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a b s t r a c t

Recurrent neural networks (RNNs) are a powerful approach for time series prediction. However, their
performance is strongly affected by their architecture and hyperparameter settings. The architecture
optimization of RNNs is a time-consuming task, where the search space is typically a mixture of real,
integer and categorical values. To allow for shrinking and expanding the size of the network, the
representation of architectures often has a variable length. In this paper, we propose to tackle the
architecture optimization problem with a variant of the Bayesian Optimization (BO) algorithm. To
reduce the evaluation time of candidate architectures the Mean Absolute Error Random Sampling
(MRS), a training-free method to estimate the network performance, is adopted as the objective
function for BO. Also, we propose three fixed-length encoding schemes to cope with the variable-
length architecture representation. The result is a new perspective on accurate and efficient design of
RNNs, that we validate on three problems. Our findings show that (1) the BO algorithm can explore
different network architectures using the proposed encoding schemes and successfully designs well-
performing architectures, and (2) the optimization time is significantly reduced by using MRS, without
compromising the performance as compared to the architectures obtained from the actual training
procedure.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

With the advent of deep learning, deep neural networks
DNNs) have gained popularity, and they have been applied to
wide variety of problems [1,2]. When it comes to sequence
odeling and prediction, Recurrent Neural Networks (RNNs) have
roved to be the most suitable ones [2]. Essentially, RNNs are
eedforward networks with feedback connections. This feature
llows them to capture long-term dependencies among the input
ariables. Despite their good performance, they are very sensitive
o their hyperparameter configuration and hard to train [1,3–5].

Finding an appropriate hyperparameter setting has always
been a difficult task. The conventional approach to tackle this
problem is to do a trial/error exploration based on expert knowl-
edge. In other words, a human expert defines an architecture,
sets up a training method (usually a gradient descent-based al-
gorithm), and performs the training of the network until some
criterion is met. Lately, automatic methods based on optimization
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algorithms, e.g., grid search, evolutionary algorithms or Bayesian
optimization (BO), have been proposed to replace the human
expert. However, due to the immense size and complexity of the
search space, and the high computational cost of training a DNN,
hyperparameter optimization still poses an open problem [1,4].

Different approaches have been proposed for improving the
performance of hyperparameter optimization, ranging from evo-
lutionary approaches (a.k.a. neuroevolution) [4], to techniques to
speed up the evaluation of a DNN [6,7]. Among these approaches,
the Mean Absolute Error Random Sampling (MRS) [6] poses a
promising ‘‘low-cost, training-free, rule of thumb’’ alternative to
evaluate the performance of an RNN, which drastically reduces
the evaluation time.

In this study, we propose to tackle the architecture optimiza-
tion problem with a hybrid approach. Specifically, we combine
BO [8,9] for optimizing the architecture, MRS [6] for evaluating
the performance of candidate architectures, and ADAM [10] (a
gradient descent-based algorithm) truncated through time for
training the final architecture on a given problem. We benchmark
our proposal on three problems (the sine wave, the filling level of
217 recycling bins in a metropolitan area, and the load demand
forecast of an electricity company in Slovakia) and compare our
results against the state-of-the-art.

https://doi.org/10.1016/j.asoc.2021.107356
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Therefore, the main contributions of this study are:

• We define a method to optimize the architecture of an RNN
based on BO and MRS that significantly reduces the time
without compromising the performance (error),
• We introduce multiple alternatives to cope with the variable-

length solution problem. Specifically, we study three encod-
ing schemes and two penalty approaches (i.e., the infeasible
representation and the constraint handling), and
• We propose a strategy to improve the performance of the

surrogate model of BO for variable-length solutions based
on the augmentation of the initial set of solutions, i.e., the
warm-start.

The remainder of this article is organized as follows: Sec-
tion 2 briefly reviews some of the most relevant works related
to our proposal. Section 3 introduces our proposed approach.
Section 4 presents the experimental study, and Section 5 provides
conclusions and future work.

2. Related work

In this Section, we summarize some of the most relevant
works related to our proposal. First, we introduce the archi-
tecture optimization problem and some interesting proposals
to tackle it in Section 2.1. Second, we present the neuroevo-
lution, a research line for handling the problem (Section 2.2).
After briefly reviewing the Mean Absolute Error Random Sam-
pling (MRS) method in Section 2.3 we finally introduce Bayesian
Optimization in Section 2.4.

2.1. Architecture optimization

The existing literature teaches us on the importance of opti-
mizing the architecture of a deep neural network on a particular
problem, including, for example, the type of activation func-
tions, the number of hidden layers, and the number of units
for each layer [11–13]. For DNNs, the architecture optimization
task is usually faced by either manual exploration of the search
space (that is usually guided by expert knowledge) or by au-
tomatic methods based on optimization algorithms, e.g., grid
search, evolutionary algorithms or Bayesian optimization [4].

The challenges here are three-fold: firstly, the search space is
typically huge due to the fact that the number of the parameters
increases in proportion to the number of layers. Secondly, the
search space is usually a mixture of real (e.g., the weights), integer
(e.g., the number of units in each layer) and categorical (e.g., the
type of activation functions) values, resulting in a demanding
optimization task: different types of parameters naturally require
different approaches for handling them in optimization. Last,
the architecture optimization falls into the family of expensive
optimization problems as function evaluations in this case are
highly time consuming (which is affected both by the size of
training data and the depth of the architecture). In this paper, we
shall denote the search space of architecture optimization as H.
The specification ofH depends on the choice of encoding schemes
of the architecture (see Section 3.1).

To tackle the mentioned issues, many alternatives have been
explored, ranging from reducing the evaluation time of a configu-
ration (e.g., early stopping criteria based on the learning curve [7]
or MRS [6]) to evolving the architecture of the network (neu-
roevolution).

