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4 Bounds on nonlocal
correlations in the presence
of signaling and their
application to topological
zero modes

4.1 Introduction

In a Bell test [127, 128], Alice and Bob measure pairs of particles (possibly
having a common source in their past) and then communicate in order to
calculate the correlations between these measurements. The strength of
empirical correlations enables one to characterize the underlying theory.
In quantum mechanics, the above procedure corresponds to local mea-
surements of Hermitian operators A0/A1 on Alice’s side and B0/B1 on
Bob’s side. The correlators are defined using the quantum expectation
value cij = ⟨AiBj⟩ and, when the operators have eigenvalues ±1, it can
be shown that the CHSH parameter obeys

|B| ≡ |c00 + c10 + c01 − c11| ≤ 2
√

2, (4.1.1)

which is known as the Tsirelson bound [129]. Stronger bounds on the
correlators (i.e., bounds from which the Tsirelson bound can be derived)
were proposed, e.g., by Uffink [130] and independently by Tsirelson, Landau
and Masanes (TLM) [131–133]. The latter implies that

|c00c10 − c01c11| ≤
∑
j=0,1

√
(1 − c20j)(1 − c21j). (4.1.2)

The TLM inequality is known to be necessary and sufficient for the corre-
lators cij to be realizable in quantum mechanics [131–133] (implying, in
particular, that if a set of correlators satisfies Eq. (4.1.2), it necessarily sat-
isfies Eq. (4.1.1); the converse is not true). Importantly, when calculating
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B in any local-realistic model it turns out that |B| ≤ 2, which is a fa-
mous variant of Bell’s theorem known as the Clauser-Horne-Shimony-Holt
(CHSH) inequality [134], which provides a measurable distinction between
correlations achievable in local-realistic models and in quantum theory.
These bounds, however, are not enough for fully characterizing the Alice-
Bob quantum correlations. For the latter task, the Navascues-Pironio-Acin
(NPA) hierarchical scheme of semidefinite programs was proposed [135].

All the above works plausibly assuming that Alice’s and Bob’s measure-
ments are described by spatially local and Hermitian operators, implying
that [Ai, Bj ] = 0 for all i, j. As such, they cannot lead to superluminal
signaling between Alice and Bob.

Trying, on the one hand, to generalize some of the above results, and
on the other hand to pin-point the core reason they work so well, we relax
below these two assumptions and examine the consequences of complex-
valued correlations emerging from non-Hermitian non-commuting Alice
and Bob operators. We thus allow a restricted form of signaling between
the parties (similar to the one in [136]), but we maintain the Hilbert
space structure, as well as other core ingredients of quantum mechanics.
Surprisingly, the Tsirelson bound and TLM inequality remain valid in this
generalized setting. Apart from that, we find intriguing relations between
nonlocality, local correlations of Alice (or Bob), and signaling in the case
of Hermitian yet non-commuting observables.

Considering non-Hermitian non-commuting observables may seem far
from any sensible model. To alleviate this impression, we study an explicit
example of a parafermionic system, which is a proper quantum system that
provides a natural setting for comparing commuting and non-commuting
sets of observables. The natural observables in the parafermionic system
happen to be non-Hermitian. Parafermions (or rather parafermionic
zero modes) are topological zero modes that generalize the better-known
Majorana zero modes [6, 21, 113]. Parafermions can be realized in various
quasi-one-dimensional systems [40, 137–142], see [143] for a comprehensive
review. Similarly to the case of Majoranas, observables in a system
of parafermions are inherently non-local as they comprise at least two
parafermionic operators hosted at different spatial locations. In the case
of Majoranas, this nonlocality is known to have manifestations through
the standard CHSH inequality [144]. We do not follow the investigation
line of Ref. [144], but rather investigate a different aspect of nonlocality,
which is absent for Majoranas yet present for parafermions.

Specifically, we construct two examples. In the first, the system of
parafermions is split into two spatially separated parts, A and B, with
commuting observables [Ai, Bj ] = 0. In the second example, Alice’s and
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Bob’s parts are still spatially separated; the local permutation properties
of A0, A1, as well as those of B0, B1 are exactly the same as in the first
example, yet [Ai, Bj ] ̸= 0. This property alone has the potential to con-
tradict relativistic causality since we have spatially separated observables
which do not commute and thus allow for superluminal signaling (thus
these systems can indeed simulate the case of non-Hermitian signaling
operators). However, as we explain in Sec. 4.3.2, in order to measure
their respective observables, Alice and Bob in our system must share a
common region of space, which resolves the paradox. In this sense, Alice
and Bob can be thought of as two experimenters acting on the same system.
Therefore, the system of parafermions does not constitute a system in
which the spatial and quantum mechanical notions of locality disagree.
However, it simulates such a system (with spatial locality interpreted in
a very naive way). Using these examples we investigate the theoretical
bounds on correlations. We find that both systems obey the derived
bounds. However, the maximal achievable correlations in the truly local
system (first example) are significantly weaker than those of the non-local
one.

Before we present our results in the next sections, one comment is
due. One may think that investigating Bell-CHSH correlations with
[Ai, Bj ] ̸= 0 is an abuse of notation. Originally introduced for distin-
guishing local-realistic theories from the standard quantum theory, the
Bell-CHSH inequalities imply the use of conditional probabilities P (a, b|i, j)
that are defined in both. With [Ai, Bj ] ̸= 0, the correlators that have the
same operator form are expressed not through probability distributions
P (a, b|i, j) but rather through quasiprobability distributions W (a, b|i, j),
cf. Appendix 4.C. Therefore, a formal replacement of commuting oper-
ators with non-commuting ones may seem an illegitimate operation in
this context. We would like to emphasize that the key to comparing
properties of different theories is considering objects that are defined in
these theories in an operationally identical way. This is the reason that
local-realistic theories are compared to quantum mechanics not in terms
of the joint probability distribution P (a0, a1, b0, b1) (that does not exist
in quantum theory when [Ai, Aj ] ̸= 0 and/or [Bi, Bj ] ̸= 0) but in terms
of P (a, b|i, j) conditioned on the choice of observables: P (a, b|i, j) are
defined in both theories and can be measured by the same measurement
procedure. Since our aim here is to compare the standard quantum theory
with that allowing for [Ai, Bj ] ̸= 0, working in the language of correlators
that are defined and can be measured (even if they are complex) by means
of weak measurements in both theories [145] is a natural decision. We
thus compare nonlocal theories having a Hilbert space structure, rather
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than a probabilistic structure (common, e.g., to local hidden variables
theories and quantum mechanics, but not to the post-quantum theories
discussed here). However, in the case of the standard quantum theory,
the correlation functions (and thus our new bounds) can be expressed in
terms of P (a, b|i, j), making them new bounds on the possible probability
distributions in the standard quantum theory.

