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Simple Summary: B-cell regeneration during therapy has been associated with the outcome of
multiple myeloma (MM) patients. However, the effects of therapy and hemodilution in bone marrow
(BM) B-cell recovery have not been systematically evaluated. Here, we show that hemodilution is
present in a significant fraction of MM BM samples, leading to lower total B-cell, B-cell precursor
(BCP), and normal plasma cell (nPC) counts. Among MM BM samples, decreased percentages (vs.
healthy donors) of BCP, transitional/naïve B-cell (TBC/NBC) and nPC populations were observed at
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diagnosis. BM BCP, but not TBC/NBC, increased after induction therapy. At day+100 post-autolo-
gous stem cell transplantation, a greater increase in BCP with recovered TBC/NBC numbers but
persistently low memory B-cell and nPC counts were found. At the end of therapy, complete response
(CR) BM samples showed higher CD19− nPC counts vs. non-CR specimens with no clear association
between BM B-cell regeneration profiles and patient outcomes.

Abstract: B-cell regeneration during therapy has been considered as a strong prognostic factor in
multiple myeloma (MM). However, the effects of therapy and hemodilution in bone marrow (BM)
B-cell recovery have not been systematically evaluated during follow-up. MM (n = 177) and adult
(≥50y) healthy donor (HD; n = 14) BM samples were studied by next-generation flow (NGF) to
simultaneously assess measurable residual disease (MRD) and residual normal B-cell populations.
BM hemodilution was detected in 41 out of 177 (23%) patient samples, leading to lower total B-cell, B-
cell precursor (BCP) and normal plasma cell (nPC) counts. Among MM BM, decreased percentages (vs.
HD) of BCP, transitional/naïve B-cell (TBC/NBC) and nPC populations were observed at diagnosis.
BM BCP increased after induction therapy, whereas TBC/NBC counts remained abnormally low.
At day+100 postautologous stem cell transplantation, a greater increase in BCP with recovered
TBC/NBC cell numbers but persistently low memory B-cell and nPC counts were found. At the
end of therapy, complete response (CR) BM samples showed higher CD19− nPC counts vs. non-CR
specimens. MRD positivity was associated with higher BCP and nPC percentages. Hemodilution
showed a negative impact on BM B-cell distribution. Different BM B-cell regeneration profiles are
present in MM at diagnosis and after therapy with no significant association with patient outcome.

Keywords: multiple myeloma; B-cell regeneration; hemodilution; measurable residual disease;
immunophenotyping

1. Introduction

Multiple myeloma (MM) is a hematopoietic malignancy characterized by an expansion
and accumulation of (malignant) clonal plasma cells (cPC) in bone marrow (BM) and
other tissues [1,2]. In most MM patients, cPC produce a clonal immunoglobulin—Ig (i.e.,
M-component)—which becomes detectable in blood and/or urine, in association with
decreased normal residual serum Igs levels (i.e., immunoparesis) and end-organ damage
(e.g., cytopenia, anemia, lytic bone lesions, renal failure) [3,4]. Introduction of novel drugs
and new therapeutic options that target tumor cells with diverse effects on the patient’s
immune system [5–9]—e.g., autologous hematopoietic stem cell transplantation (ASCT),
immune modulatory drugs (e.g., lenalidomide, thalidomide and pomalidomide) together
with antibody-based (daratumumab and elotuzumab) and CART-cell targeted therapies—
has led to significantly higher complete response (CR) rates with prolonged progression-
free survival (PFS) and overall survival (OS) [10,11]. However, the effects of such immune-
modulatory therapies on the residual immune system have been less investigated.

Suppression of B-cell production and differentiation, in association with reduced
levels of (normal) non-involved Igs (i.e., immunoparesis), is a hallmark of MM, which
inversely correlates with disease stage and patient outcome [12,13], but this might revert
back with therapy [14–17]. Conventional and novel treatment protocols for MM typically
comprise sequential pulses of multiple drugs aimed at achieving and maintaining the
highest quality of response [18]. However, such strategies might result in a cumulative
immunosuppressive effect with an increased risk for (more pronounced) immunodeficiency
and its related clinical complications [19–21]. Altogether, this indicates that recovery of
immunoparesis after therapy for MM mostly depends on the ability of the (individual)
patient hematopoietic system to regenerate the immune system, particularly the B-cell
compartment [14,16,17,22–25].

Optimal B-cell and immune recovery might potentially contribute to both mitigate
the clinical complications of immunoparesis and help eradicate residual tumor cells via
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antibody mediated mechanisms and parallel T cell responses [26–28]. In this regard,
previous studies have shown that persistence of normal residual (n)PC in BM of MM
at diagnosis [12] and after therapy is a strong favorable prognostic factor for patient
outcome [17,22,29]. Similarly, patients who show long-term disease control, [17,22,25] as
well as elderly (transplant-ineligible) MM patients with favorable outcomes, have been
shown to display significantly higher mature B-cell counts in blood [22].

Previous studies on B-cell regeneration profiles in treated MM patients have shown the
existence of highly variable profiles [12,14,15,17,22–25,29]. However, these studies mostly
focused on total B-cells and nPC, frequently analyzed at a single time point prior to or after
completion of therapy. To the best of our knowledge, there is no systematic description of
the distribution of normal maturation-associated residual BM B-cell populations in MM
during therapy that could be used as a frame of reference for better understanding the
effects of therapy on B-cell regeneration and to investigate its potential association with
both measurable residual disease (MRD) levels and patient outcome.

Here, we investigated the B-cell regeneration profile in 177 BM samples from 162 MM
patients treated with high-dose therapy followed by ASCT at different time points during
follow-up and explored its potential association with response to therapy, the BM MRD
status and patient outcome.

