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Summary

The aim of this thesis was to further elucidate the importance of iron in the 
pathogenesis of Alzheimer’s disease (AD). Iron has received increasing attention as 
promising biomarker due to its potential to be visualised in vivo by MRI and increasing 
evidence shows iron accumulation to be associated with cognitive decline. There are 
numerous hypotheses how iron accumulation could play a role in neuropathology/
cognitive decline, but the exact pathways involved in AD are unknown. The work 
presented in this thesis aimed to link MRI findings to a cellular substrate (Chapter 
2-3), and develop or employ innovative post-mortem brain tissue microscopy tools 
(Chapter 4-5) and stem cell models (Chapter 6), with the intention of understanding 
how iron influences microglia function in AD (Chapter 4-7).

With ever increasing MRI field strengths, the possibility to study mesoscopic 
brain alterations beyond atrophy on structural MRI becomes reality. After a brief 
overview of the importance and value of comprehensive post-mortem MRI – 
immunohistochemistry studies in order to validate the substrate of the findings 
on MRI (Chapter 2), we addressed the feasibility of using T2*-weighted 7T MRI to 
study changes in cortical lamination of the grey matter in AD (Chapter 3). Using 
post-mortem whole brain hemispheres, we could detect intracortical changes 
in structural appearance of the hippocampus and temporal lobe gyri. Further 
immunohistochemical validation found these to correlate not only with myelin 
alterations, but also iron accumulation and/or redistribution. This study suggests 
T2*-weighted MRI to be suitable for studying iron-associated changes in the myelo- 
and cytoarchitecture of specific regions, to study regional disease involvement 
independent of atrophy.

To understand how iron potentially influences disease progression or cognitive 
function, we must also understand the effect on cellular function. Therefore, we 
investigated which cell types sequestered iron in post-mortem brain tissue of 
AD patients (Chapter 4). We found iron-positive cells to display characteristic 
microglia morphology and the iron to be stored in the main iron storage protein 
ferritin. To further characterize the microglia, we developed a new multispectral 
immunofluorescence panel with an automated cell segmentation and phenotyping 
pipeline. This revealed that the ferritin light chain (FTL)-positive iron-loaded microglia 
appeared activated, exhibited as a loss of expression of several homeostatic markers 
and dystrophic morphological appearance. Additionally, of all amyloid β (Aβ) plaque-
infiltrating microglia, iron-loading microglia were the predominant subtype.

Microglia are increasingly recognized as key players in AD pathogenesis, with a 
complex phenotype requiring characterization with multiple microglia markers. 
Using our previously developed microglia multispectral immunofluorescence 
panel, we studied the expression patterns of three widely used microglia markers 
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(Chapter 5). We found all markers to show distinct, complementary, expression 
patterns, reflecting the microglia’s activation status, and depending on the (micro-)
environment. This chapter serves as a reference study aiding the interpretation of a 
wide body of literature using only one of these markers.

Even though we identified iron inside a subset of microglia in AD, which appeared 
to have a prominent dysfunctional phenotype, this data was all correlative. It is still 
unclear whether iron uptake is the cause or consequence of microglia activation and 
how iron uptake affects microglia functioning. Therefore, in chapter 6, we investigated 
the primary effect of high iron concentrations on microglia. We differentiated human 
induced pluripotent stem cells into microglia and exposed them to an increasing 
concentration of iron, in combination with different inflammatory stimuli, to try and 
replicate the ferritin+ microglia phenotype which we identified in post-mortem brain 
tissue, in vitro. Firstly, we showed that increased ferritin expression and iron uptake 
is the result of exposure to an increase of iron and not merely pro-inflammatory 
activation. Secondly, in vitro iron-loaded ferritin+ microglia appeared to be activated, 
but in contrast to previous literature using murine or peripheral macrophage models, 
proinflammatory pathways were actually dampened by the iron loading. Instead, 
microglia showed transcriptomic evidence of induced cellular toxicity and oxidative 
stress. In line with this, iron-loaded microglia appeared to be metabolically stressed 
and showed slower phagocytosis. 

