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Nanomedicine 

Nanomedicine refers to the application of nanotechnology in medicine to improve 
diagnostic and therapeutic efficacy for patient compliance. In nanomedicine, 
nanoparticles serve as tools for drug delivery and disease diagnosis.1–7 Following 
the guidelines of the International Organization for Standardization (ISO) and 
the Commission of the European Union, nanoparticles are objects of any shape 
with at least one external dimension in the range of 1-100 nm.8–10 Nanoparticles 
offer the potential to modify the pharmacokinetic profile of active pharmaceutical 
ingredients (APIs) without editing the structural entities required for the mode 
of action.11–13 Administration, distribution, metabolism, and excretion (ADME) 
can be altered and governed by the nanoparticle enhancing specificity and 
bioavailability of a given drug opening or extending the therapeutic window.9,14,15 
The nanocarrier design follows the structural demands of the API while referring 
to the intended application.16–19 For nucleic acid delivery as required for 
BioNTech’s and Moderna’s Covid-19 vaccine, protection of the sensitive cargo to 
enable release of the intact mRNA into the cytosol of immune cells is of 
significance and featured by lipid nanoparticles.20–23 Nanomedicine thus opened 
the therapeutic window for RNA-based therapies.24–26 Vice versa, for small 
molecule APIs used in cancer therapy, nanomedicine aims to provide solubility 
and reduce the large volume distribution caused by the unspecific diffusion of the 
low molecular weight compounds.6,27,28 Despite being highly potent in the mode of 
action, many small-molecule APIs are hydrophobic and require excipients and 
high dilutions for administration.12,29–31 Approved for medical use in 1993 and 
1996, the formulations of paclitaxel using ethanol and Cremophor EL (Taxol), and 
docetaxel with polysorbate 80 (Taxotere) are among the most successful drugs for 
adjuvant chemotherapy.28,32,33 Nevertheless, anaphylactic hypersensitivity, 
hemolysis, and peripheral neuropathy are common side effects attributed to the 
excipients.34,35 These restrict the maximum tolerated dose (MTD), while 
prolonged administration times limit patient compliance.34,35 In this case, 
nanomedicine, therefore, aims to provide solubility and a selective distribution 
profile to APIs to reduce off-target toxicity and improve therapeutic success.4,36,37  

Following the ambitions of nanomedicine shown in Figure 1, a large variety of 
nanoparticle therapeutics has been developed to improve the pharmacokinetic 
profiles of APIs. Initial investigations date back to 1954 when Horst Jatzkewitz 
reported on mescaline coupled to a copolymer of vinylpyrrolidone and acrylic acid 
via an enzymatically cleavable peptide linker.19,38–41 
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Figure 1. Idealized perspective on chemotherapy by nanomedicine. Figure reprinted from 
Gonzalez-Valdivieso et al. with permission from Elsevier (© 2021).36 

In consecutive in vivo studies a sustained drug release was observed.39 Mescaline 
could still be detected in urine after 17 days, compared to 16 h for the free drug, 
whereas no traces were found after direct conjugation without the cleavable 
section.39 Jatzkewitz clearly derived the potential of polymer-drug conjugates to 
alter the pharmacokinetics of APIs.38,39 The idea for polymer drug-conjugates was 
later refined and conceptualized by Helmut Ringsdorf considering solubility, drug 
conjugation, and targeting.19,42 Beyond polymer-drug conjugates many different 
nanocarriers have been designed and evaluated in (pre-)clinical 
investigations.5,12,13,41,43,44 A schematic overview is shown in Figure 2.43,45 The 
encapsulated or conjugated small molecule APIs are typically in the range of 0.1 
to 1.0 nm in hydrodynamic diameter and are displayed as red (hydrophobic drugs) 
and green (hydrophilic drugs) stars.43 

The drug delivery systems can be generally divided into molecular and self-
assembled structures and have been optimized for a broad variety of therapeutic 
cargos and diagnostic probes.16,41,47 In particular self-assembled nanoparticles are 
characterized by their core-shell architecture and can be readily formed from 
amphiphilic lipids or polymers.48–50 Lipophilic drugs can be encapsulated in the 
hydrophobic membrane or core compartment, while the hydrophilic corona 
provides steric shielding to reduce or prevent recognition by the immune 
system.50–52 Likewise, hydrophilic polymers are used for shielding of molecular 
nanocarriers, e.g., to increase the blood circulation half-life and reduce the 
immunogenicity of proteins.41,53,54 Polymersomes and liposomes further allow for 
encapsulation of hydrophilic drugs in the aqueous core pocket, while additional 
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stabilization is still essential for membrane-permeable drugs such as 
doxorubicin.13,55–58 

 
Figure 2. Schematic overview of the most common drug delivery systems in nanomedicine 
with approximate hydrodynamic diameters.45,46 Small molecule drugs are represented by 
red (hydrophobic) and green (hydrophilic) stars, drug linkers by green rectangles.  

In contrast, polyplexes and lipid nanoparticles comprise a cationic lipid or 
polymer block for complexation and have been designed as non-viral vectors for 
gene therapy to provide protection and stimuli-responsive release for RNA or 
DNA.22,25,41,59,60 Besides lipid and polymer-based nanocarriers, inorganic 
nanoparticles, colloids, and metal-organic frameworks have been established for 
drug delivery and diagnosis.45,61–64 As such, iron oxide nanoparticles have been 
thoroughly investigated for the treatment of iron deficiency anemia, in heat 
ablation therapy, as well as for their potential as contrast agent in magnetic 
resonance imaging.65–70 Moreover, non-biodegradable electron-dense gold 
nanoparticles facilitate methodical in vivo studies using transmission electron 
microscopy (TEM) and enhance the sensitivity for surface-enhanced Raman 
scattering-based imaging.3,71–75 For therapeutic inventions, polymeric micelles 
(PMs) are among the most promising carrier types for hydrophobic APIs.52,76–78 
Herein, the core compartment allows for high drug loading and can be designed 
and adjusted for the conjugation of (pro-)drugs featuring stimuli-responsive 
release.79–84 Moreover, PMs can be prepared with hydrodynamic diameters below 
100 nm, often between 30 - 50 nm, which facilitate long circulation time and 
penetration into tumorous or inflamed tissue.76,85 As early as 1998, Torchilin and 
co-workers reported superior tumor accumulation of an 111In-labelled protein in 
murine Lewis lung carcinoma xenograft models when PEG-DSPE micelles were 
selected over stealth liposomes as the carrier system.86 In a detailed investigation, 
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Cabral et al. demonstrated the significance of particle size for deep tissue 
penetration.85 As shown by intravital microscopy using PMs with distinct 
diameters of 30, 50, 70, and 100 nm, only the 30 nm particles were able to 
penetrate the poorly permeable pancreatic tumor leading to reduced tumor 
volumes by the release of the conjugated 1,2-diaminocyclohexane-platin(II) 
metallodrug.85  

