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3 Electrical detection of the
Majorana fusion rule for
chiral edge vortices in a
topological superconductor

3.1 Introduction

Vortices in a two-dimensional topological superconductor contain a midgap
state, or zero-mode, that can be used to store quantum mechanical in-
formation in a nonlocal way, protected from local sources of decoherence
[3, 4, 78, 112, 113]. The qubit degree of freedom is the fermion parity
of any two widely separated vortices, which may or may not share an
unpaired electron or hole (a fermionic quasiparticle) in the condensate of
Cooper pairs. The pairwise exchange, or braiding, of vortices is a unitary
transformation which can serve as a building block for a quantum compu-
tation [32, 114]. The merging, or fusion, of two vortices is the read-out
operation [115]: The qubit is in the state |1⟩ or |0⟩ depending on whether
or not the vortices leave behind a unpaired fermion. The fact that braiding
operations do not commute, referred to as non-Abelian statistics, goes
hand-in-hand with the fact that the fusion outcome is non-deterministic.
As illustrated in Fig. 3.1, the fusion of two vortices σ produces a quantum
superposition of states ψ and I with and without a quasiparticle excitation.
This is the Majorana fusion rule∗ of non-Abelian anyons, symbolically
written as σ ⊗ σ = ψ ⊕ I.

Neither the braiding nor the fusion of vortices has been realized in
the laboratory. This has motivated a variety of theoretical proposals
for methods to demonstrate the appearance of non-Abelian anyons in a
topological superconductor [90–93]. The obstacle that these proposals
seek to remove, is the need to physically move the zero-modes around.
Ref. [116] proposes an alternative approach: Substitute immobile bulk

∗Because of a mapping onto the Ising model, the term “Ising fusion rule” is also
used.
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3 Electrical detection of the Majorana fusion rule for chiral edge vortices
in a topological superconductor

Figure 3.1: Schematic illustration of the fusion rule σ2⊗σ4 = ψ⊕I of Majorana
zero-modes (red dots, labeled σn). Pairs of zero-modes may or may not share
a quasiparticle. In the former case the fermion parity is “odd” (indicated by
ψ), in the latter case it is “even” (indicated by I). The overall fermion parity is
conserved, so if the fusion of σ2 and σ4 leaves behind a quasiparticle, then the
fusion of σ1 and σ3 must also produce a quasiparticle.

vortices for mobile edge vortices. In that paper the braiding of vortices
was considered. Here we turn to the fusion of edge vortices, in order to
demonstrate the Majorana fusion rule.

Edge vortices are π-phase domain walls for Majorana fermions propagat-
ing along the edge of a topological superconductor [102]. Edge vortices may
appear stochastically from quantum phase slips at a Josephson junction
[95–97], but for our purpose we use the deterministic injector of Ref. [116]:
A voltage pulse V (t) of integrated magnitude

∫
V (t)dt = h/2e applied over

a Josephson junction injects an edge vortex at each end of the junction.
The injection happens when the phase difference ϕ of the superconducting
pair potential crosses π. At ϕ = π the effective gap ∆0 cos(ϕ/2) in the
junction changes sign [25]. By the same mechanism that is operative in
the Kitaev chain [86], the gap inversion creates a zero-mode at each end
of the junction, which then propagates away from the junction along the
edge mode. The edge modes are chiral, meaning that the motion is in a
single direction only. For our purpose we need that the propagation is
in the same direction along both edges connected by a Josephson junc-
tion. The geometry of Fig. 3.2 shows one way to achieve this using a
topological insulator/magnetic insulator/superconductor heterostructure
[94, 99]. (In Fig. 3.3 we show an alternative realization using a Chern
insulator/superconductor heterostructure [27, 98].)

In the next section 3.2 we describe the way in which the fusion process
shown schematically in Fig. 3.1 can be implemented in the structure of
Figs. 3.2 and 3.3. In the subsequent sections 3.3 and 3.4 we present an
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3.2 Edge vortex injection and fusion in a four-terminal Josephson junction
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Figure 3.2: Geometry to create and fuse two pairs of edge vortices in a topo-
logical insulator/magnetic insulator/superconductor heterostructure. The edge
vortices are created at Josephson junctions J1 and J3, by a 2π increment of the
superconducting phase ϕ(t) on the central superconducting island. Each edge
vortex contains a Majorana zero-mode and two zero-modes define a fermion
parity qubit. The initial state |J1J3⟩ = |00⟩ has even-even fermion parity.
When the edge vortices fuse at Josephson junctions J2 and J4 the final state
|J2J4⟩ = (|00⟩+ i|11⟩)/

√
2 is in an equal-weight superposition of even-even and

odd-odd parity states.

explicit calculation of the fermion parity of the final state, to demonstrate
the equal-weight superposition of even and odd fermion parity implied by
the Majorana fusion rule. Sec. 3.5 addresses an electrical signature of the
fusion process: The sum IL + IR of the currents at the two ends of the
structure shows shot noise, because of the nondeterministic nature of the
fusion process, but the difference IL − IR is nearly noiseless, because of
the correlated fermion parity. We conclude in Sec. 3.6.