All in all, in this thesis we confirmed iron homeostasis to be dysregulated in AD, and 
showed that specifically the inhomogeneous accumulation pattern in the cortex 
could serve as potential in vivo biomarker. On a more cellular level, we found that 
microglia play a prominent role in sequestering excessive iron and an association 
with activation and Aβ plaque infiltration is evident. Results obtained with induced 
pluripotent derived microglia showed microglial iron sequestration to be the 
consequence of iron accumulation rather than inflammatory activation, and to cause 
oxidative stress and dampen the immune response. 
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Discussion

Iron has been studied in Alzheimer’s disease (AD) and other neurodegenerative 
diseases for several decades. However, its involvement in many biochemical and 
cellular processes has made it challenging to understand exactly via which pathways 
iron contributes to disease pathogenesis, and secondly, how it could be leveraged as 
biomarker. Here, I will discuss how this thesis has aided to both better understanding 
the pathogenesis of AD and biomarker development, while also highlighting the 
remaining questions in the field.

1.    Iron as biomarker in AD

1.1 Iron-associated laminar changes in the cortex of AD patients
As discussed in the introduction, in 2011 the clinical guidelines for diagnosis of 
AD were updated, striving for a more accurate diagnosis and estimation of clinical 
course based on evidence from biomarkers1. While CSF and imaging biomarkers for 
Aβ and p-tau have greatly improved both diagnostics and research alike, significant 
disadvantages are the invasiveness of obtaining CSF via a lumbar puncture and the 
necessity of radioactive tracers for PET, although encouraging data is emerging on 
plasma assays for Aβ and p-tau2–6. Moreover, complementary biomarkers that could 
be predictive of disease progression and rate of cognitive decline would be incredibly 
valuable. One recently identified and promising candidate is neurofilament light, 
a marker for neuroaxonal degeneration and injury. Changes in neurofilament light 
levels are identified approximately ten years prior to the expected clinical onset7,8. 
Additionally, surrogate markers of iron accumulation, as we explored in chapter 3, 
could be interesting candidate biomarkers. Iron originally gained attraction due to 
its potential to be studied in vivo using susceptibility-weighted MRI, and because 
accumulation was found to be closely associated with both Aβ and tau pathology9–13. 
It has long been debated whether iron accumulation merely follows these two 
pathologies, or is a pathological mechanisms itself. Interestingly, recent studies 
found higher iron levels of specific cortical regions, independent of Aβ and tau load, 
, to be associated with accelerated cognitive decline14–17, which is indicative of an 
independent pathological mechanism.

Nevertheless, finding appropriate iron-associated biomarkers has not been straight 
forward. A meta-analysis revealed great heterogeneity among regions and studies 
looking at iron accumulation18. This could potentially be explained by the fact that 
it is still unresolved whether there is actually a net increase of iron in the brain, or 
iron is merely redistributed, resulting in local increases of iron, as will be discussed 
in section 1.2. Moreover, it is even suggested that within a single region iron is 
inhomogenously deposited, responsible for a laminar pattern within the cortex19,20. 
The intracortical distribution of iron has been relatively unexplored compared to 
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quantitative measurement of a net increase of total iron in the cortex or iron-rich 
regions such as the basal ganglia, even though there are several reasons making it 
worthwhile exploring. Firstly, if iron is primarily redistributed instead of net increased, 
an average measurement of iron would not be able to appreciate this. For example, 
recently Bulk et al showed that differences in the redistributive pattern of iron were 
best appreciated as local contrast changes on T2*-weighted MRI, whereas overall no 
significant differences in absolute iron concentrations were found, as measured by 
LA-ICP-MS or quantitative MRI21. Secondly, by looking at changes in the intracortical 
distribution pattern also allows for evaluation of an association with myelo- and 
cytoarchitecture, which could be a potential source of iron. For these reasons, in 
chapter 3 we set out to explore the feasibility of studying intracortical alterations 
on T2*-weighted MRI. Even though there have been tremendous advances in the 
field of MRI, and impressive resolutions can be achieved with 7T MRI, compared 
to preclinical systems, there is still a big gap in resolution for in vivo MRI. Thus, as 
bridging step between post-mortem tissue blocks and in vivo scans, we scanned 
whole brain hemispheres in a human 7T scanner, to explore whether we could detect 
the previously observed iron-associated laminar alterations on tissue blocks20, in 
these hemispheres. 