On the other hand, when it comes to RNN optimization, there
are two particular issues: the exploding and the vanishing gra-
dient [3]. Many alternatives have been proposed to tackle with
this problems [5]. One of the most popular ones is the Long Short
Term Memory (LSTM) cell [14]. However, in spite of its ability
to effectively deal with these issues, the problem still remains
open, because the learning process is also affected by the weight
initialization strategy [15] and the algorithm parameters [1].
2

2.2. Neuroevolution

Neuroevolutionary approaches typically represent the DNN ar-
chitecture as solution candidates in specifically designed variants
of state-of-the-art evolutionary algorithms. For instance, genetic
algorithms (GA) have been applied to evolve increasingly com-
plex neural network topologies and the weights simultaneously,
in the so-called NeuroEvolution of Augmenting Topologies (NEAT)
method [16,17]. However, NEAT has some limitations when it
comes to evolving RNNs [18], e.g., the fitness landscape is decep-
tive and a large number of parameters have to be optimized. For
RNNs, NEAT-LSTM [19] and CoDeepNeat [20] extend NEAT to mit-
igate its limitations when evolving the topology and weights of
the network. Besides NEAT, there are several evolutionary-based
approaches to evolve an RNN, such as EXALT [21], EXAMM [22], or
a method using ant colony optimization (ACO) to improve LSTM
RNNs by refining their cellular structures [23].

A recent work [24] suggested to address the issue of huge
training costs when evolving the architecture. In that research,
the objective function, that is usually evaluated by training the
candidate network on the full data set evolved by a complete
training of the candidate network, instead it is approximated by
the so-called MAE random sampling (MRS) method, in which no
actual training is required. In this manner, the time required for
a function evaluation is drastically reduced in the architecture
optimization process.

2.3. Mean Absolute Error Random Sampling

MAE Random Sampling is an approach to evaluate the ex-
pected error performance of a given architecture. First, the
weights of the network are randomly initialized. Second, the error
is calculated (i.e., the real and expected output are compared).
This two-step process is repeated, and the errors are accumulated.
Then, a probabilistic density function (e.g., a truncated normal
distribution) is fitted to the error values. Finally, the probability
of finding a set of weights whose error is below a user-defined
threshold is estimated. In other words, by using a random sam-
pling of the output (error), we are estimating how easy (i.e., a
high probability) it would be to find a good (i.e., small error) set
of weights.

Given a training data set D = {(xi, yi)}Ni , xi ∈ Rn, for a given
etwork architecture h ∈ H and Q i.i.d. random weight matrices
Wi}

Q
i=1,Wi ∼ N (0, I), the Mean Absolute Error (MAE) of this RNN

s denoted as E = {MAE(D,h, t,Wi)}
Q
i=1, where t is the number of

ime steps in the past used for the prediction. Let µ and σ denote
he sample mean and standard deviation of the error sample E .
hen the so-called Mean Absolute Error Random Sampling (MRS)
easure is defined as the empirical probability of obtaining a
etter error rate than a user-specified threshold pm:

rs(D,h, t, pm,Q ) =
Φ

( pm−µ

σ

)
−Φ

(
−

µ

σ

)
1−Φ

(
−

µ

σ

) , (1)

where Φ stands for the cumulative distribution function (CDF)
of the standard normal distribution. The MRS value is calculated
from a truncated normal distribution (on the interval [0,∞)),
whose location and scale parameters are set to the sample mean
µ and standard deviation σ , respectively. Throughout this paper,
we shall set pm to 1%. Intuitively, the higher MRS value a network
architecture that yields a higher MRS value would be more likely
to possess a much smaller (hence better) MAE rate after the back-
propagation training. Hence, it seems promising to use MRS as a
training-free estimation for the performance of neural networks.

In this paper, we shall adopt MRS as the objective function
(that is subject to maximization) for the architecture optimiza-
tion. For a detailed discussion of MRS, please refer to [6].
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.4. Bayesian optimization

The so-called Bayesian Optimization (BO) (a.k.a. Efficient Global
ptimization) [8,9] algorithm has been applied extensively for
utomated algorithm configuration tasks [25–27]. Bayesian op-
imization is a sequential global optimization strategy that does
ot require the derivatives of the objective function and is de-
igned to tackle expensive global optimization problems. Given
real-valued maximization problem f :H → R (e.g., f = mrs

n the following), BO employs a surrogate model, e.g., Gaussian
rocess regression (GPR) or random forests (RF), to approximate
he landscape of the objective function, which is trained on an
nitial data set (X, Y ). Here, X ⊂ H is typically sampled in the
earch spaceH using the Latin Hypercube Sampling (LHS) method
nd Y = {f (h):h ∈ X} is the set of function values of points
n X . Essentially, the prediction from surrogate models and the
stimated prediction uncertainty are considered simultaneously
o propose new candidate solutions for the evaluation. Loosely
peaking, the model prediction and its uncertainty are taken
s input to the so-called acquisition function (or infill criterion),
hich can be interpreted as the utility of unseen solutions and
ence is subject to maximization when proposing new candidate
olutions. An example of commonly used acquisition functions is
he Expected Improvement (EI) [9]. Given the predictor m:H→
R, the uncertainty of predictions s(h) := E{(m(h) − f (h))2} of
the surrogate model and the current best function value ymax =

max{Y }, the EI criterion can be expressed for an unknown point
h ∈ H:

EI(h) = I(h)Φ
(
I(h)
s(h)

)
+ s(h)φ

(
I(h)
s(h)

)
, (2)

where I(h) = m(h)− ymax and where φ stands for the probability
density function (PDF) of the standard normal distribution. Note
that the new candidate solution is generated by maximizing the
EI criterion, namely

h∗ = argmax
h∈H

EI(h). (3)

After evaluating the new candidate solution h∗, h∗ and its
bjective function value are included in the data set (X, Y ) and

the surrogate model will be re-trained. Please, see [28] for an
overview of the acquisition functions.