3.2 Edge vortex injection and fusion in a
four-terminal Josephson junction

The geometry of Fig. 3.2, with four incoming and four outgoing Majorana
edge modes was introduced in Ref. [117] and studied recently in Refs.
[33, 118, 119]. Those earlier works considered the injection of fermions:
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Figure 3.3: Same as Fig. 3.2, but now in a Chern insulator/superconductor
heterostructure with normal metal contacts (NL, NR) to detect the charge
produced upon fusion of the edge vortices. An integrated voltage pulse

∫
V (t)dt =

h/2e induces a 2π phase shift over the four Josephson junctions J1, J2, J3, J4,
which results in a current pulse IL(t), IR(t) into the left and right contact. While
IL and IR separately, as well as the sum IL+IR, exhibit shot noise, the difference
IL − IR becomes exactly noiseless for identical junctions J1 and J3.

electrons and holes injected into the Majorana edge modes from a normal
metal contact. Here instead we consider the injection of vortices : π-phase
domain walls injected into the edge modes by a Josephson junction. The
injection happens in response to a voltage pulse

∫
V (t)dt = h/2e, which

advances by 2π the phase ϕ(t) of the pair potential ∆0e
iϕ. (Alternatively,

an h/2e flux bias achieves the same.) If the width W of the Josephson
junction is large compared to the superconducting coherence length ξ0 =
ℏvF/∆0, the injection happens in a short time interval tϕ ≃ (ξ0/W )∆t
around ϕ(t) = π, short compared the duration ∆t of the voltage pulse
[116].∗

The edge vortices σn are anyons with a non-Abelian exchange statistics
encoded in the Clifford algebra of Majorana operators γn,

γnγm + γmγn = δnm. (3.2.1)

Each edge vortex has a zero-mode and two zero-modes n,m encode a qubit
degree of freedom in the fermion parity Pnm = 2iγnγm with eigenvalues
±1. Provided the vortices are non-overlapping, the qubit is protected from
local sources of decoherence.

In the four-terminal Josephson junction of Fig. 3.2, one pair of edge
vortices σ1, σ2 is injected at Josephson junction J1 and a second pair

∗This separation of time scales tϕ/∆t ≃ ξ0/W ≪ 1 is why it is meaningful to
distinguish the injection of vortices from the injection of fermions, since a Majorana
fermion in an edge mode is equivalent to a pair of overlapping edge vortices.
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3.3 Scattering formula for the fermion parity

σ3, σ4 is injected at Josephson junction J3. Because the voltage pulse
cannot create an unpaired fermion, the edge vortices are injected in a state
|Ψ⟩ of even fermion parity, P12|Ψ⟩ = |Ψ⟩ = P34|Ψ⟩. Edge vortices σ1 and
σ3 are fused at Josephson junction J2 and vortices σ2 and σ4 are fused
at junction J4. The expectation value of the fermion parity upon fusion
vanishes,

⟨Ψ|P13|Ψ⟩ = ⟨Ψ|P12P13P12|Ψ⟩ = −⟨Ψ|P13P
2
12|Ψ⟩ = −⟨Ψ|P13|Ψ⟩

⇒ ⟨Ψ|P13|Ψ⟩ = 0, (3.2.2)

and similarly ⟨Ψ|P24|Ψ⟩ = 0. So the fusion of edge vortices at J2 and J3
leaves the edge modes in an equal weight superposition of odd and even
fermion parity. This presence of multiple fusion channels is a defining
property of non-Abelian anyons [3, 112, 113].

Because the overall fermion parity is conserved, the fusion outcomes
at J2 and J3 must have the same fermion parity — either even-even or
odd-odd. In the next two sections we present an explicit calculation of
the fermion parity, to demonstrate that an h/2e voltage pulse produces a
superposition of even-even and odd-odd fermion parity states with identical
probabilities P00 and P11 = 1 − P00.

3.3 Scattering formula for the fermion parity

3.3.1 Construction of the fermion parity operator

We focus on the geometry of Fig. 3.3, with incoming and outgoing modes in
the left lead (labeled L) and in the right lead (R). We seek the expectation
value

ρπ ≡
〈
eiπN

〉
= P00 − P11, (3.3.1)

of the fermion parity operator eiπN , with N the particle number operator
of outgoing modes in one of the two leads. We will take the left lead for
definiteness. In terms of the annilation operators bn(E) of outgoing modes
n at excitation energy E > 0 this operator takes the form

N =
∑
n∈L

∑
E>0

b†n(E)bn(E), (3.3.2)

where we have discretized the energy. In the continuum limit
∑
E 7→∫

dE/2π and the Kronecker delta becomes a Dirac delta function, δEE′ 7→
2πδ(E − E′).
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Incoming and outgoing modes are related by a unitary scattering matrix,

bn(E) =
∑
m,E′

Snm(E,E′)am(E′), (3.3.3)

∑
n′′,E′′

S∗
n′′n(E′′, E)Sn′′m(E′′, E′) = δnmδEE′ . (3.3.4)

Note that the sums in these two equations run over positive and negative
energies. Particle-hole symmetry relates

Snm(−E,−E′) = S∗
nm(E,E′). (3.3.5)

We write Eq. (3.3.3) more compactly as b = S · a, collecting the mode
and energy variables in vectors a and b. The unitarity relation (3.3.4)
is then written as S†S = 1. In terms of a projection operator PL onto
modes in lead L, and a projection operator P+ onto positive energies, the
combination of Eqs. (3.3.2) and (3.3.3) reads

N = a† ·M · a, M = S†PLP+S. (3.3.6)

The expectation value ⟨· · · ⟩ = Tr (ρeq · · · ) is with respect to an equilib-
rium distribution of the incoming modes,

ρeq ∝ exp

(
−β
∑
n

∑
E>0

Ea†n(E)an(E)

)
. (3.3.7)

We denote β = 1/kBT and have omitted the normalization constant (fixed
by Tr ρeq = 1).