2. Results
2.1. Distribution of Maturation-Associated B-Cell and PC Populations in Hemodiluted vs.
Nonhemodiluted BM

All healthy donor (HD) BM samples showed no significant levels of hemodilution
with median (range) frequencies of total B-cells of 2.6% (1%–4.6%) and nPC of 0.3% (0.08%–
0.9%). Within normal BM B-cells, progressively higher median percentages of cells were
observed along the B-cell maturation pathway from more immature (stage I) B-cell pre-
cursors (BCP)—0.02% (0.006%–0.2%)—and stage II BCP—0.3% (0.09%–1.5%); p = 0.001 vs.
stage I BCP—to transitional B-cells (TBC)/naïve B-cells (NBC)—1.1% (0.3%–2%); p = 0.005
vs. stage II BCP—. In contrast, more mature post-germinal center (GC) memory B-cells,
and both CD19+ and CD19− nPC were less represented than TBC/NBC, and they had pro-
gressively lower median (range) numbers in BM—from the less mature B-cells to the more
PC compartments: 0.4% memory B-cells (range: 0.06%–1.3%; p = 0.002 vs. immature/naive
B-cells), 0.2% CD19+ nPC (0.03%–0.6%; p = 0.001 vs. memory B-cells), and 0.1% CD19−

nPC (0.02%–0.3%; p = 0.002 vs. CD19+ nPC)—(Table 1 and Figure 1A).
In contrast to normal BM, 41 of 177 (23%) BM samples from MM patients were found

to be hemodiluted based on an abnormally low percentage (i.e., ≤0.002%) of CD117hi

mast cells (median of 0.001% in hemodiluted vs. 0.007% in non-hemodiluted BM samples;
p ≤ 0.001), depending on the specific time point at which they had been obtained: median
percentages of hemodiluted samples at diagnosis, postinduction and at day+100 after
ASCT of 40% (10/25), 29% (11/38) and 18% (20/114), respectively (p = 0.04). As expected,
hemodilution was associated with significantly lower total B-cell counts (median: 1.5%
vs. 2.5% for non-hemodiluted BM; p = 0.006), immature stage I BCP (median: 0.04% vs.
0.1%, p = 0.006) and stage II BCP (median: 0.4% vs. 1.1%; p = 0.002), total nPC (median:
0.05% vs. 0.07%; p = 0.003), CD19+ nPC (median: 0.04% vs. 0.06%; p = 0.009) and CD19−

nPC (median: 0.003% vs. 0.007%; p = 0.001). In contrast, TBC/NBC were represented at
similar percentages in hemodiluted vs. non-hemodiluted MM BM—median: 0.7% vs. 1.1%
(p > 0.05) (Table 1 and Figure 1B,C)—independently of the time point at which samples
had been studied (data not shown).

Overall, MRD was positive in 61% (74/121) of non-hemodiluted follow-up BM
samples—median (range) MRD levels of 0.001% (≤0.0002% to 2.9%)—compared to 58%
(18/31) of hemodiluted MM BM samples—median (range) MRD levels of 0.0003% (≤0.0002%
to 4.8%) (p > 0.05)—. Similar numbers of BM cells were evaluated in both groups of samples
(data not shown). Due to the effect of hemodilution on total BM B-cells and nPC, as well as
on more immature BM-associated B-cell (i.e., BPC) and nPC populations, hereafter only
non-hemodiluted BM samples were included in the analyses (Figure 1).
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Table 1. Distribution of maturation-associated B-cell and normal plasma cell (nPC) populations in non-hemodiluted vs. hemodiluted
bone marrow (BM) from treated multiple myeloma (MM) patients (vs. healthy donor (HD) and diagnostic patient samples).

Cell Population (%) Treated MM (n = 152)

HD
(n = 14)

MM at Diagnosis
(n = 25)

Non-hemodiluted
BM (n = 121)

Hemodiluted
BM (n = 31)

Total B-cells 2.6
(1–4.6)

1.2 a

(0.4–3.3)
2.5 b

(0.05 -11.4)
1.5 c

(0.04–7.9)

Pre-germinal center B-cells 1.7
(0.4–3.3)

0.5 a

(0.07–2.2)
2.4 a,b

(0.003–11.2)
1.3 b,c

(0.03–7.8)

BCP 0.3
(0.09–1.7)

0.01 a

(<0.0002–0.8)
1.3 a,b

(<0.0002–10.3)
0.5 b,c

(<0.0002–6.1)

Stage I BCP 0.02
(0.006–0.2)

0.0005 a

(<0.0002–0.1)
0.1a,b

(<0.0002–0.9)
0.04 b,c

(<0.0002–0.6)

Stage II BCP 0.3
(0.09–1.5)

0.01 a

(<0.0002–0.7)
1.1 a,b

(<0.0002–9.4)
0.4 b,c

(<0.0002–5.5)

Stage I/stage II BCP ratio 0.1
(0.04–0.2)

0.02 a

(0–0.2)
0.09 b

(<0.0002 -1.6)
0.1 b

(<0.0002–1.2)

Transitional/naive B-cells 1.1
(0.3–2)

0.4 a

(0.05–1.9)
1.1 b

(0.0008–5.7)
0.7

(0.01–4,4)

Post-germinal center B-cells 0.8
0.4–1.4)

0.4 a

(0.1–1.6)
0.1 a,b

(0.0008–0.9)
0.1 a,b

(0.01–1)

Memory B-cells 0.4
(0.06–1.3)

0.3
(0.05–1.5)

0.04 a,b

(0.0005–0.5)
0.05 a

(0.003–1)

nPC 0.3
(0.08–0.9)

0.04 a

(0.005–0.5)
0.08 a,b

(0.002–0.8)
0.05 a,c

(0.003–0.4)

CD19+ nPC 0.2
(0.03–0.6)

0.03 a

(0.002–0.4)
0.06 a,b

(<0.0002–0.8)
0.04 a,c

(0.002–0.4)

CD19− nPC 0.1
(0.02–0.3)

