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2 Deterministic creation and
braiding of chiral edge
vortices

2.1 Introduction

Non-Abelian anyons have the property that a pairwise exchange operation
may produce a different state, not simply related to the initial state by
a phase factor [76]. Because such “braiding” operations are protected
from local sources of decoherence they are in demand for the purpose
of quantum computations [3]. Charge e/4 quasiparticles in the ν = 5/2
quantum Hall effect were the first candidates for non-Abelian statistics
[77], followed by vortices in topological superconductors [32, 78].

Because experimental evidence for non-Abelian anyons in the quantum
Hall effect [79, 80] has remained inconclusive, the experimental effort now
focuses on the superconducting realizations [81]. While the mathematical
description of the braiding operation (the Clifford algebra) is the same in
both realizations, the way in which braiding is implemented is altogether
different: In the quantum Hall effect one uses the chiral motion along the
edge to exchange pairs of non-Abelian anyons and demonstrate non-Abelian
statistics [82–84]. In contrast, in a superconductor the non-Abelian anyons
are midgap states (“zero-modes”) bound to a defect (a vortex [25, 85] or
the end-point of a nanowire [86–88]). Because they are immobile, existing
proposals to demonstrate non-Abelian statistics do not actually exchange
the zero-modes in real space [89–93].

Topological superconductors do have chiral edge modes [78], and recent
experimental progress [27] has motivated the search for ways to use the
chiral motion for a braiding operation [33]. The obstruction one needs to
overcome is that the Majorana fermions which propagate along the edge of
a superconductor have conventional fermionic exchange statistics. In the
quantum Hall effect each charge e/4 quasiparticle contains a zero-mode
and the exchange of two quasiparticles is a non-Abelian operation on a
topological qubit encoded in the zero-modes. However, Majorana fermions

19



2 Deterministic creation and braiding of chiral edge vortices
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Figure 2.1: Panels a) and b): Josephson junction geometries to deterministi-
cally inject a pair of edge vortices σ1, σ2 in chiral edge channels at opposite
boundaries of a superconductor (yellow). The injection happens in response
to a 2π increment in the superconducting phase difference ϕ(t), driven by a
time-dependent voltage V (t) or flux Φ(t). In panel a) edge vortex σ1 crosses
the 2π branch cut of a bulk vortex, resulting in a fermion parity switch. Panel
c) shows the corresponding braiding of world lines in space-time: an overpass
indicates that the vortex crosses a branch cut.

contain no zero-mode which might encode a topological qubit, one needs
vortices for that.

In this chapter we show how one can exploit the chiral motion along the
edge of a topological superconductor to exchange zero-modes in real space.
The key innovative element of our design, which distinguishes it from Ref.
33, is the use of a biased Josephson junction to on demand inject a pair of
isolated vortices into chiral edge channels. Previous studies of such “edge
vortices” relied on quantum fluctuations of the phase to create a vortex
pair in the superconducting condensate [94–97], but here the injection
is entirely deterministic. When the two mobile edge vortices encircle a
localized bulk vortex their fermion parity switches from even to odd, as a
demonstration of non-Abelian braiding statistics. The entire operation,
injection–braiding–detection, can be carried out fully electrically, without
requiring time-dependent control over Coulomb interactions or tunnel
probabilities.

2.2 Edge vortex injection

Fig. 2.1 shows different ways in which the edge vortex can be injected:
driven by a flux bias or by a voltage bias over a Josephson junction.
We show two possible physical systems that support chiral edge channels
moving in the same direction on opposite boundaries of the superconductor.
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2.3 Braiding of an edge vortex with a bulk vortex

Both are hybrid systems, where a topologically trivial superconductor
(spin-singlet s-wave pair potential ∆0) is combined with a topologically
nontrivial material: a 2D Chern insulator (quantum anomalous Hall
insulator) [27, 98] (panel a) or a 3D topological insulator gapped on the
surface by ferromagnets with opposite magnetisation M↑,↓ [94, 99] (panel
b).