The combination of particle-hole symmetry,

a†n(E) = an(−E), (3.3.8)

with anticommutation,

{a†n(E), am(E′)} = δnmδEE′ , (3.3.9)

allows us to extend the sum
∑
E>0 in Eq. (3.3.7) to a sum over positive

and negative energies,

ρeq ∝ exp

(
− 1

2β
∑
n,E

Ea†n(E)an(E)

)
≡ e−

1
2βa

†·E·a. (3.3.10)

In the second equation we introduced the diagonal operator Enm(E,E′) =
EδnmδEE′ .
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3.3 Scattering formula for the fermion parity

With this notation the average fermion parity is given by the ratio of
two operator traces,

ρπ =
Tr
(
e−

1
2βa

†·E·aeiπa
†·M ·a)

Tr e−
1
2βa

†·E·a
. (3.3.11)

3.3.2 Klich formula for particle-hole conjugate
Majorana operators

Fermionic operator traces of the form (3.3.11) have been studied by Klich
and collaborators [120–122]. For Dirac fermion creation and annihilation
operators d†,d one has the simple expression [120]

Tr
∏
k

ed
†·Ok·d = Det

(
1 +

∏
k

eOk
)
. (3.3.12)

The answer is different for self-conjugate Majorana operators γ = γ†, with
anticommutator {γn, γm} = δnm, when one has instead [122][

Tr
∏
k

eγ
†·Ok·γ

]2
= e

∑
k TrOk Det

(
1 +

∏
k

eOk−OT
k

)
. (3.3.13)

(The superscript T indicates the transpose of the matrix.)
The Majorana fermion modes in the topological superconductor are not

self-conjugate, instead creation and annihilation operators a†,a are related
by the particle-hole symmetry relation (3.3.8). In view of Eq. (3.3.9) this
implies that annihilation operators at energies ±E fail to anticommute:

{an(E), am(−E′)} = δnmδEE′ . (3.3.14)

This unusual anticommutator expresses the Majorana nature of Bogoliubov
quasiparticles [123].

To arrive at the analogue of Eq. (3.3.13) for particle-hole conjugate
Majorana operators we rewrite the bilinear form a† ·O · a such that the
a,a† operators appear only at positive energies:

a† ·O · a =
∑
n,m

∑
E,E′

a†n(E)Onm(E,E′)am(E′)

=
∑
n,m

∑
E,E′>0

(
a†n(E)
an(E)

)
Onm(E,E′)

(
am(E′)
a†m(E′)

)
. (3.3.15)
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The matrix O imposes on O a 2 × 2 block structure,

O =

(
O++ O+−
O−+ O−−

)
, (3.3.16)

to encode the sign of the energy variables:

(Oss′)nm(E,′E′) = Onm(sE, s′E′) for s, s′ ∈ {+,−} and E,E′ > 0.
(3.3.17)

We introduce the 2× 2 Pauli matrix σx that acts on the block structure
of O and define the generalized antisymmetrization

OA = 1
2O − 1

2σxOTσx

=
1

2

(
O++ −OT

−− O+− −OT
+−

O−+ −OT
−+ O−− −OT

++

)
. (3.3.18)

Only OA and TrO = TrO contribute to the Majorana fermion operator
trace, [

Tr
∏
k

ea
†·Ok·a

]2
= e

∑
k TrOk Det

(
1 +

∏
k

e2O
A
k

)
, (3.3.19)

see App. 3.B. Eq. (3.3.19) is the desired analogue of Eq. (3.3.13) for
particle-hole conjugate Majorana operators.

3.3.3 Fermion parity as the determinant of a
scattering matrix product

For the average fermion parity ρπ we apply Eq. (3.3.19) to the ratio of
operator traces (3.3.11). We start from the block decomposition of E,S,
and M = S†PLP+S,

E =

(
E 0
0 −E

)
= Eσz, S =

(
S++ S+−
S−+ S−−

)
,

M = 1
2S†PL(σ0 + σz)S.

(3.3.20)

In the equation for M we substituted P+ = 1
2 (σ0 + σz), with σ0 the 2 × 2

unit matrix.
The antisymmetrization of E is simple,

EA ≡ 1
2E − 1

2σxETσx = Eσz. (3.3.21)
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3.3 Scattering formula for the fermion parity

For the antisymmetrization of M we note that Eq. (3.3.5) implies σxSσx =
S∗, hence

σxSTσx = S† ⇒ MA = 1
2S†PLσzS. (3.3.22)

We thus arrive at

ρ2π = eiπTrM Det (1 + e−βEσzeiπS
†PLσzS)

Det (1 + e−βEσz )
. (3.3.23)

The ratio of determinants is equivalent to a single determinant,

ρ2π = eiπTrM Det
(

1 −F + FeiπS†PLσzS
)
,

F = (1 + eβEσz )−1, 1 −F = (1 + e−βEσz )−1.
(3.3.24)

To proceed we first rewrite the exponent of the trace of M as a deter-
minant,

eiπTrM = eiπTrPLP+ (3.3.25a)

= Det [−σz]LL = Det [σz]LL with σz ≡ 2P+ − 1, (3.3.25b)

= Det [−τz]++ = Det [τz]++ with τz ≡ 2PL − 1. (3.3.25c)

The notation [· · · ]LL indicates a projection onto mode indices in the left
lead, and [· · · ]++ indicates a projection onto positive energies.

We then evaluate the exponent of the scattering matrix product,

eiξS
†PLσzS = σ0 + i(sin ξ)S†PLσzS + (cos ξ − 1)S†PLS,

⇒ eiπS
†PLσzS = σ0 − 2S†PLS, (3.3.26)

since (S†PLσzS)2n = S†PLS and (S†PLσzS)2n−1 = S†PLσzS, for n =
1, 2, 3, . . .. It follows that

ρ2π = eiπTrMDet
(
1 − 2FS†PLS

)
(3.3.27a)

= eiπTrMDet
(
1 − 2PLSFS†) (3.3.27b)

= eiπTrMDet
[
1 − 2SFS†]

LL
(3.3.27c)

= Det [σz]LL Det
[
S(1 − 2F)S†]

LL
(3.3.27d)

= Det
[
σzS tanh( 1

2βE)S†]
LL
. (3.3.27e)

In Eq. (3.3.27b) we used the Sylvester identity Det (1−AB) = Det (1−BA),
in Eq. (3.3.27c) we used Det (1 − PLA) = Det [1 −A]LL, in Eq. (3.3.27d)
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we used SS† = 1, and in (3.3.27e) we used that Det [A]LLDet [B]LL =
Det [AB]LL if A or B commutes with PL.

