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Improved selection of participants in
genetic longevity studies: family scores
revisited
Mar Rodríguez-Girondo1* , Niels van den Berg2, Michel H. Hof3, Marian Beekman2 and Eline Slagboom2

Abstract

Background: Although human longevity tends to cluster within families, genetic studies on longevity have had
limited success in identifying longevity loci. One of the main causes of this limited success is the selection of
participants. Studies generally include sporadically long-lived individuals, i.e. individuals with the longevity phenotype
but without a genetic predisposition for longevity. The inclusion of these individuals causes phenotype heterogeneity
which results in power reduction and bias. A way to avoid sporadically long-lived individuals and reduce sample
heterogeneity is to include family history of longevity as selection criterion using a longevity family score. A main
challenge when developing family scores are the large differences in family size, because of real differences in sibship
sizes or because of missing data.

Methods: We discussed the statistical properties of two existing longevity family scores: the Family Longevity Selection
Score (FLoSS) and the Longevity Relatives Count (LRC) score and we evaluated their performance dealing with
differential family size. We proposed a new longevity family score, the mLRC score, an extension of the LRC based on
random effects modeling, which is robust for family size and missing values. The performance of the new mLRC as
selection tool was evaluated in an intensive simulation study and illustrated in a large real dataset, the Historical
Sample of the Netherlands (HSN).

Results: Empirical scores such as the FLOSS and LRC cannot properly deal with differential family size and missing data.
Our simulation study showed that mLRC is not affected by family size and provides more accurate selections of long-
lived families. The analysis of 1105 sibships of the Historical Sample of the Netherlands showed that the selection of
long-lived individuals based on the mLRC score predicts excess survival in the validation set better than the selection
based on the LRC score .

Conclusions: Model-based score systems such as the mLRC score help to reduce heterogeneity in the selection of
long-lived families. The power of future studies into the genetics of longevity can likely be improved and their bias
reduced, by selecting long-lived cases using the mLRC.
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Background
There is strong evidence that longevity, defined as sur-
vival to extreme ages, clusters within families and is
transmitted across generations [1–7]. Recent research
[5] on two large population-based multi-generational
family studies indicates that longevity is transmitted as a
quantitative genetic trait. Moreover, associations be-
tween environmental factors and familial clustering have
been rarely found using historical pedigree data [5, 8–
10]. Although these findings suggest that human longev-
ity has a genetic component, genetic studies on longevity
have had limited success in identifying longevity loci
[11–17]. One of the main causes for this limited success
could be the large heterogeneity in criteria for partici-
pant selection in longevity studies [5, 18, 19]. Since the
study participants must be alive to extract blood or other
biomaterials their longevity phenotype is, by definition,
unknown. An additional complication of longevity stud-
ies is the ongoing increase in life expectancy due to non-
genetic factors [20], such as improvements in nutrition,
life style and health care. If only individual age is consid-
ered as selection criterion, these non-genetic factors in-
crease the risk of including sporadically long-lived
individuals i.e. individuals with the longevity phenotype
but who do not have an underlying genetic predispos-
ition for longevity.
To obtain a sample with less phenotype heterogen-

eity, the family history of longevity can be used as a
participant selection criterion [5, 18]. Although this
approach does not avoid that sample selection is in-
fluenced by family-shared non-genetic factors poten-
tially involved in longevity, it is likely that it increases
the power in case-control studies to detect novel gen-
etic loci [21, 22]. A natural way to incorporate family
history in the study design is to develop a longevity
family score to identify families with the heritable
longevity trait and to subsequently select alive mem-
bers of these families for (genetic) longevity studies.
A number of longevity family scores have been previ-
ously proposed [4, 18, 23–25], using different defini-
tions of individual longevity and different ways of
summarizing longevity within families. The implica-
tions of these choices are not well understood,
namely how the interplay among individual longevity
definition, family-specific summary measures and fam-
ily size affects the sample selection process based on
longevity family scores. The first challenge when de-
veloping longevity family scores is defining individual
longevity. It is unclear how extreme the age at death
must be to label an individual as long-lived and
which scale is most beneficial so that scores reflect
differences in extreme survival and not just in overall
lifespan. The second challenge when developing lon-
gevity family scores are the large differences in family

