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5 A diagrammatic approach to
variational quantum ansatz
construction

5.1 Introduction

Despite promises of exponential speedups, quantum algorithms require
optimization to achieve an advantage over their classical counterparts on
state of the art supercomputers for problems of interest. This is the case
both in the Noisy Intermediate-Scale Quantum era [11], where coherence
times in quantum devices prohibit all but the shortest experiments to be
performed, and in first-generation fault-tolerant devices, where a single non-
Clifford rotation requires thousands of additional qubits and hundreds of
error correcting cycles [158]. In the field of digital quantum simulation, the
variational quantum eigensolver (VQE) [159] has emerged as a competitive
class of algorithms for generating approximate ground states of quantum
systems, due to its relatively low circuit length. These algorithms consist
of parametrizing a quantum circuit with a small number of classical control
variables, which may be tuned to minimize the energy of the state produced
by the circuit, given a target Hamiltonian. As the manifold of obtainable
states for a given VQE will only ever be an exponentially small region in
the larger Hilbert space, optimizing VQE design is critical to obtain good
approximations of the system’s ground state [47, 47, 54]. This has spurred
much recent work in optimizing VQEs based on the unitary coupled cluster
expansion [47, 54, 161], or on the quantum approximate optimization
algorithm [162, 163]. The efficiency of coupled cluster methods is based on
the principle of size-extensivity. This means that the ansatz systematically
accounts for ground state correlations, as ensured in perturbative language
by the linked-cluster theorem [57]. However, to be realized as a quantum
circuit size-extensive ansatzes typically require expansion via Trotter-
Suzuki-based methods [58, 59]. At low circuit depth, these expansions
introduce significant errors. Alleviating this issue would help to ensure
the efficiency of the VQE algorithm.
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5 A diagrammatic approach to variational quantum ansatz construction

In this chapter, we develop a Trotterization-free diagrammatic method
to generate size-extensive VQEs. We start by designing a class of VQE
ansatzes, based on the stabilizer formalism in quantum error correction,
which provably tightly span the entire Hilbert space of Nq qubits. We
then demonstrate how one may compress an arbitrary variational ansatz
to account for symmetries of a target Hamiltonian. We further show
how to construct a hierarchy of ansatz generators, allowing one to trade
between circuit length and accuracy in a practical manner by choosing
only those generators that contribute well to solving the problem. We
motivate the construction of one particular such hierarchy from a general
perturbative analysis of weakly coupled target Hamiltonians, for which
we develop a simple-to-use diagrammatic formalism. We find that our
geometrically tight stabilizer ansatz may be compressed to a practical
size using this perturbative scheme. The analogue of the linked-cluster
theorem for such compressed digital ansatzes is stated and proven, ensuring
the size-extensivity of the construction. We also propose some possible
modifications to our perturbative scheme to account for circuit depth and
locality. We compare the performance of these constructions on simulations
of the transverse-field Ising model in three different physical regimes (weak-
coupling, strong-coupling, and critical). We find that strictly following
the perturbative approach is beneficial in the weak-coupling regime, but
restricting the ansatz to lowest-order gives better convergence in the strong-
coupling regime — even though such ansatzes are seemingly less-informed
about the strong-coupling physics.

5.2 Variational quantum eigensolvers

A variational quantum eigensolver (VQE) is an algorithm executed on a
quantum register that aims to approximate the minimum eigenvalue E0 of

a target Hamiltonian H on C2Nq by finding low energy states |ψ⟩ ∈ C2Nq

variationally. To be precise, this algorithm minimizes ⟨ψ|H|ψ⟩ over a
variational ansatz:

Definition 1. A variational ansatz on Np parameters corresponds to a pair

(U, |⃗0⟩), where U is a smooth map from the parameter space θ⃗ ∈ RNp to

the unitary operator U(θ⃗) on C2Nq , and |⃗0⟩ ∈ C2Nq is the starting state,

which is acted on to generate the variational state |ψ(θ⃗)⟩ = U(θ⃗)|⃗0⟩,
with variational energy E(θ⃗) = ⟨ψ(θ⃗)|H|ψ(θ⃗)⟩.

As a brief example, let us define the following toy two-qubit variational
ansatz:
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5.2 Variational quantum eigensolvers

Figure 5.1: (top) A circuit to implement the YYX two-qubit variational ansatz
in terms of Pauli rotations RA(θ) = eiAjθ on single qubits j (A = X,Y, Z) and
CNOT gates. Shaded regions denote subcircuits to implement the three separate
unitary rotations in Eq. (5.2.1), as color coded with the variational parameters
θi. (below) The above circuit in a compressed notation, treating each rotation U
as a single gate labeled by the elements of the rotation generators (Eq. (5.2.4))
on each qubit.

Example 2. The 3-parameter YYX variational ansatz (UY Y X , |00⟩)
is defined on two qubits {Q1, Q2}, with the starting state |00⟩ in the
computational (Z) basis, and

UY Y X(θ1, θ2, θ3) := eiθ3Y1X2eiθ2Y2eiθ1Y1 . (5.2.1)

A quantum circuit that implements this toy ansatz is given in Fig. 5.1,
using standard methods [60] to decompose the two-qubit eiθ2Y1X2 term in
terms of single-qubit rotations and CNOT gates.

VQEs are appealing because they reduce the computational complexity
of searching the (exponentially large) Nq-qubit Hilbert space to the com-
plexity of searching the parameter space (which may be made arbitrarily

small). However, this comes at a cost, as none of the states |ψ(θ⃗)⟩ may be
close (in energy or overlap) to the target ground state. The variance in
the energy ⟨ψ|H|ψ⟩ of states |ψ⟩ randomly drawn (i.e. with Haar measure)
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5 A diagrammatic approach to variational quantum ansatz construction

from an Nq-qubit Hilbert space is given by

∥H∥2F − Trace[H]2

4Nq
≤ ∥H − Trace[H]∥2S

2Nq
, (5.2.2)

with ∥ · ∥F the Frobenius norm and ∥ · ∥S the spectral norm. This implies
that the probability of a random state having energy close to the ground

state energy of H scales as e−2Nq , while one expects the volume of space
explored by a VQE to grow only as eNp . This, and similar results for
derivatives of the energy with respect to variational parameters [160], imply
that random ansatz choice has little to no chance of success for finding
ground state energies. Instead, a variational ansatz should be designed
to cover as much of the Nq-qubit Hilbert space as possible, in a way that
maximises the chance of finding low-energy states (or states that overlap
well with the true ground state).

A full VQE protocol must also concern itself with optimizing the mini-
mization procedure, especially to prevent being stuck in local minima or
barren plateaus [160]. One should further take care to make the resulting
quantum circuit as hardware efficient [164, 165] as possible. Hardware-
efficiency is an active field of research and dependent upon the physical
implementation of the quantum computer, and recent work has gone into
optimizing the minimization procedure of a VQE [54, 166], including the
choice of cost function to minimize (e.g. to target excited states [167, 168]).
In this chapter, we focus instead on studying the variational ansatzes
themselves. We first focus on constructing ‘geometrically efficient’ vari-
ational ansatzes. Then we tailor these to target specific Hamiltonians
based on a perturbative approach. This generic approach is in complement
with previous work on ansatz design targeting specific (classically hard)
problems of interest in e.g. optimization [162] and quantum chemistry [47].

To pin down a working definition of ‘fundamentally digital’ quantum
ansatzes, we will use the following conditions (similar to those stated
in [54, 160, 166, 169]):

Definition 3. A variational ansatz (U, |⃗0⟩) is a product ansatz if it is a
product of units Ui,

U(θ⃗) =

Nu∏
i=1

Ui(θni), (5.2.3)

where each Ui has a generator Ti:

Ui(θni) = eiTiθni . (5.2.4)
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5.2 Variational quantum eigensolvers

If ni > nj whenever i > j, we call the ansatz ordered, and if each
generator is a Pauli operator - Ti ∈ PNq := {I,X, Y, Z}⊗Nq - we call the
ansatz a Pauli-type ansatz.

We take the product in Eq. (5.2.3) from right to left (i.e. U1(θn1
) acts

first on the state |⃗0⟩). As we allow ni = nj when i ̸= j, we may have
strictly more unitaries than parameters: Nu ≥ Np. In the rest of the
chapter, we will refer to Pauli-type ansatzes as fundamentally digital: note
that Pauli rotations can be directly implemented in a quantum circuit
via the techniques of [60]. When used in a VQE, Pauli-type ansatzes also
have the advantage that some derivatives of the variational energy may be
obtained ‘for free’ [169].

Example 4. The YYX toy ansatz is a Pauli-type ansatz, with generators
T1 = Y1, T2 = Y2, T3 = Y1X2.

5.2.1 Variational manifolds

Although tailoring a VQE to a Hamiltonian is essential for its success [160],
interesting statements may be made about the variational ansatz prior to
fixing such a target, by focusing on the manifold of states it explores.

Definition 5. The variational manifold M(U, |⃗0⟩) of a variational

ansatz (U, |⃗0⟩) is the set {|ψ(θ⃗)⟩ = U(θ⃗)|⃗0⟩, (θ⃗) ∈ RNp} ⊂ C2Nq .

We note that, despite being a ‘manifold generated by unitary rotations’,
M(U, |⃗0⟩) does not have a structure of a Lie group. This is because we

only apply U once to create the variational state; a state U(θ⃗)U(θ⃗′)|⃗0⟩
may not correspond to any state U(θ⃗′′)|⃗0⟩ (and most often will not). If
U is a product ansatz, one can defined a Lie group L(U) ⊂ U(2Nq ) from
the set of generators Ti. The manifold L(U)|⃗0⟩ then contains M(U, |⃗0⟩)
as a submanifold, though it is almost always larger. Indeed, when eiθTi

defines a universal gate set, L(U) = U(2Nq ) and L(U)|⃗0⟩ is the entire set
of Nq-qubit states, which is not terribly informative about the structure

of M(U, |⃗0⟩).
As a rough guide, the bigger the variational manifold the better; simply

adding more manifold to an ansatz can never shift it further from the target
ground state. However, measuring the size of a variational manifold is
made somewhat difficult by dimensionality concerns. The (real) dimension
DM(U,|⃗0⟩) of M(U, |⃗0⟩) is at most Np, but it may not achieve this upper

bound, and M(U, |⃗0⟩) may contain boundary regions of lower dimension.

(Curiously, the minimal subspace of C2Nq containing M(U, |⃗0⟩) may be of
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5 A diagrammatic approach to variational quantum ansatz construction

much higher dimension than Np.) As M(U, |⃗0⟩) inherits a metric from

C2Nq , one can use this to define a Borel measure d|ψ⟩, and thus define the
area of the manifold:

AM(U,|⃗0⟩) =

∫
M(U,|⃗0⟩)

d|ψ⟩. (5.2.5)

When the map (θ⃗) → |ψ(θ⃗)⟩ is invertible on some range of parameters, its
Jacobian J is full-rank, and the manifold area may be calculated as

AM(U,|⃗0⟩) =

∫
dNpθ

√
det(J†J). (5.2.6)

However, when evaluating this integral one must take care to avoid double-
counting points θ⃗ ̸= θ⃗′ when |ψ(θ⃗)⟩ = |ψ(θ⃗′)⟩.

Example 6. For the YYX toy ansatz, one may calculate

J†J =

 1 0 − sin(2θ2)
0 1 0

− sin(2θ2) 0 1

 . (5.2.7)

The variational manifold M(UY Y X , |00⟩) double-covers the Hilbert space,
as

|ψ(θ3 − π/2, π/2 − θ2, θ1 − π/2)⟩ = |ψ(θ3, θ2, θ1)⟩ (5.2.8)

(no other identifications exist). Following this identification, one can
evaluate AM(UY YX ,|⃗0⟩) = π2.