0.006 a

(<0.0002–0.08)
0.007 a

(<0.0002–0.2)
0.003 a,b,c

(<0.0002–0.08)

CD19+/CD19− nPC ratio 2
(0.7–8.6)

2.2
(0–18.6)

7.5 a,b

(0–146)
9.4 a,b

(0–45)

Mature B-cells ¥ 1.5
(0.4–3)

0.8 a

(0.1–2.8)
1.2

(0.004–5.9)
0.9 a

(0.01–4.5)

BCP/mature B-cell ratio 0.2
(0.08–1.6)

0.005 a

(0–2.5)
1 a,b

(0–30.2)
0.4 b,c

(0–5.9)

Abbreviations: BM, bone marrow; HD, healthy donor; BCP, B-cell precursor; nPC, normal plasma cells; MM, multiple myeloma; ¥, mature
B-cells (transitional/naïve B-cells plus memory B-cells); a p < 0.05 vs. HD. b p < 0.05 vs. at diagnosis; c p < 0.05 for hemodiluted vs.
non-hemodiluted BM (Mann–Whitney-U test).

2.2. Distribution of Maturation-Associated B-Cell and nPC Populations in MM BM at Diagnosis
and During Follow-Up

At diagnosis, MM patients showed significantly decreased median percentages of
both stage I and stage II BCP in BM vs. age-matched HD: 0.0005% vs. 0.02% (p ≤ 0.001) and
0.01% vs. 0.3% (p ≤ 0.001), respectively (Figure 2). Regarding mature B-cells, significantly
reduced percentages of TBC/NBC and nPC were also found in BM of MM patients studied
at diagnosis vs. age-matched HD with median percentages of TBC/NBC at 0.4% vs. 1.1%
(p = 0.01), of CD19+ nPC at 0.03% vs. 0.2% (p ≤ 0.001) and of CD19− nPC at 0.006% vs.
0.1% (p ≤ 0.001), respectively (Figure 2).
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Figure 1. Distribution of normal/residual B-cell populations in BM of healthy adults (≥50y) (A) and 
both non-hemodiluted (B) and hemodiluted (C) BM samples from (treated) MM patients. Panel A: 
● p < 0.05 vs. all B-cell and nPC populations; Δ p < 0.05 vs. all B-cell and nPC populations except 
memory B-cells; *p < 0.05 vs. all immature and mature B-cell populations; ** p < 0.05 for CD19+ nPC 
vs. CD19- nPC. Panel B: ● p < 0.05 vs. all B-cell and nPC populations; Δ p < 0.05 vs. all B-cell and nPC 
populations except transitional/naïve B-cells (TBC/NBC); ** p < 0.05 CD19+ nPC vs. CD19- nPC. Panel 
C: ¥ p < 0.05 vs. all B-cell and nPC populations except memory B-cells and CD19 + nPC; Δ p < 0.05 
vs. all B-cell and nPC populations except TBC/NBC; ** p < 0.05 CD19+ nPC vs. CD19- nPC. BM, bone 

Figure 1. Distribution of normal/residual B-cell populations in BM of healthy adults (≥50y) (A) and both non-hemodiluted
(B) and hemodiluted (C) BM samples from (treated) MM patients. Panel A: • p < 0.05 vs. all B-cell and nPC populations;
∆ p < 0.05 vs. all B-cell and nPC populations except memory B-cells; *p < 0.05 vs. all immature and mature B-cell populations;
** p < 0.05 for CD19+ nPC vs. CD19− nPC. Panel B: • p < 0.05 vs. all B-cell and nPC populations; ∆ p < 0.05 vs. all B-cell and
nPC populations except transitional/naïve B-cells (TBC/NBC); ** p < 0.05 CD19+ nPC vs. CD19− nPC. Panel C: ¥ p < 0.05
vs. all B-cell and nPC populations except memory B-cells and CD19 + nPC; ∆ p < 0.05 vs. all B-cell and nPC populations
except TBC/NBC; ** p < 0.05 CD19+ nPC vs. CD19− nPC. BM, bone marrow; HD, healthy donor; MM, multiple myeloma;
BCP, B-cell precursors; TBC/NBC, transitional/naïve B-cells; nPC, normal plasma cell.



Cancers 2021, 13, 1704 6 of 18
Cancers 2021, 13, x FOR PEER REVIEW 7 of 19 
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MM patients studied at diagnosis (n = 25) and subsequently at the end of induction therapy (n = 27) 
and at day+100 post autologous stem cell transplantation (ASCT) (n = 94). In panels A and B, the 
distributions of stage I (CD27+) and stage II (CD27-) B-cell precursors (BCP) are shown, while in 
panels C and D, the distributions of TBC/NBC and memory B-cells are displayed, respectively. In 
turn, panels E and F display the distribution in BM of CD19+ and CD19- normal plasma cells, respec-
tively, whereas in panels G and H the distributions of all pre-germinal center and post-germinal 
center B-cell populations in BM are shown, respectively. * p value < 0.05 vs. HD and ** p value <0.05 

Figure 2. Distribution of normal/residual B-cell populations in BM samples from HDs (n = 14) vs. MM patients studied
at diagnosis (n = 25) and subsequently at the end of induction therapy (n = 27) and at day+100 post autologous stem
cell transplantation (ASCT) (n = 94). In panels A and B, the distributions of stage I (CD27+) and stage II (CD27−) B-cell
precursors (BCP) are shown, while in panels C and D, the distributions of TBC/NBC and memory B-cells are displayed,
respectively. In turn, panels E and F display the distribution in BM of CD19+ and CD19− normal plasma cells, respectively,
whereas in panels G and H the distributions of all pre-germinal center and post-germinal center B-cell populations in BM
are shown, respectively. * p value < 0.05 vs. HD and ** p value <0.05 HD vs. all groups. BM, bone marrow; HD, healthy
donor; BCP, B-cell precursors; TBC/NBC, transitional/naïve B-cells.
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In contrast, non-hemodiluted BM samples from treated MM patients (i.e., end of
induction and day+100 after ASCT) showed an overall increased frequency of stage I and
stage II BCP (p ≤ 0.001) vs. age-matched normal BM and vs. MM BM obtained at diagnosis
(0.1% vs. 0.02% and 0.0005%, and 1.1% vs. 0.3% and 0.01%, respectively), while memory
B-cell (0.04% vs. 0.4%) and nPC (0.06% vs. 0.2% and 0.007% vs. 0.1% for CD19+ and CD19−

nPC, respectively) subsets were both significantly (p ≤ 0.001) decreased vs. normal BM
(Table 1 and Figure 1).