In what follows, we start in Sec. 4.2 by defining an operator-based (rather
than probability-based) notion of complex correlations arising in nonlocal,
non-Hermitian systems admitting signaling and then find the generalized
inequalities bounding them. Importantly, this notion has an operational
sense in terms of weak measurements, as discussed in the Appendix 4.C.2.
In Sec. 4.3, we review parafermionic systems and show they can simulate
such non-Hermitian signaing systems. We then numerically prove they are
indeed bounded by the proposed bounds. Sec. 4.4 concludes the chapter.
Some technical details appear in the Appendices.

4.2 Analytic results for correlations of
general non-Hermitian non-commuting
operators

Below we prove a number of bounds on quantum correlations of non-
Hermitian non-commuting operators. We generalize the Tsirelson and the
TLM bounds (Theorems 1 and 2, which have been previously derived for
Hermitian commuting operators, see [146]) and derive previously unknown
bounds (Theorems 3 and 4, which are applicable to the Hermitian, non-
signaling case as well). Here we introduce the bounds and discuss them,
while their proofs are deferred to Sec. 4.2.1. The bounds are expressed in
terms of Pearson correlation functions of operators X and Y defined as

C(X,Y ) =
⟨XY †⟩ − ⟨X⟩⟨Y ⟩†

∆X∆Y
, (4.2.1)

where ∆X =

√
⟨XX†⟩ − |⟨X⟩|2 is the variance of X (which is assumed to

be non-zero), and averaging is performed with respect to some state |ψ⟩ in
the Hilbert space. This definition is a straightforward generalization of the
usual Pearson correlation between commuting Hermitian operators. The
Pearson correlations reduce to the standard cXY = ⟨XY ⟩ for Hermitian
X and Y on states |ψ⟩ such that ⟨X⟩ = ⟨Y ⟩ = 0 and ∆X = ∆Y = 1. We
note that C(X,Y ) is ill-defined when ∆X = 0 or ∆Y = 0; yet, as we show
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in Sec. 4.2.1, |C(X,Y )| ≤ 1 everywhere, including the vicinity of such
special points.

For the case of commuting operators X, Y , the definition of C(X,Y )
can be expressed in terms of the joint probability distributions, and our
below bounds can be thought of as restricting the possible probability
distributions in quantum theory. When X and Y do not commute, this
is not the case, which defies the notions that conventionally underlie
Bell inequalities. However, our aim here is not to analyze complex local
hidden variables models but rather to examine general models which are
manifestly nonlocal. In particular, we wish to analyze whether known
bounds on quantum correlations remain effective when generalized to
cases of non-Hermitian signaling operators. We argue that these complex
correlations are physically meaningful because there is an empirical protocol
for measuring them. That operational meaning of the above correlations
in terms of weak measurements is given in Appendix 4.C.2. Alternatively,
for the case of non-commuting observables, C(X,Y ) can be expressed
in terms of quasiprobability distibutions, and thus our bounds restrict
possible quasiprobability distributions in that case. We discuss this in
detail in Appendix 4.A.

We now discuss the bounds on Alice-Bob correlations.

Theorem 1. (Generalized Tsirelson bound). Define B def
= C(A0, B0)+

C(A1, B0) + C(A0, B1) − C(A1, B1) as the complex-valued Bell-CHSH
parameter of any operators Ai and Bj. The following holds

|B| =
√

Re(B)2 + Im(B)2

≤
√

2
[√

1 + Re(η) +
√

1 − Re(η)
]

≤ 2
√

2, (4.2.2)

where η is either C(A0, A1) or C(B0, B1) (the one having the larger |Re(η)|
among them will give rise to a tighter inequality).

Despite the fact that C(X,Y ) ̸= cXY , the Bell-CHSH parameter defined
through C(X,Y ) obeys the same Tsirelson bound as for cXY in Eq. (4.1.1).
Moreover, the proof of the Tsirelson bound for C(X,Y ) is valid indepen-
dently of whether [Ai, Bj ] = 0. A somewhat tighter bound (the middle row
of Eq. (4.2.2)) is obtained in terms of η that expresses on-site correlations
on Alice’s or Bob’s side. This is also insensitive to whether [Ai, Bj ] = 0.

Theorem 2. (Generalized TLM bound). The following holds for any
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operators Ai, Bj, i, j ∈ {0, 1},∣∣C(B0, A0)†C(B0, A1) − C(B1, A0)†C(B1, A1)
∣∣

≤
∑
j=0,1

√
(1 − |C(Bj , A0)|2)(1 − |C(Bj , A1)|2). (4.2.3)

Similarly to the previous theorem, this bound is insensitive to whether
[Ai, Bj ] = 0 and has the same form as the standard TLM bound, Eq. (4.1.2),
modulo replacing C(X,Y ) with real-valued cXY .

We note in passing that our bounds apply to both operators with
bounded and unbounded spectrum. Implementing Bell tests in mesoscopic
systems often requires dealing with operators having an unbounded spec-
trum, cf. Ref. [147]. Our theorems 1 and 2 may thus be useful for studies
in such systems.

Theorem 3. (Relation between nonlocality, local correlations, and
signaling). Let B be the complex-valued Bell-CHSH parameter defined in
Theorem 1. Then,(

Re(η)

2

)2

+

(
Re(B)

2
√

2

)2

+

(
Im(B)

2
√

2

)2

≤ 1. (4.2.4)

This bound is also valid independently of [Ai, Bj ] = 0. In the case
of Hermitian Ai, Bj that obey [Ai, Bj ] = 0, C(Ai, Bj) is real, implying
Im(B) = 0. If Ai and Bj are Hermitian but do not mutually commute,
there can appear imaginary components to C(Ai, Bj) and B. Therefore,
this relation may be interpreted as a constraint on non-local correlations
(represented by Re(B)/(2

√
2)), local on-site correlations (Re(η)/2), and

signaling (represented by Im(B)/(2
√

2) ̸= 0). These three quantities are
thus confined to the unit ball.

Theorem 4. Let B be the complex-valued Bell-CHSH parameter defined
in Theorem 1. In the case of isotropic correlations, C(Ai, Bj) = (−1)ijϱ
(such that B = 4ϱ) for some complex-valued ϱ,

|η|2 +

(
Re(B)

2
√

2

)2

+

(
Im(B)

2
√

2

)2

≤ 1. (4.2.5)

Note that Eq. (4.2.5) provides a tighter bound than Eq. (4.2.4). However,
Eq. (4.2.5) is proved under the rather restrictive assumption of C(Ai, Bj) =
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(−1)ijϱ. This is a valid assumption within non-signaling theories in the
following sense. Reference [148] argued that the standard Bell-CHSH
parameter B = c00 + c10 + c01 − c11 for ±1-valued observables in a non-
signaling theory (not necessarily classical or quantum) can always be
maximized on a state satisfying cij = (−1)ijρ with a real ρ. While the
statement of Ref. [148] was proved for the standard correlations cXY
(and not our C(X,Y )) and maximizing the l.h.s. of Eq. (4.2.5) is not
equivalent to maximizing |B|, one might hope that the possibility of
arranging C(Ai, Bj) = (−1)ijϱ is related to non-signaling, and the bound
of Eq. (4.2.5) would discriminate the cases of [Ai, Bj ] = 0 and [Ai, Bj ] ̸= 0.
We provide some numerical evidence for the last statement in Sec. 4.3.