5.3 Stabilizer ansatzes

Clearly the largest space that can be spanned by any variational ansatz
is the entire Hilbert space. The minimal number of (real) parameters
required to achieve this spanning is 2(2Nq − 1), and it is an interesting
question whether this may be provably achieved. In this section we answer
this question in the affirmative, constructing a class of ansatzes from
sequential layers of n = 1, . . . , Nq-qubit stabilizer groups [170] (defined in
App. 5.A). Although such a construction has impractically large overhead,
one may use this construction as a base to generate tractable variational
ansatzes with the methods developed in Sec. 5.4 and Sec. 5.5.
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5.3 Stabilizer ansatzes

Definition 7. A stabilizer ansatz (U, |⃗0⟩) on Nq qubits is constructed
by choosing for each n = 1, . . . , Nq:

1. A [n− 1, n− 1] stabilizer group S(n), and

2. A single-qubit starting state |sn⟩ for the n-th qubit, and

3. Two single-qubit Pauli operators R
(n)
0 , R

(n)
1 , such that ⟨sn|Ri|sn⟩ = 0,

and Trace[R0R1] = 0.

Then, one takes |⃗0⟩ = ⊗Nqn=1|sn⟩, and U =
∏Nq
n=1 U

(n), where

U (n) =
∏
j=0,1

∏
S∈S(n)

eiθ
n
S,jR

(n)
j S . (5.3.1)

The definition above allows for any choice of the [n− 1, n− 1] stabilizer
groups S(n), including ones with non-commuting elements between different
S(n). However, we use the following prototypical example throughout the
rest of this chapter.

Example 8. The quantum combinatorial ansatz, or QCA, is a

stabilizer ansatz with |si⟩ = |0⟩, R(n)
0 = X, R

(n)
1 = Y , and S(n) = ⟨Xi, i =

1, . . . , n− 1⟩.

A compressed circuit for the quantum combinatorial ansatz on 3 qubits
is given in Fig. 5.2

Theorem 9. A stabilizer ansatz (U, |⃗0⟩) spans the entire Hilbert space of
Nq-qubit states with the minimal number of parameters.

Proof — That the number of parameters is minimal may be immediately
calculated,

Np =

Nq∑
n=1

2 × 2n−1 = 2(2Nq − 1). (5.3.2)

We then prove that the ansatz spans the entire Hilbert space by induction.
The stabilizer group S(n) gives a basis |p⟩ for the n− 1 qubit Hilbert space.

Then, as [R
(n)
j S,R

(n)
j S′] = 0, one may rewrite U (n) as

U (n) =
∏
j=0,1

exp

i ∑
S∈S(n)

θnS,jR
(n)
j S

 . (5.3.3)
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5 A diagrammatic approach to variational quantum ansatz construction

Figure 5.2: A circuit for the QCA on 3 qubits. For simplicity, we label each
circuit element Ui(θ⃗) by the tensor factors of its generating Pauli operator Ti

(=: R(n)S in Eq. (5.3.1)) on each qubit. For example, the label XXX corresponds

to the rotation eiθ
3
XX,0XXX . This compression may be expanded on as shown

in Fig. 5.1 using the methods of [60]. For Nq qubits, QCA contains 2(2Nq − 1)
gates and is proven to cover the entire Hilbert space (Theorem 9). In a practical
application, QCA is to be reduced to polynomial size via a hierarchical approach
outlined in Sec. 5.5. Note that the order of gate multiplication in QCA does
not imply the order of gate importance in the hierarchical reduction scheme
of Sec. 5.5. For instance, consider an application of the displayed QCA circuit
to the open transverse-field Ising chain (Sec. 5.6). In this case, the two gates
preferred in the reduction are those generated by Paulis XY I and IXY , followed
by the one generated by XIY (cf. Fig. 5.5).

This sends the state |p⟩|sn⟩ to the state

|p⟩
(
eiθ

n
p,0R

(n)
0 eiθ

n
p,1R

(n)
1

)
|sn⟩, (5.3.4)

where the angles θnp,j are given by the following linear transformation:

θnp,j =
∑

S∈S(n)

Spθ
n
S,j , Sp = ⟨p|S|p⟩ ∈ {±1}. (5.3.5)

This is the Hadamard-Walsh transformation, which is invertible, so θnp,j
can now be treated as independent parameters. On the other hand, our

choice of R
(n)
j explicitly takes the starting state |sn⟩ on qubit n to any

state on the Bloch sphere. This implies that if we have the ability to create
an arbitrary n− 1-qubit state

|Ψ(n−1)⟩ =
∑
p

ap|p⟩, (5.3.6)

U (n)|Ψ(n−1)⟩|sn⟩ may be tuned to achieve any state of the form∑
p

ap|p⟩
(
eiθ

n
p,0R

(n)
0 eiθ

n
p,1R

(n)
1

)
|sn⟩, (5.3.7)
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5.4 Children ansatzes and their construction

which describes an arbitrary n-qubit state. This then completes the proof
of coverage by induction, as U (1)|s1⟩ covers the entire Bloch sphere.

5.4 Children ansatzes and their construction

The cost of implementing a product VQE grows polynomially in both
the number of units Nu (as this dictates the circuit size) and the number
of parameters Np (as this dictates the size of the optimization problem).
Thus, an ansatz that covers the entire Hilbert space is too expensive to be
of use; one must use it to construct child ansatzes of a manageable size.

Definition 10. A product ansatz (U ′, |⃗0′⟩) is a child ansatz of a parent
product ansatz (U, |⃗0⟩) when each unit U ′

i of U
′ also appears in U .

This definition is operational rather than fundamental; the variational
manifold of a child ansatz is not necessarily a submanifold of the parent
ansatz’ variational manifold. However, one expects that these children
ansatzes will still inherit some properties of the parent. In particular, we
expect that a parent ansatz that spans as large a part of the Hilbert space
as possible will lead to children ansatzes that are similarly large.

5.4.1 Ansatz compression and hierarchical
construction

An obvious method to construct a child ansatz from a parent is to simply
get rid of individual units or parameters:

Definition 11. Given a product ansatz (
∏
j Uj(θnj ), |⃗0⟩), one may remove

a parameter θni to obtain the child ansatz (
∏
nj ̸=ni Uj(θnj ), |⃗0⟩), or fix a

parameter θni = cθnj with c ∈ R to obtain the child ansatz (
∏
l U

′
l (θml)|⃗0⟩),

where mi = nj, ml = nl for l ̸= i, and T ′
l = cTl whenever nl = ni.

Parameter fixing may be considered strictly more general than unit
removal, as fixing θni = 0θnj produces the same variational manifold as
removing θni . However, unit removal reduces both Nu and Np, while
parameter fixing does not reduce the resulting circuit length.

Alternatively, one may construct child ansatzes using a bottom-up
approach:

Definition 12. Given a product ansatz (
∏
j Uj(θnj ), |⃗0⟩), one may con-

struct a priority list (Uj1 , Uj2 , . . .) of the possibly-repeated units of the
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5 A diagrammatic approach to variational quantum ansatz construction

ansatz. Such a priority list allows the construction of a hierarchy of child
ansatzes (UM , |⃗0⟩) (for M > 0), where

UM (θ⃗) =

M∏
m=1

Ujm(θnm). (5.4.1)

The two methods described above may be combined if desired. Sub-
sequent generations of ansatzes will trade off a lower cost to implement
against a smaller-sized variational manifold. We now focus on methods
to optimize this balance. We first demonstrate how one may use unit
reduction and parameter fixing to force a large VQE to respect symmetry
constraints on the system. Following this, we take a rigorous perturbative
approach to construct priority lists for a given target Hamiltonian.

5.4.2 Compression over symmetries

One may often restrict the ground state of a system by symmetries of the
Hamiltonian; that is, operators S that commute with H. When this is
true, all eigenstates |E0⟩ of H may be chosen to be eigenstates of S. This
is particularly relevant in electronic systems where the particle number∑
i Zi or parity

∏
i Zi is conserved. The symmetry is enforced on all

states in a variational ansatz (U, |⃗0⟩) when |⃗0⟩ is an eigenstate of S, and

[U(θ⃗), S] = 0 for all choices of the parameters θ. This in turn requires for

an ordered product ansatz U(θ⃗) =
∏
i Ui(θni) that [

∏
i,ni=n

Ui(θni), S] = 0
for all unique parameters n and for all choices of θni . If a parameter
θni is associated to a single generator Ti, then this occurs if and only if
[Ti, S] = 0.

When a symmetry is not respected by a variational ansatz, one may
choose to either remove or fix the offending terms (see [171] for an al-
ternative approach). Removal of generators that do not respect a given
symmetry is simplest, but may be too restrictive for our desires. One may
fix an ordered product ansatz to obey a symmetry that is broken by a set
of commuting generators {TM0 , TM0+1, . . . , TM1}. To do this, one needs
to solve the system of linear equations

M1∑
m=M0

cm
∑

i,ni=m

[S, Ti] = 0, (5.4.2)

and fix cnθn = cmθn for N ≤ n,m ≤ M . This requires fixing all param-
eters between N and M , which in turn might require rearranging the
original ansatz to place specific units next to each other.
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5.4 Children ansatzes and their construction

A very simple symmetry to enforce in a problem is the (antiunitary)
complex conjugation operator, Ki = −iK. (This symmetry is respected
whenever the Hamiltonian is purely real.) As we have defined our genera-
tors Ti with an imaginary unit, Ui = eiθniTi commutes with K when Ti
anti-commutes with K. (e.g. for a single qubit, the rotation eiθY rotates
between the real eigenstates of the real X and Z Pauli operators.)

Example 13. The YYX toy ansatz is the compression of the QCA stabi-
lizer ansatz for two qubits over K. It thus spans the entire Hilbert space of
2-qubit states with real coefficients (which matches the calculation of its
variational area).

In App. 5.B, we give another example of a symmetry-compressed Pauli-
type ansatz - the fermionic unitary coupled cluster ansatz.

5.4.3 Size-extensivity of a variational ansatz

To show beyond-classical performance, we desire our variational quantum
algorithms to be able to produce strongly entangled states, inaccessible to
a classical computer. For this, we would like the VQE ansatz to represent
quantum correlations in a maximally compact manner. To achieve this,
we are guided by the idea of size-extensivity. The notion of size-extensivity
has its origins in strongly-correlated physics, and is formalized there by the
linked cluster theorem [57]. The rough notion is that: (1) if a computation
treats two uncoupled systems together, it should converge to the same
solution as when it treats them independently, and (2) the only complexity
one should be adding to the solution of coupled systems is that which
is minimally demanded. Formalizing this idea requires somewhat heavy
machinery; we give a formal definition later in the text (Def. 23) and now
put forward the following (weaker) statement as an informal definition.

Definition 14. (informal) Consider variational ansatz (U, |⃗0⟩) for a
Hamiltonian H on a system S, and an arbitrary (disjoint) partition
S = ∪iSi with a decomposition H =

∑
iHi + Hother where each Hi

acts only on Si (and each term in Hother acts on multiple Si). In this case,
the ansatz (U, |⃗0⟩) is size-extensive if for any such partition, the unitary

U(θ⃗) that minimizes the variational energy E(θ⃗) (Def. 1) reduces to the
form

U(θ⃗) =
∏
i

U(θ⃗i) (5.4.3)

if Hother is reduced to 0. In (5.4.3), each U(θ⃗i) acts only on system Si
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5 A diagrammatic approach to variational quantum ansatz construction

(i.e. the coefficients of any part of the ansatz U that acts outside of Si are
set to 0).

In the language of Def. 14, the stronger statement of Def. 23 is needed
to treat the case where {Si} together form a connected system, but some
pairs (Sk, Sl) are mutually separated (e.g. because of spatial locality).
It appears that in this case, a variational ansatz is efficient if it tends
to introduce more correlations between less separated subsystem pairs
(Sk, Sl). However, this heuristic needs to be re-stated more rigorously. In
Def. 23, we provide such a rigorous formulation and apply it in an explicit
construction of size-extensive ansatzes.

