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7 Measurement-driven
navigation in many-body
Hilbert space

7.1 Introduction

Quantum state preparation is a prominent routine in quantum information
processing toolbox [185–199]. Such procedure often implies steering a
quantum system from a “simple” towards a more complex, pre-designated
resourceful state, e.g. a many-body entangled state. A steering protocol
is characterized by an as short as possible runtime and high resulting
overlap with the target state. Constructing such protocols can be done in
multiple distinct ways. One is to design the Hamiltonian of the system,
such that its unitary evolution leads to a designated state. This paradigm
is represented by methods like digital computation or analog simulation
[187, 189–192]. Such protocols require exact knowledge of the starting
state, as well as the precise timing of the unitary evolution, to be accurate.
Another strategy is to make use of the environment, adding a dissipative
element to the evolution. Combined with the Hamiltonian evolution, this
results in methods such as drive-and-dissipation [195, 196]. Finally, one can
design a sequence of generalized measurements, which brings the system
towards the target state via measurement back-action alone [200–202].
The relevant part of the evolution is then completely governed by the
system-detector coupling (see also Ref. [203]). Unlike protocols involving
pre-defined unitary evolution, such measurement-driven state preparation
may not require knowledge of the starting state and fine-tuning of the
system Hamiltonian [202].

The above types of state-preparation strategies can be referred to as
passive, meaning that these protocols are pre-determined and pursued
regardless of how the system evolves. Given this perspective, it appears
beneficial to go beyond the forms of control described above, and introduce
the concept of active decision making. This type of steering exploits
information extracted during the system’s evolution to decide on the
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7 Measurement-driven navigation in many-body Hilbert space

operations that follow. This is also referred to as closed-loop quantum
control and is typically used to improve the Hamiltonian-based state
preparation [69–73, 205]. In that case, extracting the necessary information
requires the introduction of measurements into the protocol, which may
result in an undesired back-action. Nevertheless, in certain cases, closed-
loop control of Hamiltonian evolution does yield an improvement to the
speed and the fidelity of the protocol.

Another possibility, which is a subject of increasing interest, is to employ
active decision in measurement-driven protocols (implying no Hamiltonian
drive) [74, 75, 206]. In such protocols, the necessary information about
the system is naturally available from the employed measurements. The
active decision is then being made about possible changes in the subse-
quent generalized measurements, such that the target state is prepared
as rapidly and accurately as possible [74, 75, 201, 206]. Some general
theorems have been stated concerning such active measurement-driven
state preparation [206], along with some specific protocols designed to
reach single-qubit target states [74, 75]. However, it remains unclear how
an active measurement-driven protocol can be effectively harnessed to
engineer resourceful many-body states. In this case, the large size of the
Hilbert space makes it challenging to actively steer the system evolution
in the desired direction.

In this chapter, we establish a general framework for measurement-driven
active navigation in Hilbert space and construct active-decision protocols
for measurement-only steering of many-body states. In particular, we
focus on states manifesting genuine multipartite entanglement. When
attempting to address the problem, one is naturally constrained by a few
factors. One is that only reasonably local system-detector couplings are to
be used in the protocol. Moreover, we require that the number of distinct
system-detectors couplings available for steering does not scale up faster
than the system’s size (this number should not be super extensive). This
natural requirement restricts the capabilities of the protocol and results
in the need of correlating different system-detector couplings. Another
prerequisite is that applying one type of coupling generally leads to an
update in the expected benefits from other couplings. This phenomenon,
which we refer to as “coupling frustration”, calls for nontrivial coordination
between different coupling applications. Finally, there is a problem of
orienteering: it is relatively easy to “get lost” in the many-body Hilbert
space when exploring it with the set of tools limited by locality and
extensivity (cf. Ref. [205]).

We note that upon the availability of indefinite computational power, one
can always find an optimum sequence of measurements through dynamic
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7.1 Introduction

programming techniques (cf. Ref. [206]). Roughly speaking, this can be
done by considering all possible future quantum trajectories of the system.
However, in a large Hilbert space, it is practically impossible to realize
the theoretically optimal feedback policy. This is because the extensive
consideration of outcome scenarios is too complex for a many-body Hilbert
space of an already not very large system (it increases at least exponentially
with the system’s size and the duration of the protocol). Instead, we aim at
designing heuristic strategies for active decision-making, which would allow
for a significant – but not necessarily optimal – speedup of the protocol.

To meet these challenges, we introduce Hilbert-space navigation tech-
niques. The first technique, which we term greedy orienteering policy, is
based on the notion of a cost function. A simple example of such a cost
function could be the target state infidelity. Minimizing it in a greedy
protocol may already yield a reasonable advantage compared to the pas-
sive policy. To test this approach, we study numerically the preparation
of a ground state of Affleck-Lieb-Kennedy-Tasaki (AKLT) spin-1 model
[207]. The numerical study shows the speedup factor that increases with
system size, reaching factor 9.5 for N = 6. Looking ahead, we discuss the
fundamental challenge of landscape flatness that may arise for some target
states when using simple infidelity as the cost function. Although this
issue did not arise in the example we considered, we propose a possible
modification to the cost function which should remedy this problem if it
occurs.

The second technique is to map the Hilbert space onto a colored multi-
graph, referred to as the Quantum State Machine. The vertices of such a
graph correspond to the basis states, and the edges represent the actions
of generalized measurements. Upon an appropriate choice of basis states,
such Quantum State Machine representations allow for improved naviga-
tion in Hilbert space. This can be done by heuristically representing it
as quantum wayfinding on the graph. To substantiate this heuristic, we
introduce the notion of semiclassical coarse-graining of a Quantum State
Machine graph. Optimizing the exploration of these graphs by choosing the
most appropriate system-detector couplings results in advantageous active-
decision protocols. To exemplify this navigation paradigm we consider the
preparation of the 3-qubit W-state, with a numerical study demonstrating
a 12.5-fold improvement in protocol runtime.

Throughout the chapter, we assume that we know the initial state of the
system. This can be a “cheap” (say, product) and robust quantum state
that does not require many resources for its preparation. However, one
can directly generalize the above approaches to the case where the initial
state is unknown and is therefore represented by a density matrix. In the
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7 Measurement-driven navigation in many-body Hilbert space

more intricate case of a Quantum State Machine-based policy, one would
then need to take a weighted combination of graph navigation protocols
with different initial states.

The remainder of the chapter is organized as follows. In Sec. 7.2, we
introduce the basics of measurement-induced steering. Specifically, in
Sec. 7.2.1, we define the steering protocols and their elements, as well as
the quantitative measure of the protocol’s success. Then, in Sec. 7.2.2,
we illustrate these definitions as applied to passive steering of a single
qubit. The general selection criteria, including locality and extensivity,
for the system-detector couplings, which are to be used for the active
steering, are addressed in Sec. 7.2.3. In Sec. 7.3, we introduce the notion
of frustration of steering and discuss the possibilities of protocols’ speed-
up for mutually commuting (Sec. 7.3.1) and non-commuting (Sec. 7.3.2)
couplings. In the latter case, we develop a “parent-Hamiltonian” approach.
A “quantum-compass” approach to active-decision steering, based on the
greedy cost-function accumulation policy, is developed in Sec. 7.4, where we
also employ this scheme to the preparation of the AKLT state. In Sec. 7.5,
we develop an alternative active-steering framework – a “Quantum State
Machine.” In Sec. 7.5.1, we introduce the generalities of this approach
based on the underlying representation of the steering protocol in terms
of a quantum graph. Next, we discuss the quantum parts of this graph
(Sec. 7.5.2), as well as the coarse-graining procedure, with the resulting
coarse-grained graph being semiclassical (Sec. 7.5.3). This type of Hilbert-
space orienteering is illustrated in Sec. 7.5.4, where an active-decision
steering protocol for preparation of a three-qubit W-state is presented.
Our findings are summarized and discussed in Sec. 7.6.

7.2 Measurement-driven state preparation

7.2.1 Generalities

Measurement-driven state steering is a specific class of state-preparation
protocols. Its basic building blocks are coupling the quantum system (s)
to quantum detectors (ancillary systems) utilizing engineered interactions,
followed by strong measurement on the detectors (d). The goal of design-
ing a measurement-based steering protocol is to generate a process that
prepares the desired system state by utilizing a sequence of measurement
back-actions.

Here, we will additionally assume that the internal evolution of the
system and the detector are trivial (their Hamiltonians are kept null:
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Figure 7.1: Basic design of the measurement-driven state preparation. The
procedure starts with a given initial state ρ

(in)
s and proceeds with a protocol, as

described in Def. 32, until a good accuracy of the target state |ψ0⟩ is achieved.
The control unit decides on the system-detector interaction unitary Us,d based
on the stored record of detector readouts. We focus on constructing an optimized
policy for decision-making, such that the target state is simulated as efficiently
as possible.