In what follows we restrict ourselves to zero temperature, when F 7→ P−
projects onto negative energies and tanh( 1

2βE) 7→ σz. Eq. (3.3.27e) then
reduces to

ρ2π = Det
[
σzSσzS†]

LL
, (3.3.28)

the determinant of a scattering matrix product projected onto mode indices
in the left lead. An alternative projection onto positive energies is possible:

ρ2π = eiπTrMDet
(
1 − 2P−S†PLS

)
(3.3.29a)

= eiπTrMDet
(
1 − 2P+S†PLS

)
(3.3.29b)

= Det [−τz]++ Det
[
S†(1 − 2PL)S

]
++
, (3.3.29c)

(In Eq. (3.3.29b) we used particle-hole symmetry, S = σxS∗σx, and
σxP−σx = P+.) Because τz commutes with P+, Eq. (3.3.29c) may be
combined into a a single determinant,

ρ2π = Det
[
τzS†τzS

]
++
. (3.3.30)

Equations (3.3.28) and (3.3.30) express the average fermion parity of
a scattering state as the determinant of a product of scattering matrices
projected onto a submatrix in mode space, Eq. (3.3.28), or in energy space,
Eq. (3.3.30).∗ Both equations give the square ρ2π rather than ρπ itself.
Since we wish to show that ρπ = 0, that is not a limitation for the present
study.

3.3.4 Simplification in the adiabatic regime

The energy dependence of the scattering matrix is characterized by the
inverse of two time scales of the Josephson junction: the dwell time
τdwell ≃ L/vF in the superconducting island and the characteristic time
scale

tϕ = (ξ0/W )(dϕ/dt)−1 (3.3.31)

for the variation of the superconducting phase shift. (The time tϕ is the
“vortex injection time” tinj of Ref. [116].) While S(E,E′) depends on the

∗To avoid a possible confusion we note that, because of the projection, the product
rule Det (AB) = (DetA)(DetB) cannot be applied to Det[AB]++ or Det[AB]LL, unless
A or B commutes with the projector.
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3.4 Vanishing of the average fermion parity

average energy Ē = (E + E′)/2 on the scale 1/τdwell, it depends on the
energy difference δE = E − E′ on the scale 1/τϕ.

In the adiabatic regime τdwell ≪ τϕ the scattering matrix S(E,E′) for
Ē ≲ 1/τϕ ≪ 1/τdwell is only a function of δE,

S(E,E′) =

∫ ∞

−∞
dt ei(E−E′)tSF(t) + O(τdwell/τϕ). (3.3.32)

The unitary matrix SF(t) is the “frozen” scattering matrix at the Fermi
level, calculated for a fixed value ϕ ≡ ϕ(t) of the superconducting phase.

The fermion parity determinant can be simplified in the adiabatic regime,
because only energies within 1/τϕ from the Fermi level contribute. This
is most easily seen from Eq. (3.3.28), which is the determinant of the
scattering matrix product Ω = σzSσzS†, projected onto the left lead. A
matrix element of Ω,

Ωnm(E,E′) = (signE)
∑
n′,E′′

(signE′′)Snn′(E,E′′)S∗
mn′(E′, E′′) (3.3.33)

is only nonzero for |E−E′| ≲ 1/τϕ. Moreover, Ωnm(E,E′) ≈ δnmδEE′ for
|E| ≳ 1/τϕ. Hence the determinant of Ω is fully determined by energies in
the range −1/τϕ ≲ E,E′ ≲ 1/τϕ, where S(E,E′) may be approximated
by the frozen scattering matrix (3.3.32).

For computational purposes it is more convenient to rewrite the determi-
nant (3.3.28) in the form (3.3.30), because the scattering matrix product
τzSτzS† is a convolution in energy space when S(E,E′) is a function of
E−E′. The convolution is readily evaluated in the time domain, resulting
in an expression for the fermion parity

ρ2π = Det [Q]++, (3.3.34)

in terms of the determinant of the projection onto E,E′ > 0 of the matrix

Q(E,E′) =

∫ ∞

−∞
dt ei(E−E′)tQ(t), Q(t) = τzS

†
F(t)τzSF(t). (3.3.35)

In the next section we shall show how to evaluate this determinant.

3.4 Vanishing of the average fermion parity

We apply the formalism that we developed in Sec. 3.3 to the four-terminal
Josephson junction of Sec. 3.2, in order to demonstrate that the 2π phase
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shift produces a state with an equal weight P00 = P11 of even-even and
odd-odd fermion parity in the left and right leads. We work in the adiabatic
regime, when ρπ = P00 − P11 is given by Eqs. 3.3.34 and (3.3.35) in terms
of the “frozen” scattering matrix SF(t), for a fixed phase ϕ(t).

3.4.1 Frozen scattering matrix of the Josephson
junction

The frozen scattering matrix SF ∈ SO(4) is calculated in App. 3.A, resulting
in

SF =

(
e−iα4νy 0

0 e−iα2νy

)
·Π ·

(
eiα1νy 0

0 eiα3νy

)
, Π =


0 0 1 0
0 −1 0 0
1 0 0 0
0 0 0 1

 .

(3.4.1)
The Pauli matrix νy acts on the two Majorana modes in each lead. The
scattering phase αn depends on the superconducting phase difference ϕ
through the relation [116]

αn = arccos

(
cos(ϕ/2) + tanhβn

1 + cos(ϕ/2) tanhβn

)
× sign (ϕ), βn =

Wn

ξ0
cos(ϕ/2).

(3.4.2)
A 2π increment of ϕ corresponds to a π increment of αn, irrespective of
the width Wn of the Josephson junction or the superconducting coherence
length ξ0 = ℏvF/∆0.