Physiological Barriers for Nanomedicine 

On the journey to the target site, nanomaterials face several barriers and 
obstacles for successful drug delivery.1,87,88 In general, the majority of 
nanocarriers are applied by parenteral administration routes.89–91 Activation of 
the adaptive immune system typically follows intramuscular injection for 
addressing transport into the draining lymph node.92–94 In contrast, for cancer 
therapy, nanomedicines are mainly administered by intravenous injection aiming 
to target metastasis as well as the primary tumor site.95–97 Injection into the blood 
stream exposes the nanocarriers to the blood components, e.g., red blood cells, 
immune cells, and plasma proteins, as well as to dilution.98–101 Stabilization and 
shielding strategies are thus required to prevent unspecific complement 
activation, opsonization, and recognition by the mononuclear phagocyte system 
(MPS).1,51,101,102 The MPS consists of bone marrow progenitors, monocytes and 
tissue macrophages located in organs such as the liver and spleen.102,103 Intended 
to remove foreign material from the blood stream, non-specific accumulation in 
these organs is a major obstacle for nanomedicines that impedes drug delivery to 
the diseased target site (Figure 3).103,104  

Strategies to avoid rapid clearance comprise the decoration of nanocarriers with 
hydrophilic polymers, such as poly(ethylene glycol) (PEG) or polysarcosine (pSar), 
which follow the Whitesides’ rules for protein resistant materials and reduce MPS 
recognition, phagocytosis, and clearance from the circulation.106–110 
Mechanistically, the enhanced repulsive forces among the hydrated polymer 
strands form an impermeable coating preventing van der Waals, electrostatic, 
and hydrophobic interaction with proteins.51,111 Following PEG as the gold 
standard material, the term ‘PEGylation‘ was coined for the surface modification 
of materials with PEG, attributing reduced recognition properties (‘stealth‘-
effect).53,112,113 Herein, the molecular weight of the hydrophilic polymer 
significantly influences the shielding efficiency.111 
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Figure 3. Intravenously administered nanoparticles encounter non-specific interaction 
with the MPS. The intensity of the turquoise color refers to the nanoparticle uptake within 
each organ.105 The reduced flow rates in the liver sinusoid facilitates nanoparticle uptake 
by the residing immune cells, e.g., Kupffer cells. Figure reprinted from Tsoi et al. with 
permission from Springer Nature (© 2016).103  

Consequently, the PEG chain length was carefully optimized for the development 
of Doxil (doxorubicin sulfate nanocrystals, encapsulated in stealth liposomes with 
a lipid bilayer of a high melting point (Tm = 53 °C)), and PEG2k-lipid (lipid: 1,2-
distearoyl-sn-glycero-3-phosphoethanolamine; DSPE) was selected considering 
circulation time and lipid metabolism.13 For block copolymer micelles, Kwon et al. 
reported that PEG12k significantly reduced the nanoparticle clearance compared 
to shielding by PEG5k, resulting in a 5-fold increase of nanoparticles still in 
circulation after 4 h post-injection.114,115  

Beyond the surface chemistry, the hydrodynamic diameter is an important 
parameter affecting the biodistribution of nanoparticles. Large particles with 
hydrodynamic diameters > 200 nm can be rapidly recognized and cleared via the 
MPS in the liver and spleen.17,19,52 Contrariwise, glomerular filtration in the 
kidneys defines the lower size limit for nanoparticles that aim for long blood 
circulation.1,116 Threshold values for rapid renal excretion were found as ≤ 5.5 nm 
for quantum dots, approx. 29 kDa for dextran, and around 30 kDa for linear 
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PEG.117–119 Conversely, to avoid long-term side effects such as storage diseases 
the renal filtration sets an important limit for the maximum size of the individual 
nanocarrier components if the material is not biodegradable within relevant time 
frames.38,113,120 

Tumor Targeting by the EPR Effect and Beyond 

The discovery of the enhanced permeability and retention (EPR) effect supported 
the field of nanomedicine, giving a rationale for targeting nanoparticles to 
inflamed and tumorous tissue.27,121,122 In 1984, Maeda et al. found an increased 
concentration of neocarzinostatin (NCS) in the tumor tissue of rabbits and mice 
when NCS was conjugated to a styrene-maleic acid copolymer (SMANCS).123 After 
detailed elucidating studies in tumor-bearing mice using 51Cr-labeled proteins of 
varying molecular weights in 1986, Matsumura and Maeda then accounted the 
unique vascular characteristics of the tumor tissue for the specific accumulation 
of macromolecules therein.124 Due to extensive and rapid proliferation, the cancer 
vasculature shows a high tendency for deficient vessel structures leading to 
fenestrations with higher permeability for nanoparticles compared to normal 
tissue (Figure 4).41,85,124 Moreover, insufficient lymphatic drainage reduces 
nanoparticle clearance from the tumor retaining the accumulated particles.124 
Consequently, if unspecific excretion and interaction with the MPS can be 
prevented, passive accumulation of the nanocarriers can be achieved.30,41,125  

 
Figure 4. Schematic illustration of the nanoparticle accumulation in cancerous tissue due 
to the EPR effect. Figure reprinted from Irvine et al. with permission from Springer Nature 
(© 2020).78 
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Nevertheless, the EPR effect has been critically discussed, and cannot be applied 
as a general concept for all tumor types.27,126–129 As such, the EPR effect was 
reported to be more prominent in murine (xenograft) tumor models compared to 
human patients.130,131 Moreover, a large heterogeneity in EPR susceptibility was 
observed among cancer patients calling for personalized medicine and patient 
stratification before applying nanomedicines as a general treatment 
regimen.132,133 Additionally, conjugation of targeting ligands (‘active targeting’) 
could improve tissue-selective distribution and enhance cell-specific uptake, while 
new types of drugs or drug combinations inaccessible for administration without 
nanomedicine are expected to contribute to therapeutic success.31,129,134 The basic 
requirement for concepts adding specificity yet remains the absence of unspecific 
interaction since active targeting can only take place when receptor and ligand 
are already in close proximity.135–138  