Hs = 0, Hd = 0), as in Refs. [74, 75, 206], so that the unitary dynamics in
the problem is governed solely by the coupling between the system and
detectors determined by Hamiltonian Hs,d. For concreteness of analysis,
we also constrain the detector to be a qubit initialized in a trivial state |0⟩,
and the system to be represented by N spins. Although a general spin S
can be considered, we focus on the cases S = 1/2 and S = 1. We assume
certain knowledge about the initial state of the system, which is described

by the initial density matrix ρ
(in)
s . For the sake of simplicity, we further

address the target state which is a pure state |ψ0⟩.
Although the ensuing protocol can be further generalized (see Section

7.6), we now formally fix its structure as given below:
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7 Measurement-driven navigation in many-body Hilbert space

Definition 32. A measurement-driven state steering is a protocol that is

performed to prepare a state |ψ0⟩, starting from the state ρ
(in)
s . It runs by

repeating iterative cycles of the following form (see Fig. 7.1):

1. Prepare the detector qubit in the state |0⟩.

2. Based on the available information, select the system-detector cou-
pling Hamiltonian Hs,d to be used in the next step.

3. Perform a system-detector evolution governed by a Hamiltonian Hs,d

for a short time interval δt: Us,d = e−iHs,dδt.

4. Once the system-detector evolution is over, projectively measure
the detector qubit in the Z-basis. Store the readout r for further
processing.

5. Decide whether the protocol is to be continued or terminated. In the
former case, return to step 1.

Now, in the vast space of protocols that have such structure, we would
like to emphasize the distinction between two classes of protocols: passive
and active.

In a passive protocol, the stored readouts {r(t)} from step 4 may
influence the decision for protocol termination or continuation at step 5,
but not the choice for the interaction Hamiltonian Hs,d made at step 2 in
the next protocol cycles. Hamiltonians Hs,d can still be chosen differently
for different iterations: e.g. for a large system, the detector qubit can be
coupled to different subsystems thereof. However, Hs,d used at each cycle
in the passive protocol has to be pre-determined from the outset. If a
passive protocol also has a pre-determined duration (and thus doesn’t use
readouts {r(t)} at the termination step), we land in a subclass of passive
protocols where the readouts don’t have any influence on the protocol. We
would refer to such protocols as “blind steering”. For blind steering, the
readouts of the detector at any given step can be averaged, i.e., following
the measurement, the detector’s density matrix is traced out. In this
chapter, however, we will focus on the non-blind version of passive steering,
where readouts are indeed employed for an informed protocol termination.

In contrast to passive protocols, in an active protocol one uses the
readouts {r(t)} to make an informed decision for the interaction Hamilto-
nians Hs,d as well as for termination/continuation of the protocol. Active
decision-making has to follow a certain policy, which becomes the crucial
part of the protocol. For a good active policy, its adoption should result in
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7.2 Measurement-driven state preparation

a significant speedup of the protocol compared to its passive counterpart.
Alternatively, one can also fix the protocol runtime and aim to improve
the precision of the state preparation. We focus on the former target: min-
imizing protocol runtime for a fixed target precision. The major challenge
in this chapter is to construct such advantageous active decision-making
policies. By comparing active steering with the (non-blind) passive steering
as defined above, we investigate the advantage offered specifically by the
directed evolution, i.e. active decision-making for Hs,d.

Before we move on to the issue of active policy constructions, let us
discuss the criteria for termination of a running protocol. In general, one
cannot guarantee “perfect steering,” i.e., obtaining the desired target state
with the fidelity of 1 in a finite number of protocol cycles. Instead, one
may consider preparing the target state with infidelity R:

R
(
ρ(fin)s , |ψ0⟩

)
≡ 1 − ⟨ψ0|ρ(fin)s |ψ0⟩, (7.2.1)

where the state ρ
(fin)
s is the final state of the system once the protocol is

terminated. It is worth emphasizing that the system evolution during the
protocol is probabilistic and depends on the stochastic readouts {r(t)}. It

follows that different runs of the same protocol may yield different ρ
(fin)
s

and, thus, the infidelity R. Therefore, to characterize the protocol as a
whole, we introduce the following accuracy measure:

Definition 33. We refer to a measurement-driven state-preparation pro-
tocol as ϵ-precise, if the infidelity between the final state and the target
state is bounded by ϵ for any run of the protocol:

R
(
ρ(fin)s , |ψ0⟩

)
< ϵ. (7.2.2)

Given the knowledge of the readout sequence, we may simulate the
quantum system state (the quantum trajectory) on a computer in parallel
to the measurement run. Thus one can infer the running system state
exactly (referred to as filtering in the literature [69]), and test inequality
(7.2.2). This sets a trivial criterion for protocol termination, which we
will apply by default to all passive and active protocols considered in this
chapter. Namely, a protocol can be terminated right after the cycle when
the target state infidelity becomes smaller than ϵ, thus making it an ϵ-
precise protocol. Apart from controlling the precision, we are interested in
the number of cycles Nc, after which the protocol has been terminated. As
Nc may also differ greatly, depending on a specific run, we will characterize
the protocol by ⟨Nc⟩run, where the averaging is performed over many runs.
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Note that here averaging is taken over stochastic readout sequences. In
reality, steering errors as well as external noise may be further contributing
factors to the stochasticity. For the given target state and target precision
ϵ (cf. Definition 33), our goal is to find an ϵ-precise protocol such that
⟨Nc⟩run is as small as possible. We will be considering this minimization
as the key goal of our constructions.

7.2.2 Passive steering: Single qubit

As a simple example of a measurement-driven protocol, we consider single-
qubit steering (for a more general consideration, the reader is referred to
Sec. 7.2.3). For simplicity, we will assume the target state to be |0⟩, and
the starting state to be a perfectly mixed state: ρstart = diag(1/2, 1/2). A
single coupling suffices to guarantee the preparation of the target state (in
fact, from an arbitrary starting state) with an arbitrary precision [202]:

Hs,d = γσ−
s σ

+
d + H.c. (7.2.3)

Here, σs and σd are Pauli matrices acting in the system and detector
spaces, respectively. By construction, a protocol that operates with only a
single coupling Hamiltonian Hs,d, i.e., without a readout-based option of
choosing different couplings, is considered passive. Nevertheless, even for
passive protocols, one can introduce a policy based on the measurement
outcomes, which would accelerate quantum-state steering.

Let us first address a protocol that runs for N
(pass)
c cycles using the

coupling (7.2.3), regardless of the measurement outcomes. Under the
definition given in Sec. 7.2, this would be an example of blind steering.
In this case, the probability of obtaining a readout r = 0 decreases
exponentially with the total number of cycles Nc. Tracing out detector
outcomes (since we are blind to measurement outcomes), this results in a
density matrix:

ρ(Nc) =

(
1 − e−Ncγ

2δt2/2 0

0 e−Ncγ
2δt2/2

)
. (7.2.4)

Given the threshold infidelity ϵ, we need to run the protocol for N
(pass)
c (ϵ)

cycles:

N (pass)
c (ϵ) =

1

γ2δt2
log

(
1

2ϵ

)
(7.2.5)

This characterizes the efficiency of the completely blind passive protocol
[202] for the single-qubit setup.
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7.2 Measurement-driven state preparation

Next, we consider passive protocols where the sequence of readouts
is recorded. One then needs to interpret the measurement outcomes,
which for this setup is straightforward. We note that when the readout is
r = 1 (click event), the target state is instantly prepared [cf. Eq. (7.2.9)].
Therefore, one can terminate the protocol directly after the detector clicks
for the first time: in this case, all further steps are simply redundant
and do not result in any evolution of the system. This will constitute a
termination-policy improvement of the passive blind protocol for this single-
qubit case. If r = 0, i.e. no click is measured (such a null-measurement
[208] event still gives the system a nudge towards the target state by
measurement back-action), the protocol simply continues until a certain

maximal number of cycles, N
(max)
c . The target infidelity ϵ would be directly

related to N
(max)
c in a way equivalent to the blind protocol runtime (7.2.5).

The average runtime of the non-blind passive protocol, Ñ
(pass)
c ≡ ⟨Nc⟩run,

is then given by

Ñ (pass)
c =

1

2γ2δt2

(
1 − e−γ

2δt2Nmax
c

)
+
Nmax
c

2
. (7.2.6)

This runtime is strictly smaller than the runtime for the passive blind
protocol, Eq. (7.2.5), and yields a twofold speedup in the ϵ→ 0 limit. It is
worth emphasizing, however, that the termination policy can realistically
be applied only to the case of few-body quantum states. For such a policy
to be useful, a single detector click should signify that the system is in
the target state. This can only be realized when the detector is coupled
to all elements of the system. For a many-body system (many qubits),
a natural assumption of locality rules out such a coupling: a click of the
detector coupled to a subsystem of the system does not guarantee that
the whole system is steered to the desired state. Nevertheless, the above
simple example shows that detector readouts can be used for accelerating
the state preparation. In what follows, we will focus on active feedback
strategies. There, instead of protocol termination, the local-measurement
outcomes are employed for choosing the most efficient sequence of further
measurement cycles.