size. These differences imply that the available infor-
mation per family differs. For a family with 12 mem-
bers, for instance, more information is available than
for a family with 2 members only. Importantly, we
typically do not know whether these differences are
real differences in sibship sizes or the result of miss-
ing data caused by limitations of the data collection.
If not properly addressed, differences in family size
can lead to biased rankings of long-lived families.
This can lead to an increased heterogeneity among
selected participants in longevity studies and hence
reduce power of analyses. Instead of studying the
genetics of longevity, biased selections can potentially
lead to the combined analysis of the genetics of lon-
gevity, fertility and other factors affecting family size,
such as, for example, socio economic status. Up till
now, this important challenge has not received
enough attention and how to address this problem
still remains open.
In this paper, we investigate to what extent existing

longevity family scores such as the Family Longevity Se-
lection Score (FLoSS) [23] and the Longevity Relatives
Count (LRC) score [18], are affected by differential fam-
ily size. Subsequently, we propose an alternative method
based on mixed effects regression modelling to deal with
differences in family size when building a longevity fam-
ily score.
The main novelty of our new approach is to consider

the family size as a source of uncertainty when estimat-
ing the level of longevity of a family. Hence, we propose
to select families accounting for such estimated uncer-
tainty. This new approach will contribute to more robust
scores and selection rules in longevity studies.

Methods
Existing longevity family scores and family size
Several longevity or excess survival family scores have
been previously proposed [4, 18, 23–25]. Often, to meas-
ure individual survival exceptionality, age at death is
transformed to the corresponding survival percentile
[18] or related measure such as the cumulative hazard
[4, 23, 25] using life table data of a reference population,
typically matching for sex and birth cohort. An alterna-
tive approach based on defining individual survival ex-
ceptionality as the difference between individual’s age at
death and the sample-based expected age at death cor-
recting for a number of confounders has been also pro-
posed [24].
We focus on two of the previous proposals, represen-

tative of two different ways of summarizing individual
survival exceptionality within families: the Family Lon-
gevity Selection Score (FLoSS) [23] and the Longevity
Relatives Count (LRC) score [18]. The FLoSS relies on a
sum to summarize survival exceptional within families,
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while the LRC score is representative of the rest of previ-
ously proposed longevity scores which all rely on an em-
pirical expectation as summary, i.e., the mean [4, 24, 25]
or a proportion [18] depending on the nature of the in-
dividual measure of survival exceptionality. These two
type of summary measures (sum versus empirical ex-
pectation) have different implications with regard to the
influence of family size in the resulting scoring system.

The FLoSS favors large families
The Family Longevity Selection Score (FLoSS) [23] was
constructed using siblings included in the Long Life
Family Study. The FLoSS is a modification of the SEf
score which adds a bonus for the presence of living fam-
ily members. Since the main properties of SEf transfer to
FLoSS, for the sake of simplicity we focus on the proper-
ties of the SEf, defined, for each family i, as follows:

SEfi ¼
XNi

j¼1

SEij ¼
XNi

j¼1

− log S tijjbcij; sexij
� �� �

− 1
� �

¼
XNi

j¼1

Λ tijjbcij; sexij
� �

− 1
� �

;