From the methodical viewpoint, more detailed investigations on the tissue level 
recently enlightened the actual targeting mechanism providing an deeper 
understanding and defining the basis for future therapeutic concepts.88,139–141 
Herein, Chan and co-workers employed PEGylated Gold nanoparticles to 
investigate the exact mechanism accounting for nanoparticle entry into tumor 
tissue.72,73 Despite minor fractions of particle accumulation via passive diffusion, 
active transport mechanisms were described as the main driving force for 
nanoparticle entry into tumor tissue for a variety of tumor models.72 Moreover, a 
specific type of endothelial cells, nanoparticle transport endothelial cells (N-
TECs), was identified as a gatekeeper for the transport process.73 On the other 
hand, Biancacci et al. combined optical whole-animal imaging by micro-computed 
tomography-fluorescence tomography (µCT-FLT) with immunohistochemistry for 
a detailed biodistribution analysis of dye-labeled core cross-linked polymeric 
micelles.142 On the organ level, 18.6% ID/g of the injected dose (ID) were located 
within the tumor tissue, exceeding the doses found in the liver and spleen (9.1% 
and 8.9% ID/g). Interestingly, within the tumor microenvironment, 67% of the 
nanoparticles were found in macrophages and other immune cells, although 
cancer cells accounted for 71% of the overall cell population.142 This underlines 
the potential of core cross-linked polymeric micelles for therapeutic approaches 
combining chemotherapy and immunomodulation.140,142–145 
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Polymeric Micelles in Nanomedicine 

Considering their small size and the core-shell architecture PMs are ideal carrier 
systems for hydrophobic small-molecule drugs. PMs can be readily formed by self-
assembly of amphiphilic copolymers above the critical micelle concentration 
(CMC) applying dialysis or microfluidic devices.43,48,49,52,146 Self-assembly is an 
autonomous organization process leading to higher-ordered patterns or 
structures.147 For self-assembly of linear block copolymers, spherical or worm-like 
micelles, lamellae and vesicles, as well as bicontinuous structures, can be 
obtained depending on the length and flexibility of the individual hydrophilic and 
hydrophobic segments.49,148,149 Compared to surfactant-based micelles, PMs 
exhibit lower CMC values (typically 10-6 - 10-8 M vs. 10-3 - 10-4 M) which refer to 
the higher number of interaction points.150,151 The CMC accounts for the free 
energy gain after reduction of free surface area by self-assembly and is the 
benchmark for the thermodynamic stability of a micelle.49,101,149,150 At the same 
time, the CMC represents the concentration of free polymer, so-called unimer, 
that always remains present in solution (Figure 5).43,101 Even after self-assembly, 
PMs are thus connected to the unimer concentration by a dynamic equilibrium, 
whereby the rate of exchange refers to the kinetic stability.43,101,152 Considering 
the application of PMs as drug carriers, the equilibrium directly affects 
therapeutic success, as excretion or adsorption of unimer leads to micelle 
disassembly.43,52,101 Upon injection into the bloodstream PMs are subjected to 
large dilutions and are exposed to plasma proteins, blood cells, hepatobiliary 
excretion, and renal filtration.1,88,103,116 In combination, these factors can rapidly 
induce disintegration of the PMs, reducing the nanocarrier to a bare solubilizer 
incapable to provide target specificity.27,37,43,153 In addition, the amphiphilic 
unimer may be susceptible to eliciting interaction with components of the immune 
system, e.g., the complement activation, promoting accelerated blood clearance 
(ABC) and affecting the safety profile of the medicinal product.43,154–156  
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Figure 5. Polymeric micelles and the dynamic equilibrium of unimer and micelle.43,101  

While multiple PMs containing hydrophobic small molecule drugs have already 
been investigated in clinical trials,16,89,157–159 e.g., NK105,160,161 NK012,162 
BIND-014,163 the consequences of limited nanocarrier stability can be exemplified 
by studying Apealea and Abraxane. Both products have been developed and 
approved as Cremophor-free formulations of paclitaxel (PTX) to reduce the side 
effects associated with the excipient (as mentioned above).9,32,34,88 In Abraxane, 
PTX is formulated with human serum albumin forming 130 nm particles in 
aqueous solutions and was approved by the Food and Drug Administration (FDA) 
for the treatment of advanced non-small cell lung cancer (NSCLC) in 2005.12,164–

166 However, upon infusion, the albumin-drug particles dissolve and albumin-PTX 
complexes are formed, whereby PTX can bind and unbind to readily available 
proteins within the bloodstream.12,166 Compared to Taxol, higher response rates 
were found for Abraxane in NSCLC patients, while the overall survival (OS) was 
not significantly improved.88,167 Similarly, response rate and progression-free 
survival (PFS) were higher for metastatic breast cancer patients, but OS was not 
significantly different.88,168 In 2018, Apealea was approved by the European 
Medicines Agency (EMA) for the treatment of ovarian cancer in combination with 
carboplatin, and consists of micelles formed from N-(13-cis-retinoyl)-L-cysteic acid 
methyl ester sodium salt and N-(all-trans-retinoyl)-L-cysteic acid methyl ester 
sodium salt encapsulating PTX.169,170 These micelles immediately release PTX 
into the blood plasma upon administration, yet offer shorter infusion times (1 h 
for Apealea vs. 3 h for Taxol), higher doses (MTDApealea 250 mg·m-2 vs. MTDTaxol 
175 mg·m-2) and no mandatory premedication.169,170 Nevertheless, Apealea did not 
improve OS or PFS.169,170 Although Apealea and Abraxane both successfully 
contribute to cancer therapy and patient compliance, passive targeting via the 
EPR effect is not substantiated by the rapidly disintegrating particles, which 
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exemplifies the need for stable nanocarriers with tumor-specific drug release to 
exploit the full potential of nanomedicine.9,43,88,169  