7.2.3 Selection criteria for system-detector couplings

Families of system-detector couplings

Both for the active and passive protocols, a key feature is the choice of
coupling Hamiltonians Hs,d. Given the target state |ψ0⟩, it is natural to
constrain this choice to a certain family {Hs,d(p)}, for a set of (discrete or
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7 Measurement-driven navigation in many-body Hilbert space

continuous) parameters p. Deciding on the choice of Hs,d in each protocol
cycle translates into selecting the value of p. Before discussing the policies
for doing so, we address a different question: How to effectively preselect
this family {Hs,d(p)}? To answer this question, it is useful to consider the
following general decomposition of Hs,d:

Hs,d = Vsσ
+
d + V †

s σ
−
d + Ṽsσ

z
d, (7.2.7)

where Vs and Ṽs are arbitrary system operators and matrices σ±
d = 1

2 (σxd ±
iσyd) act on the detector. In Eq. (7.2.7), we discard any terms of the form
∼ Id, as those represent the internal system evolution. Furthermore, for our
purposes, it is also sufficient to consider a special case of the decomposition,
where Ṽs = 0.

With Eq. (7.2.7) in mind, let us consider the transformation of the
system state ρs under a single cycle of the steering protocol. First, let
us consider the system state transformation that is performed when the
measurement outcomes are averaged over (blind measurement). In the
weak measurement limit, δt→ 0, this is represented by the map:

ρs → ΛVs(ρs)

≡
(

1 − δt2

2
V †
s Vs

)
ρs

(
1 − δt2

2
V †
s Vs

)
+ VsρsV

†
s δt

2. (7.2.8)

We note that the terms of order O(δt2) in this expression represent the
standard Lindbladian jump operator. Based on the map (7.2.8) by tracing
out the detector readouts after each step, one derives a Lindblad equation
describing the system evolution for the blind steering [202].

Let us now turn back to our protocol, where the different measurement
outcomes are discriminated. During step 4 of the protocol cycle (cf.
Definition 32), there is a probability

p(cl) (ρs, Vs) = δt2 tr(VsρsV
†
s )

that a qubit flip is measured in the detector (click probability). The
resulting state in the limit of small δt is then:

ρs → Λ
(cl)
Vs

(ρs) ≡
VsρsV

†
s

tr(VsρsV
†
s )
. (7.2.9)

A “no-click” scenario occurs with probability

p(ncl) (ρs, Vs) = 1 − p(cl) (ρs, Vs) ,

176



7.2 Measurement-driven state preparation

and results in a state:

ρs → Λ
(ncl)
Vs

(ρs) ≡

(
1 − δt2

2 V
†
s Vs

)
ρs

(
1 − δt2

2 V
†
s Vs

)
1 − δt2tr(V †

s Vsρs)
. (7.2.10)

Note that for the weak-measurement limit considered here (||Vsδt|| ≪ 1),
the click probability is parametrically smaller than that for the no-click
event: a qubit flip can be recorded in the detector only rarely.

Extensivity and locality

We are now in a position to expound our considerations for the family
{Hs,d(p)} in terms of the operators {Vs(p)}. For a meaningful comparison
between active and passive protocols, we first require that there exists
a passive protocol that employs Hamiltonians {Hs,d(p)} to reach the
target state |ψ0⟩. For concreteness, we assume that the passive protocol
involving all the family members is a cyclic one: each of the couplings
{Hs,d(p)} is employed one after another in a predefined manner, and the
cycle is repeated once all the couplings are employed. The size of the
family is restricted by the number of available system-detector couplings,
which is assumed to scale up with increasing systems’ size not faster than
extensively.

It is then natural to demand that none of {Hs,d(p)} can move the system
state away from the target state. Given Eqs. (7.2.9) and (7.2.10), this
yields a dark-state condition Vs(p)|ψ0⟩ = 0 for every p. This is equivalent
to every operator Vs(p) taking the following form:

Vs =

D−1∑
α=1

vα|ψ0⟩⟨ψα| +

D−1∑
α,β=1

wαβ |ψβ⟩⟨ψα|, (7.2.11)

where D is the Hilbert-space dimensionality of the system, and {|ψα⟩}
is any (many-body) basis for the system that includes |ψ0⟩ as a basis
state. This general form of the system-detector coupling is, however, not
realistic for many-body systems, as D = 2N grows exponentially with the
number of qubits for an N -qubit system. Thus, having in mind steering
of many-body states, we should further restrict the family of available
steering operators.

The second condition for {Vs(p)} is that these couplings can realistically
be engineered in an experimental realization of the system. In this chapter,
we focus on the most basic aspect of this condition: locality. One may
consider two types of locality: geometric and operator (k-locality [16]).
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Geometric locality of the operator Vs implies that such interaction only
requires coupling the system spins that are in geometrical proximity during
the experiment. A k-local operator Vs implies that only k system spins are
coupled at a time. It is natural to impose the locality constraint not on
the full operator Vs, but its individual terms. For example, if Vs involves
all system spins, but its individual terms only couple 2 spins at a time, we
will consider Vs a 2-local coupling (in line with [16]). Note that a k-local
operator Vs implies an interaction Hamiltonian Hs,d that is (k + 1)-local.

Sufficient conditions for the coupling operators.
Room for active decision-making

It is worth stressing at this point that Vs(p) following the form given
by Eq. (7.2.11) for all p is necessary but not sufficient for |ψ0⟩ to be the
only dark state of the passive protocol. For some choices of such a family
{Vs(p)}, a spurious final state |ψ′

0⟩ ≠ |ψ0⟩ might be reached. However,
this would imply a dark-state condition Vs(p)|ψ′

0⟩ = 0 (for every p), and
this should not hold for a generic (say, random-matrix-type) operator Vs,
which satisfies Vs|ψ0⟩ = 0. For generic coefficients vα and ωαβ in (7.2.11),
one does not expect an existence of a spurious final state (for that, an extra
constraint is needed, such as vanishing of certain vα, ωαβ , or a specific
relation between the coefficients).

One concludes that a family consisting of a single Eq. (7.2.11)-type
coupling Vs is sufficient to prepare |ψ0⟩ in a passive protocol without
generating a dark space. Notably, reducing the family to a single member
would leave no room for active decision-making in a protocol defined by
this family (an active protocol necessitates at least two operators to choose
from). On the other hand, such an ultimate Vs would not generically
satisfy the crucial locality conditions and, thus, would be unrealistic to
implement. Natural counterexample couplings V ′

s that have multiple dark
states arise in the important case when V ′

s acts only on a part of the
system.

To construct such a counterexample, one may start from an arbitrary
operator Vs that satisfies the dark-state condition Vs|ψ0⟩ = 0 for a single
state |ψ0⟩ in a given system. Now, consider a larger system embedding
the original one and construct a different target state which is a tensor
product of |ψ0⟩ and a certain auxiliary state: |Ψ0⟩ ≡ |ψ0⟩ ⊗ |ψ̃0⟩. In this
case, one may take Vs → V ′

s , where V ′
s = Vs ⊗ Is̃ still satisfies condition

V ′
s |Ψ0⟩ = 0 relative to this new target state in the extended Hilbert space.

Yet for a general starting state of the total system, the operator V ′
s is

obviously not sufficient to prepare the extended target state |Ψ0⟩ – also
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implying the existence of spurious dark states (in fact, all states of the
form |ψ0⟩ ⊗ |ψ̃0⟩ turn out to be dark, for arbitrary |ψ̃0⟩).

We see that in this “self-evident” fashion of selecting a steering operator,
the condition of |Ψ0⟩ being a dark state for a single operator V ′

s was not
sufficient for V ′

s to be able to guarantee preparation |Ψ0⟩. As discussed
above, an operator Vs capable of steering a unique dark state is typically
highly nonlocal, in contrast to the limited capacity of a localized operator
Vs ⊗ Is̃. We conclude that a family of multiple operators {Vs(p)} is
needed to realistically prepare a target state, once that state is sufficiently
complicated. This, in turn, opens the door for gaining advantage through
active decision-making.