Despite being a proven technique for automated algorithm
configuration tasks [25–27], the state-of-the-art of BO does not
reconcile well with variable-length solution problems [29,30].
Therefore, in this study we propose multiple strategies to cope
with variable-length solutions (inherent to the architecture
search problem).

2.5. Our contribution

Herein, we briefly summarize the novelty of the architecture
search described in the following sections and compare those to
the state-of-the-art works reviewed in this section.

• We propose to use the Mean Absolute Error Random Sam-
pling (MRS) procedure as the objective function for the
architecture search, which is relatively much inexpensive
compared to full training of the same architecture on the
same data. In contrast to employing full training, e.g., [19],
our approach could allow for more iterations of the Bayesian
optimization algorithm.
• We designed three different encoding schemes that turn

the neural architecture search that is inherently a variable-
dimensional problem(for instance, the NEAT [16] approach
operates on the network topology directly) into an optimiza-
tion problem with fixed dimensions, hence facilitating the
application of surrogate modeling and Bayesian optimiza-
tion accordingly.
3

Fig. 1. Illustrations of the proposed encoding schemes.

• We contemplated making the Bayesian optimization more
efficient and effective by imposing a penalty on the infea-
sible solutions or warm-starting the search process with
infeasible solutions.

. The proposed approach

In this paper, it is proposed to optimize the architecture of an
NN by a combination of Bayesian optimization (BO) and Mean
bsolute Error Random Sample (MRS) to reduce the running
ime of the architecture search. Specifically, this is to solve the
ollowing problem using Bayesian optimization,

rgmax
h∈H

mrs(D,h, pm,Q ), (4)

given a training data set D, a cutoff threshold pm and the number
of random weights used in MRS. Importantly, as the architecture
could shrink and expand in the search, its natural representation
takes a variable-length form, which does not reconcile well with
the state-of-the-art BO algorithm. To resolve this issue, three
fixed-length encoding schemes are proposed to represent net-
work architectures with variable sizes. Note that in this paper the
search space H is determined by each encoding scheme (please
ee below). Also, we only employ the random forest model in
he Bayesian optimization procedure (described in Algorithm 1)
or the following reason: the design space of neural architec-
ure comprises of integer/Boolean variables, which can be dealt
ith naturally by random forests. Gaussian process regression,
hich works over Euclidean spaces, is by default not applicable

n this scenario. Although there are many recently endeavours
n extending GPR’s ability to handle the discrete and integer
ariables (e.g., [31]), it is not our major aim herein to compare
he performance of Bayesian optimization when coupled with
ifferent surrogate models and hence we decided to choose the
implest random forest model to validate the proposed algorithm.

.1. Encoding schemes

Assuming that the number of neurons per each layer is re-
tricted to the range [

¯
N..N̄], the number of layers is m ∈ [

¯
M..M̄],

and T denotes the maximum number of steps taken in back-
propagation throughout time, three encoding schemes are pro-
posed in this paper:

• Plain: the total length of this encoding is m+ 1.

h = [h1, h2, . . . , hm, l] ∈
(
{0} ∪ [

¯
N..N̄]

)m
× [1..T ],

where hi is the number of neurons per each layer and l is
the number of time steps. Note that hi can take value zero,
meaning there is no neuron in this layer and hence it is
effectively dropped in the decoding procedure.
• Flag: the total length of this encoding is 2m+ 1.

h = [h , b , h , b , . . . , h , b , l] ∈ [N..N̄]m×{0, 1}m×[1..T ],
1 1 2 2 m m
¯
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where bi ∈ {0, 1} is the so-called ‘‘flag’’ that disables layer hi
if bi = 0 when decoding such a representation to compute
the actual architecture.
• Size: the total length of this encoding is m+ 2.

h = [h1, h2, . . . , hm, s, l] ∈ [
¯
N..N̄]m × [1..m] × [1..T ],

where s ≤ m is the number of layers from the start of the
representation that are considered in decoding, namely only
h1, h2, . . . , hs are used to generate the actual architecture.
(See Fig. 1.)

We shall use the notation code ∈ {plain, flag, size} for the
encoding scheme henceforth. In this manner, a fixed-length rep-
resentation can be used to optimize variable-size architectures.
For each case, in the decoding procedure, an output layer is
appended to the RNN structure encoded in the search algorithm,
to match the expected output dimension. Note that the activation
function of the output layer has to be set according to the type of
the task in each problem.

3.2. Decoding

It is worthwhile to note that the decoding procedure of all
three representations is a many-to-one mapping. For instance,
given a plain representation with a maximum of five layers (m =
5), [h1, h2, 0, 0, h5, l] and [h1, h2, h5, 0, 0, l] are representing ex-
actly the same architecture. If [h1, h2, h5, 0, 0, l] has already been
evaluated in the optimization process, then assessing the per-
formance of [h1, h2, 0, 0, h5, l] is purely redundant. To determine
the equivalence among representations, it is necessary to apply
appropriate decoding functions for each type of representation:

decode(h)

=

⎧⎨⎩
keep hi if hi > 0, i = 1, . . . ,m. if the plain encoding
keep hi if bi = 1, i = 1, . . . ,m. if the flag encoding
h ↦→ [h1, h2, . . . , hs, l] if the size encoding

(5)