We found that we could detect earlier identified laminar changes in specific gyri of 
the temporal cortex with our human 7T scanner. There were significant differences, 
even between adjacent regions, confirming the previously noted heterogeneity 
between different cortical regions. Secondly, we verified the histological substrate 
of the observed changes; myelin was the main source of contrast in controls, and the 
myelinated pattern appeared disturbed in AD. Alongside this, in AD changes in the 
distribution of intracortical iron were observed, which followed the observed myelin 
changes and were responsible for the observed changes in cortical lamination, 
corresponding with previous literature10,20. The finding that the observed changes 
in iron distribution was associated with a disturbed myelin pattern is an important 
finding, which will be further discussed in the following section discussing the 
source of the observed iron accumulation/iron redistribution. We did not have the 
clinical information nor power to directly assess whether brains that showed the 
most considerable contrast changes reflecting iron, also showed a more progressive 
clinical history. Important to note, is that these findings were found in regions that 
showed extensive atrophy and end-stage disease, and are therefore of limited value 
for predicting future rate of cognitive decline. Therefore, even though we have shown 
that gross intracortical cytoarchitectonic alterations can be detected using a human 
7T MRI scanner, it would be worthwhile in future studies to investigate whether 
more subtle changes can be detected at an earlier stage. Moreover, to validate the 
relevance of this potential biomarker for clinical use, we must also assess whether 
an association with rate of cognitive decline exists for cortical lamination changes, 
as exists for certain net quantitative measures. Following, although two in vivo 

Chapter 7186

Full thesis merge_BK (v3).indd   186Full thesis merge_BK (v3).indd   186 26/04/2022   06:4626/04/2022   06:46



studies already achieved sufficient resolution to study intracortical iron distribution 
changes11,22, it should be studied whether these specific AD-associated cortical 
lamination alterations can be detected in vivo.

1.2 Origin of iron accumulation/redistribution
With biomarker data suggesting iron to be a correlate of AD disease or clinical cognitive 
decline, it is important to uncover the origin of the observed iron accumulation, in 
order to find a specific therapeutic target. However, this remains one of the biggest 
questions in the field. In the introduction I explained how iron enters the brain via the 
blood brain barrier (BBB) and how it is subsequently transferred and stored (Chapter 
1, Fig. 2). Taking this into consideration, I will discuss two possibilities of how iron 
can accumulate in the brains of AD patients. Firstly, it is most commonly proposed 
that excessive iron could enter the brain from the blood, where erythrocyte heme 
is a major iron-storage pool, due to an imbalance between iron influx and efflux. 
Considering iron’s indispensable role during neurodevelopment and physiological 
processing 23, it is important for the brain to prioritize receiving sufficient iron. While 
the entering of iron into the brain has been clearly described, it is unclear how iron 
can leave the brain, other than via a bleeding24. Such an imbalance would also explain 
the general increase of iron observed in aging. In light of clinical evidence of the role 
of iron in AD15–17, a hypothesis could be that specifically subjects with an increased 
iron influx, are susceptible to cognitive decline with age. Another explanation for 
increasing quantities of iron to enter the brain could be chronic BBB breakdown. 
Both in aging and AD, BBB breakdown is observed and found to be associated with 
cognitive decline25–27. It was shown using both murine transgenic models28 and 
human tissue29,30 that iron can enter the brain due to BBB breakdown, either as free 
iron or in hemosiderin. 