7.3 Types of system-detector couplings

The preselected family of coupling operators {Vs(p)} determines both the
performance of the ensuing passive protocols and the possibilities for active
policy construction. In the present section, we identify the crucial role of
the commutation properties of {Vs(p)}. We first consider N -qubit steering
protocols which employ coupling operators {Vs(p)} that are mutually
commuting. As a shorthand, we denote this as non-frustrated steering.
We show that a realistic passive protocol of this type can be designed
for product states and certain graph states. Commuting couplings also
allow for a simple feedback strategy, which results in a significant speedup
of the respective passive protocol. Next, we move on to passive steering
protocols that are frustrated. Such frustration of local couplings naturally
arises for many-body target states related to local parent Hamiltonians.
We propose an explicit method of constructing a family of non-commuting
operators {Vs(p)} that allows to prepare such a many-body target state
in a passive protocol. This forms the basis for Secs. 7.4 and 7.5, where we
move on to the active versions of frustrated steering protocols.

7.3.1 Mutually commuting couplings

Here we focus on N -qubit steering protocols implemented with mutually
commuting couplings {Vs(p)}. As will be demonstrated, a passive protocol
of this type can be constructed for an arbitrary target state, yielding an
asymptotically precise passive preparation. However, we find that this
construction would, in general, require non-local system-detector couplings
Hs,d, deeming the implementation of the protocol for many-body states
impractical. We then identify an exception to this rule – a subclass of
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7 Measurement-driven navigation in many-body Hilbert space

graph states that can be obtained using local commuting couplings. For
this, we discuss the constraints coming from both geometric locality, as
well as k-locality. Finally, we extend the discussion from such passive
protocols to their active counterparts. To achieve this, we propose a simple
feedback strategy that speeds up non-frustrated steering in a substantial
way.

As a trivial example of non-frustrated steering, consider an N -qubit
product state as a target state, e.g., |00..0⟩. The starting state will be
assumed to be the perfectly mixed state. To prepare it with a steering
protocol, one can use a set of couplings parameterized by the qubit number
i = 1, ..N :

V (prod)
s (i) = γσ−

i . (7.3.1)

Passively alternating between the steering cycles employing V
(prod)
s (i)

with different i guarantees preparation of the target state with any given
accuracy. This directly follows from the analysis of Secs. 7.2.2 and 7.2.3.
For an active version of the protocol, partial protocol termination can be
applied: if a click is registered when measuring any qubit i, the coupling

V
(prod)
s (i) is dropped out from the sequence of couplings that will be

applied in further cycles. In other words, the steering with this “fired”
coupling is terminated at this point, whereas other couplings remain active
– hence the term “partial termination”. Since this implies a readout-based
decision on the set of steering couplings that are used at a given step, we
classify this as an active steering protocol. In the ϵ→ 0 limit, this strategy
results in the following relation between active and passive runtimes:

N (act)
c (ϵ) =

N
(pass)
c (ϵ)

2
+

N

2γ2δt2
, (7.3.2)

which leads to up to a substantial 2-fold speedup for the active version,
similarly to Eq. (7.2.6).

Non-frustrated steering towards any target state |ψ0⟩ can in principle
be designed if we allow for an arbitrary coupling set. Indeed, given a
many-body unitary transformation to |ψ0⟩ from a product state |00..0⟩,
i.e., |ψ0⟩ = Uψ|00..0⟩, one may formally construct a family of couplings:

V
(Uψ)
s (i) = γUψσ

−
i U

†
ψ. (7.3.3)

Clearly, any protocol for |ψ0⟩ preparation using couplings of the form of
Eq. (7.3.3) would be a unitary equivalent of the same protocol which uses
couplings of Eq. (7.3.1) to prepare |00..0⟩. Therefore, a passive protocol

iterating over V
(Uψ)
s (i) for different i would successfully prepare the target
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7.3 Types of system-detector couplings

state |ψ0⟩. We also conclude that a partial-termination strategy can be
applied to this coupling set with the same effect as for the product state

target. Note, however, that in most cases employing V
(Uψ)
s (i) would not

be practically feasible. Indeed, since Uψ is a general many-body operation,

the couplings V
(Uψ)
s (i) would involve arbitrarily non-local terms. For

most N -spin states |ψ0⟩ with large N , one thus expects that the resulting

V
(Uψ)
s (i) would break any requirement of geometric or k-locality.
This locality-violation rule can be circumvented for Uψ which is given by

a shallow circuit and thus |ψ0⟩ which is weakly entangled. As a resourceful
example of such |ψ0⟩, consider a graph state defined on a generic graph G
[209]:

|ψG⟩ =

 ∏
(j,k)∈

edges(G)

U
(gr)
(j,k)

( |0⟩ + |1⟩√
2

)⊗N

, (7.3.4)

U
(gr)
(a,b) = exp (iπ|00⟩⟨00|a,b) , (7.3.5)

in which case

Uψ =

 ∏
(j,k)∈

edges(G)

U
(gr)
(j,k)


 ∏
j∈qubits

exp
(

i
π

4
σyj

) .

Since two-qubit rotations U
(gr)
(j,k) all mutually commute, the coupling

V
(Uψ)
s (i) acts only on spin i and on the spins j whose vertices share

an edge with i in the graph G. Therefore, this coupling is (k + 1)-local

if there are k edges coming out of vertex i. Moreover, V
(Uψ)
s (i) is also

geometrically local, if the graph G only connects the qubits which are in
geometric proximity. We conclude that for the graphs satisfying the above
conditions, a realistic preparation of graph states with local non-frustrated
steering is possible. Such a protocol can be sped up in the same way
it was possible for the product states – using active feedback via the
partial-termination strategy.

For the perfectly mixed starting state, the partial-termination policy
gives an optimal speed-up of a protocol driven by non-frustrated couplings

V
(Uψ)
s (i). Indeed, the protocols in question are then equivalent to an

independent set of N 1-qubit steering protocols (under the unitary trans-
formation Uψ). This picture, however, breaks down for a more general
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7 Measurement-driven navigation in many-body Hilbert space

starting state. Let us first consider the trivial target Uψ = I, |ψ0⟩ = |00..0⟩,
while the starting state is itself entangled (e.g. 1√

2
(|00..0⟩ + |11..1⟩)). In

this case, the click received from a single coupling Vs(i) may imply that
multiple couplings can be dropped from the applied sequence, and not
just Vs(i) itself. This would be more optimal than the partial termination
strategy outlined above. The same picture extends to the more interesting
case when the target state |ψ0⟩ is entangled itself, e.g. a graph state, while
the starting state is a product state. Indeed, under the unitary mapping
Uψ which takes an entangled state |ψ0⟩ to |00..0⟩, the product starting
state in turn becomes entangled. Hence, the previous reasoning applies
and partial-termination would generally not be an optimal active policy
in this situation. Instead, one may accelerate it further by applying one of
the frustrated-coupling strategies outlined in the following sections.

7.3.2 Frustrated system-detector couplings

From now on, let us focus on accelerating steering protocols which employ
couplings constrained by at least one of the two notions of locality. Under
this premise, for target states other than the product states and states
prepared by a shallow circuit, we would generally need to go beyond the
non-frustrated protocols outlined above. The first question to tackle is how
to design the local couplings Vs that are suitable for a passive protocol.
In principle, this can be addressed on a case-by-case basis, tailoring some
coupling set with a specific target state in mind. (This approach will be
demonstrated for the W -state preparation in Sec. 7.5.4.) However, this
is not always a straightforward task. Therefore, it is interesting to know
whether one can devise a general scheme to this end. For this, we propose
an approach based on a parent-Hamiltonian construction.

The parent Hamiltonian Hψ of |ψ0⟩ has |ψ0⟩ as a non-degenerate ground
state, and is constructed from |ψ0⟩ in the form:

Hψ =
∑
j

H
(j)
ψ . (7.3.6)

Here, all the terms H
(j)
ψ , while defined as acting on the entire Hilbert space,

are local in the real space given that the state |ψ0⟩ hosts a limited amount of
entanglement [210] (implying an area-law dependence of the entanglement
entropy accommodated in |ψ0⟩). Note that, by the construction of the

parent Hamiltonian, terms H
(j)
ψ have |ψ0⟩ as their common ground state,

although they generally do not commute with each other: this is possible
because of their respective ground state degeneracy. These degenerate
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7.3 Types of system-detector couplings

ground spaces of H
(j)
ψ will be the central element of our construction of

the coupling family. For the term H
(j)
ψ , which nontrivially acts on some

m qubits, let us denote its m-qubit ground states as |ϕ(j)a ⟩ and the excited

states |θ(j)a ⟩. Given these, we can construct the coupling operators of the
following form:

V js (w,v,u) =
∑
ab

wab|ϕ(j)a ⟩⟨θ(j)b |

+
∑
ab

vab|θ(j)a ⟩⟨θ(j)b | +
∑
ab

uab|ϕ(j)a ⟩⟨ϕ(j)b |. (7.3.7)

A particular example of this construction will be addressed in detail in the
context of the AKLT model in Sec. 7.4 (see also Refs. [195, 202]).