4.2.1 Proofs of analytic bounds

Lemma 1. (Generalized uncertainty relations, see Ref. [149] for
elaboration on the term). Denote by X1, . . . , Xn, a number of operators.
Let C be an n× n Hermitian matrix whose ij-th entry is

C(Xi, Xj) =
⟨XiX

†
j ⟩ − ⟨Xi⟩⟨Xj⟩†
∆Xi∆Xj

, (4.2.6)

where ∆X =

√
⟨XX†⟩ − |⟨X⟩|2 is the uncertainty in X (which is assumed

to be non-zero). Then C ⪰ 0, i.e., it is positive semidefinite.

Proof. Denote |ψ⟩, the underlying quantum state. For any n-dimensional
vector, vT = [v1, . . . , vn], it follows that

vTDCDT v = ⟨ϕ|ϕ⟩ ≥ 0, (4.2.7)

where D is a (positive semidefinite) diagonal matrix whose entries are
Dii = ∆Xi , and |ϕ⟩ =

∑n
i=1 vi (Xi − ⟨Xi⟩) |ψ⟩. Therefore, DCDT ⪰ 0

and so is C ⪰ 0. 2

Applying this lemma to two operators, X1, X2, one obtains an inequality
|C(X1, X2)| ≤ 1, implying that the correlation functions are bounded even
near ∆X1,2

= 0.

Theorem 1. Proof. Construct the matrix C for the operators A0, A1,
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and Bj , C(Bj , Bj) C(Bj , A1) C(Bj , A0)
C(Bj , A1)† C(A1, A1) C(A0, A1)
C(Bj , A0)† C(A0, A1)† C(A0, A0)


=

 1 C(Bj , A1) C(Bj , A0)
C(Bj , A1)† 1 η
C(Bj , A0)† η† 1

 ⪰ 0, (4.2.8)

where η
def
= C(A0, A1). By the Schur complement condition for positive

semidefiniteness this is equivalent to

CA
def
=

[
1 η
η† 1

]
⪰
[
C(Bj , A1)†

C(Bj , A0)†

] [
C(Bj , A1) C(Bj , A0)

]
. (4.2.9)

Let vTj = [(−1)j , 1]. The above inequality implies

2(1 + (−1)jRe(η)) = vTj C
Avj

≥
∣∣C(Bj , A0) + (−1)jC(Bj , A1)

∣∣2 . (4.2.10)

This together with the triangle inequality yield

|B| ≤
∑
j=0,1

∣∣C(Bj , A0) + (−1)jC(Bj , A1)
∣∣

≤
√

2
∑
j=0,1

√
1 + (−1)jRe(η), (4.2.11)

which completes the proof. Note that by swapping the roles of A and B, a
similar inequality is obtained where η = C(B0, B1). 2
Theorem 2. Proof. The inequality (4.2.9) implies

(1 − |C(Bj , A0)|2)(1 − |C(Bj , A1)|2)

−
∣∣η − C(Bj , A0)†C(Bj , A1)

∣∣2 ≥ 0, (4.2.12)

which follows from the non-negativity of the determinant of the matrix
obtained by subtracting the right hand side from the left hand side in
(4.2.9). Therefore,∣∣η − C(Bj , A0)†C(Bj , A1)

∣∣
≤
√

(1 − |C(Bj , A0)|2)(1 − |C(Bj , A1)|2). (4.2.13)
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This and the triangle inequality give rise to the theorem,∣∣C(B0, A0)†C(B0, A1) − C(B1, A0)†C(B1, A1)
∣∣

≤
∑
j=0,1

∣∣η − C(Bj , A0)†C(Bj , A1)
∣∣

≤
∑
j=0,1

√
(1 − |C(Bj , A0)|2)(1 − |C(Bj , A1)|2). 2 (4.2.14)

Theorem 3. Proof. We have seen that

|B| ≤
√

2
(√

1 + Re(η) +
√

1 − Re(η)
)
. (4.2.15)

Therefore,

|B|2 = Re(B)2 + Im(B)2 ≤ 4
(

1 +
√

1 − Re(η)2
)
. (4.2.16)

Because,
√

1 − a ≤ 1 − a/2 for a ∈ [0, 1], it follows that

Re(B)2 + Im(B)2 ≤ 8 − 2Re(η)2, (4.2.17)

from which the theorem follows. 2
Theorem 4. Proof. In case the isotropy holds, i.e., C(Ai, Bj) =

C(Bj , Ai)
∗ = (−1)ijϱ, (4.2.12) reads∣∣∣η − (−1)j |ϱ|2

∣∣∣2 ≤ (1 − |ϱ|2)2, (4.2.18)

and thus
|η|2 − 2(−1)j |ϱ|2 Re(η) ≤ 1 − 2 |ϱ|2 . (4.2.19)

Averaging both sides in this inequality over j = 0, 1, and rearranging give

|η|2 + 2 |ϱ|2 ≤ 1. (4.2.20)

Finally, substituting ϱ = B/4 into (4.2.20) yields the theorem. 2

4.3 Investigating the bounds in the system of
parafermions

Parafermions provide a unique test system for the bounds proven in the
previous section. First, the natural observables in a system of parafermions
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are non-Hermitian. Second, in this system the non-commutativity between
Alice’s and Bob’s operators can be switched on and off without changing
anything else about the algebra of operators, enabling a clean investigation
of the effect of Alice-Bob non-commutativity. Finally, there have been a
number of proposals for experimental implementations of parafermions
[40, 137–142], which opens the way for experimental verification of our
predictions.

The structure of the section is as follows. In Sec. 4.3.1, we give a
brief introduction to the physics of parafermions and the algebra of their
operators. In Sec. 4.3.2, we construct the observables of Alice and Bob.
Those not interested in the physics of parafermions may skip directly to
Eqs. (4.3.8–4.3.10) detailing the permutation relations of the observables
and Eqs. (4.3.11–4.3.16) introducing their explicit matrix representation.
In Sec. 4.3.3, we provide the results of the numerical investigation of
bounds (4.2.2–4.2.5).

4.3.1 Parafermion physics and algebra

Parafermionic zero modes can be created in a variety of settings [40, 137–
142]. In different settings, they have subtly different properties. We focus
on parafermions implemented with the help of fractional quantum Hall
(FQH) edges proximitized by a superconductor [40, 137, 140]. The setup
employs two FQH puddles of the same filling factor ν (grey regions in
Fig. 4.1a) separated by vacuum. This gives rise to two counter-propagating
chiral FQH edges. The edges can be gapped either by electron tunneling
between them (T domains) or by proximity-induced superconducting
pairing of electrons at the edges (SC domains). Domain walls between the
domains of two types host parafermionic zero modes αs,j with s = R/L =
±1 denoting whether a parafermion belongs to the right- or left-propagating
edge respectively, and j denoting the domain wall number.