As the decoding function is a many-to-one mapping, the BO algo-
rithm could potentially propose the same architecture constantly
(even with different representations before decoding), and hence
the search efficiency would be drastically affected due to the
following facts (1) the convergence of BO would be hampered as
such an iteration (where the seen architecture is proposed again)
makes no progress and the there is no information gain for the
surrogate model therein, and (2) the same network architecture
has to be evaluated again by MRS, which is wasteful even if MRS
is much more efficient as compared the full network training. To
cope with the former issue, it is important to avoid proposing
the same architecture again as much as possible. In this study,
we propose two alternative strategies which both rely on the
definition of ‘‘infeasibility’’ (please see below) for representations:

• to set the MRS value of infeasible representations to the
worst possible value (zero), which will be learned by the
surrogate model underlying BO. Hence, the infeasible ones
would not likely to be proposed by the surrogate model, or
• to use the original MRS values (as in Eq. (1)) and add

constraints on the EI criterion to screen out infeasible rep-
resentations. Note that in this case the surrogate model will
be built on the original MRS values.

For the latter, the simplest solution is to maintain a lookup table
to register the architectures (together with objective values) that
are evaluated before.

Infeasible representation. Taking the plain encoding scheme as an
example, a representation taking the form [h1, . . . , hq, 0, . . . , 0, l]
(where h > 0) shall be called feasible, e.g., [h , h , h , 0, 0, l] is
i 1 2 5

4

an infeasible representation when m = 5. [h1, h2, h5, 0, 0, l] rep-
resents the same architecture with the other 16 representations
(by inserting two zeros at four different positions, e.g., [h1, h2, 0,
0, h5, l] and [h1, 0, h2, 0, h5, l]). The other representations shall be
called ‘‘infeasible’’, which will be assigned with a fixed objective
value that is worse than all the feasible solutions. Particularly,
since we are maximizing MRS (which is a probability value), we
set the penalized objective function value to be equal to zero. The
rationale behind this treatment is that whenever the Bayesian
optimization (BO) algorithm proposes an infeasible representa-
tion, the penalized objective function value will be learned by
the surrogate model of BO and hence the chance of generating
such representations will diminish gradually. In this manner,
we are guiding the optimization process through the feasible
ones and thus the search space is virtually reduced. Note that
the BO algorithm still needs to make lots of infeasible trials
before it stops proposing the infeasible ones, due to the large
combinatorial space. It is conceptually better to directly avoid
generating such representations by a constraint handling method
(see below). The idea of defining the infeasible representation can
be easily extended to the flag encoding scheme by masking hi
with bi, i.e., replacing the value of hi with a zero if bi is equal to
zero. However, this idea cannot be applied to the size encoding
scheme.

Constraint handling. To avoid generating infeasible representa-
tions, we propose to assign penalty values to infeasible ones and
to use a constraint handling method when proposing new candi-
date representations in BO. In addition, representations that are
already evaluated will be also be penalized by the length of itself
(the maximum penalty at line 4). For an infeasible representation
that has not been evaluated (line 5), the number of zeros located
before the last nonzero element is used as the penalty value.
In line 7, the decoded representation is registered in a set L to
check whether a representation has been evaluated before. The
penalty value will be added to the EI criterion when proposing
the candidate representations (see line 13 of Algorithm 1). As
for the constraint handling, a dynamic penalty method is adopted
here, where the penalty value will be scaled up with increasing
iterations of BO. We choose the dynamic penalty here because it
yields a relatively small penalty in the early phase of the search,
allowing for exploring the infeasible regions within the search
space, which is particularly critical to move between discon-
nected feasible regions. Also, as the search iteration increases, the
penalty value will be enlarged to ensure a feasible solution as the
outcome. In this manner, the following penalized infill criterion
is used to propose candidate representations (instead of Eq. (3)):

h∗ = argmax
h∈H

EI(h;M)− Ct · penalty(h, X), (6)

where (1) X is a set containing all evaluated solutions (not
decoded), (2) t is the iteration counter of BO, and (3) C = 0.5 is a
scaling factor. The intuition of this treatment is that the penalty
value would have a large impact on the maximization of EI in
the late stage, such that the probability of generating infeasible
solutions becomes marginal. Also, the penalty value of h equals its
length when it has been evaluated before, i.e., h ∈ X , for avoiding
proposing duplicated solutions, and otherwise, it is set to penalize
h by the number of zeros preceding non-zero elements thereof,
namely,

penalty(h, X)

=

⎧⎨⎩
length(h), if h ∈ X
|{hi:∀i ∈ [1..n− 1](

hi = 0 ∩ ∃j ∈ [i+ 1..n](hj = 1)
)}
|, otherwise.

(7)
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.3. A warm-start strategy

Within the Bayesian optimization algorithm, a surrogate
odel (e.g., a random forest) is used to learn the mapping from

he evaluated solutions to the corresponding objective values.
ypically, the Bayesian optimization starts with initializing the
urrogate model by some randomly generated solutions. The
asic idea of the so-called ‘‘warm-start’’ strategy is to augment
he initial solutions by a set of infeasible solutions that can be
enerated before the optimization, such that the optimization
rocess is started with a priori information. The infeasible solu-
ions can be generated by randomly picking some components
f a solution and setting them to zero for both the plain and
lag encoding. Additionally, the objective value of those infeasible
olutions is assigned with some default bad value (it is set to zero
ere since the MRS measure, which is the objective function of
he architecture search, is bounded by zero from below), without
he need to execute the MRS procedure. We anticipate that
his warm-start strategy will add a bias in proposing the new
andidate solutions in BO, steering the optimization process away
rom the infeasible solutions.