For a generic (fixed) value of the parameters involved, running a passive
protocol with the coupling given by Eq. (7.3.7) allows one to steer the

system into the ground state of H
(j)
ψ . Alternating the coupling operators

by selecting terms with different j at different measurement steps allows

for steering the system into the joint ground space of all couplings H
(j)
ψ .

This space is given by the target state |ψ0⟩ only, as it is the non-degenerate
ground state of Hψ. Thereby, as long as the parent Hamiltonian Hψ is
local, we have managed to construct an appropriate coupling set for a
passive protocol (also see [195] for a related statement proven in more
detail).

Now, let us consider an active-protocol construction. First, we note
that unlike in the “non-frustrated” protocol construction, the operators
V js for different choices of parameter sets are, in general, not mutually
commuting. This also applies to the couplings with different values of j,

as H
(j)
ψ generally do not commute. Therefore, the measurement outcome

of steering by V js (where, because of the locality of H
(j)
ψ , j corresponds

to a certain region in real space) impacts the outcomes of steering at
other locations. As a result, the partial-termination strategy cannot be
applied to this coupling set, as it assumes that the respective cycles of the
protocol can be considered separately. Instead, the feedback strategy for
the frustrated steering should continuously coordinate the application of
different couplings in the protocol. In a many-body context, this becomes
a complicated navigation-type problem (cf. Ref. [205]). We devote the
following two sections to the study of such possible coordination policies.
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7 Measurement-driven navigation in many-body Hilbert space

7.4 Quantum compass: Cost-function policies

One way to enable the Hilbert-space navigation is to introduce a cost
function C(ρs), which is to be minimized in the protocol. The basic
example would be the infidelity C(ρs) = R(ρs, |ψ0⟩) of the system state
ρs to the target state |ψ0⟩, defined in Eq. (7.2.1). Achieving the global
minimum R(ρs, |ψ0⟩) = 0 of this cost function would be equivalent to
preparing the target state. In general, to calculate R(ρs, |ψ0⟩), one needs
to know the state of the system ρs. This is, in principle, feasible, as we
control the system evolution given all measurements outcomes and therefore
can numerically simulate it in parallel to the experiment. However, the
requirement of such a simulation being done in parallel to the experiment
puts a restriction on the size of the system that one can work with. For
now, we will accept this limitation; finding ways to mitigate it is among
the worthwhile potential extensions of the work presented in this chapter.

With a given cost function C(ρs) at hand, we can use it to form the
active decision for the coupling operator Vs(p). The ultimate strategy
is to pick Vs(p) which brings the system to the global minimum |ψ0⟩ in
the fastest expected time. For C(ρs) = R(ρs, |ψ0⟩) this is equivalent to
the ultimate strategy defined by dynamic programming [206], requiring
unrealistic computation power. Therefore, the notion of the global cost
function does not give any additional advantage in constructing such a
strategy. Instead, one can use its cheaper version – the “greedy strategy.”
Specifically, one can use Vs(p) that yields the fastest expected reduction
of the cost function in a single step of the evolution:

V (greed)
s (p) = argminVs(p)R[ΛVs(p)(ρs)], (7.4.1)

where ΛVs(p)(ρs) is defined in Eq. (7.2.8) If there are multiple minima, we
will assume that argmin returns a random representative among those.
With only a small amount of computations needed to decide for the optimal

next coupling V
(greed)
s (p), this greedy procedure allows us to avoid the

complex long-term analysis of the protocol.

As one can see from a direct implementation, the greedy minimization
of the cost function can accelerate the state preparation by a large factor.
To demonstrate this, we consider the example of the ground state in an
AKLT spin chain as the target state. This is an entangled state of N
spin-1 particles governed by the Hamiltonian HAKLT:
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Figure 7.2: (a) Infidelity as a function of the protocol cycle for active and
passive protocol runs towards a 5-spin AKLT state. These example runs are
characterized by the duration similar to the mean protocol durations of respective
protocols (≈ 199±4 for passive and ≈ 28±0.5 for active protocol) (b) Histograms
of protocol durations t for the preparation of the five-spin AKLT, with accuracy
given by infidelity R < ϵ = 0.01. An exponential decaying profile, characteristic
of a Poissonian process, can be clearly observed (note the log scale). Note that
all recorded runs for an active protocol lasted far less than the mean duration of
a passive protocol (200 cycles). Each histogram was compiled from 104 simulated
runs; the figure is truncated at 600 cycles for better presentation. (c) Scaling of
the active protocol’s advantage with system size N . A speedup factor tends to
increase significantly as the system scales, with factor 9.5 being the estimated
speedup at 6 spins. The error bars represent 95% confidence intervals due to
sampling error in numerical simulation. 104 samples were collected to simulate
both protocols N = 3, 4, 5, and 103 at N = 6. Similarly to the above, the
infidelity threshold is ϵ = 0.01.

HAKLT =
∑
i

Hi,i+1 =
∑
i

[
S⃗i · S⃗i+1 +

1

3

(
S⃗i · S⃗i+1

)2]
, (7.4.2)

Here, we assume periodic boundary conditions, implying a single ground
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7 Measurement-driven navigation in many-body Hilbert space

state [207]. The Hamiltonian (7.4.2) is a parent Hamiltonian (as defined
in Sec. 7.3.2), where each term Hi,i+1 has four degenerate ground states
|ϕia⟩ with eigenvalue −2/3, and 5 excited states |θib⟩ with energy 4/3.

Hereafter, we consider the all-down product state as our starting state.
We first design a passive steering protocol for AKLT state preparation,
following the parent Hamiltonian construction from Sec. 7.3.2. For sim-
plicity, we restrict ourselves to a less general version of Eq. (7.3.7), and
use the following family of coupling operators (cf. Refs. [195, 202]):

V (c, i) = |ϕi4⟩⟨θi5| +
∑

α,β=1,..4

cαβ |ϕiα⟩⟨θiβ |, (7.4.3)

with cαβ constrained to be an orthogonal matrix, to make sure that the
interaction is of constant strength and thus no bias is introduced in the
construction. In a passive steering protocol, we will alternate between
different values of i, while drawing instances of orthogonal matrices c at
random. For an active feedback strategy to be used on top of this, we
propose a greedy policy relative to C(ρs) = R(ρs, |ψ0⟩) to select c. In both
passive and active protocol, we assume each coupling to be applied multiple
times until one either receives a click, or no-click for an asymptotically
long time. Such a repeated application of a single coupling is then counted
as a single protocol cycle. We take this approach for a practical purpose
because simulating such protocols is more accessible numerically.

Thus simulated, the relative performance of the passive and the active
policies (Fig. 7.2) shows a strong advantage of the active policy. In
particular, the speedup factor is steadily increasing with system size
(Fig. 7.2c), reaching the value of 9.5 for N = 6.

7.4.1 Discussion: orthogonality catastrophe and
alternative cost functions

The approach defined above harbors a potential challenge. For the greedy
procedure to be effective, it should always yield a nonzero bias in favor

of a specific V
(greed)
s (p) (or a small subset thereof). In other words, the

landscape of the cost function C(ρs) should not be flat — and some cost
functions may yield better landscapes than others. In particular, applying
the infidelity measure R(ρs, |ψ0⟩) is, in general, fundamentally flawed.
Indeed, a (2N − 1)-dimensional subspace of states in the N -body Hilbert
space is orthogonal to the target state. Let us consider the case when the
starting state belongs to that subspace. This situation would in general
not change after a single steering cycle with a local coupling Vs(p). For our
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7.4 Quantum compass: Cost-function policies

purposes, it implies that the infidelity measure R is equal to 1 for a large
manifold of states, and there might be no direction of increase that would
allow us to choose an appropriate coupling. The most direct example of
this can be observed when applying the greedy policy to non-frustrated
steering (see Sec. 7.3.1). For simplicity, let us again take the product state
of N qubits |00..0⟩ as the target state, the state |11..1⟩ as the starting
state, and the couplings V (i) = σ−

i for steering. Only after such steering
protocol results in N successful click events, R(ρs, |ψ0⟩) gains a nonzero
value. Thus before N − 1 clicks, the greedy policy for R(inf) will not be
capable of providing a meaningful decision for the next coupling. Strongly
enhanced by the system size, this phenomenon is reminiscent of Anderson’s
orthogonality catastrophe [211].

As a remedy to this deficiency, a “subsystem infidelity” measure can be
introduced:

RS(ρs, |ψ0⟩) =
∑
σ∈S

[
1 − tr

(√√
ρ0,σρs,σ

√
ρ0,σ

)2]
, (7.4.4)

where ρ0,σ (ρs,σ) is the reduced density matrix of the target state (current
state) with respect to subsystem σ. S is the family of subsystems from
which σ are drawn; the choice of S depends per target state. In the case of
the |11..1⟩ → |00..0⟩ protocol described above, the appropriate S would be
the set of individual spins. Unlike R, such quantity RS changes every time
when a click occurs in this protocol. As a result, the greedy policy with
respect to the local RS would yield the partial-termination protocol of
Sec. 7.3.1, significantly boosting the preparation of such a product state.