5.5 Perturbative construction for digital
size-extensive ansatzes

We now propose a perturbative approach for the construction of digital
size-extensive ansatzes. We formulate it in terms of a gate hierarchy list
(U1, . . .) derived from a large parent ansatz (U, |⃗0⟩). To decide on the
hierarchy list, we split the system Hamiltonian H into the non-interacting
part H0 and the coupling JV (∥H0∥, ∥V ∥ ∼ 1):

H = H0 + JV (5.5.1)

To allow for analytical treatment we consider the weak coupling limit,
J ≪ 1. In this limit, the overlap between the true ground state |E0⟩
and unperturbed excited states |E0

j ⟩ is exponentially small in the number

of applications of V required to couple |E0
j ⟩ to the unperturbed ground

state |E0
0⟩. We may rewrite the non-interacting part H0 via a unitary

transformation as

H0 =

Nq∑
n=1

hnZn, (5.5.2)

which ties each |E0
j ⟩ to a computational basis state |s⃗⟩

H0|s⃗⟩ = −
Nq∑
n=1

(−1)snhn|s⃗⟩. (5.5.3)

If we can further tie each state |s⃗⟩ to one or a few variational units Ui(θi),
we can construct a hierarchy list of these Ui(θi) based on the approximate
magnitude of |⟨s⃗|E0⟩|. The resulting hierarchy list is to be used in the
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5.5 Perturbative construction for digital size-extensive ansatzes

VQE procedure for the original, potentially strongly coupled Hamiltonian
H (J = O(1)).

Performing this construction in a size-extensive way runs into a challenge
which we call ‘back-action’. Namely, the action of any unit Ui(θi) on the
state

∏
j<i Uj(θj)|⃗0⟩ may be very different to the action of Ui(θi) on the

starting state. In particular, one could imagine this action generating an
undesired term to the variational wavefunction which must be cancelled by
later rotations. As we will show, one can deal with this back-action while
retaining the size-extensivity. To achieve this, in the rest of this section
we will expand the target equality,

|E0⟩ ≃ |ψ(θ⃗)⟩, (5.5.4)

assuming that |ψ(θ⃗)⟩ is given by a digital (i.e., Pauli-type) ansatz. We
will do so in terms of a Pauli decomposition of the perturbation

JV =

Nc∑
i=1

JiVi, Vi ∈ PNq , (5.5.5)

and then we will equate terms based on the order of their polynomial
dependence on each Ji. On the left-hand side (Sec. 5.5.1), we will use
a Dyson expansion, with a convenient diagrammatic representation. On
the right-hand side (Sec. 5.5.2) we will use a Taylor expansion of the
exponential operators. We will show that a single condition (Def. 21)
on the parent ansatz is sufficient to automatically cancel all undesired
back-action. Then, we will show that an additional condition (Def. 24)
causes the back-action terms to precisely cancel out any need for entangling
circuits between disconnected regions (Theorem 26). This ensures the
desired feature of size-extensivity, thus providing the digital quantum
version of the linked-cluster theorem [57]. The QCA ansatz of Example 8
will be seen to satisfy the above conditions, and therefore gives rise to a
hierarchy of size-extensive digital ansatzes.

Our perturbative approach can be thought of as a digital unitary relative
of the Kirkwood-Thomas expansion [172, 173]. Also note, that as we intend

to optimize the parameters θ⃗ as part of the VQE, we will approximate
these only to leading order in the interaction strength J. This makes our
method potentially applicable even in the strongly correlated regime where
perturbation theory breaks down.
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5 A diagrammatic approach to variational quantum ansatz construction

5.5.1 Diagrammatic expansion of the ground state

To expand the left-hand side of Eq. (5.5.4), let us use vector notation J⃗ for

the coupling terms Ji (and V⃗ for the operators Vi). Then, let us introduce
some notation that simplifies the following expressions:

a⃗·⃗k :=
∏
i

akii = exp(k⃗ · log(⃗a)). (5.5.6)

We wish to use this expression for both vectors of numbers (e.g. J⃗) and

vectors of operators (e.g. V⃗ ). In the latter we must take care of ordering;
as previous, we assume that the product runs right-to-left. As Pauli
operators either commute or anticommute, rearranging these products
simply requires one to keep track of minus signs. This may be assisted by
the following definition

Definition 15. A vector V⃗ of Nc Pauli operators defines a phase Γ(k⃗) ∈
{0, 1, 2, 3} and a state s⃗(k⃗) on a vector k⃗ ∈ NNc ∗ by

V⃗ ·⃗k |⃗0⟩ = iΓ(k⃗)|s⃗(k⃗)⟩, (5.5.7)

and a relative sign Sk⃗,⃗k′ ∈ {−1, 1} for k⃗, k⃗′ ∈ NNc by

V⃗ ·⃗kV⃗ ·⃗k′ = Sk⃗,⃗k′ V⃗
·(k⃗+k⃗′). (5.5.8)

Then, as Pauli operators map computational basis states to computa-

tional basis states, V⃗ k⃗ |⃗0⟩ is an eigenstate of H0, with energy

Es⃗(k⃗) := −
Nq∑
n=1

(−1)s⃗(k)nhn. (5.5.9)

Let us now expand the ground state as a Taylor series in J⃗ :

|E0⟩ =
∑

k⃗∈NNc

J⃗ ·⃗k|Ψk⃗⟩. (5.5.10)

Following a standard Dyson expansion (details in App. 5.C), we observe
that

∗We take the natural numbers N to include 0.
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5.5 Perturbative construction for digital size-extensive ansatzes

Lemma 16. The vectors |Ψk⃗⟩ take the form

|Ψk⃗⟩ = Ck⃗V⃗
·⃗k |⃗0⟩, (5.5.11)

where Ck⃗ is a real number.

To find the values of coefficients Ck⃗, we first develop a perturbative

expansion for a ground state |Ẽ0⟩ with a special normalization condition
⟨⃗0|Ẽ0⟩ = 1,

|Ẽ0⟩ =
∑

k⃗∈NNc

J⃗ ·⃗k|Ψ̃k⃗⟩. (5.5.12)

The states |Ψ̃k⃗⟩ then satisfy (see App. 5.C):

|Ψ̃k⃗⟩ = C̃k⃗V⃗
·⃗k |⃗0⟩, (5.5.13)

where C̃k⃗ is a real number. In particular, if δ⃗β is the unit vector with

a 1 in the β index, C̃k⃗ = δk⃗,⃗0 if s⃗(k⃗) = 0⃗, and is otherwise given by the
recursive relation

C̃k⃗ =(E
(0)

0⃗
− E

(0)

s⃗(k⃗)
)−1

∑
β,kβ>0

{
C̃k⃗−δ⃗βSδ⃗β ,⃗k−δ⃗β

−
∑

k⃗′<k⃗, k′β>0

s⃗(k⃗′)=0

C̃k⃗′−δ⃗β C̃k⃗−k⃗′Sδ⃗β ,⃗k′−δ⃗βSk⃗−k⃗′ ,⃗k′

}
, (5.5.14)

where k⃗′ < k⃗ if k′β ≤ kβ for all β and k⃗′ ̸= k⃗. To find the coefficients
Ck⃗ of the normalized ground state, one may then expand the expression

|E0⟩ = ⟨Ẽ0|Ẽ0⟩
−1/2 |Ẽ0⟩ in powers of J⃗ , which allows to express Ck⃗ in

terms of C̃k⃗ obtained from (5.5.14).
We note here that we have no guarantee that the normalization constant

N = ⟨Ẽ0|Ẽ0⟩
−1/2

behaves regularly in thermodynamic limit Nq → ∞.
This is a standard breakdown of perturbation theory for the wavefunction,
however when this occurs our approach to VQE construction is still possible,
and may indeed still be practical. At the stage of estimating the variational
parameters θ⃗, we will be using the C̃k⃗ coefficients, since they behave

regularly and are more practical to calculate. As θ⃗ will be optimized later
on the quantum device, the estimation itself need not be exact.

The size-extensivity of our approach relies on an important relationship
between Ck⃗ terms that are the combination of disconnected pieces. To
formalize this notion of connectedness, we introduce some terminology:
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5 A diagrammatic approach to variational quantum ansatz construction

Definition 17. For a perturbative contribution Ck⃗, the set of couplings

Vi s.t. ki ̸= 0, is said to be activated in k⃗. The set of qubits on which at
least one activated coupling Vi acts non-trivially is called the support of
k⃗.

Then the connectedness of the contribution Ck⃗ is defined as follows:

Definition 18. A perturbative contribution Ck⃗ is disconnected if one may
write

k⃗ = k⃗A + k⃗B , (5.5.15)

such that the respective supports of k⃗A and k⃗B do not share any qubits.
This implies, but is not equivalent to, the following statement:

V⃗ ·⃗k = V⃗ ·⃗kA V⃗ ·⃗kB (5.5.16)

The disconnected contributions Ck⃗ obey the following special property
(proven in App. 5.D).

Lemma 19. If a perturbative contribution Ck⃗ is disconnected w.r.t. a

splitting (5.5.16) into k⃗A and k⃗B,

Ck⃗ = Ck⃗ACk⃗B . (5.5.17)

This idea of connectedness of contributions may be described in a

graphical representation of the product of operators V⃗ ·⃗k:

Definition 20. Let V⃗ define the order of a decomposition of the perturba-
tion J⃗ · V⃗ to a non-interacting Hamiltonian H0. A perturbative diagram
for a vector k⃗, is a bipartite graph with one circular vertex for each qubit,
and kβ square vertices for each interaction Vβ. We draw edges between
each square vertex and the qubits that the corresponding Vβ term acts non-
trivially on, and color the edge to qubit i blue, red or black if [Vβ ]i = X,Y
or Z respectively. Each circular vertex is then coloured black or white if it
is connected to by an odd or even number of coloured edges respectively.

A contribution Ck⃗ is connected if all square vertices in the perturbative
diagram are connected ∗. In Fig. 5.3, we show some examples of connected
and disconnected perturbative diagrams. Diagrams also allow one to read
off s⃗(k⃗) (si(k⃗) = 0 when the corresponding vertex is white), and Γ(k⃗) mod

2 (being the number of red lines modulo 2). (The rest of Γ(k⃗) depends on
the order in which the operations Vi are applied, which is not captured in
the perturbative diagrams.)

∗The circular vertices, corresponding to qubits, need not be connected, as a con-
nected contribution need not act on all qubits.
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5.5 Perturbative construction for digital size-extensive ansatzes

(a)

(b)

Figure 5.3: Example perturbative diagrams. (a) A connected diagram for a

real contribution (even number of Y terms) to |s⃗(k⃗)⟩ = |100100⟩. Labels for
qubits i and terms Vβ are added for reference. (b) A disconnected diagram for

an imaginary contribution to |s⃗(k⃗)⟩ = |100111⟩. Unnecessary labels here are
excluded.
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5 A diagrammatic approach to variational quantum ansatz construction

5.5.2 Taylor expansion of the variational ansatz

We now consider the expansion of the right hand side of Eq. (5.5.4). In
keeping with the previous subsection, we wish to do this in terms of the
individual perturbations Ji. Let us expand each coefficient θi in a power
series over all interaction terms Ji

θi =
∑
k⃗

θ
(k⃗)
i J⃗ ·⃗k

=
∑
k⃗

θ
(k⃗)
i Jk11 Jk22 . . .

 , (5.5.18)

where the shorthand vector power notation was defined in Eq. (5.5.6).
This may be substituted into the variational ansatz (U, |⃗0⟩)

U(θ⃗) =
∏
i

∏
k⃗

exp
[
iθ

(k⃗)
i J⃗ ·⃗kTi

] , (5.5.19)

where we added the brackets to emphasize the ordering of the product
over i. Now, we take the Taylor series of the exponentials in Eq. (5.5.19),
obtaining

U(θ⃗) =
∏
i

∏
k⃗

∞∑
f=0

1

f !