We need to evaluate the matrix product τzS
†
FτzSF, where the Pauli

matrix

τz =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (3.4.3)

is defined with respect to the block structure of modes in the left and right
lead. Because of the identity

ΠτzΠ =

(
νz 0
0 νz

)
, (3.4.4)

this matrix product is block-diagonal,

Q(t) = τzS
†
F(t)τzSF(t) = −

(
νze

2iνyα1(t) 0
0 νze

2iνyα3(t)

)
, (3.4.5)

independent of α2 and α4.
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3.4 Vanishing of the average fermion parity

3.4.2 Reduction of the fermion parity to a Toeplitz
determinant

Instead of taking a single 2π phase increment it is more convenient to
assume a sequence of 2π phase shifts with period ∆t. Then αn(t) varies
periodically in time with αn(t+ ∆t) = π + αn(t). We Fourier transform
to the energy domain,

Tn(k, k′) =
1

∆t

∫ ∆t

0

dt e2πi(k−k
′)t/∆te2iαn(t)νy ,

Tn(k, k′) =
1

∆t

∫ ∆t

0

dt e2πi(k−k
′)t/∆te2iαn(t),

(3.4.6)

and restrict k, k′ ∈ {1, 2, 3, . . .} to positive integers. The infinite matrix
Tn(k, k′) has constant diagonals, so it is a Toeplitz matrix. Eq. (3.3.30)
becomes the product of Toeplitz determinants,

ρ2π = (DetT1)(DetT3) = |DetT1|2 |DetT3|2. (3.4.7)

The Toeplitz matrices Tn are banded matrices which extend over a large
number of order W/ξ0 of diagonals around the main diagonal. This follows
from the fact that the π increment of α(t) happens in the time interval
tϕ = (ξ0/W )(∆t/2π) which is much shorter than ∆t for ξ0 ≪ W . The
ratio tϕ/∆t governs the exponential decay of the Toeplitz matrix elements
as one moves away from the main diagonal, according to

|Tn(k, k′)| ≃ exp(−cdecay|k − k′|), cdecay =
π2tϕ
∆t

=
πξ0
2W

. (3.4.8)

3.4.3 Fisher-Hartwig asymptotics

In a general formulation, the function b(θ) defines the K ×K Toeplitz
matrix

BK(k, k′) =

∫ 2π

0

ei(k−k
′)θb(θ)

dθ

2π
, k, k′ ∈ {1, 2, . . .K}. (3.4.9)

If b is smooth and nonvanishing on the unit circle 0 < θ < 2π, it has a
well-defined winding number

ν =
1

2πi

∫ 2π

0

b′(θ)

b(θ)
dθ. (3.4.10)
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The number ν may be non-integer, or even complex, if b has a jump
discontinuity at θ = 0.

The Fisher-Hartwig asymptotics [124, 125] determines the large-K limit
of the determinant of BK from the decomposition b(θ) = b0(θ)eiνθ, where
b0 has zero winding number. In the most general case the function b0
may have (integrable) singularities, but if we assume it is smooth the
asymptotics reads

DetBK ≃ exp

(
K

2π

∫ 2π

0

ln b0(θ) dθ

)
×
{
K−ν2

for non-integer ν,

e−|ν|cdecayK for integer ν.
. (3.4.11)

The coefficient cdecay in the exponent is the decay rate |BK(k, k′)| ≃
exp(−cdecay|k−k′|) of the Toeplitz matrix elements as we move away from
the diagonal.

Applied to b(t) = e2iα(t), θ = 2πt/∆t, we have ν = 1, b0(t) =
e2iα(t)−2πit/∆t. The Toeplitz determinant

DetBK ≃ e−cdecayK exp

(
2iK

∆t

∫ ∆t

0

α(t)dt− iπK

)
(3.4.12)

vanishes exponentially in the limit K → ∞, with decay rate cdecay =
πξ0/W determined by the ratio of the superconducting coherence length
ξ0 and the width W of the Josephson junction.

For the evaluation of the fermion parity, the band width K/∆t is limited
by the energy range |Ē| ≲ 1/tdwell where the dependence of the scattering
matrix S(E,E′) on the average energy Ē = (E + E′)/2 may be neglected.
We thus conclude that

|ρπ| ≃ exp(−2cdecayK) ≃ exp

(
−2πξ0

W

∆t

tdwell

)
≃ exp

(
−4π2tϕ
tdwell

)
, (3.4.13)

which is exponentially small in the adiabatic regime tϕ ≫ tdwell.
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3.5 Transferred charge

Figure 3.4: Decay of the Toeplitz determinant (data points), compared with
the exponential decay expected from Eq. (3.4.12). The constant cdecay was
calculated separately from |BK(k, k′)| ≃ exp(−cdecay|k − k′|). The estimate
cdecay = πξ0/W is off by 15%.

3.5 Transferred charge

3.5.1 Average charge

The average charge ⟨QL⟩, ⟨QR⟩ transferred into the left or right lead
during one 2π increment of ϕ is given, in the adiabatic regime, by the
superconducting analogue of Brouwer’s formula [106, 107]:

⟨QL⟩ =
ie

4π

∫ ∞

−∞
dtTrS†

F(t)

(
νy 0
0 0

)
∂

∂t
SF(t),

⟨QR⟩ =
ie

4π

∫ ∞

−∞
dtTrS†

F(t)

(
0 0
0 νy

)
∂

∂t
SF(t).

(3.5.1)

Substitution of Eq. (3.4.1) gives

⟨QL⟩ =
e

2π

∫ ∞

−∞
dt

d

dt
α4(t),

⟨QR⟩ =
e

2π

∫ ∞

−∞
dt

d

dt
α2(t).