In all, the pseudo-code of the proposed approach is described
n Algorithm 1. After creating the initial data set of BO (X, Y ) using
Latin Hypercube Sampling [32], the user can choose to turn on the
generation of the warm-data prior to the optimization loop (lines
6-9). A set X ′ consisting of decoded representations is meant
to track all the unique architectures that have been evaluated
in MRS (line 11). In line 16, the constrained EI maximization is
applied if the constraint method is enabled. The newly proposed
solution h∗ is decoded (line 20), after which we check if its
decoded counterpart h∗′ has been evaluated (line 21). If h∗′ is not
valuated before (line 22-28), the feasibility of h is then checked
nd its objective value is set to zero in case of being infeasible
Otherwise, we evaluate its decoded representation h∗′ in MRS
line 26)) If h∗′ has been evaluated before, its objective value
s looked up in the data set (X, Y ) (line 30 and 31). The newly
roposed candidate representation and its objective value are
ppended to BO’s data set (X, Y ) (lines 33 and 34). Afterwards,
he random forest model is re-trained on the augmented data set
line 35).

. Experiments

In this section, we present the experimental study performed
o test the proposed approach. First, we present the three pre-
iction problems used to benchmark the method. Second, we
resent the experimental setup and the results of several combi-
ations of the three strategies presented, i.e., infeasible solution,
arm start, constraint handling, and encoding. Later, we compare
he time between MRS and (short training) Adam. Finally, we
tudy the error trade-off while changing the number of MRS
amples.

.1. Data sets

We tested the approach on three prediction problems: sine
ave, waste [33], and load forecast [34].

he sine wave. Is a mathematical curve that represents a periodic
scillation. Despite its simplicity, it is extensively used to analyze
ystems [35]. It is usually expressed as a function of time (t),
here A is the peak amplitude, f the frequency, and φ the phase
Eq. (8)). Its study is interesting because, by adding sine waves,
t is possible to approximate any periodic waveform [35]. We
ampled the sine wave described by: A = 1, f = 1, and φ = 0,
in the range t ∈ [0, 100] seconds, and at 10 samples per second.
Then, given a truncated part of the time series (i.e., a time steps
 h

5

Algorithm 1 Efficient Architecture Optimization for RNNs

1: input: A data set D, an encoding scheme code ∈

{plain, flag, size}, the random forests algorithm rf, and the
maximal iteration number tmax.

2: output: a full training RNN model
3: C ← 0.5, t ← 0, pm ← 0.01,Q ← 100
4: Determine the search space H according to code
5: Generate X ⊆ H using Latin Hypercube Sampling
6: Y ← {mrs(D, decode(h), t, pm,Q ):h ∈ X} ▷ evaluate X
7: if ‘‘warm-start’’ is enabled then
8: generate the warm data (Xwarm, Ywarm) ▷ See Section 3.3
9: X ← X ∪ Xwarm, Y ← Y ∪ Ywarm

10: end if
11: X ′ ← {decode(h):h ∈ X} ▷ set of evaluated architectures
12: M← rf(X, Y ) ▷ surrogate model training
13: while t < tmax do
14: if ‘‘constraint-handling’’ is enabled then
15: h∗ ← argmaxh∈H EI(h;M)− Ct · penalty(h, X) ▷

penalized EI
16: else
17: h∗ ← argmaxh∈H EI(h;M) ▷ unconstrained case
18: end if
19: h∗′ ← decode(h∗) ▷ solution decoding (Eq. (5))
20: if h∗′ /∈ X ′ then ▷ for unseen architectures
21: if ‘‘infeasible-solution’’ is enabled and
22: code ̸= size and h∗ is infeasible then
23: y∗ ←−inf ▷ penalty value for the infeasible ones
24: else
25: y∗ ← mrs(D,h∗′, t, pm,Q ) ▷ evaluate h∗′ using

mrs
26: end if
27: X ′ ← X ′ ∪ {h∗′} ▷ add to the set of evaluated

architectures
28: else
29: S ←

{
y:∀(h, y) ∈ (X, Y ) ∧ decode(h) = h∗′

}
▷

the objective value of evaluated solutions that decodes to the
same architecture as h∗′

30: y∗ ← sample a value from S uniform at random
31: end if
32: X ← X ∪ {h∗}, Y ← Y ∪ {y∗} ▷ augment the data set
33: M← rf(X, Y ) ▷ re-train the random forest model
34: t ← t + 1
35: end while
36: ybest ← max{Y } and hbest is the corresponding solution to ybest
37: htrained ← ADAM(D,hbest) ▷ train the final neural

architecture
38: return htrained

number of points of the sampled sine wave), the problem consists
in predicting the next value.

y(t) = A sin(2π ft + φ) (8)

The waste problem. Introduced in [33], consists of predicting the
filling level of 217 recycling bins located in the metropolitan area
of a city in Spain, recorded daily for one year. Thus, given the
historical filling levels of all containers (217 input values per day),
the task is to predict the next day (i.e., the filling level of all bins).
It is important to notice that this problem has been used as a
benchmark in several studies [24,36,37] and that it is a real-world
problem.

