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GENERAL INTRODUCTION AND OUTLINE OF THE THESIS

Ventricular tachycardia after myocardial infarction
One to two percent of patients surviving an acute myocardial infarction (MI) develop 
monomorphic ventricular tachycardia (VT) over time, often more than a decade after 
the acute ischemic event.1 Of importance, occurrence of VT may not only be a cause of 
disabling symptoms such as palpitations, dyspnea or syncope but it is also an important 
cause of sudden cardiac death (SCD) in this population.2–4

Implantable cardioverter defibrillators (ICDs) are effective in terminating VT and have 
demonstrated to increase survival in post-MI patients presenting with a cardiac arrest 
due to hemodynamically unstable VT or ventricular fibrillation (VF)5–7. However, it is 
important to highlight that ICDs do not prevent VT recurrence. Although the majority 
of VTs can be terminated by anti-tachycardia pacing (ATP) and therefore, some patients 
might be asymptomatic even if they suffer from recurrent VT, some VTs only terminate 
with ICD shocks, which can be a cause of pain and psychological distress and have even 
been associated with increased mortality8–12. In addition, some clinical presentations, 
such as VTs that do not terminate after multiple ICD interventions, slow VTs that are 
not recognized by the ICD or highly symptomatic VTs despite termination with ATP may 
require additional therapy to terminate VT and/or to avoid VT recurrence.

Treatment options in these scenarios are anti-arrhythmic drugs (AAD), catheter abla-
tion and surgical ablation. Use of AAD is, however, often limited by their disappointing 
efficacy and their frequent side effects leading to drug discontinuation, and, surgical 
ablation, although potentially very effective, it is an invasive procedure associated with 
high morbidity.13–15

Catheter ablation has evolved into a very important therapy for VT after MI. In the last 
three decades, important progress in the understanding of the post-MI VT substrate and 
technological advancements have increased the efficacy and safety of the procedure. 
However, ablation still acutely fails in approximately 10% of the patients and VT recurs 
in 10 to 50% depending on baseline patient characteristics and follow-up time.16–18

Several crucial aspects which would likely contribute to improve ablation acute and 
long-term efficacy such us the deep comprehension of the VT substrate, the optimal 
ablation endpoints and the limitations of the technique remain unclear.
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Mechanism and substrates for monomorphic ventricular tachycardia 
after myocardial infarction: implications for mapping and ablation
The majority of sustained VTs after MI are due to reentry involving areas of myocardial 
scar. In regions of scar, coupling of surviving myocardial bundles is reduced by inter-
spersed fibrosis, diminished gap junction density and decreased connexin expression 
resulting in slow conduction and eventually in conduction block. Slow myocardial con-
duction through an isthmus protected by areas of dense fibrosis and/or valvular annuli 
acting as fixed conduction barriers or areas of functional conduction block only present 
at rapid rates, allows for initiation and maintenance of a stable re-entrant VT. 19–21

Ablation in the setting of post-MI VT relies on the identification of the critical isthmus of 
the reentry circuit followed by transection of the isthmus, ideally with transmural and 
durable radiofrequency lesions. In patients presenting with hemodynamically stable VT, 
this can be best achieved through accurate characterization of the VT circuit by means 
of activation and entrainment mapping.22 However, approximately 10% of patients 
currently referred for ablation are not inducible for any tachycardia during the proce-
dure and up to 70% are inducible for one or more unstable VTs due to hemodynamic 
compromise requiring immediate interruption, transition to a different morphology or 
spontaneous termination.16–18,23,24 In these scenarios, interrogation of multiple sites to 
define the re-entry circuit by analysis of the intracardiac activation sequence and/or the 
response to entrainment is not possible. In addition, scars frequently present a complex 
three-dimensional architecture, with multiple areas of slow conduction that may act as 
potential isthmuses for future VTs, even if they have not yet occurred spontaneously and 
are not inducible during the procedure.

Substrate-based VT ablation techniques have been developed with the main purpose 
of targeting areas of slow conduction within the scar area during stable sinus or paced 
rhythm. These sites represent putative surrogates of the VT isthmuses and are therefore 
critical sites to target when aiming to eliminate present and future VTs.23,25–28

The first step of all substrate-based ablation approaches consist on the delineation of 
the electroanatomical (EA) scar area by bipolar voltage mapping. Accurate identification 
of the scar area is important since, on one hand, it almost invariably contains at least 
parts of the VT circuit and, on the other hand, the surviving myocardium beyond the 
scar should be spared from ablation injury because it may contribute to cardiac func-
tion. Up to now, the majority of centers use an uniform cut-off of 1.5mV to discriminate 
scar from normal myocardium and a cut-off of 0.5mV to discern between dense scar 
and scar border zone. However, it is important to realize that these cut-off values were 
only validated by gross histopathology to detect the dense scar core.23,29,30 Accordingly, 
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in patients with transmural infarctions, a cut-off of 1.5mV seems to precisely distinguish 
between the scar and preserved myocardium. However, this is not the case in patients 
with non-transmural infarctions, in whom high voltage signals generated by large surviv-
ing bundles of myocardium located in the sub-epicardium or surrounding the necrotic 
area may contaminate the local electrical activity leading to an underestimation of the 
scar area when an uniform cut-off of 1.5mV is applied.31 In fact, a mismatch between the 
non-transmural infarct size defined by bipolar voltage mapping and contrast-enhanced 
magnetic resonance imaging (CE-MRI), the gold standard for fibrosis identification, has 
been observed.32 In addition, termination of VT in areas with bipolar voltage larger than 
1.5mV has been reported, further emphasizing the limitations of bipolar voltage map-
ping to detect the entire potential arrhythmogenic substrate in this patient population.33 
This is relevant since small non-transmural scars are currently increasingly encountered 
in patients who underwent reperfusion of the infarct related artery during the acute 
MI.31 Mapping with multipolar catheters with small electrodes and narrow interelec-
trode spacing and ventricular pacing from multiple sites may help to separate local from 
far-field signals and to identify additional low-voltage areas not detected during sinus 
rhythm.33,34 However, low voltage is not a synonym of arrhythmogenic substrate and ab-
lation based only on electrogram amplitude may lead to damage of viable myocardium 
not involved in VT.