where tij is the age at death of family member j of family i,
with j = 1,…,Ni members, S(tij| bcij, sexij) is the survival
probability at age tij given sex and birth cohort in the ref-
erence population and Λ(tij| bcij, sexij) is the corresponding
cumulative hazard. SEij varies between − 1 (if S(tij| bcij,
sexij) = 1) and ∞ (if S(tij| bcij, sexij) = 0). The maximum
value of SEij is determined by the maximum age recorded
in the used life table. If for example, this maximum age at
death is 99, like in the Dutch life tables [26], and the mini-
mum survival in the population is S(99| bcij, sexij) = 0.01,
this provides a maximum SEij = 4.6. The reference value,
corresponding to a value SEij = 0 corresponds to S(tij| bcij,
sexij) = 0.37. This means that family members with age at
death beyond the top 37% survivors count positively in
the score and those with younger ages at death count
negatively. For example, using the Dutch life tables, this
cut-off would correspond, for those born around 1900
with an age of death of around 73 years for men and of
around 80 for women. This thresholds are not in line with
recent evidence indicating that higher ages at death need
to be considered to capture the heritable longevity trait [5,
18]. This problem can be solved by conditioning survival
to being alive at certain age. For example, a conditioning
age of 40 years has previously been proposed [23], which
increases the age cut-off associated to SEij = 0. For ex-
ample, using Dutch lifetables this would correspond to a
cut-off of around 84 years for women and 78 year for men
for individuals born around 1900. These ages correspond
with percentiles survivals at birth of around 0.28 (oldest
28% survivors of their birth cohort) which are likely not

extreme enough to capture the heritable longevity trait.
This drawback is somehow compensated by the strongly
skewed distribution of SEij, meaning that the impact of in-
creasing, for example, from 95 to 96 years is greater than
the increase from 70 to 71.
An additional problem of the SEf score is that it

uses the sum over the available family members to
summarize the level of survival exceptionality within
the family. This implies that large families are system-
atically overweighted when using SEf. This
phenomenon is illustrated in Fig. 1. Three example
populations with twenty sibships each and different
level of enrichment for longevity are considered. In
the three examples, we consider sibships of increasing
size, Ni = i + 1, i = 1,2,...,20. In the first example popu-
lation, all sibships have two siblings belonging to the
top 5% survivors of their sex-specific birth cohort and
the rest of siblings belonging to the top 30% survi-
vors, so these family members are clearly not long-
lived. In the second, all sibships have two siblings be-
longing to the top 10% survivors of their sex-specific
birth cohort and the rest of siblings belonging to the
top 30% survivors. In the third example population all
siblings belong to the top 30% survivors, representing
a population with no long-lived individuals. The left
panel of Fig. 1 illustrates the performance of the
score SEf in these three examples. Overall, increasing
the sibship size leads to larger values of SEf. More-
over, larger families with lower proportions of long-
lived members can present a larger value of SEf than
small families with a larger proportion of long-lived
members. For example, a family with two members
belonging to the top 10 survivors and 8 extra not
long-lived siblings has a larger SEf than a family with
two members in the top 10 survivors and 5 extra not
long-lived siblings (black line). It can also happen that
a large family where two siblings are top 10% survi-
vors and the rest not long-lived present a larger SEf
than a smaller family where two siblings are top 5%
and the rest are not long-lived. The increasing pink
line corresponding to the third scenario illustrates
that large families with no long-lived family members
can present large values of SEf, with SEf arbitrarily in-
creasing in parallel to family size.
In summary, using SEf and FLoSS in the selection of

long-lived families may lead to an overrepresentation of
large families and hence undesirable heterogeneity in the
selected sample of families. Importantly, the size of the
families governs the range of variation of the family
score implying that SEf and FLoSS are not comparable
when calculated in populations with different underlying
family size patterns. Since this is an highly undesired fea-
ture, we will not further focus on the SEf score (and
FLoSS) in the rest of the paper.
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The LRC score favors small families
To mitigate the previously explained bias towards large
families, a solution is to use a different summary meas-
ure at the family level, like the average [4, 25].
In this line, and based on the results of a recent study

which shows that longevity is heritable beyond the 10%
survivors of their birth cohort [5], the Longevity Rela-
tives Count (LRC) score has been proposed [18]. The
original definition of the LRC score allows for the inclu-
sion of family members with different degree of related-
ness. Here, we focus on its simplest form considering
only siblings in its construction:

LRCi ¼

XNi

j¼1

I Pij≥0:9
� �

Ni
ð1Þ

where Pij is the sex and birth cohort specific percentile
survival of individual j of family i, i.e., Pij = 1 − S(tij| bcij,
sexij). I(Pij ≥ 0.9) is a variable indicator taking value 1 if
individual j belongs to the top 10 survivor of his/her
sex-specific birth cohort and 0 otherwise. As a result,
LRCi is the proportion of members of family i belonging
to the group of top 10 survivors, defined as long-lived.
The LRC is bounded between 0 and 1, providing a clear

interpretation and comparability across populations. A
drawback is that it is based on a binary definition of lon-
gevity, ignoring differences in longevity beyond the top
10% of survivors.
The LRC score is based on calculating a proportion,

and as a consequence, the resulting ranking based on
this score indirectly favors small families. For small fam-
ilies, it is more easy to have 100% of its family members
in the top 10% survivors for than large families. Hence,
in small families it can be questioned whether a large
LRC truly captures the heritable longevity trait.
The problem of this approach is of different nature

than the case of the SEf score. While adding not long-
lived family members implies an increase in SEf, this is
not the case for LRC (Fig. 1, right panel). Instead of a
systematic bias, we now face a problem of different un-
certainty levels depending of the size of the family which
cannot be properly captured by an empirical proportion.
Consider the following example for illustration. Two
families, both with half of the siblings long-lived, but in
the first case the sibship size was 2 and on the second
case the sibship size was 10. It is clear that there is more
information in the second case and hence the ranking
should also take this into account. However, using em-
pirical proportions small families are benefitted.

Fig. 1 Example of three hypothetical populations with 20 sibships with sizes Ni = 2,3,...,21. In each population families are ranked according to SEf
(left panel) and LRC (right panel). The black lines represents a population in which all families have two siblings belonging to the top 5% survivors
(long-lived) of their sex-specific birth cohort and the rest of siblings belonging to the top 30% survivors (not long-lived). The blue lines represent
a population in which all families have two siblings belonging to the top 10% survivors (long-lived) of their sex-specific birth cohort and the rest
of siblings belonging to the top 30% survivors. The pink lines represent a population composed of families with all family members not log-lived,
belonging to the top 30% survivors. The left panel shows the value of SEf with increasing number of non-lived family members. The right panel
shows the value of LRC with increasing number of non-lived family members. Because of the definition of LRC, black and blue lines coincide in
the right panel
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Accounting for uncertainty in longevity family scores
To deal with the heterogeneity in information between
families caused by their size, we propose to use mixed ef-
fects regression modelling in the estimation of family
scores. In particular, we focus on the LRC, and extend its
concept by introducing family specific random effects.
Let Yij = I(Pij ≥ c) be a binary random variable that in-

dicates if Pij is equal of larger than c, where Pij is the
percentile survival of individual j of family i, and c is a
pre-specified threshold of longevity. For example, c =
0.90. Let ui be a random effect shared by the members
of the same family that reflects the unobserved factors
contributing to longevity.
Assuming that Yij follows a Bernoulli distribution, the

family specific probability to reach c is given by the fol-
lowing logistic regression model with random intercept:

pi ¼ P Y ij ¼ 1jui
� � ¼ eβ0þui

1þ eβ0þui
ð2Þ

We assume that ui follows a normal distribution with
mean zero and variance σ2. Then, the parameters β0 and
σ2 can be estimated maximizing the resulting likelihood

function
QN
i¼1

Liðβ0; σÞ ¼
R QNi

j¼1
PðY ij ¼ 1juiÞyij

ð1 − PðY ij ¼ 1juiÞÞð1 − yijÞ f ðui; σ2Þdui, where N is the total
number of families, Ni is the number of family members
of family i and f is the density function of ui.
Maximization of the likelihood cannot be analytically
solved and requires numerical approximation techniques
(e.g. quadrature methods).
Finally, we can obtain p̂i, the expected value of pi given

the observed data of family i and the estimated β0 and σ,

denoted by β̂o and σ̂ , as

p̂i ¼
Z ∞

− ∞

eβ̂0þu

1þ eβ̂0þu
f ujyi1;…; yiNi

; β̂0; σ̂
� �

du ð3Þ

where f ðujyi1;…; yiNi
; β̂0; σ̂Þ is the density of the poster-

ior distribution of the family specific random effect.
Using Bayes’ rule, this density can be obtained as