Core Cross-Linked Polymeric Micelles 

Based on the favorable structural properties of PMs, several modification 
strategies have been developed to suspend the equilibrium between unimer and 
polymeric micelle to achieve stable nanoparticles.79 In general, non-covalent 
cross-linking strategies using π-π interactions, hydrogen bonds, or the chelation 
of metal ions, as well as different covalent cross-linking chemistries, have been 
investigated.43,171–175 For the latter, dynamic covalent bonds offer the potential to 
precisely tailor carrier stability and stimuli-responsive drug release.43,81,176 
Beyond particle stabilization, only drug conjugation or specific interactions within 
the core assure to prevent drug leakage during transport and rapid transfer to 
the hydrophobic domains of surrounding proteins.13,37,177 

 
Figure 6. Core cross-linking strategies for polymeric micelles. Figure reproduced from 
Talelli et al. with permission from Elsevier (© 2015).43 

Core cross-linked polymeric micelles (CCPMs) have attracted significant interest, 
and optimization of carrier stability and drug release is a key objective for the 
delivery of hydrophobic APIs.30,43,79,178,179 As shown in Figure 6, the major 
strategies for core cross-linking include radical polymerization, reactions with 
bifunctional agents, and reversible oxidation of thiols.43 Besides core cross-
linking, shell cross-linking per-se offers a similar potential for stabilization of 
micelles.180,181 Nevertheless, modifications in the nanoparticle shell may easily 
jeopardize the water-solubility and protein resistance required for effective steric 
shielding.43,98 Early attempts to CCPMs for medicinal applications date back to 
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1992 when Rolland et al. used free radical polymerization for core cross-linking of 
PMs made from triblock copolymers of PEG-block-polyisoprene-block-PEG.182,183 
As a result, the CCPMs retained their structure even in organic solvents and 
showed a circulation half-life above 50 h after intravenous injection to mice.182 
More recently, Rijcken et al. from the Hennink lab developed CCPMs based on 
free radical cross-linking of thermosensitive PEG-block-poly(N-(2-hydroxypropyl) 
methacrylamidelactate) copolymers, culminating in the current evaluation of 
CPC634 in clinical phase II studies for the treatment of platinum-resistant 
ovarian cancer (NCT03742713).184–188 For the production of CPC634, core cross-
linking and drug stabilization are performed simultaneously by a docetaxel pro-
drug, which is connected to a methacrylate by a pH-responsive linker gradually 
releasing the drug at pH 7.4.184,186 Surprisingly, cumulative skin toxicity was 
found as the dose-limiting toxicity in phase I dose-escalation studies likely caused 
by micronucleation in the skin originating from slow drug release.187,189 
Nevertheless, for CPC634, in human patients, four-fold higher total docetaxel 
concentrations were found in the tumor tissue compared to conventional 
docetaxel.188 These findings relate to promising preclinical results in which 
complete tumor regression was observed upon single-dose administration.185 
Besides free radical polymerization, disulfide bonds are frequently implemented 
as cross-links for PMs.43,178,179 Disulfide bonds remain largely intact in 
extracellular fluids and can be cleaved by the elevated intracellular glutathione 
concentrations and are considered as the archetype of bio-reversible bonds for 
drug delivery.190,191 Disulfides can either be introduced by the rather unselective 
oxidation of thiol-groups or by using bifunctional cross-linkers such as 3,3’-
dithiodipropioic acid containing a pre-formed disulfide bond.43,178,179,192 In 
addition, the Barz lab recently developed thiol-reactive protecting groups for 
chemoselective disulfide bond formation.193–197 After self-assembly, amphiphilic 
copolymers containing the S-alkylsulfonyl-group can be addressed by thiol-based 
cross-linkers yielding either CCPMs or cross-linked nanohydrogels.82 The 
combination of this approach with pro-drugs for therapeutic inventions will be 
elucidated in this thesis. 

Among polymer-based nanomedicines, CCPMs have evolved from PMs and are 
expected to improve small-molecule-based drug delivery. The current challenges 
for CCPMs still comprise adjusting the intricate connection between carrier 
stability and stimuli-responsive yet rapid and complete drug release. 
Implementing multiple or even complex stimuli while accounting for robust and 
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scalable production thus requires innovative chemistry.9,43,88,132,198,199 Focusing on 
therapeutic success, nanomedicine will always compete with other concepts of 
therapeutic care.200–202 Expanding nanomedicine beyond its horizon 
implementing or assisting other technologies will thus lead to progress for 
treating devastating diseases and improving patients’ lives. 

Polypept(o)ides 

Polypept(o)ides are hybrid materials combining the intrinsic functionality and 
stimuli-responsiveness of polypeptides with polypeptoids, e.g., polysarcosine for 
solubility and steric shielding.108,203,204 Considering peptides and proteins are 
based on α-amino acids, Bartlett and co-workers defined peptoids as oligomers of 
N-substituted glycines that are connected by amide bonds in the main chain in 
1992.205,206 The term was later expanded by Zuckerman and co-workers, referring 
to polypeptoids for larger sequences, and polypeptoids can be considered as 
structural isomers of polypeptides.204,207 Unlike polypeptides, polypeptoids 
generally lack the acidic hydrogen atom at the amide nitrogen atom and are thus 
exclusive hydrogen bond acceptors that do not form secondary structures unless 
specific substituents are introduced.208–211 The highly water-soluble pSar, poly(N-
methyl glycine), is among the most intensively studied polypeptoids.212–214 The 
free amino acid sarcosine can be found in muscle tissue and as a component of 
creatine (N-amidino sarcosine) in tissues with high energy demand.215–217 
Sarcosine can be synthesized from glycine via the enzyme glycine-N-methyl 
transferase and degraded by sarcosine dehydrogenase.218–220 Polypept(o)ides thus 
allow for synthetic polymers entirely based on endogenous amino acids.108,203,204  

The term polypept(o)ides was coined by the Barz group in 2014 referring to the 
new class of polymeric materials combining polypeptides with polypeptoids 
(Figure 7).108,203 Early examples of polypeptide/polypeptoid copolymers date back 
to the origins of N-carboxyanhydride (NCA) and N-substituted NCA (NNCA) 
polymerization when studying fundamental properties and reaction kinetics was 
the major focus of research.221,222 Hanby, Waley, and Watson briefly described the 
first synthesis of pSar-block-poly(DL-phenylalanine) in 1950, yet, comprehensive 
study design and characterization of the copolymer was provided by Bamford and 
Ballard in 1956.223,224 Besides block copolypept(o)ides, early on, also statistical 
copolypept(o)ides have been synthesized and studied, aiming to understand the 
structure and function of the synthetic polypeptides and their natural analogs.225–