[
iθ

(k⃗)
i J⃗ ·⃗kTi

]f . (5.5.20)

We will eventually wish to rearrange this product to identify all terms
that share the same power of each Ji — that is, those that share the same

J⃗ ·⃗k. This requires first expanding our product over sums to a sum over
products (pulling the sum over integers g in front of the products over
k and i). Each term in the resulting sum will have a unique product of

powers of the different θ
(k)
i . We can then associate this term to a function

f⃗ : NNc → NNp ; i.e. the power of θ
(k)
i in our term is given by fi(k⃗).

(Each such function f⃗ will correspond in Sec. 5.5.3 to a unique way to
map the activations of couplings Vα from the left-hand side of Eq. (5.5.4)

onto the generators Ti.) One may confirm that every unique function f⃗

corresponds to a single term in Eq. (5.5.20), and the powers of the Ti, J⃗ ,
and the coefficient of each term may be expressed in terms of this function,
allowing us to expand our unitary U(θ⃗) as

U(θ⃗) =
∑
f⃗

J⃗ ·
∑
i,k⃗

fi(k⃗)k⃗
(
iT⃗
)·∑

k⃗
f⃗(k⃗)∏

k⃗,i

[
θ
(k⃗)
i

]fi(k⃗)
fi(k⃗)!

, (5.5.21)
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5.5 Perturbative construction for digital size-extensive ansatzes

To put (5.5.21) in a simpler form, we define:

K⃗(f⃗) =
∑
i,⃗k′

fi(k⃗
′)k⃗′ (5.5.22)

N⃗(f⃗) =
∑
k⃗

f⃗(k⃗), (5.5.23)

Θ(f⃗) =
∏
k⃗,i

[
θ
(k⃗)
i

]fi(k⃗)
fi(k⃗)!

, (5.5.24)

which allows us to rewrite the sum as

U(θ⃗) =
∑

f :NNc→NNp

J⃗ ·K⃗(f⃗)
(
iT⃗
)·N⃗(f⃗)

Θ(f⃗). (5.5.25)

One can give an interpretation for K⃗(f⃗), N⃗(f⃗) and Θ(f⃗) in the expression.

The vector K⃗(f⃗) ∈ NNc represents the PT order of a given term of

the sum. (Note that multiple functions f⃗ will have the same PT order

K⃗(f⃗).) N⃗(f⃗) ∈ NNp gives the activation of generators Ti in that term, and
therefore tells us the computational basis state that this term produces
as an operator acting on |⃗0⟩. (Terms with |N⃗(f⃗)| ≥ 2 describe the ‘back-
action’ of the ansatz which we will discuss in the next section.)

The information about the parameters θ⃗ of the ansatz is now contained in
the scalar coefficient Θ(f⃗). Its values are not independent variables: Θ(f⃗)

can be fixed entirely by its action on the functions f s.t. |N⃗(f⃗)| = 1. To see

this, let us label such functions f⃗ = dk⃗,i, where dk⃗,ij (k⃗′) = δk⃗,⃗k′δi,j . These
functions yield an activation of a single generator Ti from a single activation

pattern k⃗ of couplings Vα. For such functions, we obtain Θ(dk⃗,i) = θ
(k⃗)
i –

whose values indeed entirely determine the ansatz state. In particular, in
the terms describing back-action (f s.t. |N⃗(f⃗)| ≥ 2), Θ(f⃗) are nonlinear

monomials of θ
(k⃗)
i , and thus are fixed by the values of Θ(dk⃗,i).

5.5.3 Equating ansatz and perturbative terms

Our plan is now to solve for θ
(k⃗)
i , by comparing |ψ(θ⃗)⟩ from Eq. (5.5.25)

to the perturbative series for |Ψ(J⃗)⟩ from Eq. (5.5.10). We will equate the
contributions coming from different PT orders, and those proportional to
the same computational basis state. (The vectors K⃗(f⃗) and N⃗(f⃗) allow
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5 A diagrammatic approach to variational quantum ansatz construction

us to identify which terms need be equated.) This will result in equations

that are linear in the coefficients Ck⃗ and Θ(f⃗). Due to the structure of

Θ(f⃗) these equations will be highly nonlinear in θ
(k⃗)
i . However, under

certain conditions (Def. 21 and Def. 24), we find that these equations

for θ
(k⃗)
i may be solved iteratively, and that many coefficients will vanish

exactly. This will yield a class of ansatzes which are also size-extensive,
the technical definition of which we give in Def. 23. For such ansatzes,
we will have a guarantee that a relatively compact circuit is capable of
reproducing the perturbative series for |Ψ(J⃗)⟩ up to a given PT order k⃗.
These circuits will have a relatively small (polynomial in Nq at fixed PT

order k⃗) number of free parameters when used as a VQE, as this coincides

with the number of leading order connected diagrams up to order k⃗.
Equating the action of the Taylor-expanded U(θ⃗) (Eq. (5.5.25)) on the

starting state |⃗0⟩ to the expansion of the ground state |E0⟩ (Eq. (5.5.10))

and separating in orders of J⃗ obtains the form

Ck⃗V⃗
·⃗k |⃗0⟩ −

∑
f ;K⃗(f⃗)=k⃗

Θ(f⃗)
(
iT⃗
)·N⃗(f⃗)

|⃗0⟩ = 0. (5.5.26)

This may be further separated by taking the inner product with different
computational basis states to give the equations

Ck⃗ −
∑

f ; K⃗(f⃗)=k⃗

Θ(f⃗)⟨⃗0|V⃗ ·⃗k†
(
iT⃗
)·N⃗(f⃗)

|0⟩ = 0 (5.5.27)

∑
f ; K⃗(f⃗)=k⃗

Θ(f⃗)⟨s⃗ ̸= 0|V⃗ ·⃗k†
(
iT⃗
)·N⃗(f⃗)

|0⟩ = 0. (5.5.28)

Eqs. 5.5.28 contain what we call the back-action terms. These are unde-

sirable; if one fixes the θ
(k⃗)
i values one at a time, then any non-zero term

appearing in Eqs. 5.5.28 will need to be cancelled out by fixing some other
θj
k⃗′

at a later point. However, these terms may be avoided for a large class
of parent ansatzes:

Definition 21. A Pauli-type ansatz (
∏
i e
iTiθi , |⃗0⟩) is generating if, for

all computational basis states |s⃗⟩ ̸= |⃗0⟩, there exist generators Ts⃗,a for

a = 0, 1 such that iTs⃗,a |⃗0⟩ = ia|s⃗⟩.
Note that a generating ansatz requires at least sufficient parameters

to span the entire Hilbert space, however it remains unclear whether a

108



5.5 Perturbative construction for digital size-extensive ansatzes

generating ansatz does span the entire Hilbert space. Instead, we are
interested in generating ansatzes here as they avoid undesired back-action

Lemma 22. Given a generating Pauli-type ansatz (
∏
s⃗,a e

iTs⃗,aθs⃗,a , |⃗0⟩),
one may solve Eqs. 5.5.27 by fixing θ

(k⃗)
s⃗,a = 0 unless s⃗ = s⃗(k⃗) and a =

a(k⃗) := Γ(k⃗) mod 2. This solution further prevents undesired back-action
by making Eqs. 5.5.28 zero term-wise.

Proof — Eq. (5.5.27) may be rewritten as∑
a

ia−Γ(k⃗)θ
(k⃗)

s⃗(k⃗),a

= Ck⃗ −
∑

f ;K⃗(f⃗)=k⃗

|N⃗(f⃗)|>1

Θ(f⃗)⟨0|V⃗ ·⃗k†
(
iT⃗
)·N⃗(f⃗)

|0⟩. (5.5.29)

We then use this equation to fix the left-hand side, being an equation of
free Θ(f⃗) terms. If this is done in ascending order in |⃗k|, one can check

that all Θ(f⃗) terms on the right-hand side at each k⃗ will have been fixed
previously, implying that this fixing is well-defined. Then, one notes that

⟨0|V⃗ ·mk⃗†
(
iT⃗
)·N⃗(mdk⃗,i)

|0⟩ = ⟨0|V⃗ ·⃗k†
(
iT⃗
)·N⃗(dk⃗,i)

|0⟩, (5.5.30)

for any odd m, which implies that contributions from linear combinations
of the fixed components will never appear in Eq. (5.5.28).

The above implies that the (strictly real) term Ck⃗ from each perturbative

diagram contributes only to θ
(k)

s⃗(k⃗),a(k⃗)
. Then, by definition, we have

iTs⃗(k⃗),a(k⃗) |⃗0⟩ = ±V⃗ ·⃗k |⃗0⟩, (5.5.31)

and as Pauli operators are either entirely real or entirely imaginary, this
extends to any computational basis state |s⃗′⟩

iTs⃗(k⃗),a(k⃗)|s⃗′⟩ = ±V⃗ ·⃗k|s⃗′⟩. (5.5.32)

This implies that for any function f⃗ such that fs,a(k⃗) = 0, unless s⃗ =

s⃗(k⃗), a = a(k⃗) we have(
iT⃗
)·N⃗(f⃗)

|⃗0⟩ = ±
∏
k⃗

(
iTs⃗(k⃗),a(k⃗)

)f
s⃗(k⃗),a(k⃗)

(k⃗)

|⃗0⟩

= ±
∏
k⃗

V⃗ ·f
s⃗(k⃗),a(k⃗)

(k⃗)k⃗ |⃗0⟩ = ±V⃗ K⃗(f⃗) |⃗0⟩, (5.5.33)
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and so the right-hand side of Eq. (5.5.29) is real, and θ
(k⃗)

s⃗(k⃗),1−a(k⃗)
= 0, by

induction in |⃗k|.
For carefully-chosen Pauli-type ansatzes, one may further cancel con-

tributions from disconnected diagrams. This yields our formal definition
of what it means for such an ansatz to be ‘size-extensive’ (as discussed in
Sec. 5.4.3)

Definition 23. We say that a Pauli-type ansatz U(θ⃗) is size-extensive with
respect to a perturbation JV (Eq. (5.5.1)) if, in a solution to Eqs. 5.5.27,

θ
(k⃗)

s⃗(k⃗),a
= 0 if k⃗ = k⃗A + k⃗B is disconnected (Def. 18).

A Pauli-type ansatz satisfying this definition will satisfy Def. 14 whenever
the perturbative expansion above converges. To see this, note that when
the perturbative expansion converges the solution to Eqs. 5.5.27 will
provide the ground state exactly. Then, consider a Hamiltonian that does
not couple two systems Si and Sj , and a term Ts⃗,a in our ansatz that does

couple Si and Sj . One can see that whenever s⃗ = s⃗(k⃗), a = a(k⃗) for some

k⃗ that k⃗ will be disconnected, and so θs⃗,a = 0 at all orders of k by Def. 23.
We now have the machinery to present a condition for our ansatz to

be size-extensive that just relates the ansatz terms Ti to the perturbation
terms Vi.

Definition 24. A generating Pauli-type ansatz is matched to a perturba-
tion JV if

⟨0|V⃗ ·⃗k†
(
iT⃗
)·N⃗(f⃗)

|0⟩⟨0|V⃗ ·⃗k′†
(
iT⃗
)·N⃗(f⃗ ′)

|0⟩

= ⟨0|V⃗ ·(k⃗+k⃗′)†
(
iT⃗
)·N⃗(f⃗+f⃗ ′)

|0⟩, (5.5.34)

whenever (k⃗, f) and (k⃗′, f⃗ ′) act non-trivially on disconnected parts of the
system.

Example 25. Any generating variational ansatz (
∏
s⃗,a e

Ts⃗,aθs⃗,a , |⃗0⟩) for
which the generators Ts⃗,a are compact (i.e. they only act nontrivially on
qubit j if sj = 1), is matched. In particular, QCA (Example 8) is both
generating and matched.