f ujyi1;…; yiNi
; β̂0; σ̂

� �
¼

f yi1;…; yiNi
jβ̂0; u

� �
f ujσ̂ð Þ

R∞
− ∞ f yi1;…; yiNi

jβ̂0; u
� �

f ujσ̂ð Þdu

where f ðyi1;…; yiNi
jβ̂0; uÞ ¼

QNi

j¼1
PðY ij ¼ 1juiÞyij

ð1 − PðY ij ¼ 1juiÞÞð1 − yijÞ.
We propose to consider p̂i as a new longevity family

score of family i, and we denote it by mLRCi. In this
way, mLRC can be regarded as a model-based version of
LRC which includes shrinkage based on Ni. mLRCi can
still be interpreted as the proportion of long-lived

members of family i but it captures the uncertainty due
to family size by the different ‘weight’ each family re-
ceives through its estimated random effect ûi.

Software implementation
The new mLRC family score, together with the LRC and
FLoSS have been implemented in R. The code is pro-
vided as supplementary material.

Results
Simulation study
Simulated data is generated under the assumption that a
latent factor, shared by the members of the same family,
controls the degree of longevity of the family. Based on
the simulated data, we can measure the level of agree-
ment between the underlying longevity factor and differ-
ent longevity family scores.
Characteristics of the simulated datasets such as the

number and size of the families are chosen to mimic our
real data set. In each run of the simulation, we simulated
N = 1000 families of different sizes, namely 200 families
with respectively size 2,3,8,10, and 14 individuals. For
each individual j of family i, where i = 1,...,N, we sampled
survival percentiles pij from a beta distribution with pa-
rameters a = exp.(0.1) and b = a × exp.(−(1 + ui)), where
ui was a random effect common to the Ni members of
family i. The random effect was sampled from a normal
distribution with mean 0 and standard deviation 2. Large
values of ui decreased the survival percentile pij, which
meant that the families with the lowest values of the ran-
dom effect were the most enriched for longevity.
For each family, we computed the LRC score and the

new model-based LRC (mLRC). Both scores were com-
pared in terms of their relation with family size and per-
formance as selection tools. The simulation was
repeated 1000 times.
Table 1 shows the distribution of family size according

to the values of LRC and mLRC. The LRC score is
strongly affected by family size; families with low sibship

Table 1 Family size and family scores in simulated data

Category LRC mLRC

[0,0.1] 10 (10–14) 10 (8–10)

(0.1,0.2] 10 (8–10) 3 (3–8)

(0.2,0.3] 10 (8–14) 3 (2–10)

(0.3,0.4] 3 (3–3) 5.5 (2–10)

(0.4,0.5] 2 (2–2) 8 (2–14)

(0.5,1] 3 (3–10) 10 (8–14)

In each of the 1000 simulation runs, LRC and mLRC were categorized in 6
groups (using 0.1,0.2,0.3,0.4 and 0.5 as cut-offs) and median family size in each
group was calculated. As a summary over the 1000 simulation runs, we
provide median and range (in brackets) of these values. The left column
reports results based on LRC and the right column reports results based
on mLRC
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sizes tend to have large values of LRC (left column of
Table 1). No clear relation between family size and
mLRC is observed (right column of Table 1), which is in
agreement with the data generation mechanism. Figure 2
shows the comparison between the LRC and mLRC for
all the families in one simulation run. For small families,
the mLRC score is typically lower than the LRC score
when the LRC score is large. This is caused by the penal-
ization of our new method due to lack of information in
small families. Analogously, small families are weighted
upwards when the LRC score is low following the same
principle of major uncertainty when the family size is
small. Still, if the level of exceptionality of the observed
family members is large, small families can still outper-
form large families. This is illustrated by small families
(for example, with Ni = 2, red dots) appearing at the
right part of the graphic in Fig. 2. The ability of mLRC
to correctly deal with differences in family size, explains
that the association between family size and the mLRC
score is very low (right column Table 1).
To evaluate the performance of selection rules based