By continuity with the case of the product state target, such preference
for RS should extend to the weakly-entangled target states, and maybe to
some highly-entangled targets. However, we did not see a manifestation of
this in the case of our AKLT simulation, where using RS as a cost function
did not yield any improvement compared to R. As a likely explanation
for this, the orthogonality catastrophe should become manifest only at
large system sizes, where the classical simulation of the protocol is also
hindered. However, we expect that some practical target states may still
develop a noticeable performance difference between RS and R, similarly
to the case of the product state target. A further study of this question
constitutes a promising direction for future work.
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7 Measurement-driven navigation in many-body Hilbert space

7.5 Hilbert-space orienteering map:
Quantum State Machine

In this section, we present an orienteering tool that is an alternative to
cost-function minimization: mapping out the steering transformations
with a Quantum State Machine (QSM) construction. We then illustrate
navigation in many-body Hilbert space, employing this machinery to the
preparation of the highly entangled W-state of three qubits.

7.5.1 QSM generalities

Every transformation of the system’s state, Λ
(cl)
Vs(p)

and Λ
(nc)
Vs(p)

, associated

to steering with a specific coupling Vs(p) in a given readout scenario [click
or no-click, respectively, see Eqs. (7.2.9) and (7.2.10)], can be represented
with a directed graph with complex weights. For this, we notice that every
such steering transformation conserves the purity of the state. Therefore, it

is convenient to encode transformations Λ
(cl, ncl)
Vs

in their action on Hilbert
space basis states |ϕα⟩:

Λ
(cl,ncl)
Vs

(|ϕα⟩) =
1√

p(cl,ncl)

∑
β

L
(cl,ncl)
αβ |ϕβ⟩ (7.5.1)

L
(cl)
αβ = ⟨ϕβ |δtVs|ϕα⟩, (7.5.2)

L
(ncl)
αβ = ⟨ϕβ |1 − δt2V †

s Vs/2|ϕα⟩, (7.5.3)

where p(cl) (p(ncl)) is the probability of a click (non-click) readout upon
this steering action. Note that in Eq. (7.5.1), we extended the action of
ΛVs to pure states by a slight abuse of notation compared to Eq. (7.2.9).

The graph representation for steering action Λ
(cl,ncl)
Vs(p)

, or a steering graph,

is then directly obtained from the amplitudes L
(cl,ncl)
αβ . The vertices in

such a graph correspond to the Hilbert space basis states, and the edges
describe the steering transformations. The edges are directed and weighted
with complex amplitudes, the edge α→ β being weighted with amplitude

L
(cl, ncl)
αβ (edges weighted with zero amplitudes are excluded from the

graph). Implying this definition, we will use the notation L(cl, ncl) for the
steering graphs themselves. For basic examples of steering graphs, please
refer to Fig. 7.3.

Since the weights L
(cl)
αβ are proportional to the matrix elements of cou-

pling operator Vs while L
(ncl)
αβ can be expressed via Vs as well, the graph

188



7.5 Hilbert-space orienteering map: Quantum State Machine

0 0

2 1

1

Figure 7.3: Examples of steering graphs (see definition in Sec. 7.5.1): (a)
Steering graphs on a 3-level system, corresponding to the coupling Vs = γ(|1⟩⟨0|+
|1⟩⟨2|). Graph L(cl) for click action is denoted with solid arrows and the graph
L(ncl) for no-click action by dashed arrows (a particular representation of graph
coloring). Note that due to the identity operator in Eq. (7.5.3), every vertex is
decorated with a self-loop from the L(ncl) graph. To see how the rest of L(ncl)

can be deduced from L(cl) (cf. discussion in Sec. 7.5.1), consider the example of

e
(ncl)
02 (dashed arrow from state 0 to 2). According to the graphical approach

from Sec. 7.5.1, one is to follow edge e
(cl)
01 (solid arrow from 0 to 1) forward and

then e
(cl)
21 (solid arrow from 2 to 1) backward - and thus manages to travel from

state 0 to 2, in correspondence to e
(ncl)
02 . (b) Steering graphs on a 2-level system,

as defined by the coupling Vs = γ(|1⟩⟨1|+ |1⟩⟨0|). Following the same rule as
above, inter-vertex edges of L(ncl) can be deduced from L(cl). For example, by
following the edge e

(cl)
11 forward and then the edge e

(cl)
01 backward, one performs

a transition from state 1 to state 0, thus reproducing the edge e
(ncl)
10 from L(ncl).

L(ncl) for the no-click action can be inferred entirely from the graph L(cl)

for the click action. In particular, due to the term ∝ V †
s Vs, graph L(ncl)

contains an edge e
(ncl)
ij from vertex vi to vj , if a graph L(cl) contains edges

e
(cl)
ik and e

(cl)
jk (see Fig. 7.3). Heuristically, to yield a L(ncl)-edge, one has

to first follow a L(cl)-edge forward, and then another L(cl)-edge backward.
Furthermore, due to the additional identity operator term in Eq. (7.5.3),
any graph for the no-click steering action will also include self-loops on
each vertex.

The steering graphs introduced above can now be used to create a
Quantum State Machine. For nV couplings Vs(p) in the steering kit, there

exist 2nV graphs corresponding to steering maps Λ
(cl, ncl)
Vs(p)

, because of the

two possible measurement outcomes for each of the couplings. The QSM
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0 1 2

Figure 7.4: A basic example of the QSM multigraph, describing the steering
kit for a three-state system. The steering options are represented by the coupling
operators V1 = γ1|1⟩⟨0| and V2 = γ2|2⟩⟨1|. The starting state is 0, marked in
blue, and the target state is 2, marked in green. The optimal coordination policy
of the two steering operations is straightforward: one needs to first repeatedly
apply the V1-steering until a click is obtained, and then the V2-steering until a
click is obtained. Compared to the passive steering which iterates between V1

and V2 regardless of measurement outcomes, this directly yields a 2-fold speedup
in the average performance.

for the steering protocol is then obtained as a collection of these graphs. It
can be represented as a colored multigraph, where each steering graph is
represented as a single-color subgraph (Fig. 7.4). Consequently, in a QSM
multigraph there may be multiple edges going from any vertex α into any
other vertex β (making it a multigraph rather than a simple graph), but
at most one such edge for each color.

Let us now consider our original task of finding the accelerated navigation
protocol. To make use of the QSM construction in this context, we will
restrict our consideration to bases {|ϕβ⟩} where one of the basis states
is the target state |ψ0⟩ itself. In such a case, state |ψ0⟩ corresponds to a
marked vertex in the graph, and the goal of the steering protocol becomes
to drive the system state to that vertex. The goal of optimizing this
protocol may then look similar to a known problem of finding the shortest
path to the marked vertex on a weighted graph. This problem is standard
in graph theory and can be solved as such. Can such a solution be used to
design the navigation protocol?

As we will see in Sec. 7.5.2, this analogy is not complete, since the
quantum evolution on the graph goes beyond the simple path-on-the-graph
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picture. This aspect creates an obstacle to directly applying the graph
exploration algorithms to facilitate our protocol speed-up. Fortunately,
in some cases, this difficulty can be properly accounted for, as we will
see in Sec. 7.5.3. In those cases, the “semi-classical heuristics” of graph
exploration may indeed be applied. Finally, in Sec. 7.5.4, we will apply this
approach to the preparation of the W -state, with a factor 12.5 improvement
compared to the passive protocol using the active navigation protocol.

7.5.2 Quantum subgraphs in a QSM

Let us now compare our QSM navigation task to the standard problem
of graph exploration. Our goal is to identify the differences between the
two, which prevent us from applying the graph exploration techniques
directly to QSM navigation. First of all, the state of the system in graph
exploration is at all times represented by a single vertex. The system in a
QSM, on the other hand, is generally represented by a superposition over
multiple vertices. Furthermore, in graph exploration, the state is modified
by following one of the edges. A steering action in a QSM, in contrast,
corresponds to a whole collection of edges – i.e., a single steering graph in
the QSM multigraph.

Some steering graphs may induce quantum effects, such as superposition
and interference. For instance, the steering action whose graph contains

two outgoing edges from a given vertex (e.g., vertex 0 for graph L
(cl)
1 in

Fig. 7.5a), can create a nontrivial quantum superposition. If a state is
given by a superposition of multiple vertex states, it may further undergo
quantum interference. In particular, this can be facilitated by a steering
action whose graph contains a vertex with two incoming edges (e.g., vertex

4 for graph L
(cl)
2 in Fig. 7.5a). In general, a notion of “superposition

subgraphs” and “interference subgraphs” of a steering graph can be defined:

1. Superposition subgraph is a subgraph of a steering graph span by
multiple (more than one) edges outgoing from a single vertex.