Parafermion operators have the following properties:

α
2/ν
s,j = αs,jα

†
s,j = α†

s,jαs,j = 1, (4.3.1)

αs,jαs,k = αs,kαs,je
iπνssgn(k−j), (4.3.2)

αR,jαL,k = αL,kαR,j


eiπν , k ̸= j,

1 , k = j are even,

e2iπν , k = j are odd,

(4.3.3)

where sgn is the sign function. These properties are valid for ν = 1/(2m+1),
m ∈ Z+ considered in Refs. [40, 137] and for ν = 2/3 considered in
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Figure 4.1: a, b — A physical setup for creating and measuring parafermions.
a — Setup for implementing parafermions (represented in cyan) with two frac-
tional quantum Hall (FQH) edges (arrows) supporting a series of electron-
tunneling-gapped (T) and superconductivity-gapped (SC) domains. b — Setup
for measuring parafermionic observables with the help of two additional FQH
edges (curved arrows) as in Ref. [150] (cf. Appendix 4.B). c, d — Parafermionic
observables and their mutual locality. c — Grouping parafermions into groups
belonging to Alice (A) and Bob (B/B′). d — A and B do not have common
parafermions, are mutually local, and can be made arbitrarily distant in space.
While A and B′ do not have common parafermions, they are not mutually local:
for Alice to measure A while Bob can measure B′, there should be a region of
the upper FQH puddle accessible both to Alice and Bob.
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Ref. [140]. In the case of ν = 1, parafermions reduce to Majorana operators
and αR,j = αL,j .

The physics of parafermions is associated with degenerate ground states
of the system. Namely, beyond hosting Cooper pairs, each superconducting
domain SCj can host a certain charge Qj (mod2e) quantized in the units of
charge of FQH quasiparticles νe. Thus each Qj has d = 2/ν distinct values,
and the ground state degeneracy of a system as in Fig. 4.1a is therefore dNSC ,
where NSC is the number of SC domains. Parafermionic operators αs,j act
in this degenerate space of ground states and represent the effect of adding
a FQH quasiparticle to the system from a FQH puddle corresponding to
s at domain wall j. Various observables in the system of parafemions
can be expressed through unitary operators αs,jα

†
s,k. In particular, Qj

themselves can be expressed through eiπs(Qj/e−ν/2) = (−1)2/να†
s,2j−1αs,2j .

One can show that
(
αs,jα

†
s,k

)d
= −e2iπ/ν , which implies that αs,jα

†
s,k has

d distinct eigenvalues, all having the form −eiπν(r+1/2) with r ∈ Z.
Unitary operators αs,jα

†
s,k are thus natural “observables” in the system

despite being non-Hermitian. The permutation relations of such operators
immediately follow from Eqs. (4.3.1-4.3.3). Despite being spatially discon-
nected, such operators composed of different pairs of parafermions may
not commute, e.g.,

αR,2α
†
R,4αR,3α

†
R,5 = αR,3α

†
R,5αR,2α

†
R,4e

2iπν . (4.3.4)

It is interesting to note that in the case of Majoranas (ν = 1), none of

these two unique properties would hold: the operators iαs,jα
†
s,k would be

Hermitian, while two such operators having no common Majoranas would
commute.

4.3.2 Alice’s and Bob’s observables

For a parfermionic system with three SC domains (as in Fig. 4.1) with
a fixed total charge, the ground state is d2-degenerate, which allows to
split it into two distinct subsystems: SC1 and SC3 domains, each having
degeneracy d as each can have d distinct values of charge Qj . The charge
of SC2 domain is determined by the state of SC1 and SC3 in order for
the total charge to be fixed. This system is thus a natural candidate for
studying quantum correlations between two subsystems. To this end, we
introduce observables accessible to Alice,

A0 = αR,2α
†
R,4, A1 = αR,1α

†
R,4, (4.3.5)

74



4.3 Investigating the bounds in the system of parafermions

and two different sets of observables accessible to Bob:

B0 = αL,3α
†
L,5, B1 = αL,3α

†
L,6, (4.3.6)

and
B′

0 = αR,3α
†
R,6, B′

1 = αR,3α
†
R,5. (4.3.7)

They have identical local algebra, yet different commutation properties of
Alice’s and Bob’s observables:

A0A1 = A1A0e
−iπν , (4.3.8)

B0B1 = B1B0e
−iπν , B′

0B
′
1 = B′

1B
′
0e

−iπν , (4.3.9)

[Aj , Bk] = 0, AjB
′
k = B′

kAje
2iπν . (4.3.10)

The non-commutation of A and B′ observables would imply the possiblity
of superluminal signaling had the observables been truly spatially separate
(which is not the case, as we explain below). Therefore, we call the set of
A and B a non-signaling set, and the set of A and B′ a signaling set of
observables.

Naively, Alice’s observables are local with respect to either set of Bob’s
observables, cf. Fig. 4.1c. Indeed, A and either the B or B′ set use
different parafermions, which can be made arbitrarily distant from each
other, cf. Fig. 4.1d. However, the locality issue in this system is subtler
as in order to probe an observable of the form αs,jα

†
s,k, one needs to

enable FQH quasiparticle tunneling to both parafermions simultaneously
(see Appendix 4.B). At the same time, quasiparticles can tunnel to a
parafermion only from the FQH puddle corresponding to the parafermion
index s, not through vacuum and not from the other puddle. Therefore,
as can be seen from Fig. 4.1d, the A and B sets are indeed mutually local,
while A and B′ are not. The ability of Alice to measure observables in A
and of Bob to measure observables in B′, requires them to have access
to a common region of the upper FQH puddle. Thus, the system does
not violate the laws of quantum mechanics, nor exhibits superluminal
signaling. Nevertheless, it presents a unique opportunity for comparing
correlations of commuting and non-commuting (but otherwise equivalent)
sets of observables.

The standard tool for studying quantum correlations is given by Bell
inequalities. However, since the observables considered here have more
than two eigenvalues, we require CHSH-like inequalities suitable for multi-
outcome measurements. We study the inequalities introduced in The-
orems 1–4, as well as an inequality from Ref. [151]. These inequalities
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involve correlators of the form ⟨AjB†
k⟩ and ⟨Aj (B′

k)
†⟩. Since [Aj , Bk] = 0,

⟨AjB†
k⟩ can be experimentally obtained by performing strong measure-

ments of Aj and Bk separately according to the protocol of Appendix 4.B
and then calculating the correlations. Alternatively, these correlations can
be measured with weak measurements [67, 68]. The non-commutativity of
Aj and B′

k does not allow for a strong-measurement-based approach in

the case of ⟨Aj (B′
k)

†⟩. However, this correlator can be measured with the
help of weak measurements as described in Appendix 4.C.