on the LRC and mLRC scores, we considered two defini-
tions of longevity. First, the 10% of families with the low-
est value of the random effect u were defined as truly
long-lived. Second, we considered the 5% of families
with the lowest value of the random effect u as truly

long-lived. For both definitions, we checked the agree-
ment between the truly long-lived families and the se-
lected families based on the LRC and mLRC scores. To
perform this selection, the families with the 10% (re-
spectively 5%) largest LRC or mLRC score were labeled
as long-lived. Since our main interest was to avoid fam-
ilies not enriched for longevity in our selection, we used
the positive predictive value (PPV) as summary measure
of our simulations. The PPV is defined as the proportion
of truly long-lived families among those classified as
long-lived using the score-based selection rule under
investigation.
Figure 3 shows the distribution of the positive predict-

ive values from the 1000 simulation runs. When defining
the 10% of families with the lowest value of the random
effect u as truly long-lived (left panel of Fig. 3), the mean
PPV for the selection based on LRC was 54% (sd = 4%),
meaning that on average, among the 1000 top 10% fam-
ilies classified as long-lived according to LRC, 54% were
truly long-lived. The mean PPV increased to 62% (sd =
4%) when using mLRC for selection of the top 10% fam-
ilies. If we focus on the top 5% families (right panel of
Fig. 3), the average accuracy of the selection based on
LRC decreased (mean PPV = 0.52,sd = 0.13). In addition,
we found large variability of the PPV among simulation
runs, which indicates instable performance of the LRC

Fig. 2 Comparison of LRC and mLRC with simulated data. For each of the N = 1000 families in one simulation run, we display the LRC score (x-axis)
against the mLRC score (y-axis). Every point in the graphic represents a family, colored according to its size. Red dots represent families of size Ni = 2,
light blue dots represent families of size Ni = 3, dark blue dots represent families of size Ni = 8, grey dots represent families of size Ni = 10 and black
dots represent families of size Ni = 14
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score. On the contrary, the accuracy based on mLRC in-
creased in this case (mean PPV = 0.67, sd = 0.06). These
results show that selection of families based on mLRC
clearly outperforms selection based on LRC.

Real data: the historical sample of the Netherlands
The Historical Sample of the Netherlands (HSN) Long
Lives study [27, 28] is an extensive database which con-
tains lifetime data for the members of 1326 five-
generational families, evolving around a single proband
(Index Person, IP) per family [29]. We focus on the sib-
lings present in the second (F2) generation which are
the children of the IPs. The selection for a part of these
IPs was enriched for longevity. Specifically, the selected
IPs were part of a case-control study to compare differ-
ences in longevity among descendants of 884 IPs who
died at 80 years or beyond (case group) and 442 IPs who
died between 40 and 59 years (control group) [18, 30].
After removing individuals with missing age at death,
single child sibships, and individuals belonging to non-
extinct birth cohorts by the date of data collection
(death dates were updated at 2017 and 110 years was set
as maximum age); the final sample of our analysis con-
sisted of 1105 sibships, children of the aforementioned
HSN IPs, which corresponded to 5361 individuals.
To evaluate the performance of the new longevity fam-

ily score mLRC and compare it to the original LRC, we
first randomly selected a sample of independent individ-
uals by choosing one individual at random from each of

the 1105 available sibships. This set of independent indi-
viduals was set aside from the score calculations and
subsequently used as a validation set to evaluate score
performance. This validation set resembles the potential
candidates to be included in, for example, a GWA study
of longevity. Then, LRC and mLRC were calculated
based on a sample of 4256 individuals. Afterwards, based
on both scores we conducted a selection of long-lived
families and we checked if those corresponded with a
survival benefit in the validation set using Cox propor-
tional hazard regression.
The sibship size was highly varying in the sample