The load forecast problem. Provided by the European Network
n Intelligent Technologies for Smart Adaptive Systems (EUNITE,
ttp://www.eunite.org) as part of a competition [34,38], is a

http://www.eunite.org
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able 1
ptimization search spaces.
Parameter Load range Sine range Waste range

Hidden layers (M) [1, 8] [1, 3] [1, 8]
Look back (T) [2, 30] [2, 30] [2, 30]
Neurons per layer (N) [10, 100] [1, 100] [1, 300]

Table 2
BO and MRS parameter values.
Parameter Value Parameter Value

No. samples (Q) 100 Threshold (pm) 0.01
Max evaluations 100 Init solutions 10
Epochs 1000 Dropout 0.5

data set consisting of the electricity load demand of the Eastern
Slovakian Electricity Corporation. It was recorded every half hour,
from January 1, 1997, to January 31, 1999. Also, the temperature
(daily mean) and the working calendar for this period are pro-
vided. Then, based on this data, the challenge is to predict the
next maximum daily load. In other words, given the load demand
(52 variables), i.e., the load demand recorded every half hour (48),
the max daily load (1), the daily average temperature (1), the
weekday (1), and the working day information (1), the task is to
predict the max daily load of the next day (1). Note that the last
month is used as the test data, thus our results may be compared
directly against the competitors.

4.2. Performance

We implemented our approach1 in Python 3, using
LOPT [39], MIP-EGO [40], Keras [41], and Tensorflow [42]. We
sed LSTM cells to build the decoded stacked architectures (as
way to mitigate the exploding and vanishing gradient prob-

ems [14]), and Adam truncated through time [43] (i.e., sharing
ll parameters in the unfolded models) to train the final solutions,
ith default parameter values [10].
We defined the search space (i.e., the constraints to the RNN

rchitectures) of the three problems studied (Table 1) according
o the datasets and the state-of-the-art. Particularly, the sine
ave search space is taken from [24] and the waste search space

s copied from [37] to enable a direct comparison.
Also, to ease the visualization of the results, we defined the

ollowing naming scheme to denote different combinations of en-
oding, warm start, invalid, and the constraint handling method:
constraint][warm start][infeasible][encoding].

Specifically, we use a character to denote each variant: Con-
straint (C), Warm start (w), Infeasible (I), and Encoding (F: flag,
: size, and P: plain). A dash (-) means that the corresponding
lternative was not used. For example, -W-F corresponds to the
ombination of warm data and the flag encoding (i.e., without
onstraint handling and without invalid solution penalty).
Finally, we execute 30 independent runs for each combination

f encoding, warm start, and the constraint handling method on
heterogeneous Linux cluster with more than 200 cores and
00 GB RAM, managed by HTCondor. In these experiments we
sed the optimization parameter values presented in Table 2. The
emainder of this subsection introduces the performance results
or the three problems and some insights into the solutions.

Note that the parameters presented in Tables 1 and 2 were
aken from [24,37]. We decided to chose these values (instead of
erforming an hyperparameter tuning) to enable a direct com-
arison with our competitors.

1 Code available in https://github.com/acamero/dlopt.
6

Fig. 2. MAE of the sine wave solutions.

4.2.1. Sine wave
The range of the sine function is [0, 1], thus we set the activa-

ion function of the dense output layer to be a tanh. Due to the
immense number of invalid solutions, we implemented a limited
version of the infeasible solution listing, i.e., instead of enumerat-
ing all infeasible solutions, we list a subset of them. Particularly,
we listed the infeasible solutions described by the min and max
values of each parameter (i.e., the number of neurons per layer
and look back). Thus, we added 80 infeasible solutions to the
warm-start.

Table 3 summarizes the results of the experiments, where
MLES and GDET are the results presented in [24], and the other
results correspond to the tested combinations. Fig. 2 shows the
distribution of the MAE of the solutions of the sine wave prob-
lem. The Friedman rank sum test p-value is less than 2.2e−16
(chi-squared = 138.17, df = 11). Therefore, we performed a pair-
wise comparison using the Conover test for a two-way balanced
complete block design [44], and the Holm p-value adjustment
method. The results are presented in the row label Conover in
Table 3. Groups sharing a letter are not significantly different
(α = 0.01).

The results show that using BO and MRS improves the perfor-
mance of the final solution (error). On the other hand, multiple
combinations of the proposed strategies (i.e., the combinations
grouped by the letter d) show a similar performance.

4.2.2. Waste
The filling level of the bins ranges from 0 to 1. Accordingly, we

set the activation function of the output layer to be a sigmoid. In
this case, we added 126976 invalid solutions to the warm start.

Table 4 summarizes the results of the tests on the waste prob-
lem. The table also includes the results of [37] (Cities) and [24]
(MLES). Fig. 3 shows the distribution of the MAE of the solutions
of the waste problem. The Friedman rank sum test p-value is
qual to 0.02401 (chi-squared = 22.048, df = 11). Therefore, we
erformed a pairwise comparison using the Conover test for a
wo-way balanced complete block design , and the Holm p-value
djustment method. The results are presented in the row label
onover in Table 4. Groups sharing a letter are not significantly
ifferent (α = 0.01).
In this case, our results are as good as our competitors (the

esults grouped by the letter a). Nonetheless, it is important to
emark that [37] (Cities) trains every candidate solution using
dam, turning out to be more time-consuming.

https://github.com/acamero/dlopt
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ine optimization results (MAE of the best solution). Groups sharing a letter in the Conover row are not significantly different.

GDET MLES —F –IF -W-F -WIF C–F CWIF —S C—S —P –IP

Mean 0.1419 0.1047 0.0785 0.0882 0.0816 0.1119 0.0839 0.1452 0.0857 0.0745 0.1198 0.1363
Median 0.1489 0.0996 0.0738 0.0882 0.0772 0.0861 0.0789 0.0935 0.0748 0.0721 0.1170 0.1244
Max 0.2695 0.2466 0.1172 0.1266 0.1185 0.3677 0.1276 0.5723 0.1794 0.0962 0.1700 0.3290
Min 0.0540 0.0631 0.0449 0.0505 0.0518 0.0492 0.0631 0.0577 0.0584 0.0525 0.0922 0.0665
Sd 0.0513 0.0350 0.0194 0.0182 0.0161 0.0695 0.0154 0.1367 0.0274 0.0109 0.0177 0.0558

Conover a bc d ef de bf def c def d a a
Table 4
Waste optimization results (MAE of the final solution). Groups sharing a letter in the Conover row are not significantly different.