From now on we focus on parafermions implemented using ν = 2/3 FQH
puddles. Using permutation relations (4.3.8–4.3.10) supplemented by the

permutation relations of Bj and B′
k, as well as

(
αs,jα

†
s,k

)3
= 1, one can

derive an explicit matrix representation for observables (4.3.5–4.3.7):

A0 =

1 0 0
0 e2πi/3 0
0 0 e−2πi/3

⊗

1 0 0
0 1 0
0 0 1

 , (4.3.11)

A1 =

0 1 0
0 0 1
1 0 0

⊗

1 0 0
0 1 0
0 0 1

 , (4.3.12)

B0 =

1 0 0
0 1 0
0 0 1

⊗

1 0 0
0 e2πi/3 0
0 0 e−2πi/3

 , (4.3.13)

B1 =

1 0 0
0 1 0
0 0 1

⊗

0 1 0
0 0 1
1 0 0

 , (4.3.14)

B′
0 =

0 e−2πi/3 0
0 0 e2πi/3

1 0 0

⊗

0 1 0
0 0 1
1 0 0

 , (4.3.15)

B′
1 =

0 e−2πi/3 0
0 0 e2πi/3

1 0 0

⊗

 0 0 1
e−2πi/3 0 0

0 e2πi/3 0

 . (4.3.16)

This is used in the numerical investigation in the next section.
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Bound: I3
Tsirelson

type

TLM-

type,

l.h.s/r.h.s.

L.h.s.
of

(4.2.4)

L.h.s. of
(4.2.5)

Theoretical maximum
2.91
[152]

2
√
2

(≈ 2.83)
1 1

1 (if as-
sumptions

hold)

Parafermion

maximum

non-
signaling
(A+B)

2.60 2.44 0.71 0.74 1.00

signaling
(A+B′)

2.60 2.82 1.00 1.00 1.56

Table 4.1: Characterization of various bounds on non-local correlations for the
signaling and non-signaling sets of parafermionic observables. Maximal values
achieved with parafermionic observables (‘Parafermion maximum’) are compared
to the theoretical maximum. The quantities considered are I3 (4.3.17, l.h.s.),
generalized Tsirelson (4.2.2, l.h.s.), generalized TLM (4.2.3, l.h.s/r.h.s.), relation
(4.2.4, l.h.s.), and relation (4.2.5, l.h.s.).

4.3.3 Numerical results for correlations of
parafermions

Here we numerically investigate the bounds on correlations presented
above (4.2.2–4.2.5) and the CHSH-like inequality derived in Ref. [151].
The inequality of Ref. [151] states that for a local-realistic system

I3 = Q00 +Q01 −Q10 +Q11 ≤ 2, (4.3.17)

whereQjk = Re [⟨AjBk⟩]+ 1√
3
Im [⟨AjBk⟩] for i ≥ j, andQ01 = Re [⟨A0B1⟩]−

1√
3
Im [⟨A0B1⟩]. The observables are assumed to have possible values (for

the quantum case that we are interested in, eigenvalues) e2πir/3, r ∈ Z,
which is the case for the observables defined in Eqs. (4.3.11–4.3.16). In
the standard quantum theory, i.e., for quantum observables such that
[Aj , Bk] = 0, the maximum attainable value is known to be ≈ 2.91 [152].

For all the inequalities investigated, we calculated the corresponding
correlations C(Ai, Bj) or ⟨AjBk⟩, and maximized the relevant expressions
numerically over all possible states |ψ⟩. The expressions maximized were
the left-hand side of bounds (4.3.17, 4.2.2, 4.2.4, 4.2.5) and the ratio of the
left-hand side to the right-hand side of inequality (4.2.3). The numerical
maximization was performed independently via Wolfram Mathematica
(functions NMaximize for finding the global maximum and FindMaximum

for investigating local maxima) and Python (package scipy.optimize,
functions basinhopping for finding the global maximum with SLSQP op-
timization method for investigating local maxima). One aspect deserves
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mentioning. Correlation functions C(Ai, Bj) defined in Eq. (4.2.6) are not
well-defined in all of the Hilbert space as the denominator can turn out to
be zero. However, the points where it does, constitute a set of measure
zero among all the states. Moreover, in the vicinity of these special points,
C(Ai, Bj) does not diverge but stays bounded as |C(Ai, Bj)| ≤ 1; however,
the limiting value as one approaches the special point depends on the
direction of approach. Therefore, with careful treatment, these special
points do not constitute a problem for investigation. Namely, we replaced
∆Ai → ∆Ai + ϵ2, ∆Bj → ∆Bj + ϵ2 with a small cutoff ϵ, and checked that
our results do not change as ϵ→ 0. Furthermore, the states |ψ⟩ on which
the maximum values in Table 4.1 are achieved are such that ∆Ai ,∆Bj ̸= 0
for all Ai, Bj .

The results of our investigation are presented in Table 4.1. First, we
note that the l.h.s. of Eq. (4.3.17) does not distinguish the signaling and
non-signaling sets of observables. Second, our bounds (4.2.2-4.2.4) are
obeyed by both sets. However, the signaling set saturates the bounds much
better than the non-signaling one. Finally, the bound of Theorem 4, (4.2.5),
is saturated by the non-signaling set and violated by the signaling one.
This does not contradict the proof, which assumes C(Ai, Bj) = (−1)ijϱ.
In fact, this property is not satisfied by the states |ψ⟩ maximizing the
l.h.s. of (4.2.5) for either of the sets. However, this numerical evidence
together with the fact that C(Ai, Bj) = (−1)ijϱ correlations might be
special for non-signaling theories (cf. the discussion after Theorem 4)
imply that Eq. (4.2.5) may be a good bound for distinguishing signaling
and non-signaling quantum theories. We provide further evidence for the
last statement in Appendix 4.D.

4.4 Discussion

Our analytic results have important implications for understanding quan-
tum correlations. It is known that the standard CHSH parameter has
distinct bounds for classical local (|B| ≤ 2) and non-local (|B| ≤ 4) hidden
variable theories, while the standard quantum theory obeys the Tsirelson
bound (4.1.1). Our variation of the Tsirelson bound (4.2.2) is closely related
to the original Tsirelson bound. In particular, for Hermitian observables
X = Ai, Bj such that XX† = 1 and states |ψ⟩ such that ⟨ψ|X|ψ⟩ = 0,
our Bell-CHSH parameter |B| (4.2.2) coincides with the original one. At
the same time, our proof shows that the Tsirelson bound (4.2.2), as well
as the TLM bound (4.2.3), do not distinguish between the standard and
non-local signaling quantum theories. This implies that the Hilbert space
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structure is much more restrictive than it was previously thought (see, e.g.,
Eq. 4.2.8 which underlies our proofs). Naively, one could expect that the
possibility of signaling would allow nonlocal correlations to be stronger
than quantum, because one party can directly affect from a distance the
others’ outcomes and in particular make them more correlated with hers.
However, the limited kind of signaling we have introduced here, still within
a quantum-like structure, is insufficient for this purpose.