In more detail, significant recoveries of both stage I and stage II BCP were observed
in MM BM samples obtained at the end of induction therapy vs. diagnosis, with median
percentages of stage I BCP of 0.02% vs. 0.0005% (p ≤ 0.001) and of stage II BCP of 0.2% vs.
0.01% (p = 0.002), respectively (Figure 2). In contrast, (all) more mature B-cell populations
remained significantly reduced at the end of induction (vs. normal BM), with a tendency
toward lower median numbers than those observed at diagnosis for all B-cell and nPC
populations, except for nPC populations: (i) TBC/NBC, 0.2% vs. 1.1% (p ≤ 0.01) and 0.4%
(p = 0.006); (ii) memory B-cells, 0.07% vs. 0.4% (p ≤ 0.001) and 0.3% (p ≤ 0.001); (iii) CD19+

nPC levels, 0.05% vs. 0.2% (p = 0.004) and 0.03% (p = 0.06); and (iv) CD19− nPC, 0.009% vs.
0.1% (p ≤ 0.001) and 0.006% (p = 0.85), respectively (Figure 2).

In turn, at day+100 post-ASCT, MM patients displayed a pattern consistent with BM
regeneration and increased production of B-cells (Figure 2). Thus, significant (p ≤ 0.001)
increased numbers of both stage I and stage II BCP (vs. both HD and MM BM studied at
diagnosis) were observed: median of 0.2% (vs. 0.02% and 0.0005%) and of 1.3% (vs. 0.3%
and 0.01%) for stage I and stage II BCP, respectively (Figure 2). In parallel, the percentage
of TBC/NBC returned to levels similar to those observed in normal BM—a median of 1.5%
vs. 1.1% (p = 0.2)—. By contrast, the number of memory B-cells remained significantly
decreased vs. both normal BM and MM diagnostic samples—median of 0.03% vs. 0.4%
and 0.3%, respectively (p ≤ 0.001)—(Figure 2). Similarly, to memory B-cell counts, the
number of both CD19+ and CD19− nPC at day+100 post-ASCT also remained below normal
levels: a median of 0.07% vs. 0.2% for CD19+ nPC and of 0.007% vs. 0.1% for CD19− nPC
(p ≤ 0.001), respectively (Figure 2 and Supplementary Table S2).

2.3. Impact of Response to Therapy and Type of Induction Therapy on the Distribution of Normal
Residual BM B-Cell and nPC Populations in MM

Similar distributions of the distinct subsets of BCP, mature B-cells (TBC/NBC and
memory B-cells) and total nPC were observed in BM of MM patients grouped according to
response to therapy (i.e., non-CR vs. sCR/CR) for the two different time points evaluated
during follow-up (Table 2). In contrast, the median percentage of CD19− nPC was higher in
BM of patients who were in CR/sCR vs. non-CR cases, both at the end of induction—0.01%
vs. 0.003% (p = 0.036)—and at day+100 post-ASCT—0.009% vs. 0.006% (p = 0.049)—.
Among CR/sCR cases, the presence vs. absence of MRD did not affect the distribution of
the distinct maturation-associated B-cell and nPC populations in BM studied at the end of
induction (Table 2). In contrast, at day+100 post-ASCT, MRD positivity among CR/sCR
patients was associated with higher median percentages (vs. MRD negativity CR/sCR
patients) of: (i) total BCP (1.9% vs. 1.3%; p = 0.026), particularly due to increased stage
II BCP counts (median of 1.7% vs. 1.1%; p = 0.023); (ii) post-GC B-cells (0.2% vs. 0.1%;
p = 0.025); (iii) total nPC (0.1% vs. 0.07%; p = 0.048); and (iv) CD19+ nPC (0.09% vs. 0.06%;
p = 0.018), but not CD19− nPC (0.009% vs. 0.01%; p > 0.05).
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Table 2. Distribution of normal/residual B-cell populations in BM of treated MM patients according to their response status studied at
different time points after/during therapy.

Cell population (%) End of Induction (n = 27) Post ASCT (day+100) (n = 94)

Non-CR
(n = 7)

sCR/CR
MRD+
(n = 13)

sCR/CR
MRD-
(n = 7)

Non-CR
(n = 38)

sCR/CR
MRD+
(n = 27)

sCR/CR
MRD-

(n = 29)

Total B-cells 1.3
(0.3–2.9)

0.7
(0.3–2.1)

0.9
(0.5–5)

3.7
(0.06–11.4)

4.1
(1.1–10.7)

2.6
(0.05–9.3)

Pre-germinal center B-cells 0.8 a

(0.2–2.9)
0.3

(0.1–1.9)
0.7

(0.4–4.5)
3.6

(0.05–11.2)
3.9

(0.5–10.5)
2.6

(0.003–9.1)

BCP 0.5
(0.05–2.3)

0.1
(<0.0002–1.4)

0.3
(0.01–2)

1.7
(0.04–10.3)

1.9 b

(0.06–9.5)
1.3

(0.002–4.1)

Stage I BCP 0.1
(0.005–0.3)

0.008
(<0.0002–0.2)

0.02
(0.001–0.7)

0.2
(0.01–0.9)