Alternative to an increased influx of systemic iron, a second possibility for increased 
brain iron accumulation in certain regions, is a redistribution of brain iron. 
Oligodendrocytes have the highest iron content of all central nervous system (CNS) 
cell types and the majority of iron is associated with myelin31,32. As was indicated in 
the previous section discussing the results from chapter 3, we found iron alterations 
to colocalize with structural myelin alterations in the cortex of AD patients, which has 
previously also been noted by others20,33,34. Additionally, cortical iron reflects regional 
severity of AD pathology9,35, and it appears that especially cortical regions with the 
most protracted myelin development are vulnerable to myelin disruption and AD 
pathology such as Aβ-plaques and neurofibrillary tangles. Therefore, this would 
provide an explanation for the specific regional distribution of increased iron levels, 
which appears to coincide with AD pathology. 

All in all, detection of intracortical alterations on T2*-w MRI could be an interesting 
non-invasive biomarker that would potentially be a more accurate marker for iron 
dyshomeostasis and associated accelerated cognitive decline than quantitative 
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measurement of net iron concentrations. Nonetheless, further mechanistic 
understanding of where iron originates from and influences AD pathogenesis is 
necessary to interpret these biomarker findings. For example, we found that the 
changes in iron reflected structural myelin alterations and recently it has been shown 
that myelin degeneration can contribute to both age-related and AD-associated 
cognitive decline36,37. Therefore it could be that the iron is redistributed from iron-
rich oligodendrocytes as a consequence of myelin degeneration, which could be the 
actual driver of accelerated cognitive decline. 

2.    Microglial iron accumulation 

Following from the previous section, where we discussed that increasing iron was 
potentially coming from the blood, or alternatively redistributed from degenerating 
myelin, the second crucial question is how iron is subsequently sequestered in the 
brain. As previously mentioned, iron appears to be inhomogenously deposited in 
a laminar pattern within the cortex19,38, predominantly in regions that display more 
severe AD pathology9,35. Iron is also specifically found to accumulate in Aβ-plaques 
and neurofibrillary tangles39–41. In chapter 4, we studied which cell types sequester 
iron in AD, and found significant iron accumulation in microglia in the temporal cortex 
of AD patients. This confirmed earlier suggestions of microglial iron sequestration 
in AD38,42,43. Preferential sequestering of pathognomonic iron by microglia is also 
observed in other diseases such as multiple sclerosis; here the source of iron is clearer, 
as cellular degeneration in lesions leads to iron release from oligodendrocytes, which 
is predominantly taken up by microglia and macrophages44–46.

In chapter 4, We further characterized these iron-loaded microglia, and found 
significant expression of FTL suggesting the majority of iron to be stored in an 
inactive form inside ferritin. These findings coincide with observations made 
several decades ago, in which researchers observed dystrophic microglia with 
positive expression for ferritin in AD patients39,47–49. Additionally, we conclusively 
showed that these ferritin+ microglia preferentially infiltrate Aβ plaques, which 
is in agreement with earlier studies39,47,50–52. What the potential effect is from a 
combination of exposure to higher iron-levels in combination with other stimuli 
such as Aβ fibrils, will be discussed in section 4. Furthermore, we showed these iron-
accumulating FTL+ microglia to lack TMEM119- and P2RY12-expression, which both 
are considered homeostatic markers. However, whether specific markers can really 
differentiate between ‘activated’ or ‘homeostatic’ function remains disputed. How 
microglia should instead be phenotyped and studied in post-mortem tissue will be 
discussed more elaborately in section 3. When evaluating another feature that can 
be informative regarding functional status, namely morphology, iron-loaded ferritin+ 
microglia appeared dystrophic, as was reported in earlier studies. This corresponds 
with the fact that dystrophic, rather than activated microglia are increased in AD53, 
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which cannot be attributed to aging and microglia senescence54. However, the same 
applies as for specific protein-based markers; what these morphological subtypes 
mean for microglial function is still poorly understood. 