The second step of substrate mapping is therefore to identify electrograms consistent 
with slow conduction within the scar area that may be critical for VT circuits.27,35 Isolated 
and late potentials have been demonstrated to be specific surrogates of VT isthmuses 
and, in accordance, late potential elimination has been associated with improved 
ablation outcomes.36 However, although endocardial scar is almost invariably found in 
patients with old infarctions, in up to one third of post-MI patients, late potentials are 
not present.26 These patients have typically small, non-dense scars which are associated 
with the presence of fast VTs.26 Of note, for fast VTs, slow conduction and block might be 
functional, only present at fast rates, and hence, not detectable if mapping is performed 
during sinus rhythm or continuous pacing only.21 In this setting, additional manoeuvres, 
such as RV extra-stimulation might be necessary to unmask areas of slow conduction 
responsible for VT.

Endpoints of post-MI VT ablation: non-inducibility and beyond
Since the advent of post-MI VT ablation, the response to programmed electrical stimula-
tion (PES) at the end of the procedure has been used to assess the acute ablation result 
and to predict the mid-long term probability of VT recurrence.37–40 Non-inducibility of VT 
after ablation has been associated with VT free survival in many studies.16,41–43 However, 
using non-inducibility as a single ablation endpoint has limitations. In fact, there is a 
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significant number of patients who do not experience VT recurrence despite remaining 
inducible for VT at the end of the procedure and there is also an important number of 
patients who present VT recurrence despite being categorized as non-inducible after the 
last RF application. This might be explained by several factors. First, the definition of 
non-inducibility has not been uniformly applied and while some have used non-induc-
ibility of the clinically documented VT or VTs with a similar CL to the clinical VT, others 
have used inducibility of any VT for definition.16,36,37,39,40 This is important, since while 
persistent inducibility of the clinical VT or slow VTs with a CL similar to the (presumed-) 
clinical VT has clearly been associated with a high chance of VT recurrence, the impact of 
inducibility of non-clinical, particularly fast VTs remains unclear. Second, VT induction 
is a probabilistic phenomenon and, therefore, performing multiple evaluations over 
time likely increases the chance of induction.44,45 In addition, the applied PES protocol, 
which should include the introduction of at least three extra-stimuli with short coupling 
intervals from multiple ventricular sites also influences the probability of induction, es-
pecially of fast VTs.46–48 However, PES protocols are not uniformly and entirely performed 
after ablation in all EP laboratories, which affects the interpretation of the data.

As stated before, substrate-based ablation approaches were developed to allow 
targeting non-inducible and poorly tolerated VTs with the general aim of eliminating 
all potential arrhythmogenic areas during stable rhythm. Multiple endpoints for sub-
strate ablation of scar-related VT have been proposed which could be divided into two 
groups; anatomical-based and EGM-based approaches. Anatomical approaches include 
performance of linear lesions, scar homogenization and core isolation.23,25,49 EGM-based 
approaches target late and isolated potentials, all local abnormal ventricular activities 
or EGMS displaying slow-conduction characteristics during the applications of extra-
stimuli (functional substrate ablation).28,36,50 Although several of these approaches have 
shown to increase VT-free survival compared to ablation based on inducible VTs, to date 
no prospective comparison between the different techniques has been performed and 
therefore, the optimal substrate-based ablation endpoint for a given patient remains 
unknown.

AIM AND OUTLINE OF THE THESIS

The present thesis aims to provide new insights on catheter ablation of post-MI VT. 
Improved understanding of the underlying VT substrate in different types of MI, 
re-assessment of old and development of new physiologically meaningful ablation 
endpoints and recognition of the limitations of the technique will likely contribute to 
optimize procedural outcomes in the future.
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In chapter 2, the value and limitations of the oldest and easiest-available mapping tool 
for VT, the 12-lead ECG, are extensively reviewed. The chapter is illustrated with several 
paradigmatic cases. Chapter 3 analyzes the influence of individual patient character-
istics and, in particular, of the left ventricular (LV) function, on the predictive value of 
non-inducibility after ablation for VT recurrence and cardiac mortality in the population 
currently referred for post-MI VT ablation. The objectives of chapter 4 are to propose 
a new definition for fast VT based on the individual ventricular refractory period (VRP) 
and to assess the prognostic value of persistent inducibility after ablation of non-clinical 
VTs with a CL close to VRP in a mixed cohort of patients with ischemic and non-ischemic 
cardiomyopathy. In chapter 5, a systematic approach for post-MI VT substrate identifica-
tion based on the analysis of electrograms within the scar area with RV extra-stimulation 
is proposed. In addition, the outcome of the procedure for the different infarct subtypes 
when using elimination of electrograms displaying functional slow conduction charac-
teristics as ablation endpoint is analyzed. The prevalence of myocardial calcification 
and its impact in the acute and long-term outcome of endocardial ablation for post-MI 
VT is evaluated in chapter 6. Finally, a summary of the thesis, conclusions and future 
perspectives are provided in chapter 7.
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