(Fig. 4). As expected, LRC is largely affected by family
size, and families with large values of LRC present lower
sibship sizes (Table 2). We do not observe a pattern in
family size according to the estimated level of familiar
longevity using mLRC. Figure 5 shows the distribution
of the LRC and mLRC scores in the analyzed sibships of
the HSN dataset.
Previous literature [18], has suggested LRC ≥ 0.3 as a

selection criterion to capture the heritable longevity
trait. In our sample, LRC ≥ 0.3 corresponds to the selec-
tion of the 15% families with the largest values of the
LRC score. We evaluated the performance of this selec-
tion criterion by comparing the survival of the individ-
uals of the validation set belonging the selected families
to the rest of individuals in the validation set. Analo-
gously, we selected the top 15% families according to
ranking resulting from using the mLRC as longevity

Fig. 3 Evaluation of LRC and mLRC as selection tools with simulated data. Distribution of positive predictive (PPV) values across 1000 simulation
runs. For each simulation run, the PPV associated to the selection rule under investigation was computed. Black lines represent the results based
on LRC and grey lines represent the results based on mLRC. The left panel shows the results when defining the 10% of families with the lowest
value of the random effect u as truly long-lived and the selection criterion is declaring families with the 10% largest values of the score as long-
lived. The right panel shows the results for the more strict definition of longevity, based on the 5% lowest values of the random effect u and the
selection criterion is declaring families with the 5% largest values of the score as long-lived
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score which corresponds to define families with mLRC ≥
0.15 as long-lived and evaluated this selection strategy
using the validation set. For each of the proposed selec-
tions, we fitted a Cox regression model with the each of
the selection indicators as explanatory variables. Both
models were adjusted by gender and birth cohort.
Table 3 shows that the selection of long-lived individuals
based on the mLRC score predicts excess survival in the
validation set better than the selection based on the LRC
score (βLRC ≥ 0.3 = − 0.287, βmLRC ≥ 0.15 = − 0.321).

Discussion
We proposed a method based on mixed effects regres-
sion modelling to estimate longevity family scores and
properly account for differences in family size when
ranking families according to their longevity and use this
ranking for the selection of participants in longevity
studies. Our simulation study and real data analysis
show that the new proposed approach (mLRC) yields
better results than its empirical counterpart (LRC) in
terms of selection of long-lived individuals. We showed
that the SEf score and FLoSS increase with the addition
of non-long-lived family members and their interpret-
ation is ruled by the underlying family size distribution.
We also showed that the LRC score puts too much
weight on small, less-informative families. The mLRC
score was not affected by sibship size and therefore its
resulting ranking better predicted the survival of 1105
independent study participants. The new mLRC score
seems to reduce heterogeneity in the selection of fam-
ilies and its application could potentially help to improve
power and bias reduction in longevity studies.
Our current approach has some limitations. First, the

binary nature of the current mLRC discards important
information which could contribute to improve its per-
formance. An interesting property of the SEf score and

Fig. 4 Sibship size in the HSN data

Table 2 Family size and family scores in the HSN data

Category LRC mLRC

[0,0.1] 11 5

(0.1,0.2] 6 3

(0.2,0.3] 4 4

(0.3,0.4] 3 6

(0.4,0.5] 2 –

(0.5,1] 1 –

Median family size according to longevity family scores values of LRC and
mLRC. Each scores were categorized in 6 groups (using 0.1,0.2,0.3,0.4 and 0.5
as cut-offs) and median sibship sizes are reported for each group. The left
column reports results based on LRC and the right column reports results
based on mLRC
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the FLoSS is their continuous nature. Other continuous
longevity family scores have been previously proposed
[4, 24, 25]. The Longevity Family Score (LFS) [4] and the
Family Mortality History Score (FMHS) [25] are closely
related to the SEf and FLoSS since all use the same meas-
ure of individual survival exceptionality based on trans-
forming the observed ages at death to survival
percentiles in a reference population using life tables.
The FMHS is restricted to parental data and hence not
subject to differential family size. The LFS, the SEf and
the FLoSS are extensions of the FMHS which can deal
with sibships of arbitrary size. The Familial Excess Lon-
gevity (FEL) score [24] is also continuous but it does rely
on population life tables. Instead, individual survival ex-
ceptionality is defined as the difference between ob-
served and expected age, derived from an accelerated
failure time regression model. Both the LFS and the FEL
scores are based on the mean as family-specific sum-
mary measure and hence share with the LRC score the
discussed limitations of empirical expectations.
A potential drawback of all these continuous longevity