At the same time, understanding the bounds on correlations in the
standard quantum theory, that explicitly takes into account the absence
of signaling, may be beneficial both for deepening its understanding,
further testing its validity, and deriving bounds on protocols for quantum
information processing. Our numerical results with parafermions provide
a candidate for such a bound, Eq. (4.2.5). Indeed, the “non-signaling”
parafermionic set stayed within the bound, while the “signaling” one
violated it. Moreover, Ref. [148] argued that the assumptions we used to
prove theorem 4 hold generally for the states maximizing the standard
Bell-CHSH parameter in non-signaling theories (not in the sense that any
maximizing state satisfies the assumptions, but in the sense that it is
always possible to find a state that maximizes the standard Bell-CHSH
parameter and satisfies the assumptions). Therefore, we believe that
inequality (4.2.5) deserves further investigation.
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4.A Relation between the correlation
functions C(X, Y ) and joint probability
distributions

For the standard case of commuting operators X and Y , it is possible to
express correlators C(X,Y ) defined in Eq. (4.2.1) through the joint proba-
bility distribution P (x, y) of outcomes of X and Y measurements. Indeed,
for commuting X and Y , it is possible to find their common eigenbasis
|xyλ⟩, where X|xyλ⟩ = x|xyλ⟩ and similarly for Y ; λ represents possible
additional quantum numbers. Then any state allows for a decomposition

|ψ⟩ =
∑
x,y,λ

αxyλ|xyλ⟩. (4.A.1)

The probability of one observer obtaining x in a measurement of X, while
the other obtains y in a measurement of Y is given by

P (x, y) = Tr|ψ⟩⟨ψ|P(X)
x P(Y )

y =
∑
λ

|αabλ|2 , (4.A.2)

where P(X)
x and P(Y )

y are the projectors onto the eigenspaces of X and
Y respectively. Then ⟨XY †⟩ =

∑
x,y xy

∗P (x, y), ⟨X⟩ =
∑
x xP (x, y)

etc. This allows for expressing C(X,Y ) as a non-linear functional of the
probability distribution P (x, y). Therefore, for the case of commuting Alice-
Bob observables, [Ai, Bj ] = 0 our bounds (4.2.2,4.2.3) can be considered
restrictions on the possible joint probability distributions P (a, b|i, j) in the
quantum theory, defined exactly as in Eq. (4.A.2) modulo a replacement
X → Ai and Y → Bj .

For the case of non-commuting X and Y , one cannot define a joint
eigenbasis, but rather eigenbases |xλ⟩ of X and |yλ̃⟩ of Y . One can still
expand any state

|ψ⟩ =
∑
x

αxλ|xλ⟩ (4.A.3)

and define

W (x, y) = Tr|ψ⟩⟨ψ|P(X)
x P(Y )

y

=
∑

x′,λ,λ′,λ̃

αx′λ′α∗
xλ⟨xλ|yλ̃⟩⟨yλ̃|x′λ′⟩. (4.A.4)

Moreover, ⟨XY †⟩ =
∑
x,y xy

∗W (x, y), ⟨X⟩ =
∑
x xW (x, y) etc., leading to

exactly the same expression of C(X,Y ) in terms of W (x, y) as previously
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in terms of P (x, y). However, W (x, y) is not a probability distribution
as the r.h.s. of Eq. (4.A.4) can acquire complex values. W (x, y) is a
quasiprobability distribution (somewhat similar to the Wigner function)
in the case of non-commuting X and Y . Therefore, when [Ai, Bj ] ̸= 0
can be considered as restrictions on the possible joint quasiprobability
distributions W (a, b|i, j).

4.B Measuring parafermionic observables

A system combining parafermions with charging energy was introduced in
Ref. [150]. In such a system there is a charging energy associated with the
total system charge Qtot =

∑
j Qj +Q0, where Q0 = 2enC is the charge of

the proximitizing superconductor, and nC is the number of Cooper pairs
in it. However, no energy cost is associated with different distributions
of a given total charge over different SC domains. Therefore, the ground
state of such a system has degeneracy dNSC−1, where the reduction by a
factor of d corresponds to fixing the system’s total charge. The properties
of operators αs,jα

†
s,k acting in this reduced subspace are identical to those

in the original system of parafermions with unrestricted total charge.
Introducing charging energy allows for designing a relatively simple

protocol for measuring αs,jα
†
s,k (both parafermions have the same s!) [150].

A sketch of the measurement setup is shown in Fig. 4.1b. Two additional
FQH edges (belonging to one of the puddles) are required in this setup.
Tunneling of FQH quasiparticles is allowed directly between the two edges
with tunnelling amplitude ηref or between each edge and the corresponding
parafermion αs,j/k with amplitude ηj/k. As changing the charge of the
parafermionic system is energetically costly, the leading non-trivial process
resulting from coupling of the edges to the parafermions is co-tunneling
of quasiparticles: a quasiparticle is transferred between the edges, while
the parafermion state is changed via αs,jα

†
s,k and the effective tunneling

amplitude is ηcot ≃ −ηkη∗j /EC , where EC is the charging energy. The two
processes, direct and parafermion-mediated tunneling of a quasiparticle
between the edges, interfere quantum-mechanically. When a voltage bias
V is applied between the edges, the tunneling current between the edges
is sensitive to this interference:

IT ∝ |V |2ν−1
sgnV

×
(
|ηref |2 + |ηcot|2 + 2κRe

[
η∗refηcotαs,jα

†
s,k

])
, (4.B.1)

where κ is the interference suppression factor due to finite temperature
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and other effects, Re [A] =
(
A+A†) /2, and |V | is assumed to be much

larger than the temperature T of the probing edges. As a result, by

measuring IT, one can measure the operator Re
[
eiφαs,jα

†
s,k

]
with phase

φ depending on the phases of ηref and ηcot. Thus, one can measure the
system in the eigenstates of αs,jα

†
s,k employing the fact that the eigen-

values of the αs,jα
†
s,k are discrete: for a generic φ, distinct eigenvalues

of αs,jα
†
s,k correspond to distinct eigenvalues of Re

[
eiφαs,jα

†
s,k

]
. Alter-

natively, through tuning the phase φ, one can measure independently

Re
[
αs,jα

†
s,k

]
and Im

[
αs,jα

†
s,k

]
= Re

[
e−iπ/2αs,jα

†
s,k

]
, and combine the

measurement results for calculating the expectation value ⟨αs,jα†
s,k⟩.