Theorem 26. A perturbative hierarchy constructed from a Pauli-type
ansatz via Eqs. 5.5.27, that is matched to a perturbation JV , is size-
extensive.

110



5.5 Perturbative construction for digital size-extensive ansatzes

Proof — By Lemma 19, we have that Ck⃗ = Ck⃗ACk⃗B . Inserting Eq. (5.5.27),
we find

Ck⃗ =
∑

fA,K⃗(f⃗A)=k⃗A

∑
fB ,K⃗(f⃗B)=k⃗B

Θ(f⃗A)Θ(f⃗B)

× ⟨⃗0|V⃗ ·⃗kA†
(
iT⃗
)·N⃗(f⃗A)

|⃗0⟩⟨⃗0|V⃗ ·⃗kB†
(
iT⃗
)·N⃗(f⃗B)

|⃗0⟩. (5.5.35)

As disconnected parts of k⃗, either kA,i = 0 or kB,i = 0 for any i, implying

fA(k⃗′) = 0⃗ or fB(k⃗′) = 0⃗ for all k⃗′ in the above sum. From this we may
write

Θ(f⃗A + f⃗B) =
∏
k⃗′,i

[
θ
(k⃗)
i

]fA(k⃗′)+f⃗B(k⃗′)

(f⃗A(k⃗′) + f⃗B(k⃗′))!

= Θ(f⃗A)Θ(f⃗B). (5.5.36)

Combining this with the definition of a matched ansatz obtains

Ck⃗ =
∑

fA,K⃗(f⃗A)=k⃗A
fB ,K⃗(f⃗B)=k⃗B

Θ(f⃗A + f⃗B)⟨⃗0|V⃗ k⃗†
(
iT⃗
)N⃗(f⃗A+f⃗B)

|⃗0⟩. (5.5.37)

It remains to check that all f : NNc → NNp with K⃗(f⃗) = k⃗, |N⃗(f⃗)| > 1, and

Θ(f⃗) ̸= 0 take the form f⃗ = f⃗A+ f⃗B with K⃗(f⃗A) = k⃗A and K⃗(f⃗B) = k⃗B , in
which case the right-hand side of Eq. (5.5.29) cancels, giving the required

result. This may be seen by induction in |K⃗(f⃗)|. Clearly it is true for

|K⃗(f⃗)| = 1. Then, fix f with |K⃗(f⃗)| > 1, and define fA(k⃗′) = f(k⃗′) if

k⃗′ik⃗B,i = 0 for all i and fA(k⃗′) = 0 otherwise, and similarly for fB(k⃗′), and

define fAB = f − fA − fB. One has that Θ(f⃗) = Θ(f⃗A)Θ(f⃗B)Θ(f⃗AB),

but if fAB ̸= 0, it is a product of θ
(k⃗AB)

s⃗(k⃗AB),a
for disconnected k⃗AB with

|⃗kAB | < K, and thus Θ(f⃗AB) = 0.
This result can be seen as the digital quantum cousin of the linked-cluster

theorem [57].

5.5.4 The perturbative construction

Following the above, we can construct a hierarchy of the Ts⃗,a by estimating
the corresponding value of θs⃗,a and placing them in order. We do not
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5 A diagrammatic approach to variational quantum ansatz construction

need to know the precise values of θs⃗,a, as these will be optimized as part
of the VQE. Instead we plan to estimate only the largest contributions
to each θs⃗,a. Under the assumption that Ji J ≪ hn for all interaction
terms i and all qubits n, we expect the largest contributions to come from
those (connected) Ck⃗ with smallest possible |⃗k|. This may be read off
immediately from the perturbative diagrams themselves

Definition 27. A connected perturbative diagram D for a vector k⃗ is a
sub-leading diagram to a diagram D′ for a vector k⃗′ if:

• D and D′ have identically coloured vertices (implying s⃗(k⃗) = s⃗(k⃗′)).

• D and D′ have the same number of red edges modulo 2 (implying

a(k⃗) = a(k⃗′)).

• D′ has fewer interaction vertices than D (implying |⃗k| < |⃗k′|).
A diagram D is leading if it is not a sub-leading diagram to any D′.

Note that multiple leading diagrams may exist for a single parameter
θa
k⃗
.
We now wish to construct a perturbative hierarchy by drawing all leading

diagrams with |⃗k| < K interaction vertices (for some sufficiently large K),
and then ordering corresponding T as⃗ by the leading-order contributions
to θs⃗,a we obtain via Eq. (5.5.29). However, this calculation requires the
normalized coefficients Ck⃗, which in turn require computing the perturba-
tive series for the normalization constant N . To avoid this cumbersome
normalization procedure and also to simplify Eq. (5.5.29), we suggest to

approximate θ
(k⃗)

s⃗(k⃗),a(k⃗)
by

θ̃s⃗,a =
∑

leading k⃗,

s⃗(k⃗)=s⃗, a(k⃗)=a

θ̃
(k⃗)

s⃗(k⃗),⃗a(k⃗)
(5.5.38)

where we define∑
a

ia−Γ(k⃗)θ̃
(k⃗)

s⃗(k⃗),a
= C̃k⃗ −

∑
f ;K⃗(f⃗)=k⃗

|N⃗(f⃗)|>1

Θ̃(f⃗), (5.5.39)

Θ̃(f⃗) =
∏
k⃗,i

[
θ̃
(k⃗)
i

]fi(k⃗)
fi(k⃗)!

. (5.5.40)
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We expect that typically θ̃s⃗,a < θ̃r⃗,b ↔ θs⃗,a < θr⃗,b, which implies that this
approximation should preserve the perturbative hierarchy.

We now have all the machinery required to define our perturbative
hierarchy.

Definition 28. Let {Ts⃗,a} be the generators for a matched, generating

variational ansatz for a Hamiltonian H = H0 + J⃗ · V⃗ . The perturbative
hierachy on {Ts⃗, a} is defined by the total order

Ts⃗,a < Tr⃗,b if θ̃s⃗,a < θ̃r⃗,b, (5.5.41)

and if θ̃s⃗,a = θ̃r⃗,b, we choose the ordering of Ts⃗,a and Tr⃗,b at random.

The explicit calculation of the θ̃s⃗,a variables is quite time consuming. As

a shortcut, we note that θ̃
(k⃗)
s⃗,a scales as J⃗ ·⃗k, which, when Ji ≪ 1 typically

dominates any combinatorial terms. To formalize this, let us define

Js⃗,a =
∑

leading k⃗,

s⃗(k⃗)=s⃗, a(k⃗)=a

J⃗ ·⃗k, (5.5.42)

and we suggest to save on calculation by assuming θs⃗,a < θr⃗,b when
Js⃗,a < Jr⃗,b.

5.6 Application: transverse-field Ising model

In this section, we demonstrate the construction of a variational hierarchy
and study the resulting VQE performance on a target system. As a simple
target example, we take the 1-dimensional transverse-field Ising model
(TFIM):

HTFIM = −
Nq∑
i

hZi +

Nq−1∑
i=1

JXiXi+1. (5.6.1)

This system is a well-known prototype for condensed matter systems,
being a non-interacting set of spins at J = 0, an Ising chain at h = 0, and
demonstrating a quantum phase transition at h = J . For our example, we
consider the h ≫ J > 0 regime, and construct a perturbative hierarchy
around J = 0, using the QCA as a parent ansatz. The noninteracting
ground state may be immediately identified as the computational basis
state |⃗0⟩ with energy −hNq, which we use as the starting state of our
ansatz. Non-interacting excited states |s⃗⟩ have energy (2|s⃗| −Nq)h.
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5 A diagrammatic approach to variational quantum ansatz construction

Figure 5.4: (top) The seven lowest-order connected diagrams for a four-site

transverse-field Ising model, labeled by the k⃗ used in the text. (bottom) Ex-
amples of diagrams that do not need to be considered when constructing the
perturbative hierarchy - (bottom left) a disconnected diagram that explicitly does
not contribute to the hierarchy, and (bottom right) a diagram which will con-

tribute to the same parameter in the hierarchy as a previous term (k⃗ = (1, 1, 0)),
but to lower order.
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5.6 Application: transverse-field Ising model

5.6.1 Example perturbative construction on four sites

To demonstrate the application of the methods developed in Sec. 5.5 in
detail, we now construct the full perturbative hierarchy on a small chain
(Nq = 4). This system has three perturbation terms, which we label

V̂i = XiXi+1 for i = 1, 2, 3. These perturbations preserve the antiunitary
complex conjugation symmetry K, and the unitary global parity symmetry
Z1Z2Z3Z4. This reduces the required variational manifold dimension
from 25 − 2 = 30 to 23 − 1 = 7 (both symmetries halve the Hilbert
space dimension, but complex conjugation makes the phase equivalence
redundant). In the QCA, this corresponds to removing all imaginary
rotations (of the form eiθX...X), and all generators with an odd number
of non-trivial terms. This removal will be automatic in the perturbative
construction, as removed terms will never appear in the hierarchy, so we
need only note the symmetries in case we ‘run out’ of terms to add to the
variational ansatz ∗. The remaining generators are then

T1 = X1Y2, T2 = X2Y3, T3 = X3Y4,

T4 = X1Y3, T5 = X2Y4, T6 = X1Y4,

T7 = X1X2X3Y4.

For convenience in this small system, we will drop the stabilizer notation
of Sec.5.3, and write the QCA as

∏7
j=1 exp(iθjTj). (For example, in the

notation of Sec. 5.3 we would have written θ6 as θ4XII,1.)
To construct the perturbative hierachy, we proceed by drawing all lowest-

order diagrams, and calculating the corresponding C̃k⃗ contributions. In
Fig. 5.4, we list the seven lowest-order connected diagrams in the system.
This gives us the following:

1. 3 contributions at order J (to T1, T2, and T3).

2. 2 contributions at order J2 (to T4 and T5).

3. 1 contribution at order J3 (to T6).

4. 1 contribution at order J4 (to T7).

This may then be used as an initial guess for the ordering in the perturbative
hierarchy. Importantly, although k⃗ = (1, 0, 1) is an order-J2 term satisfying

⟨0|V⃗ k⃗T7|0⟩ ̸= 0, the corresponding diagram is disconnected (Fig. 5.4,

∗Note that this is not always the case: if one must satisfy a symmetry by fixing
parameters, both terms will appear in the hierarchy and the fixing must be done after
the hierarchy is constructed.
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5 A diagrammatic approach to variational quantum ansatz construction

bottom-left). This implies that its contribution to θ7 will be cancelled out
by the contributions of (1, 0, 0) and (0, 0, 1) (Theorem 26), and the diagram
need not be considered in our construction, as we will confirm shortly.
We further note that higher-order diagrams exist, e.g. that corresponding
to k⃗ = (0, 1, 2) (Fig. 5.4, bottom-right). Although these have non-zero
contribution to the actual value of the variational angles (in this case θ2),
as this contribution is at a higher-order of J we expect it to not affect the
order of the hierarchy.

We now check the above ordering of the perturbative hierarchy by explicit
calculation of the lowest-order contributions to θ̃j . Applying Eq. (5.5.14)
recursively, the lowest-order connected contributions can be found to be
(noting Sk⃗,⃗k′ = 1 as all Vi commute),

C̃(1,0,0) = C̃(0,1,0) = C̃(0,0,1) =
−1

4h

C̃(1,1,0) =
−1

4h
[C̃(1,0,0) + C̃(0,1,0)] =

1

8h2

[
= C̃(0,1,1)

]
C̃(1,1,1) =

−1

4h
[C̃(1,1,0) + C̃(1,0,1) + C̃(0,1,1)] = − 5

64h3

C̃(1,2,1) =
−1

8h
[C̃(0,2,1) + C̃(1,2,0) + C̃(1,1,1)

− C̃(0,1,0)C̃(1,0,1)] =
3

256h4
.