0.2
(0.002–0.8)

0.1
(<0.0002–0.4)

Stage II BCP 0.2
(0.05–2.1)

0.1
(<0.0002–1.2)

0.3
(0.01–1.4)

1.5
(0.03–9.4)

1.7 b

(0.06–8.6)
1.1

(0.002–3.8)

Stage I/stage II BCP ratio 0.1
(0.07–1.6)

0.1
(<0.0002–0.8)

0.09
(0.03–0.5)

0.09
(0.02–0.6)

0.09
(0.01–0.5)

0.08
(<0.0002–1.2)

Transitional/naive B-cells 0.3 a

(0.2–0.6)
0.1

(0.004–0.4)
0.3

(0.1–2.5)
1.5

(0.09–5.7)
1.3

(0.3–4.9)
1.5

(0.0008–5.7)

Post-germinal center B-cells 0.2
(0.08–0.5)

0.2
(0.03–0.6)

0.2
(0.08–0.6)

0.1
(0.03–0.9)

0.2 a, b

(0.02–0.6)
0.1

(0.009–0.5)

Memory B-cells 0.08
(0.05–0.5)

0.07
(0.005–0.5)

0.08
(0.05–0.3)

0.03
(0.005–0.2)

0.03
(0.006–0.5)

0.03
(0.0005–0.2)

nPC 0.03
(0.01–0.2)

0.06
(0.008–0.4)

0.1
(0.04–0.4)

0.07
(0.004–0.8)

0.1 a, b

(0.002–0.6)
0.07

(0.008–0.3)

CD19+ nPC 0.03
(0.01–0.2)

0.05
(0.007–0.4)

0.09
(0.03–0.4)

0.05
(<0.0002–0.8)

0.09 a, b

(0.002–0.4)
0.06

(0.0008–0.3)

CD19− nPC 0.003
(≤0.0002–0.02)

0.01
(0.006–0.04)

0.01
(0.003–0.07)

0.006
(<0.0002–0.1)

0.009
(<0.0002–0.2)

0.01
(0.001–0.06)

CD19+/CD19− nPC ratio 8.4
(0–72.2)

5.4
(2.7–19.3)

4.8
(1.3–147)

11.3
(0–42)

9.5
(0–39)

5
(0–21.5)

Mature B-cells ¥ 0.5 a

(0.3–0.8)
0.2

(0.009–0.7)
0.4

(0.3–2.6)
1.5

(0.01–5.8)
1.4

(0.3–5)
1.5

(0.004–5.9)

BCP/Mature B-cell ratio 0.6
(0.1–5.9)

0.6
(0–30.2)

0.8
(0.03–3.4)

1
(0–13.3)

1.7
(0–8.5)

0.9
(0.08–3.5)

Abbreviations: MM, multiple myeloma; BM, bone marrow; MRD, measurable residual disease; BCP, B-cell precursors; nPC, normal
plasma cells; CR, complete response; sCR, stringent CR; ¥ Mature B-cells (transitional/naïve B-cells plus memory B-cells); a p < 0.05 for
comparison between non-CR vs. CR/sCR plus MRD+; b p < 0.05 for comparison between CR/sCR plus MRD+ vs. CR/sCR plus MRD-
(Mann–Whitney-U test).

From the prognostic point of view, MM patients who were MRD-positive at day+100
post-ASCT displayed significantly (p = 0.013) shorter PFS vs. MRD-negative cases—median
PFS of 28 months vs. not reached (NR) (Figure 3A). In contrast, the distribution of the
different subsets of BM BCP, mature (pre-GC and pos-GC) B-cells and nPC at day+100
post-ASCT, did not show a significant impact on PFS of MM patients, regardless of their
BM MRD status (Figure 3B–D).

Regarding the type of induction therapy used prior to ASCT, MM patients that re-
ceived a combination of proteasome inhibitors (PIs) plus immunomodulatory drugs (IMIDs)
plus steroids presented significantly lower median percentages of (i) total B-cells (2.5% vs.
4.2%, p = 0.009), (ii) total BCP (1.2% vs. 1.9%, p = 0.013), particularly stage II BCP (1% vs.
1.8%, p = 0.008), and (iii) total nPC (0.05% vs. 0.1%, p = 0.001), especially CD19+ nPC (0.04%
vs. 0.1%, p = 0.001) at day+100 post-ASCT, compared to those patients who received PIs
plus steroids or IMIDs plus steroids and cyclophosphamide. Of note, MRD and PFS were
similar between these two patient groups (Supplementary Table S4).
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Figure 3. Impact of measurable residual disease (MRD) and the distribution of normal residual
post-germinal center B-cells in BM of MM at day+100 after autologous stem cell transplantation
(ASCT) on patient progression-free survival (PFS). In panel (A), the impact of BM MRD on PFS is
shown. PFS of treated MM patients grouped according to the number of residual post-germinal
center B-cells (memory B-cells plus nPC) in BM at day+100 post-ASCT (B) and in MM patients
stratified according to the presence (C) vs. absence of MRD (D) at day+100 post-ASCT, is shown. BM,
bone marrow; MM, multiple myeloma.

2.4. Distribution of Maturation-Associated B-Cell and PC Populations in Follow-Up BM from
MM Patients According to the Cytogenetic Risk at Diagnosis

Cytogenetic risk was present in 103 patients, from whom 73 had standard risk cy-
togenetics and 30 showed high-risk cytogenetics. Overall, similar distributions of the
distinct subsets of BCP, mature B-cells (TBC/NBC and memory B-cells) and total normal
PC were observed in BM samples from MM patients according to cytogenetic risk for
the two different time points evaluated during follow-up post-induction and at day+100
post-ASCT (Supplementary Table S3).