Cities MLES —F –IF -W-F -WIF C–F CWIF —S C—S —P –IP

Mean 0.0728 0.0790 0.0722 0.0821 0.0730 0.0812 0.0728 0.0728 0.0732 0.0725 0.0744 0.0735
Median 0.0731 0.0728 0.0723 0.0735 0.0725 0.0730 0.0725 0.0725 0.0736 0.0723 0.0737 0.0731
Max 0.0757 0.1377 0.0791 0.1227 0.0806 0.1231 0.0767 0.0767 0.0756 0.0760 0.0920 0.0883
Min 0.0709 0.0691 0.0695 0.0691 0.0703 0.0698 0.0692 0.0701 0.0691 0.0688 0.0717 0.0701
Sd 0.0012 0.0172 0.0019 0.0156 0.0020 0.0177 0.0018 0.0014 0.0015 0.0016 0.0041 0.0027

Conover abc abc a bcd ab d ab ab bcd ab cd bcd
Table 5
Optimization results (MAPE of the final solution). Groups sharing a letter in the Conover row are not significantly different.

SVM RBF WK+ —F –IF -W-F -WIF C–F CWIF —S C—S —P –IP

Mean 2.879 NA NA 2.726 3.148 2.595 3.066 2.158 2.844 2.321 2.235 4.823 5.287
Median 2.945 NA NA 2.466 2.933 2.368 2.814 2.099 2.846 2.125 2.050 5.040 5.213
Max 3.480 NA NA 6.271 5.207 4.594 6.031 3.364 3.901 6.271 4.605 6.999 11.004
Min 1.950 1.481 1.323 1.840 1.759 1.593 1.919 1.452 2.033 1.654 1.657 3.142 3.415
Sd 0.004 NA NA 0.888 1.013 0.765 1.000 0.440 0.515 0.774 0.564 0.884 1.727

Conover NA NA NA abc a bc a d ab ce de f f
T

Fig. 3. MAE waste.

4.2.3. Load forecast
According to the preprocessing performed in [38], we nor-

malized the data to have a mean equal to zero and a standard
deviation equal to one. Then, we set the activation function of
the output layer to be linear. Besides, we added 126976 invalid
solutions to the warm start.

Table 4 summarizes our results and the ones presented in [34]
(SVM), and [38] (RBF andWK+, WKNNRW in the original work). In
this case, we present the mean absolute percentage error (MAPE)
because it is the performance metric used in the referred studies
(NA indicates the corresponding data is not available). Fig. 4
shows the distribution of the MAPE of the solutions of the waste
problem. Unfortunately, in this case, we do not have the detailed
results of SVM, RBF, and WK+. Thus, we cannot perform a detailed
analysis considering all competitors. Nonetheless, we performed
a detailed analysis considering exclusively the results of our tests.
7

Fig. 4. MAPE load forecast.

he Friedman rank sum test p-value is less than 2.2×10−16 (chi-
squared = 146.38, df = 9). Therefore, we performed a pairwise
comparison using the Conover test for a two-way balanced com-
plete block design, and the Holm p-value adjustment method. The
results are presented in the row label Conover in Table 5. Groups
sharing a letter are not significantly different (α = 0.01).

4.2.4. Solutions overview
To get insights into the RNN architectures, we analyzed the

(best) solutions. Fig. 5 shows the percentage of solutions that
have a specific number of hidden layers (within the search space
defined in Table 1). Fig. 6 presents the percentage of solutions
that have each of the possible look backs. Fig. 7 depicts the
distribution of the total number of LSTM cells.

It is no surprise that the plain encoding produced deeper
and bigger (in terms of the total number of neurons) solutions,
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Fig. 5. Number of hidden layers of the solutions.

Fig. 6. Look back or time steps of the solutions.

ecause of its own encoding limitations. On the other hand, two
elatively similar combinations in terms of the error, namely
--F and C--S, present different architecture combinations.
Also, it is quite interesting that there is no clear architecture

rend. There are some value ranges that seem to be more suitable,
.g., shallower instead of deeper networks, or mid-to-upper look
ack values for the load forecast problem, but we cannot conclude
hat there is an all-rounder architecture.

.3. Time analysis

The results presented in this study (Table 4) show that using
RS as a proxy of the performance is as good as using short

raining results. However, as it is claimed in [6], MRS is supposed
o be a low-cost approach. Therefore, we compared the run time
f Adam against MRS. Specifically, we randomly select 16 runs
rom the previous experiments (i.e., 100 architectures evaluated
n 16 runs, totaling 1600 RNNs). Then, for each network we
erformed a MRS (100 samples) and a 10 epochs training using
dam.
We repeated the experiments because of two reasons. First,

he previous experiments were run on a cluster of heterogeneous
omputers (hence the run times were not fairly comparable).
8

Fig. 7. Distribution of the total number of LSTM cells.

Fig. 8. Time comparison: Adam (10 epochs) vs MRS (100 samples).

Secondly, the final solutions were trained for 1000 epochs, thus
the comparison would not have been fair.

Table 6 summarizes the time in seconds for both approaches,
and Fig. 8 shows the distribution of the time (in seconds). We per-
formed a Wilcoxon rank sum test to compare both approaches.
Note that we compare the overall results and the results of each
problem independently. The results are presented in the table
(Signif.) using the following codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05
‘.’ 0.1 ‘ ’ 1.