More evidence pointing towards iron dyshomeostasis as contributor to microglia 
dysfunction in AD comes from transcriptomic data. Novel single cell or single nuclei 
RNA-sequencing (sc/snRNAseq) methods performed on both murine AD models 
and human post-mortem AD brains, identified specific disease-associated microglia 
(DAM) transcriptomic states55–58, which are thought to play in important role in AD 
pathogenesis. Notably, iron-related genes appeared among the top differentially 
expressed genes in microglia in all studies. Whereas the murine studies characterized 
these DAM as activated, and found them to specifically infiltrate Aβ plaques, a direct 
link between transcriptomic states and immunohistochemistry (IHC) findings has not 
been made for the human studies. Nguyen et al. attempted this in human AD tissue, 
but instead of a DAM-state, identified different transcriptomic microglia states and 
coined them homeostatic, amyloid responsive and dystrophic states, based on their 
appearance on corresponding IHC59. Contrary to previous literature and our own results 
(chapter 4), they only found infiltration of Aβ plaques from their amyloid-responsive 
cluster, characterized by CD163 expression, and did not see this association with Aβ 
plaques in their ferritin+ dystrophic microglia. Using more novel high-dimensional 
techniques, it is now evident that microglia adopt complex functional states, which 
show only partial overlap with historically defined morphological and single/double 
marker phenotypes. Therefore, microglia characterized with only one or two markers 
are still very heterogenous, and studying them as one microglia subtype can lead 
to conflicting results. Moreover, none of the commonly used microglia markers can 
be considered a pan-marker that detects all subtypes, as was shown in Chapter 5; 
studies quantifying microglia populations should be read with this in mind. However, 
this is not to say that post-mortem IHC has lost its value in research. First of all, in 
IHC the spatial context is preserved, critical for understanding disease pathology. The 
advent of spatial transcriptomics now also enables studying the full transcriptome 
on an almost cellular level. However, additional to the spatial context, the functional 
and clinical relevance of these defined transcriptomic states needs to be explored. 
Considering FFPE tissue has been collected for many decades, a wealth of tissue is 
available from patients that have been followed up clinically and of patients with 
potentially informative rare genetic variants. Therefore, it is now important to validate 
and further explore the previously identified high-dimensional transcriptomic or 
proteomic states in larger clinical cohorts of which FFPE tissue is available, as will be 

discussed in section 3. 

3.    Tools for studying the heterogeneity of microglia in human tissue 

Technological advances have enabled researchers to study many complex cell 
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processes in parallel and on a single-cell level, and consequently these big data 
approaches are now transforming many areas of the life sciences60. For microglia 
specifically, an example of the influence big data/single-cell approaches have had 
on the field, is the transition from a hypothesis of binary microglia polarization 
(M1 pro-inflammatory vs M2 anti-inflammatory), to multiple functional activation 
states. Whether microglia can actively switch between functional activation states 
is still poorly understood. These functional states can be both physiological, or in 
response to pathological stimuli, and in theory are thought to be both beneficial 
and detrimental. An enormous advantage of these approaches is that different cell 
types, pathways and markers can be studied in a largely unsupervised and unbiased 
fashion. 

Nevertheless, even though the identification of functional states such as DAM is 
very promising, we still do not have a clear understanding of their role in disease, or 
their clinical relevance. To facilitate this type of research, in chapter 4 we designed 
a multispectral immunofluorescence (mIF) panel for FFPE tissue which allows for 
staining up to six different markers, to more accurately identify functional states 
identified with -omic approaches, while preserving spatial structure. As stated before, 
phenotyping with more than two/three markers (which is the current standard) is 
required to accurately characterize the microglia. Additional to the mIF panel, we 
developed a pipeline that can segment microglia, including their processes, in 2D 
images and assign phenotypes. Therefore, mIF with subsequent microglia analysis 
pipeline will allow for high-throughput evaluation of specific microglia phenotypes 
in FFPE tissue of many different large cohorts. This will facilitate exploration of the 
stage at which different phenotypes occur, the association with clinical disease 
progression and/or cognitive decline, and the interaction of phenotypes with other 
types of proteins and cell types.