227 
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Figure 7. Polypept(o)ides combine the intrinsic functionality and stimuli-responsiveness 
of polypeptides with the shielding properties of the hydrophilic polypeptoid polysarcosine. 
Figure reprinted from Klinker et al. with permission form John Wiley and Sons (© 2015).108  

Concerning medicinal applications, Kimura and co-workers investigated 
polypept(o)ides in the 1990s.228–231 Among others, microcapsules were prepared 
from pSar-b-poly(ε-benzyloxycarbonyl-L-lysine) (pSar-b-pLys(Z)), pSar-b-poly(γ-
methyl-L-glutamate) (pSar-b-pGlu(OMe)), and pSar-b-poly(L-alanine) (pSar-b-
pAla), and the release of fluorescein isothiocyanate (FITC)-dextran was 
determined.228 Nevertheless, for medical applications, polypept(o)ides have 
attracted increasing attention only recently since NCA polymerization provided 
easy access to functional materials with defined polymeric architecture and 
narrow molecular weight distribution.108,204 The latest developments will thus be 
discussed in the paragraphs Polysarcosine and Polypept(o)ides in Nanomedicine. 

NCA/NNCA Polymerization 

Synthetic polypept(o)ides can be conveniently prepared by living amine-initiated 
ring-opening NCA/NNCA polymerization.232–234 Depending on the desired 
application, polypept(o)ides can be designed with statistical or block-wise primary 
sequences, linear or branched architectures, and Poisson-like molecular weight 
distribution.108,204 Despite early attempts by Bailey et al.,235 NCA polymerization 
does not offer control on the primary amino acid sequence, making it a 
complementary tool distinct from solid-phase peptide synthesis (SPPS) or 
recombinant peptide expression techniques.236–238 A general scheme for the 
amine-initiated polymerization of NCAs or NNCAs (R1 ≠ H) is given in Scheme 1.  
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Scheme 1. Nucleophilic amine-initiated polymerization of NCAs and NNCAs. 

The first NCA synthesis was discovered by Hermann Leuchs in 1906, and NCAs 
are thus also called Leuchs’ anhydrides.222,239 In the initial publication, Leuchs 
obtained glycine NCA upon heating of N-ethoxycarbonyl glycine chloride (Scheme 
2).239 Moreover, Leuchs carefully described the release of CO2 after the reaction 
of the NCA with water at room temperature, whereby an insoluble product was 
formed, which was interpreted as a higher anhydride of glycine. Leuchs further 
applied the methodology to other amino acids, including phenylalanine, leucine, 
and N-phenyl glycine yielding comparable NCAs and reaction products.240,241 

 
Scheme 2. Synthetic pathway to glycine NCA described by Hermann Leuchs.239  

Despite the seminal publication from Hermann Staudinger in 1920, the general 
concept of polymerization and macromolecules was not completely established 
and still debated at that time.222,242 Early reports on NCAs thus mainly focused 
on the analysis of the degradation products of NCAs, e.g., diketopiperazines and 
hydantoins, and referred to so-called higher condensed anhydrides for products 
with higher molecular weights.243–245 Sigmund and Wessely described the first 
synthesis of sarcosine NCA in 1926.246 Herein, the authors mention polypeptides 
as possible products of the reaction of sarcosine NCA with pyridine, yet still refuse 
to describe these as polymers rather referring to higher condensed anhydrides. In 
1947, Woodward and Schramm thus claimed the first intended NCA 
polymerization using traces of water for the initiation of the reaction in benzene-
solutions yielding polypeptides as synthetic analogs of proteins.247 In the 
following, various polypeptides have been synthesized from this methodology and 
studied for their physicochemical properties.214,221,226 The kinetics of the NCA 
polymerization was first examined by Waley and Watson, revealing a first-order 
reaction for the polymerization of sarcosine NCA in nitrobenzene.248–250  
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Scheme 3. NCA synthesis according to the Fuchs-Farthing method.251,252 

To generate NCAs and NNCAs, Fuchs suggested the direct reaction amino acids 
with phosgene, which was refined and improved by Farthing (Scheme 3).251,252 
Addressing safety concerns and facilitating the application, gaseous phosgene can 
also be substituted by liquid diphosgene, or solid triphosgene, whereby phosgene 
is generated in situ.253,254 The Fuchs-Farthing method is thus the preferred 
synthetic route to NCA monomers, allowing for high yields and sufficient 
monomer purity after sublimation and/or repetitive recrystallization.255 Of note, 
the purity of all reagents, i.e., monomer, solvent, and initiator, is of significance 
for successful NCA polymerization. Beyond characterization by nuclear magnetic 
resonance (NMR) spectroscopy, Karl Fischer Titration to determine residual 
water content, and ion chromatography to detect inorganic contaminations, e.g., 
chloride ions, complement reagent analysis.256,257 In addition, the melting point 
represents an indicator of monomer purity.255  

The mechanistic pathways for the amine-initiated NCA polymerization are 
displayed in Scheme 4.108,258 In general, two competing reaction pathways exist in 
parallel, namely, the activated monomer mechanism (AMM) and the normal 
amine mechanism (NAM). According to the NAM, the initiator solely acts as a 
nucleophile that attacks the NCA at C-5 leading to ring-opening and the 
formation of the carbamic acid. The carbamic acid then decarboxylates generating 
a primary amine readily available to attack the next NCA monomer. In case the 
decarboxylation is too slow, e.g., when the carbamic acid is deprotonated or the 
solvent is fully saturated with CO2, a second NCA monomer can already be added 
at this stage ultimately leading to an urea derivative terminating the chain 
growth. Based on density functional theory (DFT) calculations, the nucleophilic 
attack at C-5 is the rate determining step of the NAM pathway using nucleophilic 
primary amines.259  
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Scheme 4. Mechanistic pathways for the NCA polymerization. Reprinted from Klinker et 
al. with permission from John Wiley and Sons (© 2015).108 

Contrarily, in the AMM, the initiator acts as a base and abstracts the acidic 
proton at N-3. In the following, the anionic activated monomer itself acts as the 
initiator of the reaction. The activated monomer can either undergo direct ring-
opening leading to instable isocyanates easily subjected to further side reactions 
or attack a second NCA monomer at C-5. In the latter case, after decarboxylation, 
the AMM mechanism can continue in its pure form or in combinations with the 
NAM procedure. The AMM symptomatically leads to polymers with a reactive 
oxazolidin-2,5-dione as the end-group. Consequently, condensation products are 
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frequently observed, and polypeptides derived from AMM processes are 
characterized by a broad molecular weight distribution. Conversely, Poisson-like 
molecular weight distributions are obtained for living polymerizations following 
the NAM process, as the initiation is typically faster than the propagation.108,258  

