their digital scribes’
technical validity, clinical validity and usability, and clinical utility.
Not only is transparency in the model and its performance crucial
for clinical practice, but it also helps the community better
understand the models and enables researchers to build on past
work52.
The suitability phase falls outside the scope of this review but is

nevertheless vital for developing and implementing the digital
scribe. One research group has published several studies
investigating which parts of a clinical conversation are relevant
for creating a summary and how physicians see the potential role
of a digital scribe53,54. These studies should be the starting point
for researchers and developers working on a digital scribe.

Strengths and limitations
The current work is the first effort to review all available literature
on developing a digital scribe. We believe our search strategy was
complete, leading to a comprehensive and focused scope of the
digital scribe’s current research body. By adding the company’s
data, we create a broader overview than just the digital scribe’s
scientific status. However, this data is unpublished, which means
we have to trust the company in providing us with legitimate data.
We hope this review is an encouragement for other companies to
study their digital scribes scientifically.
One limitation is the small amount of journal papers included in

this review, as opposed to the amount of Arxiv preprints and
workshop proceedings. These types of papers are often refereed
very loosely. However, only including journal papers would not
lead to a complete scope of this quickly evolving field.
Contacting various digital scribe companies was a first step towards

gaining insight into implemented digital scribes and their perfor-
mance on the different ASR and NLP tasks. Although only one
company replied, we believe it is a valuable addition to this review. It
indicates that their implemented digital scribe does not differ

significantly in techniques or performance from the included studies’
models while already saving physicians’ time. Nevertheless, it
highlights the gap between research and practice. The studies
published by companies all describe techniques that are not part of a
fully functional digital scribe (yet). However, none of the companies
offering digital scribes have published about the technical validity,
clinical validity and usability, or clinical utility of their systems.

CONCLUSION
Although the digital scribe field has only recently started to
accelerate, the presented techniques achieve promising results.
The most promising models use context-sensitive word embed-
dings in combination with attention-based neural networks.
However, the studies on digital scribes only focus on technical
validity, while companies offering digital scribes do not publish on
any of the research phases. Future research should focus on more
extensive reporting, iteratively studying technical validity and
clinical validity and usability, and investigating the clinical utility of
digital scribes.
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