(3.5.2)

Because both α2 and α4 increase by π when ϕ is incremented by 2π, see
Eq. (3.4.2), we conclude that

⟨QL⟩ = ⟨QR⟩ =
e

2
. (3.5.3)
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While the average transferred charge per cycle is exactly e/2, the average
particle number is close to but not exactly equal to 1/2 — indicating that
there is a small contribution from charge-neutral particle-hole pairs.∗

3.5.2 Charge correlations

Fluctuations in the transferred charge are described by the second moments
⟨Q2

L⟩, ⟨Q2
R⟩, and ⟨QLQR⟩. Scattering matrix formulas for these correlators

are derived in App. 3.C. In the adiabatic regime one has

var(QL) ≡ ⟨Q2
L⟩ − ⟨QL⟩2 =

e2

8π2

∫ ∞

0+
dω ωTr Σ†

L(ω)ΣL(ω), (3.5.4a)

var(QR) ≡ ⟨Q2
R⟩ − ⟨QR⟩2 =

e2

8π2

∫ ∞

0+
dω ωTr Σ†

R(ω)ΣR(ω), (3.5.4b)

covar(QLQR) ≡ 1
2 ⟨QLQR⟩ + 1

2 ⟨QRQL⟩ − ⟨QL⟩⟨QR⟩

=
e2

16π2

∫ ∞

0+
dω ωTr

[
Σ†

L(ω)ΣR(ω) + Σ†
R(ω)ΣL(ω)

]
,

(3.5.4c)

in terms of the matrices

ΣL(ω) =

∫ ∞

−∞
dt eiωt ΣL(t), ΣL(t) = S†

F(t)

(
νy 0
0 0

)
SF(t), (3.5.5a)

ΣR(ω) =

∫ ∞

−∞
dt eiωt ΣR(t), ΣR(t) = S†

F(t)

(
0 0
0 νy

)
SF(t). (3.5.5b)

The lower limit 0+ in the ω-integrals (3.5.4) avoids a spurious contribution
∝ δ(ω).

From the expression (3.4.1) for SF(t) we find

Tr Σ†
L(ω)ΣL(ω) = Tr Σ†

R(ω)ΣR(ω)

= 1
2 |Z+(ω)|2 + 1

2 |Z+(−ω)|2 + 1
2 |Z−(ω)|2 + 1

2 |Z−(−ω)|2,
(3.5.6a)

Tr Σ†
L(ω)ΣR(ω) = Tr Σ†

R(ω)ΣL(ω)

= 1
2 |Z+(ω)|2 + 1

2 |Z+(−ω)|2 − 1
2 |Z−(ω)|2 − 1

2 |Z−(−ω)|2,
(3.5.6b)

Z±(ω) =

∫ ∞

−∞
dt eiωteiα1(t)±iα3(t). (3.5.6c)

∗A calculation along the lines of Ref. [116] of the average number of quasiparticles
transferred per cycle into the left or the right lead gives ⟨NL⟩ = ⟨NR⟩ = 42ζ(3)/π4 =
0.518.
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Figure 3.5: Variance of the sum and difference of the transferred charges upon
fusion of the edge vortices in Josephson junctions J2 and J4, as a function of
the asymmetry in the width of the injecting Josephson junctions J1 and J3.

The dependence on α2 and α4 drops out.
Without further calculation we see that for α1 = α3 the contribution of

Z−(ω) to the correlators (3.5.4) vanishes, hence covar(QLQR) = var(QL) =
var(QR). This implies that the charge difference QL −QR is zero without
fluctuations,

var (QL −QR) = var (QL) + var (QR) − 2 covar(QLQR) = 0. (3.5.7)

The charges QL and QR do fluctuate individually, with a variance close to
e2/4, and so does the sum QL +QR, with a variance close to e2. These
values can be calculated precisely for the time dependence [116]

α(t) ≈ arccos

[
tanh

(
W

ξ0

π − ϕ(t)

2

)]
≈ arccos[− tanh(t/2tϕ)], (3.5.8)

which is an accurate representation of Eq. (3.4.2) for W/ξ0 ≫ 1. We find

Z+(ω) = 2πδ(ω) −
8πωt2ϕ

sinh(πωtϕ)
+

8πωt2ϕ
cosh(πωtϕ)

, Z−(ω) = 2πδ(ω),

(3.5.9)

⇒ var (QL) = var (QR) = 1
4var (QL +QR) =

21ζ(3)

π4
e2 = 0.259 e2.

(3.5.10)

For α1 ≠ α3 we can evaluate the integrals numerically using the time
dependence

αn = arccos [− tanh(t/2tn)], (3.5.11)
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increasing from 0 to π in a time tn = (ξ0/Wn)(∆t/2π) around t = 0.
Results for var (QL ±QR) are shown in Fig. 3.5. The shot noise for the
charge difference remains suppressed for a moderately large deviation from
unity of W1/W3.

3.6 Conclusion

We have shown how the method of time-resolved and “on-demand” injection
of edge vortices proposed in Ref. [116] can be used to demonstrate the
non-Abelian fusion rule of Majorana zero-modes. The signature of the
correlated but non-deterministic outcome of the fusion of two pairs of
edge vortices is a fluctuating electrical current IL and IR through two
Josephson junctions, induced by a 2π phase shift of the pair potential.
While the sum IL + IR has average e per cycle and variance close to e2, the
difference IL − IR vanishes without fluctuations in a symmetric structure
(and remains much below e2 for moderate asymmetries).

The four-terminal structure of chiral Majorana edge modes that we
have studied has been investigated before in the context of the injection of
fermions [33, 117–119]. A Majorana fermion that splits into partial waves
at opposite edges defines a nonlocally encoded charge qubit : a coherent
superposition of an electron and a hole.∗ In contrast, the injection of
vortices at opposite edges is a nonlocal encoding of the fermion parity.
The difference could be significant for quantum information processing
if the fermion parity qubit is more robust against decoherence than the
charge qubit. We surmise that zero-modes in edge vortices are better
protected against charge noise and other local sources of decoherence than
Majorana fermions — basically because a Majorana fermion is charge
neutral on average but does exhibit quantum fluctuations of the charge.

Much further research is needed to substantiate the potential of edge
vortices as carriers of quantum information, but we feel that they have much
to offer at least for the demonstration of basic operations in topological
quantum computation: the braiding operation of Ref. [116] and the non-
deterministic fusion operation considered here.