Also other methods are available for more high-dimensional in situ imaging studies. 
Imaging Mass Cytometry (IMC) (Fluidigm) and Multiplexed Ion Beam Imaging (MIBI) 
are two relatively recent technologies, enabling simultaneous analysis of up to 40 
protein markers61. They both rely on the detection of metal-conjugated antibodies, 
and the instrument uses bright ion sources and orthogonal time-of-flight mass 
spectrometry to image the metal-conjugated antibodies on tissue sections62,63. 
Although this technique is clearly superior to mIF in its ability to characterize specific 
subsets with many more markers, there are also a few downsides. Firstly, optimizing 
an IMC panel is laborious and requires a great deal of expertise and time, evident from 
the fact that the largest panels for the brain to date only include 7-15 markers64–66. 
Secondly, IMC and MIBI are slow and expensive, enabling only imaging of selected 
regions of interests, rather than whole slides, making them hardly high throughput. 
Thirdly, the resolution that can be achieved with time-of-flight mass spectrometry 
does not allow for accurately identifying microglial cells with complicated 
morphology (i.e. hyperbranching or process fragmentation). Unfortunately, for both 
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mIF and IMC/MIBI specialized equipment is necessary in order to image the slides, 
impeding their use in many standard laboratories. 

4.    Molecular consequences of microglial iron accumulation

By now we have discussed all the knowledge we have obtained on iron accumulation 
and cellular distribution, either in an in vivo setting or using post-mortem brain 
tissue. However, post-mortem tissue is limited in the fact that cells are fixed, and the 
obtained data is correlative. Therefore, to understand how iron influences microglia 
function on a molecular level one must also adopt other models.

A lot of what we currently know about microglia function is based on studies using 
murine microglia. Although the use of both immortalized murine microglial cell lines 
and primary murine microglia have greatly expanded our knowledge, important 
differences were found between human and murine microglia67–69. For instance, 
41% of human genes lack convincing mouse orthologs70, and in AD 15 of the 44 risk 
genes implicated via GWAS studies lack clear mouse orthologs71–73. An alternative 
is the use of primary human microglia, which can be isolated in limited numbers 
from surgically resected brain tissue. Next to the limited availability of such tissue, 
primary microglia were found to undergo rapid transcriptomic and phenotypic 
changes upon isolation from the brain68,74. To tackle these problems, several labs have 
created protocols to differentiate microglia in vitro from induced pluripotent stem 
cells (iPSC)75–81. This has enabled the production of high numbers of microglia-like 
cells from a single genetic background, in a reproducible manner, and the potential 
to elucidate the effect of specific disease-associated genetic variants on microglia 
function. A weakness, however, is these iPSC-derived microglia still lack the crucial 
microenvironment, required to fully recapitulate the transcriptional signatures that 
are found in post-mortem isolated microglia. For this purpose, very recently, groups 
have also developed protocols to study microglia within 3D organoids, or even 
transplanted progenitors into mouse brains with a human CSF1 knock-in (essential 
for microglial growth survival), which enables more accurate recapitulation of human 
microglia and the potential to study interactions with other cell types73,82–85. However, 
even though the complexity of these advanced models will enable more accurate 
disease modelling and is required for addressing specific research questions, it is also 
increasingly difficult to implement across different labs. Therefore, in this thesis we 
settled for the use of a monoculture of iPSC-derived microglia (chapter 6), as this still 
enables high throughput investigation with enhanced experimental control, while 
employing a humanized model. 