3. Discussion

B-cell recovery during therapy has been previously reported as a strong prognostic
factor in MM [14–16,23,24,29–31] and a unique feature of MM patients who attain long-
term disease control [22,25]. Despite this, the kinetics of B-cell depletion and regeneration
in BM during the course of therapy have not been investigated in detail in MM. Here, we
used a high-sensitive NGF approach [32] for simultaneous assessment of MRD and normal
residual B-cell and PC regeneration in BM of MM patients studied at diagnosis and at
different time points after starting therapy compared to age-matched healthy donors. For
this purpose, the impact of hemodilution on the distribution of the distinct maturation-
associated B-cell populations in BM was first evaluated used the percent BM mast cell
cut-off of ≤0.002%, as previously proposed [32].
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Overall, hemodilution showed a significant impact on the distribution of normal
residual BCP, B-cells and nPC, as well as their subsets. Thus, significantly lower total B-cell
and nPC numbers were detected in hemodiluted vs. non-hemodiluted BM samples, at the
expense of decreased percentages of both stages I and II BCP and both CD19+ and CD19−

nPC, but with similar numbers of TBC/NBC. Altogether, these results indicate that BM
hemodilution is associated with significantly decreased numbers of BM-derived B-cells
(e.g., BCP) and nPC due to the very low numbers of both cell populations in (steady-state)
adult blood [33,34], independently of the time point at which the sample was obtained
during the course of disease therapy. To the best of our knowledge, this is the first study
in which the impact of hemodilution on the distribution of BM B-cell and PC subsets was
investigated in MM and shows that accurate analysis of the distribution of normal/residual
B-cells requires the assessment of sample quality.

Several studies have previously reported on hemodilution of BM samples after MM
treatment, with potential implications for MRD detection [32,35–37]. More recently, de-
creased mast cell counts in BM below the 0.002% threshold have been reported as a better
marker than nucleated red cells, myeloid precursors, and B-cell precursors for identification
of hemodilution of MM BM samples after therapy [32]. This is probably due to the fact that
MM on one side and treatment of MM on the other side might significantly affect erythro-
poiesis and/or myelopoiesis [1,2]. Due to this, EuroFlow selected the mast cell-associated
threshold to implement in the EuroFlow version of Infinicyt software (version 2.0, Cy-
tognos) to indicate potential hemodilution of BM samples in MM [32]. However, normal
mast cell counts in BM vary substantially among different individuals, and limited data
exist on the frequency of mast cells in core BM biopsies from treated MM patients [38–40].
Altogether, this points out the need for new cellular markers and approaches for more
accurate estimation of BM hemodilution. In this regard, some authors have used paired
PB and BM samples and defined specific formulas to estimate BM hemodilution based on
both absolute and/or relative cell counts as well as hemoglobin levels [34,41,42]. However,
such approaches are not easy to implement in routine laboratory diagnostics, pointing out
the need for more simple and user-friendly approaches to estimate BM hemodilution in
individual patients.

Based on the impact of hemodilution on the B-cell and nPC distribution in BM,
all subsequent analyses performed in this study were restricted to non-hemodiluted BM
samples evaluable after therapy as defined by a mast cell threshold of >0.002% [32]. Overall,
our results showed a distribution of the distinct B-cell subsets in normal adult (≥50y) BM,
consistent with a progressive expansion of BCP along their different maturation stages,
until TBC/NBC migrate to blood. In contrast, progressively lower numbers of post-GC
B-cell and nPC subsets were observed in normal BM from the less mature to the more
differentiated cells (i.e., memory B-cells to CD19+ nPC and CD19− nPC). These results are
fully consistent with those previously reported in the literature [32,33,43].

Compared to age-matched normal BM, MM patients presented at diagnosis with
significantly decreased numbers of BCP (both stage I and stage II), TBC/NBC and (both
CD19+ and CD19−) nPC in their BM. Previous studies, indicate that decreased BCP and
nPC numbers in BM of MM patients at diagnosis might result from their progressive
replacement by cPCs, as normal BPC, nPC and cPC share similar adhesion molecule
phenotypic profiles with potentially overlapping BM (stromal cell) niches [13,44,45], whose
numbers are limited [44] and functionally impaired in the elderly [46,47]. At the same
time, interaction of cPC with BM stromal cells might actively induce apoptosis of B-cell
progenitors, leading to decreased B-cell production and lower immature/naïve B-cell
counts in blood [48].

Following induction therapy, the percentage of BCP notably increased in the BM
of MM patients in parallel to the decrease in cPC percentages, suggesting the later may
contribute to a greater availability of stromal cell BM niches [13], and thereby, the recov-
ery of B-cell production. In contrast, mature pre-GC B-cells (e.g., TBC/NBC) remained
significantly decreased at the end induction therapy and only recovered latter at day+100
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post-ASCT, with highly variable numbers among different patients. These findings support
full (but variable) recovery of B-cell production after ASCT. In contrast, at day+100 post
ASCT, post-GC BM B-cells (e.g., memory B-cells) and nPC counts remained significantly
decreased compared to age-matched HDs. These results together with those previously
reported for MM patients who achieve long-term disease control [22,25] suggest that full
recovery of memory B-cells and end-stage nPC in BM of MM might require longer periods
of time (e.g., ≥1year) during which the levels of antigen-experienced B-cells (e.g., memory
B-cells and end-stage nPC) in BM return to normal [44,49] and serum immunoglobulin
(Ig) levels recover in the absence of disease progression [17,50]. Altogether, these results
support the notion that full B-cell reconstitution is a late and progressive process that
starts early after the onset of therapy, which would lead to a full recovery of normal B-cell
counts at between 6 to 12 months, when maximum B-lymphocyte levels are detected in
BM [30,49]. In line with these findings, the percentage of nPC in BM as assessed by flow
cytometry has also been associated with parallel recovery of Ig levels from day+100 after
ASCT onward [17]. Despite this, global B-cell regeneration profile, we observed important
differences depending on the specific type of induction therapy administered. Thus, the
use of PIs in combination with IMIDs as induction therapy appeared to more deeply affect
B-cell regeneration in our patient cohort compared to the use of these same type of drugs
separately. These results are in line with previous observations indicating that an increased
risk of infection together with a decreased response to vaccination would occur among
MM patients treated with combined (vs. single) PIs plus IMIDs therapy [19,51]. Despite the
different B-cell regeneration profiles observed according to induction therapy, no significant
differences in the patients’ MRD status and PFS rates were observed according to the type
of induction therapy.