Since NNCAs do not contain an acidic proton at the nitrogen atom the AMM 
pathway is generally inhibited for polypeptoids. Vice versa, the polymerization of 
NCAs is easily affected by the nucleophilic or basic character of the 
initiator.108,222,258 In addition and comparable to other living polymerization 
techniques, also NCA polymerization is highly sensitive to impurities since these 
may promote the AMM pathway, catalyze side reactions, and initiate or terminate 
the chain growth.255,258,260 In 1997, Deming reported on the first living NCA 
polymerization by using zero-valent nickel amido-amidate complexes initiating 
and mediating the chain growth reaction.261 Herein, homo- and block 
copolypeptides of pGlu(OBn) and pLys(Z) could be synthesized with high 
molecular weights and narrow dispersity (Ð < 1.2). Deming further expanded the 
concept to cobalt and iron complexes, and synthesized library of functional 
polypeptides.262,263 However, polymerization of NNCAs was not substantiated 
until recently since initiation required an acidic proton for β-hydride elimination. 
The Kramer group thus improved the Ni and Co initiators allowing for 
polymerization of proline NCA.264 Nevertheless, elaborate synthesis and 
potentially remaining traces of toxic heavy metal ions hamper this technique.108 
In 2004, the groups of Schué and Hadjichristidis reported that reaction 
temperature, sufficient removal of CO2, and the purity of the components, are the 
key parameters for the living amine-initiated polymerization of NCAs.232,233 In the 
following, several groups contributed to expanding the living amine-initiated 
NCA polymerization leading to a well-established type of polymerization.203,234,265–

267  

Current investigations aim to accelerate the reaction rates of NCA polymerization 
and achieve chain lengths beyond 1000.268 In particular organocatalysis 
techniques were therefore applied to NCA polymerization. In 2019, Zhao et al. 
combined 1,3-bis(2-hydroxyhexafluoroisopropyl)benzene (1,3-bis-HFAB) and 
N,N-dimethyl ethanol amine in dichloromethane to activate the NCA monomer 
by hydrogen bonds.269 Moreover, Xia et al. demonstrated accelerated 
polymerization in DCM upon addition of crown ether as a catalyst.270 In addition, 
emulsion techniques have been developed to enable facile synthesis of α-helical 
multi-block copolypeptides.271 Regarding the biomedical applications, large 
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molecular weights are often not necessarily an advantage, since storage diseases 
are a realistic threats that also need to be considered for polypept(o)ides.120 
Nevertheless, fast and robust mechanisms facilitating large-scale production will 
aid translation of polypept(o)ides.  

Polysarcosine 

Polysarcosine is a non-ionic and highly water-soluble polymer that adopts random 
coil conformation in aqueous solution, which is attributed to the equal population 
of the cis and trans configuration of the amide bond.212,272–274  Comparable to PEG, 
pSar solely acts as a weak hydrogen bond acceptor without any hydrogen bond 
donor properties, while being slightly less flexible referring to the respective Kuhn 
lengths of lk, pSar = 1.5 nm and lk, PEG = 1.1 nm.212 PSar matches the requirements 
for protein resistant surfaces summarized by the Whitesides’ rules in 2001.106 
Indeed, already Ostuni et al. described superior protein resistance of self-
assembled monolayers (SAMs) functionalized with tri(sarcosine) since reduced 
levels of protein adsorption and cell adhesion were found.106,275 These results were 
later confirmed by Messersmith and co-workers reporting excellent resistance of 
pSar-grafted TiO2 surfaces toward non-specific adhesion of proteins or any 
attachment of mammalian or bacterial cells.213 Moreover, Jordan/Luxenhofer and 
co-workers investigated the resistance of inorganic surfaces to biofouling after 
modification with polypeptoid brushes.276,277 The experimental findings are 
further supported by molecular dynamics simulations, in which PEG and pSar 
showed an equally low affinity for interaction with human serum albumin.278 
Moreover, both pSar and PEG do not elicit activation of the complement cascade, 
but acetylation of the amine end-group remains significant.109,212 Consequently, 
pSar can be classified as a ‘stealth’ material and has emerged as a potential 
substitute for PEG in medical applications when increased water solubility and 
reduced immunogenicity and MPS recognition are desired.204,212 As an early 
example, in 1985, Moran and co-workers reported that covalent conjugation of 
pSar to grass pollen allergens decreased the immunoglobulin E (IgE) 
formation.279,280 More recently, pSar attracted increasing attention as an 
alternative material to PEG and has been investigated for shielding of antibody-
drug-conjugates,281 proteins,282–284 liposomes,109,285 and lipid nanoparticles.286 In 
2020, Son et al. prepared PEG and pSar functionalized liposomes and compared 
the immune response after intravenous administration to rats.285 As a result, 
significantly higher levels of IgM and IgG antibodies were found for the 
PEGylated liposomes. Hereafter, the second administration revealed the ABC 
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phenomenon for PEGylated liposomes, yet again identical circulation half-lives 
for the pSar functionalized liposomes. For LNPs, both, PEG-lipids and pSar-lipids 
yielded similar mRNA nanocarriers, whereby reduced cytokine secretion and 
lower immunogenicity were found for the pSar-containing LNPs.286 In summary, 
pSar has emerged as a biocompatible polymeric material suitable for medicinal 
applications.  