One may then calculate in turn the lowest-order approximation for the
variational parameters via Eq. (5.5.39) (noting here that Γ(k⃗) = 1 for all

k⃗ in this system).

θ̃1 = JC̃(1,0,0) =
−J
4h

[
= θ̃2 = θ̃3

]
θ̃4 = J2C̃(1,1,0) − θ̃1θ̃2 =

J2

16h2

[
= θ̃5

]
θ̃6 = J3C̃(1,1,1) − θ̃1θ̃2θ̃3 − θ̃1θ̃5 − θ̃3θ̃4 = − J3

32h3

θ̃7 = J4C̃(1,2,1) −
1

2
θ̃1θ̃

2
2 θ̃3

− θ̃4θ̃2θ̃3 − θ̃1θ̃2θ̃5 − θ̃4θ̃5 = − J4

512h4
.

We see that ordering terms by Js⃗,a reproduces the full perturbative hierar-

chy whenever J < 2h. We also note that the order J2 contribution to θ̃7
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5.6 Application: transverse-field Ising model

from k⃗ = (1, 0, 1) is cancelled (following Theorem 26), as

J2C̃(1,0,1) =
J2

16h2
= θ̃1θ̃3. (5.6.2)

We also note that the magnitudes of θ̃i are systematically smaller than

the magnitudes of corresponding perturbative terms J⃗ ·⃗kC̃k⃗. This suggests

that the back-action terms
∑
f ;K⃗(f⃗)=k⃗;|N⃗(f⃗)|>1

Θ(f⃗)⟨0|V⃗ ·⃗k†
(
iT⃗
)·N⃗(f⃗)

|0⟩
in QCA may have a systematic positive effect on VQE convergence.

5.6.2 Low-order construction for a large chain

Following the analysis of the four-site example, we expect little to no
deviation between parameters of the same order in a larger chain. Indeed,
all first, second and third-order leading diagrams are identical up to
translation along the chain (Fig. 5.5). As the on-site and interaction
strengths are uniform along the chain, this implies that the coefficients
for all such diagrams are likewise equal (to lowest-order). At fourth-order,

two separate types of diagrams exist. One corresponds to k⃗ = (1, 2, 1) in

the four-site model, and gives the same parameter estimate (θ̃s⃗,a = −J4

512h4 ),
to the QCA generators of the form {YiXi+1Xi+2Xi+3} The other was not
present in the four-site model (as it requires 5 qubits) - it contributes

a parameter estimate of θ̃s⃗,a = J4

128h4 to QCA generators of the form
{YiXi+4}, placing these generators earlier in the perturbative hierarchy.
The resulting ansatz thus needs only 5Nq − 13 generators to reproduce the
ground state with errors of order (J/h)5. To obtain this level of accuracy
with a classical calculation, one would in theory need to sum over all
(Nq − 1)4 combinations of individual perturbations. However, as clever
grouping of terms (e.g. via tensor network contractions or similar) should
reduce the time-cost of such a summation far below such numbers, this
argument does not lead to an immediate guarantee of a quantum speedup
for VQEs of this form.

5.6.3 Alternative hierarchies and circuit ordering

Although perturbation theory is a natural choice for developing variational
hierarchies, it is not necessarily the only starting point. In the presence
of strong interactions (where pertubation theory breaks down), other
generator properties may provide better insight into how important they
are at obtaining the ground state. In the following, we study the following
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5 A diagrammatic approach to variational quantum ansatz construction

Figure 5.5: The leading connected diagrams to fourth-order on the transverse-
field Ising model. Each diagram should be repeated across the entire Nq-qubit
chain - the total number of copies of each diagram that will appear is written in
the right-hand column. Diagrams are labelled by the generator Ts⃗,a that they
contribute to.
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5.6 Application: transverse-field Ising model

natural constructions of a priority list, all of which use QCA as a parent
ansatz:

• pertQCA: The perturbative hierarchy from Def. 28, using QCA as
the parent variational ansatz.

• revQCA: The pertQCA hierarchy in reverse.

• 2-locQCA: A low-weight variant of pertQCA, obtained by only
allowing 2-local generators (those acting non-trivially on up to 2
qubits). When more generators are desired than in the final priority
list, we loop over it repeatedly.

• locQCA: A geometrically local variant of pertQCA, obtained by only
allowing generators acting on nearest neighbour pairs of qubits (and
again looping over the priority list if required). This is equivalent
to allowing only the generators which are dictated by the first-order
perturbation theory, allowing for a generalization to an arbitrary
Hamiltonian.

We have so far not discussed the ordering of the units within the ansatz
circuit. Two natural choices present themselves: taking the order in which
the gates appear in the priority list, and taking the order in which the
gates appear in the parent ansatz. However, this is only well-defined when
the priority list is inherited from a parent ansatz without repetition. For
the above hierarchies that require looping, we only study the former choice,
and denote by an asterisk results where the latter ordering is used.

5.6.4 VQE performance

We now test the performance of our variational hierarchies in different pa-
rameter regimes of the transverse-field Ising model on Nq = 8 sites. (Code
to perform this investigation can be found at github.com/tarrlikh/QSA.)
We take as a performance metric the relative energy error

ϵ := (EVQE − E0)/E0, (5.6.3)

where EVQE is the energy of the converged VQE, and plot this as we
increase the number Np of parameters in the hierarchy. The hierarchy gives
a natural strategy to perform the optimization - at each Np, the optimized
values of the previous Np − 1 parameters are used as a starting guess
for their new values (whilst the new parameter is initialized to 0). This
approach converges much faster than re-starting each new simulation at
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5 A diagrammatic approach to variational quantum ansatz construction

Figure 5.6: Log plot of the relative energy error ϵ (Eq. (5.6.3)) for different
variational hierarchies, in a weakly-coupled transverse-field Ising model (J/h =
0.15). Error is plotted as a function of the number of parameters used (or
equivalently the number of generators taken from the hierarchy). Description of
the different hierarchies is given in the text.

the original value, as found previously in [54]. To focus on the performance
of the ansatzes themselves, we do not include the effects of sampling noise
or any experimental noise in our simulations.

We first investigate the weak-coupling regime where perturbation theory
holds (J/h = 0.15). In Fig. 5.6, we plot the convergence of ϵ as the
first 30 terms from all studied hierarchies are added consecutively. At
each subsequent point we reoptimize all parameters using the SLSQP
algorithm, starting from the local minimum found at the previous point.
We observe that all hierarchies achieve good convergence, with the ex-
ception of revQCA, and that both variants of pertQCA achieve over an
order of magnitude improvement over other ansatzes after 30 terms are
added. We further observe that re-ordering the gates to follow the parent
ansatz (pertQCA*) is preferable, leading to another order of magnitude
improvement. We are unsure of the precise reason for this improvement,
but suggest it may be attributed to the relatively large area of the varia-
tional manifold inherited from the parent ansatz, that may be lost under
re-ordering. The discontinuities in the plot for pertQCA, pertQCA*, and

120



5.6 Application: transverse-field Ising model

Figure 5.7: Similar convergence plot to Fig. 5.6, but in the strongly-coupled
regime instead (J/h = 6).

2-locQCA correspond to the points where all gates up to a certain pertur-
bation theory order have been included. This makes sense, as our theory
predicts these points should correspond to the error decreasing from O(Jn)
to O(Jn+1).

We next investigate VQE convergence in the strongly correlated regime
(J/h = 6). We observe that all hierarchies perform worse here than
previously. We attribute this to the strongly-coupled ground state being
further from the starting state than the weakly-coupled ground state. Note
however, that one can obtain one of the two degenerate ground states at
h = 0 from |⃗0⟩ as

|E0(h = 0)⟩ =
∏
i

ei
π
4XiYi+1 |⃗0⟩, (5.6.4)

which is a rotation achievable after the first Nq − 1 = 7 terms of all
considered hierarchies. This suggests that in all cases, the first order
of the hierarchy is used to prepare this state, from which later orders
perturb. Then, as perturbation theory around the strongly correlated
ground state is significantly different to the perturbation theory around the
non-interacting ground state, the generators we have chosen may not be
optimal for this perturbation. This also explains the good performance of
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5 A diagrammatic approach to variational quantum ansatz construction

Figure 5.8: Similar convergence plot to Fig. 5.6, but in the critical regime
instead (J/h = 1).

locQCA over the other hierarchies: by repeating local operators it ensures
that it will obtain the lower orders (in h/J) of the true ground state.

We finally investigate the performance of our hierarchies in the critical
regime (J/h = 1), where a transition between the strongly-correlated and
weakly-correlated phases occurs in the thermodynamic limit. We observe
that the relative error obtained by all ansatzes is the worst here, and
that locQCA and pertQCA* behave similarly, obtaining up to an order
of magnitude improvement over 2-locQCA and pertQCA. This loss of
accuracy is not surprising, as we do not have a relatively cheap way of
accessing any states perturbatively coupled to the ground state in the
same manner as Eq. (5.6.4).

5.7 Conclusion

In this chapter, we have developed a diagrammatic framework for size-
extensive variational quantum ansatzes, which avoids the use of Trotter-
Suzuki approximation methods. We have described a large class of Pauli-
generated product ansatzes demonstrably capable of spanning the entire
Hilbert space with the minimum number of parameters necessary. We
have demonstrated means by which one can compress ansatzes such as the

122



5.7 Conclusion

above to a practical size, by a perturbative treatment of the target system,
and by taking into account any symmetries that exist. To ensure the
size-extensivity of the construction, we have stated and proven the digital
quantum version of the linked-cluster theorem. We have tested variants
of the resulting ansatzes on the transverse-field Ising model, finding that
their performance in various regimes matches our expectations based on
their means of construction. We observe that ansatzes that fully match
the perturbation theory give a benefit in the weak coupling regime as
expected. However, in the strong-coupling regime, focusing on the locality
of the ansatz at the expense of perturbation theory considerations appears
to be preferred.

As is well known in the field, the performance of any VQE ansatz is
system dependent. Ansatzes that are derived from perturbative physical
principles can be expected to perform best when perturbation theory
converges well. By contrast, those founded on adiabatic principles (e.g.
the variational Hamiltonian ansatz [56]) can be expected to perform best on
systems with a large gap. As these two conditions are often correlated (e.g.
a gap closing often corresponds to a phase transition and a breakdown
of perturbation theory), a fair comparison of ansatzes based on these
two principles (and with any other ansatzes) would require an extensive
numerical study. This is an obvious target for future research.

We have avoided in the above any discussion of a quantum speedup
for the VQEs that we have constructed in this chapter. To the best of
our knowledge this remains an open and difficult question to show for
any class of VQEs. Informally, to demonstrate a quantum speedup, one
requires to be able to obtain an estimate of the true ground state energy
E for an Nq-qubit system, within an error ϵ, in time polynomial in Nq.
This also needs to be achieved in a class of Nq-qubit systems for which no
similar estimation is possible classically. The circuit length in a variational
hierarchy grows polynomially in the number of parameters Np, so it would
be sufficient to show that the error ϵ(Np, N) scales polynomially in Np
and Nq. One also needs to consider the time cost of measuring the energy
(which grows polynomially in Nq) and the time cost of optimization (which
grows polynomially in Np). Our results appear to show this behavior; we
observe what appears to be exponential decay in Np for all three systems
studied. (Note that the measurement and optimization requirements imply
that the time cost to extract these energies from the device will still be
at best polynomial.) However, 1D spin chains such as the transverse-field
Ising model are well accessible by classical methods and polynomial-time
algorithms are known for any weakly-coupled 2-local spin system [173],
so we do not expect a quantum speedup in this case. Finding target
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5 A diagrammatic approach to variational quantum ansatz construction

systems for which a speedup may be demonstrable, and further optimizing
hierarchy construction to show this, are obvious targets for future research.
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5.A Background

5.A Background

Definition 29. The state of an Nq-qubit quantum register is represented

by a norm-1 vector in the Hilbert space H = C2Nq , under the association
|ψ⟩ ∈ H ≡ eiϕ|ψ⟩ for ϕ ∈ R.