In contrast to the negative impact of BM infiltration by cPC on normal B-cell and
nPC production at diagnosis, no major differences were observed between patients who
reached sCR/CR at day+100 post-ASCT and non-CR cases, except for higher percentages
of CD19− nPC in the former group. In addition, no significant differences were observed
between MM patients with standard vs. high cytogenetic risk. Conversely, a significantly
more pronounced B-cell and nPC recovery was observed at day+100 post-ASCT among
MRD-positive vs. MRD-negative sCR/CR patients.

From the prognostic point of view, previous studies on transplant-ineligible elderly
MM patients suggested an association between high BCP counts in BM and a poor out-
come [24]. In contrast, for the same patient population [24] and both transplant-eligible
cases [14,16,29–31], as well as in MM patients with long-term disease control [17,22,25],
multiple studies point out better recoveries of BM B-cells and nPC have been associated
with better outcomes. In line with these later studies, here we found higher numbers
of CD19− nPC in BM of patients who reached sCR/CR vs. non-CR cases, both at the
end induction therapy and at day+100 post-ASCT. In contrast, among sCR/CR patients
greater B-cell and nPC counts were observed in BM of MRD-positive vs. MRD-negative
cases. Careful analysis for the potential reasons for such a discrepancy show that the
majority of previous studies focused on the percentage of nPC within the whole BM PC
compartment [29], the B-cell counts in blood [22,25,30,31] and Ig serum levels [14,17]. In
contrast, here we focused on the relative distribution of the distinct B-cell populations
in whole BM, where B-cell numbers might also be influenced by the recovery of other
cell populations, including the erythroid and myeloid precursors; in addition, it is also
important in this study that very limited numbers of paired BM samples from the same
patients were analysed at diagnosis and follow-up, while in others potentially hemodiluted
samples have been excluded from analysis. Therefore, further investigations in larger series
of paired diagnostic and follow-up (non-hemodiluted) BM samples from MM patents are
required to determine the underlying cause(s) for such apparent discrepancies.

Altogether, our findings reinforce the notion that following therapy, depletion of cPCs
from the BM (stromal cell) niches would increase their availability for nPC that have reached
the BM and potentially also for normal BCP, leading to a recovery of both B-cell production
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and nPC homing in BM after therapy. However, despite previous studies suggesting that
there is an association between a better recovery of more mature B-cells and an improved
patient outcome, here we could not show an impact of the B-cell recovery profile on PFS of
MM, even when the BM MRD status at day+100 post-ASCT did. Importantly, our data also
indicate that the BM B-cell regeneration profiles in MM might also be affected by the type
of induction therapy and the time point of BM collection, as well as hemodilution.

4. Materials and Methods
4.1. Patients, Samples, and Controls

A total of 177 BM samples from 162 MM patients—57% males and 43% females with
a median age (range) of 62 years (y; 36–87y)—were obtained and studied at different
time points during the course of disease, including: diagnosis (n = 25), end of induction
therapy (n = 38) and day+100 post-ASCT (n = 114). Only 15/162 MM patients were studied
sequentially at diagnosis and/or during follow-up. After therapy started, patients were
categorized at every time point of evaluation by the 2016 International Myeloma Working
Group (IMWG) response criteria [52] into: stringent (s)CR/CR (n = 93) and non-CR (n = 59),
including cases with very good partial responses (VGPRs; n = 44), partial responses (PRs;
n = 6), stable disease (SD; n = 4) and progressive disease (PD; n = 5). In addition, 14 BM
samples from an identical number of healthy donors—HDs; median age (range) of 58y
(50–78y)—were studied in parallel. BM samples were obtained and processed within 24h
after collection at 4 different centers (USAL, UFRJ, CIMA and EMC). All BM samples from
MM and HD patients were collected after each individual had given his/her informed
consent to participate in the study and/or in compliance to regulations of local ethics and
research committees, according to the Declaration of Helsinki; the study was approved by
the local ethics committees of the four participating centers. A more detailed description
of the patients’ clinical and laboratory features at diagnosis, as well as the treatment
time points and therapeutic regimens used, is provided in Supplementary Materials and
Supplementary Table S1.

4.2. Treatment Regimens

At the end of induction therapy, patients had received between 4 and 6 cycles of
therapy prior to ASCT. Post-ASCT (day+100), BM samples were obtained 104 ± 15 days
after transplantation. Induction regimens were based on IMIDs or PIs, while high-dose
melphalan was used in the conditioning regimen for ASCT with the following patient
distribution per time point: (i) end of induction therapy (n = 38), included patients treated
with PIs + IMIDs + steroids (n = 28), PIs + chemotherapy + steroids (n = 2), PIs + IMIDs +
chemotherapy+ steroids (n = 2), PIs + IMIDs + steroids + anti-CD38 (n = 1), PIs + steroids
(n = 3), chemotherapy + IMIDs + steroids (n = 1), and chemotherapy alone (n = 1); and
(ii) day+100 post-ASCT (n = 114) cases consisted of MM patients previously treated with
PIs + IMIDs + steroids (n = 53), PIs + cyclophosphamide + steroids (n = 23), PIs + steroids
(n = 3), PIs + IMIDs + steroids + anti-CD38 (n = 2), PIs + chemotherapy + IMIDs + steroids
(n = 5), cyclophosphamide + IMIDs + steroids (n = 22), IMIDs + steroids (n = 2) and
chemotherapy alone (n = 1), followed in all cases by ASCT. For to the purpose to compare
B-cell distribution according to the type of induction therapy, MM patients were grouped
in two categories: (i) PIs + IMIDs + steroids or (ii) PIs + steroids or IMIDs + steroids and
cyclophosphamide.