The superconducting phase difference ϕ(t) across the Josephson junc-
tion is incremented with 2π by application of a voltage pulse V (t) (with∫
V (t)dt = h/2e), or by an h/2e increase of the flux Φ(t) through an

external superconducting loop. If the width W of the superconductor is
large compared to the coherence length ξ0 = ℏv/∆0, the edge channels at
x = ±W/2 are not coupled by the Josephson junction — except when ϕ is
near π, as follows from the junction Hamiltonian [25, 99]

HJ = vpxσz + ∆0σy cos(ϕ/2). (2.2.1)

The Pauli matrices act on excitations moving in the ±x direction with
velocity v, in a single mode for ξ0 large compared to the thickness of the
junction in the y-direction.

At ϕ = π a Josephson vortex passes through the superconductor [100,
101]. A Josephson vortex is a 2π phase winding for the pair potential, so
a π phase shift for an unpaired fermion. As explained in Ref. 102, the
passage of the Josephson vortex leaves behind a pair of edge vortices: a
phase boundary σ(y) on each edge, at which the phase of the Majorana
fermion wave function ψ(y) jumps by π. Because of the reality constraint
on ψ, a π phase jump (a minus sign) is stable: it can only be removed by
merging with another π phase jump. And because the phase boundary
is tied to the fermion wave function, it shares the same chiral motion,
σ(y, t) = σ(y − vt).

2.3 Braiding of an edge vortex with a bulk
vortex

Two vortices may be in a state of odd or even fermion parity, meaning
that when they fuse they may or may not leave behind an unpaired
electron. The fermion parity of vortices σ1 and σ2 is encoded in the ±1
eigenvalue of the parity operator P12 = iγ1γ2, where γn is the Majorana
operator associated with the zero-mode in vortex n∗. The two edge vortices

∗Abrikosov vortices in the bulk have a normal core, which edge vortices lack. Both
are non-Abelian anyons because a zero-mode does not need a normal core, see the
explicit calculation for a coreless Josephson vortex in Ref. 103.
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Figure 2.2: Starting from the layout of Fig. 2.1a, we have inserted a second
Josephson junction (J2) and we have added normal metal contacts (N1, N2) to
measure the current I(t) carried by the edge modes in response to the voltage V (t)
applied to the superconductor. A unit charge per 2π increment of ϕ is transferred
from the superconductor into the normal metal contact. The counterpropagating
Dirac edge mode along the upper edge of the Chern insulator is decoupled from
the superconductor and plays no role in the analysis.

are created at the Josephson junction in a state of even fermion parity,
P12 = +1, but as illustrated in Fig. 2.1a that may change as they move
away from the junction: If one of the edge vortices, say σ1, crosses the
branch cut of the phase winding around a bulk vortex, γ1 picks up a minus
sign and the fermion parity P12 7→ −1 switches from even to odd [32].
This is the essence of the non-Abelian braiding statistics of vortices.

2.4 Detection of the fermion-parity switch

Fig. 2.2 shows the voltage-biased layout for a fully electrical measurement.
The fermion parity of the edge vortices cannot be detected if they remain
separated on opposite edges, so we first fuse them at a second Josephson
junction. The characteristic time scale of the injection process is the
time tinj ≃ (ξ0/W )(dϕ/dt)−1 when ϕ(t) is within ξ0/W from π, and if the
distance L between the two Josephson junctions is less than vtinj we can
neglect the time delay between the injection at the first junction J1 and
the fusion at the second junction J2. This is convenient, because then
the whole process can be driven by a single voltage pulse V (t) applied to
the region |y| < L/2 between the two junctions, relative to the grounded
regions y < −L/2 and y > L/2 outside.

Both these grounded regions are connected to normal metal electrodes
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2.5 Mapping onto a scattering problem

N1 and N2 and the electrical current I(t) between them is measured. As
we will now show, the transferred charge Q =

∫
I(t)dt is quantized at unit

electron charge if the region between the Josephson junctions contains a
bulk vortex, while Q = 0 if it does not.

2.5 Mapping onto a scattering problem

Tunneling of edge vortices driven by quantum fluctuations of the phase is
a many-body problem of some complexity [102]. We avoid this because
we rely on an external bias to inject the edge vortices, hence the phase
ϕ(t) can be treated as a classical variable with a given time dependence.