scores is that relatively young family members can con-
tribute positively to these scores. Even after conditioning

on being older than 40 as proposed for the FLoSS, the
resulting score is probably influenced by ages at death
which are not extreme enough to capture the heritable
longevity trait. Evidence of this is supported by studies
that have pointed towards increasing family aggregation
of survival when focusing on more extreme ages at death
for longevity definition [13, 31] and recent publications
indicating that the longevity trait seems to be heritable
considering lifespan thresholds beyond the top 10% sur-
vivors of a given birth cohort [5]. A model-based modi-
fied version of SEf or the LFS which minimizes the
contribution of young family members seems a promis-
ing line of future research. However, the extremely
skewed distribution of the individual measure of longev-
ity of these scores makes the extension of our method
not straightforward.
Another important topic is dealing with alive or lost

on follow-up (right censored) individuals when con-
structing longevity family scores. We have assumed full
observation of lifespan of siblings included in the calcu-
lation of the score, so scores can be regarded as family
history scores of alive relatives who could potentially be
selected to participate in a (genetic) longevity study.
The FLoSS score is the extension of the discussed

score SEf to allow for the inclusion of right censored ob-
servations. The FLoSS follows a single imputation ap-
proach based on imputing alive individuals with the sex
and birth cohort specific conditional expected age at
death. This is an example of single imputation which un-
derestimates the uncertainty of estimates and can poten-
tially lead to bias. More advanced methods are possible
in the mixed effect setting and its inclusion is left as sub-
ject of future research. Finally, recent evidence [9] indi-
cates that the inclusion of family members of different

Fig. 5 Distribution of the LRC (left panel) and mLRC (right panel) scores in the analyzed sibships of the HSN dataset

Table 3 Evaluation of selection strategies of long-lived families
based on LRC and mLRC scores in the HSN

Score β s.e.

LRC≥ 0.3 −0.287 0.082

mLRC≥ 0.15 −0.321 0.084

Long-lived families were defined as those belonging to the top 15% of each
score which corresponded to a cut-off of 0.3 in LRC and a cut-off of 0.15 in
mLRC. For each binary variable defined in these cut-offs, a multivariable Cox
proportional hazard regression model corrected by birth cohort and gender is
fitted in the validation set. Estimates of the resulting regression coefficient(β)
and standard error (s.e.) are reported

Rodríguez-Girondo et al. BMC Medical Research Methodology            (2021) 21:7 Page 9 of 11



degree of relatedness is of great importance to capture
the heritable longevity phenotype and hence the pro-
posed method should also be extended to this more
complex setting.
Finally, it is important to mention that our approach

may result in selections that are influenced by family-
shared non-genetic factors. Despite previous research
based on historical pedigree data have led to little evi-
dence for associations between non-genetic factors such
as socio-economic status, fertility factors or religious de-
nomination and familial longevity [5, 8–10], other socio-
behavioral and environmental factors such as personality
and lifestyle may influence familial clustering of longev-
ity. Since many of these also have a strong genetic com-
ponent itself it is most likely that gene environmental
interactions can explain a part of the familial clustering
of longevity. Still in this complex setting, the use of well-
designed family scores is expected to reduce genetic het-
erogeneity and contribute to a power increase in case-
control longevity studies to detect novel genetic loci.
Moreover, our mLRC score can be applied in more gen-
eral longevity studies devoted to investigate the interplay
among genetic and non-genetic factors involved in
longevity.

Conclusions
To properly account for differences in family size is of
paramount importance when deriving family scores of
longevity and using them for ranking families and select-
ing participants in longevity studies. The methodology
described in this paper is therefore of great relevance
and can help to improve selection of participants in fu-
ture longevity studies.
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