In chapter 6 we used a human iPSC-derived microglia (iPSC-MG) model, to study 
the direct effect of iron loading, with and without an additional pro-inflammatory 
stimulus, on microglia function. Firstly, we found that iron, rather than inflammatory 
stimuli such as the type two II interferon gamma (IFNγ) or Aβ, induced ferritin+ 
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microglia. Therefore, even though ferritin expression is historically considered to 
reflect inflammation86, in line with it being an acute phase reactant in plasma, in 
microglia it appears to reflect iron loading rather than inflammatory activation per 
se. This is in line with results from chapter 4, where we found ferritin+ microglia 
to reflect iron-laden microglia, and literature showing that CSF ferritin levels were 
not associated with an inflammatory response in AD87. Vice versa, in our iPSC-MG 
model iron did not induce proinflammatory activation via activation of the NLRP3 
inflammasome following NF-kB pathway activation, as had previously been reported 
in murine macrophages and microglia88,89. However, also in murine macrophages these 
reports were not consistent, as other studies found iron to inhibit proinflammatory 
polarization, or to even induce antagonistic anti-inflammatory polarization90–92. 
Instead, our iPSC-MG showed transcriptomic evidence of cellular toxicity and 
activated oxidative stress pathways such as NRF2, likely as a response to the induction 
of reactive oxygen species (ROS). Furthermore, we found slower phagocytosis and 
reduced mitochondrial metabolism capacity in iron-treated ferritin+ iPSC-MG, also 
indicative of the microglia being more stressed (chapter 6). Interestingly, in human 
post-mortem tissue, ferritin expression is almost exclusively found in microglia with 
a dystrophic morphological appearance, which is often regarded as the microglia 
being senescent, meaning they show cessation of cell division. NLRP3 inflammasome 
activation was potentially expected, considering the increase of intracellular labile 
iron induced the rise of ROS, which could subsequently result in NLRP3 activation. 
However, from our results, it appears that following exposure to an increased 
concentration of iron, iron is stored in a non-toxic ferric form inside ferritin, and the 
pathways activated even negate potential proinflammatory activation which the 
increased labile iron pool could induce. However, important to note is that in our 
study iPSC-MG were only short-term exposed to iron for a short period of time (24 
hours), whereas microglia in a neurodegenerative brain are exposed to iron for years.

Microglia have been shown to play a causative role in the development of AD 
pathology and downstream cognitive impairment. Evidence from murine studies in 
which microglia are depleted using the CSF1R inhibitor PLX5622 clearly showed that 
microglia can affect plaque formation and negatively affect cognition93,94. Also when 
inducing more subtle changes to microglia function, for example by crossing AD 
mouse models with full knock-outs or variants of microglia-specific genetic variants 
identified in GWAS studies, such as TREM2, or transplanting human iPSC-derived 
microglia with a TREM2 knock-out, microglia function was found to be altered 
and subsequentially affect development of Aβ and tau pathology95–98. Chapter 6 
provides ample evidence that iron affects microglia phenotype, although likely not 
via classical proinflammatory activation, but rather via the generation of ROS and 
subsequent induction of oxidative stress. Nevertheless, one remaining questions is 
how iron-loaded ferritin+ microglia affect disease progression and lead to downstream 
neurodegeneration. A previous study demonstrated that iron-induced ROS 
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production in microglia was regulated via NADPH oxidative (NOX) signaling92, and 
it was recently suggested that the generation of ROS can initiate a self-perpetuating 
cycle of ROS generation by microglia via NOX signaling, causing oxidative stress, 
inflammation and downstream neurotoxicity99. Alternatively, as proposed in section 
2, iron can potentially contribute to development of DAM or another dysfunctional 
microglia subtype. We showed with targeted gene-expression analysis of iron-treated 
microglia, that overlap with the DAM transcriptomic signature exists. Moreover, one 
important gene which was found to be upregulated in iron-loaded microglia was 
CTSB. CTSB encodes Cathepsin B, which is a mediator of the iron-dependent cell-
death pathway ferroptosis100. Ferroptosis is important to highlight, considering it has 
repeatedly been proposed as potential mechanism for neurodegeneration17,101,102 
and microglia were also found to be susceptible to ferroptotic cell death103. All in 
all, microglia phenotypes in AD are likely a result of responses to many different 
pathogenic stimuli present in AD brains, and iron loading could serve as additional 
stressor and contribute to a dysfunctional state. Nevertheless, as emphasized in 
section 3, although the recent identification of disease-associated transcriptomic 
subtypes of cells such as DAM is very promising, we still poorly understand how 
these specific transcriptomic disease-associated states or other dysfunctional 
phenotypes such as dystrophic, ferroptotic or oxidatively stressed microglia, play a 
role in the pathological cascade of AD and can lead to neurodegeneration. Further 
investigation is warranted to study the consequence of these microglia states on 
the function of other cell types, such as neurons and astrocytes, and on AD disease 
progression. This would require a variety of models, such as stem-cell co-culture 
models, but also slice culture and murine AD models, where ferritin+ microglia or 
other dysfunctional subtypes of microglia can be induced in a controlled setting and 
the microglia-autonomous and non-autonomous effects can be studied. 