2. Interference subgraph is a subgraph of a steering graph span by
multiple edges incoming to a single vertex.

Collectively, we will refer to such interference and superposition subgraphs
of a single steering graph as its quantum subgraphs. If the quantum
subgraphs are absent in the QSM, we will refer to it as a classical QSM.
In other words, in a classical QSM, each vertex has at most one outgoing
and at most one incoming edge of any given color.
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7 Measurement-driven navigation in many-body Hilbert space

If a QSM is classical, optimization of the navigation protocol can essen-
tially be reduced to classical graph exploration. For a simple example of a
classical QSM and the way to optimize the respective state preparation,
consider the 3-level steering actions described in Fig. 7.4. Note that opti-
mization of the classical QSM also applies to the case when the starting
state is a superposition of multiple vertex states. If the steering operations
contain no quantum subgraphs, the quantum superposition is equivalent
to a probabilistic mixture for the sake of the protocol optimization, and
the optimal navigation pattern can be extracted accordingly.

As the form of the steering graph depends on the choice of basis, it is
conceivable that the number of quantum subgraphs in such a graph in
some cases can be reduced by changing the basis (compare Fig. 7.5a and
b). However, using a change of basis to remove all the quantum subgraphs
in an arbitrary QSM is generally impossible (see Fig. 7.5).

7.5.3 Coarse-grained QSM. Semiclassical heuristic for
navigation

We now focus on the steering protocols whose QSM cannot be made
classical via a basis transformation. In such a case, it may still be possible
to optimize it via a classical graph exploration heuristic. For that, we
propose to coarse-grain the QSM by grouping subsets of its vertices into
single block-vertices. The coarse-grained QSM would consist of graphs
drawn between such block-vertices. The block-vertex containing the target
vertex can be considered as the target block-vertex.

An inter-block edge between two block-vertices is drawn, if the original
QSM has at least one edge connecting the vertices inside the respective
block-vertices. For the coarse-graining to be useful for our purposes, it
should be done in such a way that all of the resulting QSM graphs have
a classical structure. Namely, the coarse-grained graph should not have
quantum subgraphs, e.g. realizing superposition or interference between
the block-vertices (in analogy to Sec. 7.5.2). To satisfy this requirement,
the following rule for vertex grouping can be employed (cf. Fig. 7.6):
if two edges of the same color are simultaneously coming in or out of
a given vertex, the two vertices at the other ends of these edges should
be grouped within one effective block-vertex. This rule manifestly yields
basis-dependent groupings, since the very presence of quantum subgraphs
in a QSM is basis-dependent. Thus, a smart choice of the basis may allow
for an efficient and simpler coarse-grained graph. Designing a general
explicit algorithm for finding the optimum basis for an arbitrary QSM is a
highly non-trivial task. Heuristically speaking, a convenient choice of the
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Figure 7.5: Possible configurations of quantum subgraphs in a QSM, exempli-
fied by the 5-vertex subgraph of an example QSM. (a) The click-action graphs
for the three coupling operators V1,2,3 that form the steering kit. The operators
have the form V1 = γ1(|1⟩ − |2⟩)⟨0|, V2 = γ2|4⟩(⟨1| − ⟨2|), V3 = γ3|3⟩⟨1|. The
graphs for the no-click actions are not shown, as their form can be deduced from
the graphs for click actions. In the present basis, the V1-click is manifest as a
superposition, the V2-click – as an interference, and the V3-click corresponds to
a semiclassical evolution. (b) Quantum State Machine for the steering kit from
the previous panel, depicted in a different basis. The basis transformation is
|±⟩ = (|1⟩±|2⟩)/

√
2. In this case, the basis transformation removes the quantum

elements in the L
(cl)
1,2 graphs, however, it turns L

(cl)
3 into an interference element.

Note that there is no basis transformation that would turn such a QSM into a
classical one. This statement follows from the uniqueness of the Jordan canonical
form for operators V2 and V3.

basis should be the one that results in the minimum number of quantum
subgraphs in a QSM before coarse-graining.

For the coarse-grained graph to be effectively classical, we desire to
ignore details of the system evolution inside the subspace of a given block-
vertex. Specifically, we aim to view every block-vertex as an effective
single state of the system and assume that every edge allows transporting
the system between such block-vertex states with no obstacles. If this
was directly possible, and since the coarse-grained QSM by definition
contains no quantum subgraphs, optimization of its exploration would
have become a classical task. However, such an approximation scheme
needs more careful justification. Every block fundamentally corresponds to
a Hilbert subspace, and an inter-block edge is given by a N1 ×N2 matrix
of coefficients (where N1 and N2 are the internal dimensionalities of the
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7 Measurement-driven navigation in many-body Hilbert space
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Figure 7.6: Semiclassical coarse-graining applied to a QSM. (a) A 5-state
part of a QSM with two quantum subgraphs: interference subgraph realized
by L

(cl)
2 and a superposition subgraph realized by L

(cl)
1 . Since pairs of states

{|0⟩, |1⟩} and {|3⟩, |4⟩} fall under conditions described in Sec. 7.5.3, these are
to be grouped together in a coarse-grained QSM. (b) Simplified depiction of a
coarse-grained QSM, obtained from (a).

linked blocks). Characterizing these effectively with single amplitudes may
lead to erroneous navigation policies. In particular, one state internal to
a block-vertex might be untouched by an inter-block edge, i.e., it only
yields zero matrix elements in a matrix characterizing the edge. If the
edge is outgoing, a system initialized in the said state would not be able
to escape the block-vertex using that edge alone (see Fig. 7.7). This is in
direct conflict with characterizing blocks and inter-block edges with single
amplitudes. For an incoming edge, a similar problem may arise: some
states inside a block-vertex might not get populated when that edge is
activated. This may become detrimental for the navigation protocol based
on a coarse-grained QSM, especially if the unavailable state in question is
the final target of the protocol.

Such difficulties may be overcome, if some of the couplings given in

194
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0

3

12

Figure 7.7: Illustration of ancillary couplings in the context of QSM coarse-
graining (a) A 4-state part of a QSM that is subject to coarse-graining, featuring
non-trivial actions by couplings denoted as V1 and V2. States |1⟩ and |2⟩ are to
be grouped together since they are both targets in a superposition subgraph span
by edges e02 and e01 of a steering graph L

(cl)
1 . (b) The coarse-grained version

of the QSM from (a). The block {|1⟩, |2⟩} is connected to state |3⟩ through an

outgoing edge of L
(cl)
1 . However, from microscopic point of view exemplified

in (a), no population can be transferred from state |2⟩ to |3⟩ unless the click

action Λ
(cl)
2 is realized first. Therefore, including and applying V2 as an ancillary

coupling is required for a valid semiclassical coarse-graining of this QSM.

a QSM allow for an internal mixing of the subspace (represented by a
self-loop on the block-vertex in the respective L(cl)-graph). Applying
such a coupling in the protocol would allow one to make the block-vertex
accessible to all the edges that are connected to it (see Fig. 7.7), via
a sufficient number of clicks. In the scenarios described above, where
additional couplings are needed to turn a block-vertex into an effective
single vertex, we will refer to such couplings as ancillary couplings. Note
that given a steering kit, there is no guarantee that the ancillary couplings
needed for exploration of every block-vertex, are available. For simplicity,
in this chapter, we restrict our further consideration to the coarse-grained
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7 Measurement-driven navigation in many-body Hilbert space

QSMs, where the ancillary couplings happen to be present wherever needed.
Every block-vertex can then be made accessible to the outgoing edges,
and the target state is ensured to be reachable once the target block is
reached. In this case, we consider the coarse-grained QSM as effectively
semiclassical.

To design an active steering policy within the coarse-grained approach,
we note that the navigation protocol has the following structure. The
system state can be transported between block-vertices, and eventually
steered to the target block-vertex. After that, either the target state is
reached already (one can obtain this information from the simulated copy
of the system), or it can be reached after applying ancillary couplings
on the target block-vertex. The cost of the protocol can now be broken
into two parts. The first is the cost of exploring the coarse-grained graph
using the inter-vertex edges. The second is the dwell time inside the block-
vertices, which is spent applying the ancillary couplings. If we could find
the route through the graph that minimizes the combination of these two
components, it would solve our optimization problem exactly. However,
because of the presence of the degrees of freedom that are internal to the
block-vertices, the coarse-grained geometrical information does not allow
for such a precise solution. In other words, both the inter-vertex travel
time and the block-vertex dwell time depend on the microscopic details of
the evolution.