4.3. Immunophenotypic Studies

All BM samples were stained following the EuroFlow next-generation flow (NGF)
MM MRD antibody panel and standard operating procedures (SOPs), as previously de-
scribed [32,53]. Briefly, bulk lysed BM samples were stained with the two 8-color EuroFlow
tubes—(i) CD138-BV421, CD27-BV510, CD38-FITC, CD56-PE, CD45-PerCPCy5.5, CD19-
PECy7, CD117-APC, CD81-APCC750 and (ii) CD138-BV421, CD27-BV510, CD38-FITC,
CD56-PE, CD45-PerCPCy5.5, CD19-PECy7, cytoplasmic (cy)Ig—Kappa-APC and cyIg-
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Lambda-APCC750. Stained cells were measured on FACSCanto II flow cytometers—Becton
Dickinson Biosciences (BD), San Jose, CA—using the FACS DiVA software (BD) and the
EuroFlow SOPs for instrument set up and calibration [53]. A median of 5 × 106 (range:
10 × 105–12 × 106) and 107 (range: 2 × 106–15 × 106) cells were measured in case of di-
agnostic and follow-up samples, respectively. For data analysis, events measured in the
two tubes stained per sample were merged into a single data file and analyzed using the
automatic gating and report tool (AGI) of the Infinicyt software (version 2.0, Cytognos SL,
Salamanca, Spain). Identification of the distinct maturation-associated B-cell compartments
was based on the following phenotypic criteria: (i) B-cell precursors (BCP) were defined
as CD19+ CD38hi CD45lo CD81hi cyIg− cells; (ii) TBC/NBC as CD19+ CD45+ CD38-/+lo

CD27− CD81+ and cyIg+ cells; (iii) memory B-cells were CD19+ CD45+ CD38−/lo CD27+

CD81+ cyIg+, and (iv) nPC were identified as CD38hi CD138lo/het CD45−/+ CD81het CD27+

CD56−/+ CD117− cyIg+ cells. In addition, BCP were further subdivided into stage I
(CD27+) and stage II (CD27−) BCP as previously reported [54,55] and nPC were split ac-
cording to CD19 expression into CD19+ plasmablasts/PC and CD19− mature PC (Figure 4).
For each cell population, relative distribution (i.e., percentage from all BM nucleated cells
after excluding cell debris/doublets and cPC) was recorded. MRD negativity was defined
as absence of cPC in BM by NGF at a limit of detection ≤2 × 10−6 cPC, while MRD positiv-
ity indicates presence of cPC in BM by NGF above this cut-off. Then, ≤0.002% CD117hi

mast cells were used to classify a BM sample as hemodiluted, following previously defined
criteria [32].

4.4. Molecular Cytogenetic Studies

Interphase fluorescence in situ hybridization (i-FISH) studies were performed at diag-
nosis in 103/162 for detection of Ig heavy chain (IGH) gene rearrangements/translocations—
t(4;14), t(14;16), t(14,20)—and for del(17/17p). iFISH studies were systematically performed
on fluorescence-activated cell sorting (FACS)—purified cPC (FACS Aria, BD Biosciences).
Based on the cytogenetic findings, patients were classified as having standard risk (n = 73)
or high-risk cytogenetics (n = 30).

4.5. Statistical Methods

The nonparametric Kruskal–Wallis or Mann–Whitney U tests (for unpaired contin-
uous variables) and the Wilcoxon or Friedman tests (for paired continuous variables), as
well as the chi-square test (for categorical variables) were used to establish the statistical
significance of differences observed among groups. PFS curves were plotted by the Kaplan
and Meier method and the (two-sided) log-rank test was used to compare PFS curves.
PFS was defined as the time from BM analysis by NGF to disease progression/relapse or
death. To determine the impact of the BM B-cell regeneration profiles on PFS, patients
were stratified based on median (percent) values observed at day+100 after ASCT for
each normal residual maturation-associated B-cell population investigated. Two-sided
p-values <0.05 were considered to be statistically significant. All statistical analyses were
performed with the Statistical Package for Social Sciences Software (SPSS, version20; IBM
Corp Inc, Chicago, IL, USA).
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Figure 4. Illustration of the gating strategy used for identification of the different populations of B-cells and both normal and
clonal plasma cells present in BM from a representative healthy donor, an MM patient studied at diagnosis and an infiltrated
MM BM sample studied at day+100 after autologous stem cell transplantation (ASCT). In panel (A), total B-cells were
identified as CD19+ and low sideward scatter (SSC) cells (left plot) and subsequently subdivided into stage I (CD27+) B-cell
precursors (BCP; light green dots), stage II (CD27−) BCP (dark green dots), transitional/naïve B-cells (TBC/NBC; light blue
dots), and memory B-cells (blue dots). In panel (B), the distributions of normal (polyclonal) plasma cells (nPC; dark blue
dots) and clonal plasma cells (cPC; red dots), as defined based on their cytoplasmic (cy)Ig expression pattern, are shown.
All dot plot graphical representations in the left column correspond to a representative healthy donor, while the middle and
right column panels correspond to two MM patients studied at diagnosis (middle panel) and at day+100 post-ASCT (right
panel). BM cells other than B-cells and PC are depicted as grey events. BM, bone marrow; MM, multiple myeloma.
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5. Conclusions

Hemodilution had a significant impact on the distribution of normal residual B-cells
(BCP and nPC). These results reinforce the need for high-quality BM aspirate for both MRD
and immune monitoring in MM after therapy. Different (altered) B-cell distribution profiles
are present in MM BM at diagnosis and after therapy with no significant association with
patient outcome.
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