

Towards photocatalytic water splitting in homogeneous solutions using molecular metalloporphyrin photosensitizers and catalysts Liu, C.

## Citation

Liu, C. (2022, June 8). Towards photocatalytic water splitting in homogeneous solutions using molecular metalloporphyrin photosensitizers and catalysts. Retrieved from https://hdl.handle.net/1887/3307681

Version: Publisher's Version

Licence agreement concerning inclusion

License: of doctoral thesis in the Institutional

Repository of the University of Leiden

Downloaded from: <a href="https://hdl.handle.net/1887/3307681">https://hdl.handle.net/1887/3307681</a>

**Note:** To cite this publication please use the final published version (if applicable).

## PROPOSITIONS (STELLINGEN)

Accompanying the thesis

## Towards Photocatalytic Water Splitting in Homogeneous Solutions Using Molecular Metalloporphyrin Photosensitizers and Catalysts

- In order to realize full photocatalytic water splitting, it is imperative to find effective electron relays coupling the water oxidation and hydrogen evolution half-reactions. (C. Wang, et al., Nat. Chem. 2021, 13, 358-366)
- 2. Porphyrin is a versatile ligand scaffold for building molecular catalysts, both for water oxidation and hydrogen evolution. (*This thesis and R. Cao, et al., Chem. Rev.* 2017, 117, 3717-3797)
- The design and fine-tuning opportunities available for molecular photosensitizers and catalysts represent a significant advantage over heterogeneous photoactive materials. (S. Masaoka, et al., Chem. Soc. Rev. 2021, 50, 6790-6831)
- 4. The classical metal complex [Ru(bpy)<sub>3</sub>]<sup>2+</sup> is used too often as a standard photosensitizer in the development of new catalysts for water oxidation or hydrogen evolution. (*This thesis, Chapter 2 & 3 and K. B. Yoon, et al., ACS catal.* 2016, 6, 8361-8369)
- 5. Fine-tuning the electron-density of a catalytic center by using appropriate substituents allows for balancing the driving forces of catalytic water oxidation vs. that of the electron transfer from the catalyst to the photo-oxidized photosensitizer. (*This thesis, Chapter 2*)

- 6. It is not necessary to functionalize hydrogen-evolving catalysts with electron-donating groups to enhance their catalytic activity. (*This thesis, Chapter 3*)
- 7. A well-designed molecular photosensitizer balances the redox potentials of its ground-state and excited state. (*This thesis, Chapter 4*)
- 8. Details of the photocatalytic mechanism must be known to predict which influence substituting the photosensitizer or catalyst with electron-donating or electron-withdrawing groups will have on the photocatalytic properties of the system. (*Thesis, Chapter 2, 3 & 4*)
- An experimental set-up for studying photocatalysis is easy to use but not easy to design.
- A successful duplicate experiment may not solve all your problems, but it will bring the confidence you need.
- 11. Balance needs to be found in many aspects of life, not only in photocatalysis.