∗The splitting of a Majorana fermion into partial waves does not provide a local
encoding of the fermion parity because a measurement at one edge can detect the
presence or absence of a fermion.
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Figure 3.6: Labeling of incoming and outgoing Majorana edge modes in a
four-terminal Josephson junction.

3.A Calculation of the frozen scattering
matrix

Consider first the stationary scattering problem, when the four-terminal
Josephson junction from Fig. 3.3 has a time-independent phase difference
ϕ. This gives the “frozen” scattering matrix SF(E, ϕ), which we evaluate
at the Fermi level (E = 0).

As calculated in Ref. [116], each of the four terminals (width Wn) has
at the Fermi level a scattering matrix in SO(2) given by

Sn =

(
cosαn sinαn
− sinαn cosαn

)
= eiαnνy for n = 1, 3,

Sn =

(
cosαn − sinαn
sinαn cosαn

)
= e−iαnνy for n = 2, 4.

(3.A.1)

The Pauli matrix νy acts on the two Majorana modes at a Josephson
junction. The angles αn are given as a function of ϕ and the ratio Wn/ξ0
by Eq. (3.4.2) from the main text.

Referring to the labeling of modes from Fig. 3.6, we have the linear
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relations 
d1
d2
d3
d4

 = SF


c1
c2
c3
c4

 , (3.A.2a)

(
a1
a2

)
= S1

(
c1
c2

)
,

(
d3
d4

)
= S2

(
a1
b2

)
,(

b1
b2

)
= S3

(
c3
c4

)
,

(
d1
d2

)
= S4

(
b1
−a2

)
. (3.A.2b)

The minus sign for the coefficient a2 in the last equality accounts for the
π Berry phase of a circulating Majorana edge mode. As indicated by
the dotted lines in Fig. 3.6, the edge modes are segments of three closed
loops. We choose a gauge where the minus sign in each loop is acquired
on the downward branch, indicated by the blue circle. This only affects
the branch with amplitude a2, because the other two downward branches
are outside of the scattering region.

Elimination of the an and bn variables gives

SF =


− sinα1 sinα4 cosα1 sinα4 cosα3 cosα4 cosα4 sinα3

cosα4 sinα1 − cosα1 cosα4 cosα3 sinα4 sinα3 sinα4

cosα1 cosα2 cosα2 sinα1 sinα2 sinα3 − cosα3 sinα2

cosα1 sinα2 sinα1 sinα2 − cosα2 sinα3 cosα2 cosα3,

 ,

(3.A.3)
which may be written more compactly as Eq. (3.4.1). One can check that
SF ∈ SO(4), in particular, it has determinant +1 as it should be in the
absence of a Majorana zero-mode [126].∗

In the adiabatic regime the scattering matrix S(E,E′) of the time-
dependent problem is related to the frozen scattering matrix SF(E, ϕ)
via

S(E + 1
2ω,E − 1

2ω) ≈
∫ ∞

−∞
dt eiωtSF(E, ϕ(t)). (3.A.4)

Near the Fermi level we may furthermore neglect the dependence on the
average energy, approximating

S(E,E′) ≈
∫ ∞

−∞
dt ei(E−E′)tSF(0, ϕ(t)). (3.A.5)

∗If we would not have accounted for the sign change of a2 the determinant of SF

would have been −1.
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3.B Derivation of the Klich formula

The operator trace (3.3.19) for particle-hole conjugate Majorana oper-
ators a(E) = a†(−E) can be derived from the Klich formula (3.3.13)
for self-conjugate Majorana operators γ = γ†, by performing a unitary
transformation:(

γn(E)
γ′n(E)

)
= U

(
an(E)
a†n(E)

)
, U =

1√
2

(
1 1
−i i

)
. (3.B.1)

At positive energies the γ operators satisfy the Clifford algebra of Majorana
operators,

{γn(E),γm(E′)} = {γ′n(E), γ′m(E′)}
= {γn(E), γ′m(E′)} = δnmδEE′ , E,E′ > 0. (3.B.2)

Note that
γn(E)2 = γ′n(E)2 = 1/2. (3.B.3)

The bilinear form (3.3.15) of the a operators transforms into

a† ·O · a =
∑
n,m

∑
E,E′>0

(
γn(E)
γ′n(E)

)
Õnm(E,E′)

(
γm(E′)
γ′m(E′)

)
, (3.B.4)

with Õ = UOU†. Because only positive energies appear in Eq. (3.B.4), we
may apply the anticommutator (3.B.2), which implies that the traceless
symmetric part of Õ drops out. Only the trace Tr Õ = TrO and the
antisymmetric part (Õ − ÕT)/2 contribute,

a† ·O · a = 1
2γ · (Õ − ÕT) · γ + 1

2 TrO. (3.B.5)

After these preparations we can apply Klich’s original formula [122],[
Tr
∏
k

exp(a† ·Ok · a)

]2
= exp

(∑
k

TrOk

)

× Det

(
1 +

∏
k

exp(Õk − ÕT
k )

)
. (3.B.6)

Finally we invert the unitary transformation,

U†ÕU = O, U†ÕTU = (UTU)†OT(UTU) = σxOTσx, (3.B.7)
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to arrive at[
Tr
∏
k

exp(a† ·Ok · a)

]2
= exp

(∑
k

TrOk

)

× Det

(
1 +

∏
k

exp(Ok − σxOT
k σx)

)
,

(3.B.8)

which is Eq. (3.3.19).

3.C Scattering formulas for charge
correlators

3.C.1 General expressions for first and second
moments

Moments of the transferred charge in the left lead are given by the expec-
tation value

⟨QpL⟩ =
〈(

a† ·Q · a
)p〉

, Q = S†PLP+eνyS. (3.C.1)

In comparison with the number operator (3.3.6) there is a matrix eνy
which is the charge operator in the Majorana basis. (It would be eνz in
the particle-hole basis.) The expectation value ⟨· · · ⟩ = Tr (ρeq · · · ) is with
respect to an equilibrium distribution of the a operators, with density
matrix (3.3.7).