Instead of studying such quantum-mechanical microscopics, we propose
a semiclassical approximation to this calculation. Specifically, we assign
every inter-block edge a characteristic traversal time, and every block-
vertex a characteristic dwell time. For this, we use the matrices for click
transitions between blocks i and j (the case of ancillary couplings given

by i = j). Let us loosely denote these as L
(cl)
i,α;j,β , implying that only

matrix elements with states from blocks i and j are included. In that case,
the effective transition amplitude between blocks i and j can be defined

as operator norm L
(cl)
i,j = ∥L(cl)

i,α;j,β∥, and characteristic traversal (dwell if

i = j) time τi,j = (L
(cl)
i,j )−2. Note that this reduces to the average traversal

time for the case of a genuinely classical graph, with an amplitude γδt
connecting two states implying duration of τ = 1

γ2δt2 for traversal (cf.

Sec. 7.2.2).

With characteristic times τi,j assigned, the time-cost of following a spe-
cific path through this graph can be estimated as a combined characteristic
time of all the edges and vertices crossed along the way. The desired path
will be the one that optimizes this expected time. On the one hand, this
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Figure 7.8: Measurement-driven navigation towards the 3-qubit W -state:
QSM representation. (a) Steering with couplings Eqs. (7.5.5)-(7.5.8). The
vertices in the single-excitation subspace are given by states |W ⟩, |ϕ−⟩ ≡
1√
2
(|100⟩ − |001⟩), and |ϕ+−⟩ ≡ 1√

6
(|100⟩ − 2|010⟩ + |001⟩). (b) The coarse-

grained version of the above QSM. The vertices are labeled by the excitation
number. From perspective of Sec. 7.5.3, couplings 2 and 3 play the ancillary
role. Indeed, those couplings mix the internal structure of the block-vertices,
allowing one to eventually steer the state to the target |W ⟩.

may result in a different navigation protocol compared to what is optimal
from the complete quantum-mechanical analysis. On the other hand, such
a first-principles analysis is prohibitively hard, and we expect that our
semiclassically derived protocol will still be considerably quicker than its
completely passive version. One example of such an improved protocol is
given below.

7.5.4 W-state preparation

To illustrate the principles of the QSM framework, we consider the coarse-
graining approach to the navigation of a 3-qubit state from a trivial |000⟩
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7 Measurement-driven navigation in many-body Hilbert space

state to a so-called W-state [212] that has the following form:

W =
1√
3

(|100⟩ + |010⟩ + |001⟩). (7.5.4)

For the steering kit, we choose the following family of couplings (assuming
labels A, B, and C for the qubits):

V1 = σ+
A − σ+

C , (7.5.5)

V2 = σ−
Aσ

−
C , (7.5.6)

V3 = σ−
Aσ

+
B − P 0

AP
1
B , (7.5.7)

V4 = σ+
Bσ

−
C − P 1

BP
0
C . (7.5.8)

Here, σ± = 1
2 (σx ± iσy) and P a = |a⟩⟨a|, a = 0, 1. A passive version of

the protocol would amount to blindly alternating between the steering
actions with different Vi, which does yield the target state, given that the
steering is applied a sufficient number of times (see Fig. 7.8.b).

To design a feedback policy, we now consider a QSM representation of
the steering kit. It is shown in Fig. 7.8a. Note that this QSM has multiple
quantum subgraphs. Therefore, to employ a feedback policy, it should be
subjected to the subspace-clustering coarse-graining technique, as outlined
in Sec. 7.5.3. It proves useful to cluster the Hilbert space by the total
excitation number, which results in a semiclassical QSM, as desired (Fig.
7.8b). Given the starting state of the evolution, it is then straightforward
to design the policy that leads to the target state:

1. Repeat V1-steering until a click is obtained;

2. Repeat V3-steering until the target state is reached (with fidelity
error below ϵ).

This protocol moves the state of the system from the zero excitation
state to the single-excitation subspace (part 1) and then takes the system
to the W-state in that subspace (part 2). Note that this employs only two
couplings out of four, a simplification that is only possible with an active
steering protocol. In a passive protocol, as all couplings are employed
cyclically, multiple V1-clicks may accidentally occur before the target state
is reached (Fig. 7.9a), and, therefore, other couplings are needed to reduce
the excitation number back to 1. In Fig. 7.9b, the performance histogram
is given for a large number of numerical trials for the active and passive
protocols. Both are run with δt = 0.1 for the target fidelity error ϵ = 0.01.
We are primarily interested in the average runtimes of the active and the
passive protocol. These are Nact ≃ 365 ± 3 and Npas ≃ 4600 ± 100 cycles
of the protocol, respectively, yielding a speedup factor of around 12.5.
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Figure 7.9: Performance of the active navigation protocol based on the QSM
representation of steering towards the W -state, as described in the text. (a)
Typical trajectories of the passive and active protocols, in terms of the excitation
number sector that is occupied by the system state. Displayed are trajectories
that yield the runtimes approximately equal to average runtimes of 365 (active)
and 4600 (passive). The first V1-click in the displayed run of the active protocol
occurs as early as the 14th cycle, which is not legible from the plot. (b) The
histogram over the protocol runtimes, required for a passive and an active
protocol to achieve r=0.01 infidelity to the target state. Similarly to the Fig. 7.2
for AKLT target state, note the clear advantage for each recorded run of the
active protocol compared to the mean duration ≃ 4.6 ·103 of the passive protocol.
Each histogram was obtained from 104 numerical simulations, and truncated at
15000 cycles for better presentation.

7.6 Discussion and conclusions

In this work, we have put forward the concept of measurement-driven
active-decision steering of quantum states. We have developed steering
protocols in which the measurement readouts are used to adjust the
measurement protocol on-the-go, yielding significant acceleration of state
preparation, with improved fidelity, compared with passive steering. The
possibility of exploiting the readouts explored here is the great advantage of
measurement-based steering over drive-and-dissipation (largely equivalent
to “blind” steering) state preparation. While our approach has sweeping
applicability, here we have chosen to focus on active measurement-driven
steering as applied to the most challenging case of many-body quantum
systems with entangled target states.

To satisfy physical (locality) constraints on system-detector couplings,
we have proposed a scheme, based on parent Hamiltonian construction, for
identifying feasible couplings. Employing such couplings, we have devel-
oped and analyzed Hilbert-space-orientation techniques for measurement-
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7 Measurement-driven navigation in many-body Hilbert space

driven steering. A central ingredient here has been to develop feedback
policies based on detector readouts. One such Hilbert-space path-finding
technique is based on a cost function, evaluating the running fidelity to
the target state. We have shown a substantial (up to 9.5-fold) speedup of
steering, employing this approach for preparation of the ground state of
the AKLT model. A second protocol comprises mapping out the available
measurement actions onto a Quantum State Machine (QSM), using a
coarse-grained version of the corresponding graphs in Hilbert space. We
have given an example of an entangled state preparation which shows
acceleration by a factor of 12.5 compared to passive steering.

While we have limited ourselves here to a few examples, our schemes
are of general applicability. They open the door to the design of efficient
and high-quality state engineering, adiabatic state manipulation, and,
possibly, quantum information processing. Moreover, steering protocols
are subject to errors, both “static” (choice of steering parameters) and
“dynamics” (noise). Active decision-making steering may be designed to
reduce the effect of such errors. One may envision a host of directions to
generalize and develop these ideas. For example, the greedy minimization
of our cost function may be further improved by finding other metrics
of local “steepest decent.” Further, one may systematically investigate
less local (less greedy) optimization of the cost function, e.g., looking
n steps ahead. Another potential advantage of our protocols relies on
the following observation: in the context of passive steering, one imposes
constraints concerning locality (e.g., how many spins can be coupled to a
local detector), and certain types of coupling terms. Given such constraints,
not all target states are reachable. The introduction of active steering may
overcome this handicap of target-state accessibility.

One may combine the dynamics incorporated here with the inherent
unitary evolution of the system at hand (due to a system-only Hamil-
tonian). Consider the context of passive (blind) measurement-induced
steering, which, in the continuum time limit, leads to Lindbladian dynam-
ics. Then, the addition of Hamiltonian dynamics enriches the variability
of steering, allowing, for example, to obtain mixed states by design [213].
It is intriguing to investigate how the addition of Hamiltonian dynamics
extends or improves active steering, thus marrying the frameworks of
closed-loop quantum control for Hamiltonian-based state preparation and
active-decision measurement-based steering.

Further extensions of our approach include applications of QSM protocols
to larger and more complex systems, going beyond a three-qubit setup.
Optimizing such protocols may involve automatization of the creation
and analysis of QSMs, e.g., for finding an optimal basis automatically, in
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similarity with quantum annealing, but now at the level of measurement
operators. Finally, one may envision using machine learning to find
more optimized navigation protocols (see [214, 215] for related work in
the context of Hamiltonian feedback and open-loop control). Given the
delayed-reward setting at hand, a reinforcement learning strategy such as
Q-learning [216] or SARSA [217] might be the most appropriate choice.

201