Definition 30. The Pauli basis on Nq qubits is defined as PNq :=
{I,X, Y, Z}⊗Nq , where I,X, Y, Z are the 2 × 2 matrices on C2:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
,

Y =

(
0 −1i
1i 0

)
, Z =

(
1 0
0 −1

)
, (5.A.1)

and ⊗ is the Kronecker tensor product.

PNq has the following nice properties:

1. P 2 = 1 for all P ∈ PNq .

2. For P,Q ∈ PNq , either [P,Q] := PQ − QP = 0, or {P,Q} :=
PQ+QP = 0, and P commutes with precisely half of PNq .

3. P ∈ PNq ̸= 1 has only two eigenvalues, ±1, and the dimension of
the corresponding eigenspaces is precisely 2Nq−1 (i.e. each P divids

C2Nq in two).

4. This division by two may be further continued - given P,Q ̸= 1 such
that [P,Q] = 0, P and Q divide the Hilbert space into 4 eigenspaces
(labeled by combinations of their eigenvalues).

5. To generalize, one can form a [Nq, k] stabilizer group S, generated
by k Hermitian, commuting, non-generating elements of PNq (up to

a complex phase); this diagonalizes C2Nq into 2k unique eigensectors
of dimension 2Nq−k. When Nq = k, these sectors contain single
eigenstates, which we call stabilizer states [170].

6. Given such a stabilizer state |ψ⟩ and Hermitian P ∈ PNq , either
P |ψ⟩ = ±|ψ⟩ or ⟨ψ|P |ψ⟩ = 0.

The Pauli basis is a basis for the set of 2Nq × 2Nq complex-valued matrices
(hence the name); it is also a basis for the set of Hermitian matrices if
one chooses real coefficients. However, it is not a group under matrix
multiplication, as the single-qubit Pauli matrices pick up a factor of i
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on multiplication - XY = iZ /∈ P. The closure of the Pauli basis is
the Pauli group ΠNq = {±i} × PNq ; this is four times as large, and no
longer has the basis properties of PNq . The Pauli basis inherits a form
of multiplication from ΠNq - P · Q = R ∈ PNq if PQ = eiϕR ∈ ΠNq , at

which point PNq ≡ D
Nq
2 . However, under this multiplication PNq becomes

a commutative group, which sacrifices key information about its operator
structure. Based on the second point in the above list, we may make the
following useful definition:

Definition 31. The relative sign of P,Q ∈ PNq , sP,Q ∈ {−1, 1}, is
defined such that PQ + sP,QQP = 0. We further define the markers
δP,Q = (1 + sP,Q)/2, δ̄P,Q = (1 − sP,Q)/2 = 1 − δP,Q.

This allows us to write the following useful identity:

eiθPQ = QeisP,QP . (5.A.2)

Unfortunately this does not extend to the commutation of two such
exponentials; one has instead by the application of the Baker-Campbell-
Hausdorff formula

eiθP eiϕQ = eiϕe
iθP/2Qe−iθP/2eiθP , (5.A.3)

= eiϕ[δP,QQ+δ̄P,Q(cos(θ)P+sin(θ)PQ)]eiθP (5.A.4)

= eiϕQeiθ[δP,QP+δ̄P,Q(cos(θ)P+sin(θ)PQ)]. (5.A.5)

and the exponential expression cannot be simplified unless θ = nπ/2. In
this special case, eiπ/2P is a Clifford operator (being an operator that
maps Pauli operators to Pauli operators); this does not define all Clifford
operators, but the set {eiπ/2P , P ∈ PNq} does generate the Clifford group.

5.B Example of compression over
symmetries: the unitary coupled cluster
ansatz

As an example of symmetry-induced compression, let us construct the
Trotterized unitary coupled cluster ansatz [47, 159] on a fermionic system.
This can be done by taking the Pauli-type ansatz of local Majorana
operators acting on an equal number of empty and filled orbitals, removing
terms that do not respect K, and fixing the remainder to respect the
fermion parity. We now detail this procedure.
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5.B Example of compression over symmetries: the unitary coupled cluster
ansatz

The UCC ansatz takes the form

U(θ⃗) = eT (θ⃗)−T †(θ⃗), (5.B.1)

where the operator T (θ⃗) is a sum of n-th order cluster operators T (n)(θ⃗)
between filled states i and empty states j of the non-interacting problem.

T (n)(θ⃗) =
∑

i1,...,in,j1,...,jn

θj1,...,jni1,...,in
ĉ†j1 . . . ĉ

†
jn
ĉi1 . . . ĉin . (5.B.2)

The choice of T (θ⃗)−T †(θ⃗) is made to respect K (as creation and annihilation
operators are real). One typically takes only a few T (n) (usually up to
n = 2), and Trotterizes the resulting expression in terms of individual
excitations to implement on a quantum computer, in which case it becomes
a product ansatz. ĉ†j and ĉj are the fermionic creation and annihilation
operators for the jth orbital. These are not themselves Pauli operators,
but they may be combined to make Majorana operators

γ
(0)
j = ĉ†j + ĉj , γ

(1)
j = i(ĉ†j − ĉj), (5.B.3)

which are elements of PNq (up to a possible sign). (One can show this
immediately upon choosing a mapping from fermions to qubits.) The

fermionic number operator, N =
∑
j ĉ

†
j ĉj , is equivalent to Γ =

∑
j γ

(0)
j γ

(1)
j

(for commutation purposes). To form the operator T (1) − T (1)†, one may

take the set of excitations eiθ
j,a
i,aγ

(a)
i γ

(a)
j for i ̸= j (and a = 0, 1), and enforce

the symmetry by fixing θj,ai,a = θj,1−ai,1−a . (Terms of the form γ0i γ
1
j do not

commute with K.) The second-order cluster operator is slightly more
complicated; one must take all terms of the form

exp
(
iθj1,j2,b1,b2i1,i2,a1,a2

γa1i1 γ
a2
i2
γb1j1 γ

b2
j2

)
, (5.B.4)

with i1 ̸= i2 (j1 ̸= j2) operators for empty (filled) states, and
∑
i ai+bi = 1

mod 2 (terms where
∑
i ai+bi = 0 mod 2 do not commute with K). Then,

to conserve Γ, one must fix

θj1,j2,0,1i1,i2,0,0
= θj1,j2,1,0i1,i2,0,0

= −θj1,j2,0,0i1,i2,1,0
= −θj1,j2,0,0i1,i2,0,1

= θj1,j2,1,1i1,i2,0,1
= θj1,j2,1,1i1,i2,1,0

= −θj1,j2,0,1i1,i2,1,1
= −θj1,j2,1,0i1,i2,1,1

.

(One can confirm that all operators being fixed commute here, as required.)
This procedure may be continued as needed to obtain higher-order cluster
operators.
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5 A diagrammatic approach to variational quantum ansatz construction

One might try to use the tools developed above and check if the Trot-
terized UCC ansatz tightly spans the reduced Hilbert space. On the one
hand, the number of parameters in the full UCC,

η∑
n=1

η!

(η − n)!n!

(Nq − η)!

(Nq − η − n)!n!
=

Nq!

(Nq − η)!η!
− 1, (5.B.5)

does match precisely the dimension of a real Hilbert space with η particles
in Nq orbitals. On the other hand, as the Trotterized UCC Jacobian is full-

rank at θ⃗ = 0⃗, we strongly suspect that it spans this Hilbert state. However,
we did not find a definitive proof of this. In particular, Trotterized UCC
is not a stabilizer ansatz, and we have not found an obvious construction
of a stabilizer ansatz from UCC.

5.C Multivariate Dyson series

To prove the statement of Lemma 16, we need to analyze the multi-
parameter expansion (5.5.10) of the ground state |E0⟩, as a perturbative
solution to the corresponding eigenvalue equation

(H0 + JV )|E0⟩ = E0|E0⟩. (5.C.1)

It proves to be convenient to first find an unnormalized solution |Ẽ0⟩
whose expansion states |Ψ̃k⃗⟩ (cf. (5.5.12) ) obey a special condition:

⟨Ψ̃0⃗|Ψ̃k⃗⟩ = δk⃗,⃗0. (5.C.2)

The properly normalized ground state |E0⟩ is then to be obtained as
|E0⟩ = N|Ẽ0⟩, for N = (⟨Ẽ0|Ẽ0⟩)−1/2.

To find |Ψ̃k⃗⟩, one can use the Dyson series-like approach. For this, one
rewrites (5.C.1) as:

(E
(0)
0 −H0)|Ẽ0⟩ = (JV − ∆)|Ẽ0⟩, (5.C.3)

for E
(0)
0 being the unperturbed ground state energy, and quantity ∆ defined

as follows:

∆ ≡ (E0 − E
(0)
0 ) = ⟨Ψ̃0⃗|JV |Ẽ0⟩. (5.C.4)

Eq. (5.C.3) can be rewritten as:

|Ẽ0⟩ = |Ψ̃0⃗⟩ + (E
(0)
0 −H0)−1(JV − ∆)|Ẽ0⟩, (5.C.5)
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5.C Multivariate Dyson series

where the action of the inverse operator (E
(0)
0 −H0)−1 is well-defined

since the state (JV − ∆)|Ẽ0⟩ has no overlap with |Ψ̃0⃗⟩ (cf. (5.C.4) and

(5.C.2)). Using expansion (5.5.12) and the form of perturbation JV = J⃗ ·V⃗ ,

one recovers from (5.C.5) a set of equations on |Ψ̃k⃗⟩ for all k⃗ ̸= 0⃗:

|Ψ̃k⃗⟩ = G0

∑
β

Vβ |Ψ̃k⃗−δ⃗β ⟩ −
∑

k⃗′+k⃗′′=k⃗

∆k⃗′ |Ψ̃k⃗′′⟩

 , (5.C.6)

G0 ≡ (E
(0)
0 −H0)−1,∆k⃗ ≡

∑
β

⟨Ψ̃0⃗|Vβ |Ψ̃k⃗−δ⃗β ⟩, (5.C.7)

for δ⃗β the unit vector with the β component equal to 1. Note, that the
action of G0 here is again well-defined, since it acts on a state which has
a zero overlap with |Ψ̃0⃗⟩ (cf. (5.C.7) and (5.C.2)). Now, with (5.C.6), we

expressed each state |Ψ̃k⃗⟩ in terms of states |Ψ̃k⃗′⟩ which belong to lower

PT orders: |⃗k′| < |⃗k|. Using (5.C.6) and the unperturbed ground state
|Ψ̃0⃗⟩ = |⃗0⟩, one can obtain all the states |Ψ̃k⃗⟩ up to any desired order.