On average, MRS is 2.6 times faster than Adam. These results
are in line with the ones presented in [24]. In other words,
if we have used the results of 10 epochs training using Adam
to compare the architectures during the optimization process
(instead of MRS), we will have spent more than twice the time!

4.4. Error trade-off

Moreover, we studied how much the outcome of MRS is af-
fected (i.e., error of the final solution) when the number of sam-
ples is changed. We repeated the waste and load forecast experi-
ments using the C--S configuration, and 30, 50, and 200 samples
per each solution evaluated (MRS).

Table 7 summarizes the error trade-off results. The Friedman
rank sum test p-value is equal to 0.004996 (chi-squared = 12.84,
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Fig. 9. Average convergence of the fitness of the solutions for the waste problem.
Fig. 10. Average convergence of the fitness of the solutions for the load forecast problem.
able 6
ime comparison in seconds: Adam vs MRS. According to the Wilcoxon rank
um test, there is a significant improvement.

[seconds] Load Sin Waste Overall

Adam

Mean 72.1 41.8 45.3 53.1
Median 62.6 32.3 29.1 34.1
Max 220.9 105.8 172.3 220.9
Min 21.9 23.0 7.8 7.8
Sd 48.7 19.0 40.8 40.5

MRS

Mean 13.8 27.9 19.3 20.3
Median 11.7 23.9 13.8 20.0
Max 25.3 56.8 61.6 61.6
Min 10.8 20.4 10.9 10.8
Sd 4.3 8.0 10.7 10.0

Signif. (Adam vs MRS) *** *** *** ***

df = 3) in the waste problem, while it is equal to 0.0003184 (chi-
squared = 18.68, df = 3) in the load forecast problem. Therefore,
we performed a pairwise comparison using the Conover test
for a two-way balanced complete block design [44], and the
Holm p-value adjustment method. The results are presented in
the row Conover of both tables. Groups sharing a letter are not
significantly different (α = 0.01).

The results show that we might reduce the time (by taking
fewer samples) but with an error increase. On the other hand,
9

doubling the number of samples (used in this study), we will have
not reduced the error. Nonetheless, it is quite interesting that
even with a small number of samples, lets say 30, it is possible to
estimate the performance of a network.

4.5. Algorithm convergence

Finally, we studied the convergence of the proposed algorithm.
Particularly, we analyzed the fitness (probability estimated by the
MRS) of the solutions as the search was done. Figs. 9 and 10 depict
the best-so-far MRS value against the number of candidates eval-
uated, average over all independent runs for each combination of
encoding, warm-start, and constraint handling methods (shown
by the bold line). Also, the standard deviation is illustrated by
the shaded areas. It is important to point out that a higher MRS
value is correlated with a better performance after training the
network using Adam [6], hence indicating that all combinations
are converging.

Moreover, to show the impact of the penalty function, we
compared the pairs C--S and ---S, C--F and ---F. Notice that
the results present the average value of the MRS and the standard
deviation (shaded area) for 30 independent runs (each combi-
nation) in the waste prediction problem. Therefore, we assume
that the difference in performance (i.e., the convergence) can be

explained by the penalty. (See Fig. 11.)
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Table 7
Waste and Load trade-off results. Groups sharing a letter in the Conover row
are not significantly different.

Samples 30 50 100 200

Waste (MAE)

Mean 0.0734 0.0734 0.0725 0.0723
Median 0.0732 0.0740 0.0723 0.0726
Max 0.0778 0.0780 0.0760 0.0757
Min 0.0694 0.0690 0.0688 0.0685
Sd 0.0017 0.0020 0.0016 0.0018

Load (MAPE)

Mean 2.664 2.616 2.235 2.137
Median 2.510 2.555 2.050 2.073
Max 4.436 3.750 4.605 3.146
Min 1.930 1.884 1.657 1.521
Std 0.597 0.492 0.564 0.405

Conover a a b b

5. Conclusions and future work

In this study, we propose to optimize the architecture of a re-
urrent neural network with a combination of Bayesian optimiza-
ion and Mean Absolute Error Random Sampling (MRS). More
pecifically, we propose three fixed-length encoding schemes to
epresent variable size architectures (flag, plain, and size), an
alternative to deal with the many-to-one problem derived from
the fixed-variable-length problem (i.e., the infeasiblesolution), and
two strategies to cope with the fixed-variable-length problem,
namely warm-start and constraints handling.

We test our proposal on three prediction problems: the sine
wave, the waste filling level of 217 bins in a metropolitan area
of a city in Spain, and the maximum daily load forecast of an
electricity company in Slovakia. We benchmark our proposal
against state-of-the-art techniques, and we performed a time
comparison and an error trade-off study. Notice that for each
problem a different activation function has been used, namely,
tanh, sigmoid, and linear.

The results show that none of the strategies presented outper-
forms the others in all cases. Nonetheless, using the size encoding
and the constraints handling consistently show to be an effective
alternative to the problem.

Moreover, the results show that MRS is an efficient alternative
to optimize the architecture of an RNN. Particularly, we showed
that evaluating an architecture using MRS is 2.6 times faster than
performing a short training (ten epochs) using Adam, and without
losing performance.
10
Overall, using BO, in combination with MRS, shows to be a
competitive approach to optimize the architecture of an RNN.
It offers a state-of-the-art error performance, while the time is
drastically reduced.

Finally, for the next step, several issues have to be addressed.
First, it is necessary to test on more data sets to validate the pro-
posal. Second, MRS has to be further researched because it shows
to be a promising alternative, but there is no clear explanation
of why it works. Additionally, it will be interesting to use the
warm start strategy to explore augmenting restarts, i.e., iteratively
increase the number of hidden layers and feeding the model with
the previous results.
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