Polypept(o)ides in Nanomedicine 

Since 2014, several polypept(o)ide-based polymer and nanoparticle architectures 
have been established and investigated for therapeutic applications. In these 
systems, the hydrophilic pSar provides solubility and prevents recognition of the 
structures by the MPS, while the polypeptide section can be selected and tuned 
for drug or gene delivery.108 As polypept(o)ides are easily accessible by the mild 
chemical conditions of the NCA polymerization, a large variety of polymeric 
architectures has been synthesized, and functional side- or end groups were 
introduced and exploited for cross-linking, API incorporation, and addition of 
targeting motifs.108,194,196,204,287,288 

In their seminal publication from 2014, Birke et al. reported that for pSar-b-
poly(γ-benzyl-L-glutamate) (pSar-b-pGlu(OBn)) and pSar-b-pLys(Z), the 
succession of the block copolymerization is not relevant, and polymers with 
narrow dispersity (Ð < 1.2) can be obtained in all cases.203 The amphiphilic 
copolymers were then applied for stabilization of organic colloids and for 
encapsulation of the small molecule adenylate cyclase (cAMP) inhibitor MDL-
12.330A in polymeric micelles. Herein, MDL-12.330A is stabilized in the micelle 
core by π-π-interactions with the aromatic benzyl groups.203,289 Just recently 
Johann et al. could demonstrate the potential of the cAMP inhibitor-loaded PMs 
when immune evasion of melanoma cells was successfully inhibited leading to 
reduced tumor growth after local administration.289 In addition to the 
stabilization of organic colloids, polypept(o)ides have also been applied for the 
shielding of metal-organic frameworks (MOFs) and metal-oxide surfaces.62,290,291 
Besides polymeric micelles for hydrophobic APIs, polymersomes, so-called 
peptosomes, that allow for encapsulation of hydrophilic and/or hydrophilic cargo 
have been established by Tanisaka et al. using pSar-b-pGlu(OMe) and Weber et 
al. for pSar-b-pGlu(OBn).292,293 Moreover, non-viral transfection agents for gene 
delivery have been developed based on polypept(o)ides.59,60,294,295 For these 
systems, Heller et al. investigated the significance of the block ionomer 
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microstructure on the formation and transfection efficiency of plasmid DNA 
(pDNA) polyplexes.59 Beyond self-assembled structures, also molecular 
nanocarriers have been prepared from polypept(o)ides. Compared to their self-
assembled counterparts, molecular nanocarriers are chemically synthesized 
nanoparticles, whereby size and stability can be specified by the synthetic details. 
In particular, carrier systems with small hydrodynamic diameters, high stability 
or defined architecture can easily be prepared by these techniques.47,108,296 In 
2017, Holm et al. introduced peptostars with Poisson-like molecular weight 
distribution and small hydrodynamic diameters of 10 to 30 nm.297–299 
Interestingly, fluorescence correlation spectroscopy (FCS) in human blood plasma 
revealed the impact of branching on the shielding efficiency, since significant 
protein adsorption was observed for the 3-arm peptostars yet not for the 6-arm 
analog.298 Referring to the defined architecture, Kappel et al. recently used 
cylindrical bottlebrush polymers (peptobrushes) with a dense pSar corona to 
demonstrate the significance of the number of antibodies for active targeting of 
nanoparticles to dendritic cells in vivo.135,136,300 Therefore, fluorescently labeled 
peptobrushes based on a pLys backbone with grafted pSar100 side chains were 
precisely engineered to bear on average either 2, 6, or 12 antibodies (anti-
DEC205) per nanoparticle (Rh ≈ 23 nm), and the circulation half-life and 
biodistribution were evaluated in mice. As a result, rapid uptake by liver 
sinusoidal endothelial cells and decreased circulation times were observed with 
increasing amounts of ligands per brush, which was attributed to the recognition 
by the Fc receptor. Conversely, low amounts of anti-DEC205 were efficient for 
targeting the cells of the lymphoid organs bypassing liver accumulation, making 
peptobrushes a suitable platform for systemic cancer vaccination strategies.136 
Aiming to improve nuclear imaging and radionucleotide therapy, Stéen et al. 
designed trans-cyclooctene (TCO) functionalized peptobrushes based on pGlu 
backbones as targeting agents for bio-orthogonal in vivo click chemistry.301 For 
diagnosis, the TCO-peptobrush is administered first, whereby the small size (≈ 
10 nm) slightly above the value for renal filtration ensures optimal tumor tissue 
penetration.116,302 After 22 to 72 h, when non-accumulated peptobrushes were 
excreted, a tetrazine-functionalized radiolabeled probe with a short circulation 
half-life was injected. Consequently, the radioactive probe is only retained at the 
location of the peptobrush after the successful ultra-fast click reaction between 
tetrazine and TCO.303 The seminal pre-targeting approach thus decouples the 
tumor accumulation of the radiolabeled probe from the imaging step leading to 
enhanced contrast and reduced radiation exposure. Herein, the microstructure of 
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the TCO-modified graft copolymers encounters a specific function since the 
microphase separation of the TCO-modified amino acids improves TCO stability 
and leads to enhanced rate constants. Accordingly, the peptobrush-assisted 
TCO/tetrazine click reaction is among the fastest bio-orthogonal ligation 
techniques directing toward new drug release strategies (click-to-release) for 
tissue-selective drug release by functional nanomedicines.303  

 
Figure 8. Synthesis of CCPMs and nanohydrogels from thiol-reactive polypept(o)ides 
using secondary structure formation as a guiding element for self-assembly. Reprinted 
from Klinker et al. with permission from John Wiley and Sons (© 2017).82 

Core cross-linked polymeric micelles can be considered as hybrids of self-
assembled and molecular nanocarriers. In fact, CCPMs are synthesized from PMs 
generated by self-assembly, yet the cross-linking reaction leads to a stabilized 
single-molecule entity.46,183 Moreover, a large variety of hydrophobic cargos can 
be encapsulated and attached to the micellar core, while the release profile can 
be tuned by stimuli-responsive covalent bonds. To explore the full potential of 
disulfides as dynamic covalent bonds, Barz and co-workers previously developed 
reactive protecting groups for thiol-bearing amino acids, e.g., cysteine and 
homocysteine (Hcy).193–195,304,305 As reported by Schäfer et al., S-ethylsulfonyl-L-
cysteine NCA could be successfully polymerized using nucleophilic amine 
initiators (hard nucleophiles), and the S-ethylsulfonyl group was separately 
addressed by soft nucleophiles, e.g., thiols yielding disulfides.195,197,306 Following 
up on this, Klinker et al. synthesized block copolypept(o)ides of pSar-block-poly(S-
ethylsulfonyl-L-cysteine) (pSar-b-pCys(SO2Et).82 The secondary structure 
formation of pCys(SO2Et) was thereby used as a tool to govern the self-assembly 
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and morphology of PMs, whereby the core polarity could be tuned by hydrophilic 
or hydrophobic cross-linkers leading to CCPMs or cationic nanohydrogels as the 
extreme cases (Figure 8). Continuing the pioneering work, secondary structure 
formation will be further explored as a guiding element, and strategies for drug 
conjugation and robust production of CCPMs will be developed in this thesis. 
Furthermore, polymeric architectures that allow for stimuli-responsive cross-
linking by pro-drugs based on platinum- or ruthenium-complexes will be designed 
and evaluated for their potential to overcome drug resistance mechanisms. 
Moreover, by combining iron oxide nanoparticles with disulfide cross-linked 
CCPMs, specific delivery of iron to macrophages will be facilitated and the 
implications for macrophage activation and immunomodulation will be 
investigated. 
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Thesis Outline 