Because of the Majorana commutator (3.3.14), we have both the usual
type-I average

⟨a†n(E)am(E′)⟩ = δnmδ(E − E′)f(E), f(E) = (1 + eβE)−1, (3.C.2)

and the unusual type-II average

⟨an(E)am(E′)⟩ = δnmδ(E + E′)f(−E), f(−E) = 1 − f(E). (3.C.3)

Averages of strings of a and a† operators are obtained by summing over
all pairwise averages of both types I and II, signed by the permutation.∗

∗An equivalent procedure [123] is to first use the relation an(−E) = a†n(E) to
rewrite the expectation value such that only positive energies appear, and then apply
Wick’s theorem as usual.
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We assume zero temperature, when f(E) = P− and 1 − f(E) = P+ are
step functions of energy.

The first moment of the transferred charge contains a single type-I
average,

⟨QL⟩ = TrP−Q =

∫ ∞

0

dE

2π

∫ 0

−∞

dE′

2π
TrS†(E,E′)eνyPLS(E,E′).

(3.C.4)
The variance contains a term with two type-I averages and a term with
two type-II averages,

var (QL) = TrP−QP+Q

−
∫ ∞

0

dE

2π

∫ 0

−∞

dE′

2π

∑
n,m

Qnm(−E,−E′)Qnm(E,E′). (3.C.5)

The particle-hole symmetry relation (3.3.5) of the scattering matrix implies
that

Qnm(−E,−E′) = −(S†PLP−eνyS)mn(E′, E). (3.C.6)

Substitution into Eq. (3.C.5) gives

var (QL) = TrP−QP+Q + TrP−Q
′P+Q, (3.C.7)

with Q′ as in Eq. (3.C.1) upon replacement of P+ by P−. Since P++P− =
1, this reduces to

var (QL) = TrP−(S†PLeνyS)P+(S†PLP+eνyS). (3.C.8)

It is convenient to eliminate the second P+ projector from Eq. (3.C.8).
This can be done via particle-hole symmetry, which implies that

TrP−(S†PLeνyS)P+(S†PLP+eνyS)

= Tr (S†PLP+eνyS)TP+(S†PLeνyS)TP−

= Tr (S†PLP−eνyS)P−(S†PLeνyS)P+

= TrP−(S†PLeνyS)P+(S†PLP−eνyS). (3.C.9)

Hence

1
2TrP−(S†PLeνyS)P+(S†PL(P− − P+)eνyS) = 0, (3.C.10)
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and adding this to Eq. (3.C.8) we arrive at

var (QL) =
1

2
TrP−(S†PLeνyS)P+(S†PLeνyS)

=
1

2
e2
∫ ∞

0

dE

2π

∫ 0

−∞

dE′

2π
Tr Σ†

L(E,E′, )ΣL(E,E′), (3.C.11)

ΣL = S†PLνyS.

The expressions for the other correlators are analogous,

var (QR) =
1

2
e2
∫ ∞

0

dE

2π

∫ 0

−∞

dE′

2π
Tr Σ†

R(E,E′)ΣR(E,E′),

(3.C.12)

ΣR = S†PRνyS,

covar (QLQR) =
1

4
e2
∫ ∞

0

dE

2π

∫ 0

−∞

dE′

2π
Tr
[
Σ†

L(E,E′)ΣR(E,E′)

+ Σ†
R(E,E′)ΣL(E,E′)

]
. (3.C.13)

Eq. (3.C.13) gives the symmetrized covariance,

covar(QLQR) ≡ 1
2 ⟨QLQR⟩ + 1

2 ⟨QRQL⟩ − ⟨QL⟩⟨QR⟩, (3.C.14)

appropriate for a calculation of var (QL ±QR).

3.C.2 Adiabatic approximation

The general expressions (3.C.4) and (3.C.11)–(3.C.13) can be simplified
in the adiabatic regime, when near the Fermi level S(E,E′) depends only
on the energy difference ω = E − E′. We use the identity∫ ∞

0

dE

∫ 0

−∞
dE′ F (E − E′) =

∫ ∞

0+
dω ωF (ω). (3.C.15)

The lower integration limit 0+ eliminates a possibly singular delta function
in F (ω), which should not enter in the excitation spectrum.

For the average transferred charge (3.C.4) we thus have

⟨QL⟩ =
1

4π2

∫ ∞

0+
dω ωTrS†(ω)eνyPLS(ω). (3.C.16)
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3.C Scattering formulas for charge correlators

As explained in Ref. [116], this is equivalent to the Brouwer formula (3.5.1):
Because of

[S†(ω)νyPLS(ω)]T = −S†(−ω)νyPLS(−ω) (3.C.17)

the integrand in Eq. (3.C.16) is an even function of ω, hence the integration
can be extended to

∫∞
−∞ dω, and then transformation to the time domain

gives Eq. (3.5.1).
For the second moments we use that the kernels Σ(E,E′) 7→ Σ(ω) are

functions of ω = E − E′ when S(E,E′) 7→ S(ω),

ΣL,R(E,E′) =

∫ ∞

−∞

dE′′

2π
S†(E′′, E)PL,RνyS(E′′, E′)

⇒ ΣL,R(ω) =

∫ ∞

−∞

dω′

2π
S†(ω′ − ω)PL,RνyS(ω′)

=

∫ ∞

−∞
dt eiωtS†(t)PL,RνyS(t). (3.C.18)

The Fourier transform is defined as

S(ω) =

∫ ∞

−∞
dt eiωtS(t). (3.C.19)

Note that for the representation (3.C.18) of Σ(ω) as a single time integral
it was essential that we eliminated the P+ projector from the scattering
matrix product.

Application of Eqs. (3.C.15) and (3.C.18) to Eqs. (3.C.11)–(3.C.13) then
gives the formulas (3.5.4) from the main text.
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