4.C How to measure correlations of
non-commuting observables

4.C.1 Measuring correlations of non-commuting
parafermionic observables

Here we discuss how one can measure the correlators ⟨Aj (B′
k)

†⟩ for
non-commuting parafermionic observables. The procedure outlined in
Appendix 4.C.2 enables one to measure ⟨{Aj , (B′

k)
†}⟩, where {X,Y }

denotes the anti-commutator of operators X and Y , using weak mea-
surements [67, 68]. For the observables defined in Sec. 4.3.2, the follow-

ing permutation relation holds: Aj (B′
k)

†
= (B′

k)
†
Aje

−2iπν . Therefore,

⟨{Aj , (B′
k)

†}⟩ = ⟨Aj (B′
k)

†
(1 + e2iπν)⟩ = 2⟨Aj (B′

k)
†⟩eiπν cosπν, and mea-

suring ⟨{Aj , (B′
k)

†}⟩ is sufficient for measuring ⟨Aj (B′
k)

†⟩.
The rest of this appendix is dedicated to designing weak measurements

of the required type and adapting the protocol of Appendix 4.C.2 to
measuring parafermionic observables. Note that this measurement method
is specific to the particular implementation of parafermions. We start
with the measurement protocol discussed in Appendix 4.B. Suppose one of
the additional FQH edges involved in the protocol has voltage V applied
to it, while the other edge is grounded. The current injected to the first
edge is Iin = νe2V/h, while the tunneling current between the edges is
IT, cf. Eq. (4.B.1). Suppose one measures the current for time t, so that
the number of quasiparticles injected into the system is N = Iint/(νe).
The number of quasiparticles q tunneling within the time window will be
fluctuating around the average ⟨q⟩ = pN = ITt/(νe) with p = IT/Iin. The

82



4.C How to measure correlations of non-commuting observables

expression for IT in Eq. (4.B.1) is valid as long as |IT| ≪ |Iin|. In this
regime, tunneling of different quasiparticles can be considered independent,
and thus the probability of observing tunneling of q quasiparticles should
be approximated well by the binomial distribution

P (q) = CqNp
q(1 − p)N−q, CqN =

N !

q!(N − q)!
. (4.C.1)

If one measures for a sufficiently long time, i.e., N ≫ 1, the binomial
distribution is well-approximated by the Gaussian distribution

P (q) ≈ 1√
2πNp(1 − p)

exp

(
− (q − pN)2

2Np(1 − p)

)
. (4.C.2)

Depending on the eigenvalue −eiπν(r+1/2) of the measured observable
αs,jα

†
s,k, the tunneling probability p = p0 + δpr, with

p0 ∝ |ηref |2 + |ηcot|2 , (4.C.3)

δpr ∝ −2κ |ηref | |ηcot| cos (πνr + πν/2 + φ) , (4.C.4)

where φ = arg(η∗refηcot), cf. Eq. (4.B.1). From now on we assume |ηcot| ≪
|ηref |, p0 ≪ 1 and p0N ≫ 1. Then the average number of tunneled
quasiparticles is ⟨q⟩r = p0N + δprN , while the size of fluctuations in the
measured values of q is of the order σ:

σ =
√

2Np(1 − p) =
√

2Np0 (1 +O(|ηcot/ηref | , p0)) .

The parameter determining the distinguishability of different r, and thus

the measurement strength, is δprN/σ ∝
∣∣∣ηcotηref

∣∣∣√N . For sufficiently large∣∣∣ηcotηref

∣∣∣√N , the scheme thus implements a strong measurement, while the

limit
∣∣∣ηcotηref

∣∣∣√N ≪ 1 implies a weak measurement.

Denoting the initial state of parafermions as
∑
r ψr|r⟩ and using some

approximations, one can derive the state of the system after switching on
the tunnel couplings for time t,

|Φ̃⟩ =
∑
r,q,λ

fλ(q, r)ψr

(
ηref − ηcote

iπν(r+1/2)∣∣ηref − ηcoteiπν(r+1/2)
∣∣
)q

|r⟩|q, λ⟩, (4.C.5)

where λ represents additional quantum numbers of the edges. It follows
from Eq. (4.C.2) that:∑

λ

f∗λ(q, r)fλ(q, r) = N 2 exp

[
− (q − ⟨q⟩r)2

2Np0

] [
1 +O

(∣∣∣∣ηcotηref

∣∣∣∣ , p0)]
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, with normalization factor N = (2πNp0)
−1/4

. Having not performed the
calculation, we make a plausible assumption that also∑

λ

f∗λ(q, r)fλ(q, r′) = N 2

× exp

[
−
(
q − ⟨q⟩r + ⟨q⟩r′

2

)2

× 1

2Np0
− (⟨q⟩r − ⟨q⟩r′)2

8Np0

]

×
[
1 +O

(∣∣∣∣ηcotηref

∣∣∣∣ , p0)] . (4.C.6)

Further assuming the limit
∣∣∣ηcotηref

∣∣∣ p0N ≪ 1, we can neglect ηcote
iπν(r+1/2)

in Eq. (4.C.5) and obtain that for our purposes one can replace |Φ̃⟩ with

|Φ⟩ = N
∑
r,q

ψr exp

[
− (q − ⟨q⟩r)2

4Np0

]

×
[
1 +O

(∣∣∣∣ηcotηref

∣∣∣∣ p0N, ∣∣∣∣ηcotηref

∣∣∣∣ , p0)] |r⟩|q⟩, (4.C.7)

which brings us to weak measurements of the type considered in Ap-
pendix 4.C.2.

Consider now two weak measurements accessing Aj and (B′
k)

†
per-

formed one after the other, with the number of quasiparticles tunneled in
each of the measurements being q1 and q2. Repeating the calculation of
Appendix 4.C.2, we obtain

⟨(q1 − p0N)(q2 − p0N)⟩ ∝ ⟨Re
[
eiφAj

]
Re
[
eiφ

′
(B′

k)
†
]
⟩

×
[
1 +O

(∣∣∣∣ηcotηref

∣∣∣∣ p0N, ∣∣∣∣ηcotηref

∣∣∣∣ , p0)] . (4.C.8)

Using Eq. (4.C.16), one sees that by choosing different phases φ, φ′, one

can measure ⟨{Aj , (B′
k)

†}⟩ = 2⟨Aj (B′
k)

†⟩eiπν cosπν.

4.C.2 Measuring correlations of non-commuting
observables with weak measurements

Here we discuss how to measure the averages ⟨{A,B}⟩ of non-Hermitian
non-commuting A and B, where {A,B} = AB + BA, with the help of
weak measurements. Our protocol uses essentially the same measurement
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procedure as in Refs. [153–155], and is similar in spirit (yet has important
differences) to Refs. [156, 157]. We note in passing that by more elaborate
methods, one can measure also the expectation value of a commutator [145].
However, measuring the anti-commutator will suffice for our purposes. We
first discuss how to measure correlations of Hermitian non-commuting
observables, and then generalize the scheme to non-Hermitian observables.

Suppose one wants to measure the average ⟨{A,B}⟩ = ⟨ψ|{A,B}|ψ⟩,
where A and B are Hermitian non-commuting operators, and |ψ⟩ is
some quantum state. Introduce the eigenbases of A and B: A|a⟩ = a|a⟩,
B|b⟩ = b|b⟩. Any system state |ψ⟩ can then be written as |ψ⟩ =

∑
a ψa|a⟩ =∑

a,b ψa|b⟩⟨b|a⟩ with some coefficients ψa. We assumed that there is
no degeneracy in the spectra of A and B; generalization of the below
consideration for the case with degeneracy is straightforward.