Given the states |Ψ̃k⃗⟩, one can also find the expression for the normal-
ization N , as a multi-parameter series:

N =
∑
k⃗

Nk⃗J⃗
·⃗k (5.C.8)

The expansion states |Ψk⃗⟩ of the normalised ground state |E0⟩ are then
given by:

|Ψk⃗⟩ =
∑

k⃗′+k⃗′′=k⃗

Nk⃗′′ |Ψ̃k⃗′⟩ (5.C.9)

With this scheme for finding the expansion states |Ψk⃗⟩, we’re ready
to prove Lemma 16. To do so, first we will use (5.C.6) and prove the
validity of the expression (5.5.13), together with the recursive relation
(5.5.14). Then, using (5.C.9), we will extend our proof also to the states
|Ψk⃗⟩, recovering the statement of Lemma 16.
Proof — We start with a proof of the relation (5.5.13) for the states

|Ψ̃k⃗⟩, by induction in PT order |⃗k|. We first note that for |⃗k| = 0, we have

a single state |Ψ̃k⃗=0⃗⟩ = |⃗0⟩ that clearly satisfies (5.5.13) - this will be the

base of our induction. Next, we have to prove (5.5.13) for |Ψ̃k⃗⟩ with an

arbitrary k⃗, assuming the validity of (5.5.13) for all |Ψ̃k⃗′⟩ s.t. |⃗k′| < |⃗k|.
To do so, let us express |Ψ̃k⃗⟩ using (5.C.6) and show that the different
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5 A diagrammatic approach to variational quantum ansatz construction

terms that are present on the r.h.s. are proportional to the state V⃗ ·⃗k |⃗0⟩
with a real coefficient. The terms of the type G0Vβ |Ψ̃k⃗−δ⃗β ⟩, assuming

expression (5.5.13) for |Ψ̃k⃗−δ⃗β ⟩, can be rewritten as:

G0Vβ |Ψ̃k⃗−δ⃗β ⟩ = G0C̃k⃗−δ⃗βVβV⃗
·(k⃗−δ⃗β) |⃗0⟩ (5.C.10)

=
Sδ⃗β ,⃗k−δβ C̃k⃗−δ⃗β

E
(0)

0⃗
− E

(0)

s⃗(k⃗)

V⃗ ·⃗k |⃗0⟩. (5.C.11)

The other contributions to the r.h.s. of (5.C.6) are of the formG0∆(k⃗′)|Ψ̃k⃗′′⟩,
such that k⃗′ + k⃗′′ = k⃗. The factor ∆(k⃗′) here can be rewritten using the
assumption of induction:

∆k⃗′ =
∑
β

⟨⃗0|C̃(k⃗′−δ⃗β)VβV⃗
·(k⃗′−δ⃗β) |⃗0⟩ (5.C.12)

=

∑
β

Sδ⃗β ,⃗k−δβ C̃k⃗′−δ⃗β

 ⟨⃗0|V⃗ ·⃗k′ |⃗0⟩ (5.C.13)

= ∆Re
k⃗′
⟨⃗0|V⃗ ·⃗k′ |⃗0⟩, (5.C.14)

where we introduced the shorthand notation ∆Re
k⃗′

for the real coefficient(∑
β Sδ⃗β ,⃗k−δβ C̃

(k⃗′−δ⃗β)
)

. With this observation about ∆k⃗′ and the assump-

tion of induction at hand, the following manipulation can be performed:

G0∆k⃗′ |Ψ̃k⃗′′⟩ = ∆Re
k⃗′
C̃k⃗′′G0V⃗

·⃗k′′ |⃗0⟩⟨⃗0|V⃗ ·⃗k′ |⃗0⟩ (5.C.15)

=
∆Re
k⃗′
C̃k⃗′′Sk⃗′′ ,⃗k′

E
(0)

0⃗
− E

(0)

s⃗(k⃗)

δs⃗(k⃗′),⃗0V⃗
·⃗k |⃗0⟩, (5.C.16)

where we used the condition k⃗′+ k⃗′′ = k⃗. Combining (5.C.11) and (5.C.16),
we see that the expression (5.C.6) indeed implies the form (5.5.13) of |Ψ̃k⃗⟩,
with a real coefficient C̃k⃗ which is given by the formula (5.5.14).

Before extending this result to the coefficient states |Ψk⃗⟩ of the normal-

ized ground state |E0⟩ = N|Ẽ0⟩, we will need to make an aside and prove
the following property of the coefficients Nk⃗:

Nk⃗ = NRe
k⃗

⟨⃗0|V⃗ ·⃗k |⃗0⟩, (5.C.17)
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5.C Multivariate Dyson series

for a real coefficient NRe
k⃗

. First, one can observe that an analogous property

holds for the coefficients Zk⃗ of Z ≡ ⟨Ẽ0|Ẽ0⟩ = N−2:

Z =
∑
k⃗

J⃗ ·⃗kZk⃗, (5.C.18)

Zk⃗ =
∑

k⃗′+k⃗′′=k⃗

C̃k⃗′C̃k⃗′′ ⟨⃗0|
(
V⃗ ·⃗k′′

)†
V⃗ ·⃗k′ |⃗0⟩ (5.C.19)

=
∑

k⃗′+k⃗′′=k⃗

i2Γk⃗′′Sk⃗′′ ,⃗k′C̃k⃗′C̃k⃗′′ ⟨⃗0|V⃗ ·⃗k |⃗0⟩ (5.C.20)

= ZRe
k⃗

⟨⃗0|V⃗ ·⃗k|0⟩, (5.C.21)

with a real coefficient ZRe
k⃗

defined as
∑
k⃗′+k⃗′′=k⃗ i

2Γ
k⃗′′Sk⃗′′ ,⃗k′C̃k⃗′C̃k⃗′′ ; in this

derivation, we used (5.5.11) for states |Ψ̃k⃗⟩. Now, observe that Z0⃗ = 1,

which means that the norm N = Z−1/2 = (1 + ϵ)
−1/2

can be expressed

as a Taylor series in ϵ =
∑
k⃗ ̸=0 J⃗

·⃗kZk⃗, which is a quantity of order O(J).
Expanding the terms of such Taylor series, one observes that the coefficients
Nk⃗ are given in terms of products of coefficients Zk⃗ such that the combined

perturbation theory order k⃗ is conserved - for example, a product Zk⃗1Zk⃗2
will contribute to Nk⃗1+k⃗2

. This allows to obtain the property (5.C.17)
from (5.C.21) term by term. For instance, Zk⃗1Zk⃗2 is proportional to

⟨⃗0|V⃗ ·(k⃗1+k⃗2) |⃗0⟩ with a real coefficient:

Zk⃗1Zk⃗2 = ZRe
k⃗1
ZRe
k⃗2

⟨⃗0|V⃗ ·⃗k1 |⃗0⟩⟨⃗0|V⃗ ·⃗k2 |⃗0⟩ (5.C.22)

= δs⃗(k⃗1),⃗0δs⃗(k⃗2),⃗0Sk⃗1,k⃗2Z
Re
k⃗1
ZRe
k⃗2

⟨⃗0|V⃗ ·(k⃗1+k⃗2) |⃗0⟩. (5.C.23)

This statement can be directly extended to any product of multiple Zk⃗’s,
recovering (5.C.17), as desired.

To prove expression (5.5.11), we simply use the property (5.C.17) and
(5.5.13) for |Ψ̃k⃗⟩, in the formula (5.C.9):
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5 A diagrammatic approach to variational quantum ansatz construction

|Ψk⃗⟩ =
∑

k⃗′+k⃗′′=k⃗

N (k⃗′′)|Ψ̃k⃗′⟩ (5.C.24)

=
∑

k⃗′+k⃗′′=k⃗

NRe
k⃗′′
C̃k⃗′ V⃗

·⃗k′ |⃗0⟩⟨⃗0|V⃗ ·⃗k′′ |⃗0⟩ (5.C.25)

=
∑

k⃗′+k⃗′′=k⃗

δs⃗(k⃗′′),⃗0Sk⃗′ ,⃗k′′NRe
k⃗′′
C̃k⃗′ V⃗

·⃗k |⃗0⟩ (5.C.26)

= Ck⃗V⃗
·⃗k |⃗0⟩, (5.C.27)

Ck⃗ ≡
∑

k⃗′+k⃗′′=k⃗

δs⃗(k⃗′′),⃗0Sk⃗′ ,⃗k′′NRe
k⃗′′
C̃k⃗′ . (5.C.28)

This concludes our proof of Lemma 16.

5.D Separability of disconnected
contributions

In what follows, we prove Lemma 19.

Proof — Consider a disconnected contribution |Ψk⃗⟩ = Ck⃗V⃗
·⃗k |⃗0⟩ to

the ground state |E0⟩ of the Hamiltonian H = H0 + J⃗ · V⃗ , with a cor-

responding splitting k⃗ = k⃗A + k⃗B. The two sets of couplings that are
activated, respectively, in k⃗A and k⃗B, we will denote A and B. We also
introduce two non-intersecting sets of qubits, QA and QB , such that they
include, respectively, the supports of k⃗A and k⃗B , and their union QA ∪QB
constitutes the whole set of qubits.

Let us consider an auxilliary Hamiltonian H ′, which is equal to H with
a constraint Ji = 0 for all couplings Vi which are not in A ∪B. In the PT
series for the ground state |E0⟩′ of such an auxilliary Hamiltonian,

|E0⟩′ =
∑
k⃗′

J⃗ ·⃗k′C ′
k⃗′
V⃗ ·⃗k′ |⃗0⟩, (5.D.1)

the terms C ′
k⃗′

are equal to the corresponding terms Ck⃗′ in the full series

(5.5.10) – namely those, where no couplings Vi are activated besides those
in A∪B. In particular, (5.D.1) still contains the disconnected contribution
of interest, C ′

k⃗′=k⃗
= Ck⃗.
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5.D Separability of disconnected contributions

On the other hand, H ′ is a sum of two independent Hamiltonians,
defined on subsystems QA and QB :

H ′ = H ′
A ⊗ IQB + IQA ⊗H ′

B , (5.D.2)

H ′
A ≡ −

∑
i∈QA

hiZi +
∑
i∈A

JiVi, (5.D.3)

H ′
B ≡ −

∑
i∈QB

hiZi +
∑
i∈B

JiVi. (5.D.4)

This implies that the ground state |E0⟩′, will be a tensor product of the
ground states of H ′

A and H ′
B ,

|E0⟩′ = |E0⟩′A|E0⟩′B . (5.D.5)

In turn, the subsystem ground states |E0⟩′A and |E0⟩′B can themselves
be written as PT series in couplings restricted on A and B, separately:

|E0⟩′A =
∑
k⃗′A

J⃗ ·⃗k′AC ′
k⃗′A
V⃗ ·⃗k′A |⃗0⟩QA , (5.D.6)

|E0⟩′B =
∑
k⃗′B

J⃗ ·⃗k′BC ′
k⃗′B
V⃗ ·⃗k′B |⃗0⟩QB , (5.D.7)

whose terms, again, are identical to those in the full series (5.5.10), with
only couplings from A (B) activated: C ′

k⃗′A
= Ck⃗′A

(C ′
k⃗′B

= Ck⃗′B
). Combining

(5.D.1), (5.D.5), (5.D.6) and (5.D.7), for our term of interest Ck⃗ we obtain
the desired relation:

Ck⃗ = Ck⃗ACk⃗B . (5.D.8)
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Figure 5.9: Plot of the optimization convergence speed (Eq. (5.6.3)) for dif-
ferent variational hierarchies in a weakly-coupled transverse-field Ising model
(J/h = 0.15). Convergence is represented by a total number of energy function
evaluations nev and plotted as a function of the number of parameters used.
Note that the optimization of Np ansatz parameters always uses the optimized
value of Np − 1 parameters for initialization (see Sec. 5.6.4). Because of this, in
nev(Np) we always include nev(Np − 1) and the resulting plots are by definition
monotonic.

5.E Convergence speed of classical
optimization of QCA

In this appendix we show the convergence rate of our classical optimization
of QCA in terms of the number of function evaluations for Fig. 5.6, Fig. 5.7
and Fig. 5.8 (Fig. 5.9, Fig. 5.10 and Fig. 5.11 respectively). We have not
performed any metaparameter tuning for this optimization, which would
likely improve these numbers significantly. The optimization here was
performed in the absence of realistic conditions on quantum hardware (in
particular in the absence of sampling noise); any further optimization of
convergence times would need to take this into account in order to make a
realistic comparison to other ansatzes.
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Figure 5.10: Plot of convergence speed similar to Fig. 5.9, but in the strongly-
coupled regime instead (J/h = 6).
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Figure 5.11: Plot of convergence speed similar to Fig. 5.9, but in the critical
regime instead (J/h = 1).
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