As mentioned in section 2 and crucial to highlight again, on top of mechanistic insight 
we need to research the clinical relevance of these findings, to establish whether 
iron influences disease progression by affecting microglia phenotype and function. 
What is interesting about the hypothesis of microglia-mediated iron toxicity, is that it 
could potentially also be applicable to other neurodegenerative diseases. Although 
outside of the direct scope of this thesis, iron accumulation, and more specifically 
ferritin+ microglia, have also been observed in Huntington’s disease and Multiple 
Sclerosis44,46,104. Additionally, although not in the same disease, the clinical observation 
that iron levels correlate with accelerated cognitive decline have now also been 
reported in Parkinson’s disease and Amyotrophic lateral sclerosis105–107. Similar findings 
on iron-associated cognitive decline across different neurodegenerative diseases 
increase the likelihood of a common mechanism being responsible for the observed 
clinical effect, independent of disease-specific pathologies such as Aβ and tau. 
Microglia-mediated iron toxicity would be a potential candidate for such a common 
mechanism. Finally, this is not to say that iron accumulation plays an important role in 
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all patients with AD. There is great heterogeneity in the extent of iron accumulation 
between patients, and the observed negative clinical effect is primarily observed in 
subpopulations of patients with higher iron loads 16,17. Especially for these patients, 
iron-targeting therapies would be promising, and different validated iron biomarkers 

will be essential in identifying these subpopulations. 

5.    Concluding remarks

Thanks to the genetic revolution in recent decades, considerable advances in 
understanding AD pathogenesis, development of useful biomarkers and identification 
of potential therapeutic targets have been made. Nevertheless, no effective drugs 
have been developed that can halt or reverse neurodegeneration and its associated 
cognitive decline. Therefore, the main aim of this thesis was to gain understanding 
in one potential factor that can contribute to AD pathogenesis, namely iron, and 
explore whether it could be utilized as potential biomarker or therapeutic target. 

We and others showed that iron-associated changes can be identified on 7T MRI 
(Chapter 3). However, to date crucial information with regard to where the iron 
is coming from, and whether it is actually accumulating in the brain or primarily 
redistributed between (cellular) compartments, is missing. This would be essential 
in order to develop appropriate biomarkers that should detect specific stages 
of disease pathogenesis and/or therapies that aim to prevent the initial influx or 
redistribution of iron. We are starting to understand what the consequences are of 
brain iron accumulation, although there are still some important missing links. On 
one hand, on a clinical level, increasing iron levels have been shown to be associated 
with accelerated disease progression from MCI to AD and accelerated cognitive 
decline16,17,108. This is accompanied by findings of increased iron in specific layers and 
regions of the cortex, associated with structural myelin alterations (Chapter 3), and 
cellular iron accumulation in microglia (Chapter 4). On the other hand, experimental 
models have shown iron to activate specific molecular oxidative stress and cellular 
detoxification pathways in microglia (Chapter 6), that can lead to functional 
cellular changes. Nevertheless, this does not conclusively mean that these in vitro 
pathways directly lead to the observed clinical effect. It is now crucial to translate 
these experimental findings back to the patient, to dissect its clinical relevance. For 
example, by applying novel techniques, such as multispectral immunofluorescence 
(Chapter 4/5) or snRNAseq, to well-characterized clinical cohorts, one can gain 
understanding of the clinical relevance of our experimental findings. Once we have 
a better understanding of how iron contributes to disease pathogenesis, it will also 
enable us to identify appropriate therapeutic targets and subpopulations of patients 
that could benefit from these therapies, for AD but also other neurological disorders 
that show iron accumulation.
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