Consider two detectors, D1 and D2 each having coordinate Qj and
momentum Pj operators, [Pj , Qk] = −iδjk, with j and k having values 1
and 2. Prepare the system and detectors in initial state

|Φin⟩ = |ψ⟩|D1,in⟩|D2,in⟩, (4.C.9)

|Dj,in⟩ = N
∫
dqj exp

(
−
q2j

2σ2

)
|qj⟩, (4.C.10)

where |qj⟩ is an eigenstate of Qj with eigenvalue qj , and N =
(
πσ2

)−1/4
.

The Hamiltonian describing the system and the detectors is

H(t) = λ1(t)H1 + λ2(t)H2, (4.C.11)

H1 = P1A, H2 = P2B, (4.C.12)

where the coupling constants λj(t) = 0 except for λ1(t) = g/T for t ∈ (0;T )
and λ2(t) = g/T for t ∈ (T ; 2T ). Then after the system has interacted
with the detectors, their state is

|Φ⟩ = e−igH2e−igH1 |Φin⟩

= N 2
∑
a,b

∫
dq1dq2ψa⟨b|a⟩|b⟩|q1⟩|q2⟩

× exp

(
− (q1 − ga)2

2σ2
− (q2 − gb)2

2σ2

)
. (4.C.13)
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Measuring Q1 and Q2 of the detectors and calculating their correlations
then yields the desired quantity. Indeed,

⟨Φ|Q1Q2|Φ⟩ = N 4
∑
a,a′,b

ψ∗
aψa′⟨a|b⟩⟨b|a′⟩

×
∫
dq2q2 exp

(
− (q2 − gb)2

σ2

)
×
∫
dq1q1 exp

(
− (q1 − g(a+ a′)/2)2

σ2
− g2(a− a′)2

4σ2

)
=
∑
a,a′,b

α∗
aαa′⟨a|b⟩⟨b|a′⟩

g2

2
b(a+ a′) exp

(
−g

2(a− a′)2

4σ2

)
. (4.C.14)

Provided that g |a− a′| ≪ 2σ for all a, a′ (which is the condition for
weakness of the measurement), one obtains

⟨Φ|Q1Q2|Φ⟩

=
g2

2

∑
a,a′,b

ψ∗
a⟨a| (a|b⟩b⟨b| + |b⟩b⟨b|a′)ψa′ |a′⟩

=
g2

2
⟨ψ|{A,B}|ψ⟩. (4.C.15)

Suppose now one wants to measure ⟨{A,B}⟩ = ⟨ψ|{A,B}|ψ⟩ for non-
Hermitian A and B. Define the real and imaginary part of each operator:
RA = (A+A†), IA = i(A† −A)/2, and similarly for B. It is easy to see
that {A,B} = {RA, RB} − {IA, IB} + i{IA, RB} + i{RA, IB}. Then

⟨{A,B}⟩ = ⟨{RA, RB}⟩ − ⟨{IA, IB}⟩
+ i⟨{IA, RB}⟩ + i⟨{RA, IB}⟩. (4.C.16)

Each of the averages in the r.h.s. can be measured using the protocol for
Hermitian observables outlined above. Then combining them according to
Eq. (4.C.16) yields the desired correlation of non-Hermitian non-commuting
observables.
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4.D Extra numerical data on the bounds for
correlations in the system of
parafermions

In the main text, Table 4.1, we provided the results of testing the bounds
on correlations for two sets of observables, non-signaling (A0, A1, B0, B1)
and signaling (A0, A1, B′

0, B′
1). Here, in Table 4.2, we present the results

for several more sets of observables. Namely, we checked what happens
when the roles of Alice’s operators A0 and A1 are exchanged, and similarly
for Bob. Apart from that, we also tested the sets involving B2 = B†

0B1 =

αL,5α
†
L,6 and B′

2 = B′†
0 B

′
1 = αR,6α

†
R,5; [B2, Aj ] = [B′

2, Aj ] = 0, with Aj ,
Bj , B

′
j defined in Eqs. (4.3.11–4.3.16). In all the sets we tested, all Alice’s

and Bob’s operators commute when Bob uses unprimed observables; some
of Alice’s operators do not commute with some of the Bob’s observables
when Bob uses primed observables, B′

j .
Note that all the sets we have tested obey all bounds except for relation

(4.2.5). The latter is obeyed by all the non-signaling sets (when Bob uses
Bj observables) and violated by all the signaling sets (when Bob uses B′

j

observables). This strengthens the numerical evidence that relation (4.2.5)
is a good candidate for quantifying the effect of signaling on quantum
correlations.

In principle, the system of parafermions has many more possible sets
of observables. First, assigning different parafermions to Alice and Bob,
one can have different local algebras at Alice’s and Bob’s sites, as well
as different Alice-Bob commutation relations. We investigate them in
part by switching the order of A0 and A1 etc. or replacing B1 with
B2 in Table 4.2. While this does not exhaust all the possibilities, the
numerical results we do have, indicate that our conclusions are likely to
hold in the cases we did not check. An even richer set of algebras can
be accessed by using operators beyond quadratic in parafermions, e.g.,(
αs,jα

†
s,k

)n
or α2

s,jα
†
s,kα

†
s,l, as well as arbitrary linear combinations of

quadratic operators, e.g., xαs,jα
†
s,k + yαs,jα

†
s,l. While investigating our

bounds with these would be an interesting non-trivial check, we believe
that the more important task is understanding and proving the role of
Theorem 4 and bound (4.2.5) in the general context.
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Bound: I3
Tsirelson

type

TLM-

type,

l.h.s/r.h.s.

L.h.s.
of

(4.2.4)

L.h.s.
of

(4.2.5)

Theoretical maximum
2.91
[152]

2
√
2

(≈
2.83)

1 1

1 (if as-
sump-
tions
hold)

Parafermion

maximum

Alice’s
opera-
tors

Bob’s
opera-
tors

A0, A1 B0, B1 2.60 2.44 0.71 0.74 1.00
A0, A1 B′

0, B
′
1 2.60 2.82 1.00 1.00 1.56

A1, A0 B1, B0 2.60 2.44 0.71 0.74 1.00
A1, A0 B′

1, B
′
0 2.60 2.82 1.00 1.00 1.56

A0, A1 B1, B0 2.60 2.22 0.71 0.62 1.00
A0, A1 B′

1, B
′
0 2.60 2.71 1.00 0.97 1.56

A0, A1 B0, B2 2.60 2.44 0.71 0.74 1.00
A0, A1 B′

0, B
′
2 2.00 2.23 1.00 0.75 1.50

A0, A1 B2, B0 2.60 2.22 0.71 0.62 1.00
A0, A1 B′

2, B
′
0 2.00 2.44 1.00 0.75 1.50

Table 4.2: Characterization of bounds on non-local correlations for various sets
of parafermionic observables. Similarly to the Table 4.1, the maximal values
achieved with parafermionic observables (‘Parafermion maximum’) are compared
to the theoretical maximum.
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