Envisioning to advance the next generation of nanomedicines this thesis aims to 
improve core cross-linked polymeric micelles as stimuli-responsive carrier 
systems for small molecule drugs and co-factors. The emerging potential of 
polypept(o)ides will be exploited and expanded to facilitate polymer synthesis, 
understand the relation of secondary structure formation on block copolymer self-
assembly, implement disease-related and external stimuli for distinct release 
profiles, and ensure robust and scalable production of CCPMs. Functional core 
architectures will be designed by combining polymer science with organic and 
inorganic chemistry, connecting therapeutic cargo and fine-tuned carriers by 
dynamic covalent bonds. The discoveries of this thesis may contribute to 
establishing novel therapeutic approaches to improve patient compliance. 

The rationale for nanomedicine and polypept(o)ides as a material class will be 
introduced in chapter 1. Herein, the basic requirements for drug delivery by 
nanomedicine and the characteristics of CCPMs will be reviewed. Moreover, NCA 
polymerization and the biomedical application of polypept(o)ides will be 
discussed. 

In chapter 2, the synthesis and polymerization of racemic S-ethylsulfonyl-DL-
cysteine NCA will be investigated to facilitate the production of thiol-reactive 
copolymers. The reduced tendency for anti-parallel β-sheet formation grants 
access to higher chain lengths with narrow molecular weight distributions. 
Increased rate constants and full monomer conversion further enable the 
synthesis of triblock copolymers (pGlu(OBn)-b-p(DL)Cys(SO2Et)-b-pSar) by 
sequential monomer addition inaccessible via the previously established 
enantiopure L-cysteine analog. 

The influence of the secondary structure on the self-assembly of thiol-reactive 
polypept(o)ides will be discussed in chapter 3. Block copolymers of β-sheet-
forming enantiopure pSar-b-p(L)Cys(SO2Et), racemic pSar-b-p(DL)Cys(SO2Et), 
and α-helical pSar-b-p(L)Hcy(SO2Et) will be prepared. The tendency for 
aggregation will be investigated by dynamic light scattering (DLS) during solvent 
switch considering various chain lengths of the hydrophobic segment. The 
significance of α-helix, anti-parallel β-sheet, and racemic β-sheet will be connected 
to the morphology of the CCPMs by applying TEM and atomic force microscopy 
(AFM).  
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For CCPMs based on pSar-b-p(L)Cys(SO2Et), the influence of the core cross-
linking on nanocarrier stability will be evaluated in chapter 4. Copolypept(o)ides 
with a short and a long cross-linkable p(L)Cys(SO2Et) segment will be combined 
with mono-, bi-, or tri-functional thiol reagents leading to varied cross-linking 
densities. The cross-linked and non-cross-linked PMs will be subjected to detailed 
analysis by asymmetrical flow field-flow fractionation (AF4) and fluorescence 
correlation spectroscopy (FCS) in phosphate-buffered saline (PBS) or human 
blood plasma. Distinct structure-activity relationships will be examined and 
related to the circulation half-life and biodistribution of fluorescently labeled 
CCPMs after intravenous administration to mice.  

Within chapter 5, the synthetic strategy for CCPMs based on pSar-b-
p(L)Cys(SO2Et) will be adjusted for scale-up by a continuous flow process. An 
optimized setup will be presented that allows for particle synthesis via 
micromixers and online purification by tangential flow filtration. Stimuli-
responsive conjugation of paclitaxel (PTX) pro-drugs will be performed by a 
decoupled drug loading procedure. The prepared PTX-loaded CCPMs will be 
characterized and investigated for their therapeutic potential in cell culture and 
zebrafish larvae compared to state-of-the-art treatment by nanoparticle albumin-
bound PTX.  

Light as an external trigger for drug release of CCPMs will be discussed in 
chapter 6. Polypept(o)ides based on pSar-b-pGlu will be combined with 
polypyridyl ruthenium(II) complexes resembling cytotoxic cisplatin yet granting 
access to photoinduced ligand exchange reactions. The side chain of pGlu will be 
functionalized with aromatic nitrile moieties by post-polymerization modification 
reaction followed by core cross-linking with bifunctional ruthenium(II) complexes. 
The influence of the nitrile linker on nanoparticle morphology will be evaluated 
by AFM and TEM, and the practical application will be assessed in cell culture 
and by analysis in the in ovo model.  

The significance of drug-resistance mechanisms will be covered in chapter 7, 
whereby polypept(o)ides are applied to overcome cisplatin resistance. Differential 
expression of the ion channel LRRC8A will be correlated to the survival of head 
and neck cancer patients under cisplatin therapy. Cisplatin-resistant head and 
neck cancer cells lacking LRRC8A mediating drug uptake will be generated and 
sequenced. Polypept(o)ides of pSar-b-pGlu(ONa) will be synthesized to reversibly 
conjugate cisplatin via the carboxyl group leading to small-sized polymeric 
micelles (NPCis) with narrow polydispersity. The colloidal particle stability and 
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the potential to bypass LRRC8A-induced drug resistance will be evaluated in 
zebrafish embryos and cell culture.  

In chapter 8, the implications of the specific delivery of iron to macrophages will 
be investigated. Iron oxide nanoparticles (SPIONs) will be combined with CCPMs 
of pSar-b-p(L)Cys(SO2Et) and connected by surface modification with lipoic acid, 
simultaneously cross-linking the micellar core (SPION-CCPMs). Applied to 
primary murine and human macrophages, the substantiated inflammatory 
responses are evaluated by flow cytometry and quantitative polymerase chain 
reaction (qPCR) analysis. Further, the results will be correlated to activation of 
alveolar or interstitial macrophages after intratracheal administration of SPION-
CCPMs to mice, directing toward a new class of therapeutic agents for 
immunomodulation. 

The results of this thesis will be briefly summarized and discussed in chapter 9, 
and the relevance and consequences for current and future research will be 
outlined. 
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