The dynamics of the Majorana fermions remains fully quantum mechan-
ical, governed by the Hamiltonian

H = i

(
−v∂/∂y −µ[y, ϕ(t)]
µ[y, ϕ(t)] −v∂/∂y

)
≡ vpyσ0 + µσy. (2.5.1)

(We set ℏ = 1.) The 2×2 Hermitian matrix H acts on the Majorana fermion
wave functions Ψ = (ψ1, ψ2) at opposite edges of the superconductor, both
propagating in the +y direction (hence the unit matrix σ0) The interedge
coupling µ multiplies the σy Pauli matrix to ensure that H is purely
imaginary and the wave equation ∂Ψ/∂t = −iHΨ is purely real (as it
should be for a Majorana fermion).

For low-energy, long-wavelength wave packets the y-dependence of the
interedge coupling may be replaced by a delta function, µ[y, ϕ(t)] =
vδ(y)η(t). This “instaneous scattering approximation” [104] is valid if the
transit time ttransit ≃ L/v of the wave packet through the system is short
compared to the characteristic time scale tinj of the vortex injection, hence
if dϕ/dt≪ vξ0/Ajunction, where Ajunction = WL is the area of the region
between J1 and J2. In this regime there is no need to explicitly consider
the vortex dynamics in between the Josephson junctions, instead we can
treat this as a scattering problem “from the outside”.

Incoming and outgoing states are related by

Ψout(E) =

∫ ∞

−∞

dω

2π
S(ω)Ψin(E − ω), (2.5.2)

where S(ω) is the adiabatic (or “frozen”) scattering matrix,

S(ω) =

∫ ∞

−∞
dt eiωtS(t), S(t) = exp

(
−iη(t)σy

)
, (2.5.3)
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2 Deterministic creation and braiding of chiral edge vortices

describing the scattering at E = 0 for a fixed ϕ(t).
As we shall see in a moment, the transferred charge is independent of

how η(t) = η[ϕ(t)] is varied as a function of time, only the net increment
δη = η(t → ∞) − η(t → −∞) matters. When there is no vortex in the
region between the two Josephson junctions J1 and J2 there is no difference
between ϕ = 0 and ϕ = 2π hence δη = 0. On the contrary, when there is a
bulk vortex in this region we find∗

η = 2 arccos

(
cos(ϕ/2) + tanhβ

1 + cos(ϕ/2) tanhβ

)
, β =

W

ξ0
cos

ϕ

2
, (2.5.4)

hence δη = 2π. More generally, when there are Nvortex vortices between
J1 and J2 the phase increment is

δη = π(1 − (−1)Nvortex). (2.5.5)

In Fig. 2.3 we show that the analytical result (2.5.4) agrees well with a
computer simulation (using Kwant [105]) of a lattice model of a quantum
anomalous Hall insulator with induced s-wave superconductivity [98].

2.6 Transferred charge

The expectation value of the transferred charge†,

Q = e

∫ ∞

0

dE

2π
⟨Ψ†

out(E)σyΨout(E)⟩, (2.6.1)

is given at zero temperature, when

⟨Ψin,n(E)Ψin,m(E′)⟩ = δnmδ(E − E′)θ(−E), (2.6.2)

by an integral over positive excitation energies,

Q =
e

4π2

∫ ∞

0+
dω ωTrS†(ω)σyS(ω). (2.6.3)

(The factor ω =
∫∞
0
dE θ(ω − E) appears from the integration over the

step function.) Because S(−ω) = S∗(ω) the integrand in Eq. (2.6.3) is an

∗The calculation of the scattering phase shift η(ϕ) is given in App. 2.A. Eq. (2.5.4)
for 0 ≤ ϕ ≤ 2π repeats periodically modulo 2π.

†The charge operator Q = eσz in the electron-hole basis transforms into Q = eσy

in the basis of Majorana fermions.
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2.6 Transferred charge

Figure 2.3: Bottom panel: Scattering phase η(ϕ)−η(0) according to Eq. (2.5.4)
(solid curve) and as obtained numerically (blue data points) from a lattice
model [98] of the system shown in Fig. 2.2. There are no fit parameters in the
comparison, the ratio W/ξ0 = 4.04 was obtained directly from the simulation
The grey data points show the result without vortices, when there is no net
increment as ϕ advances from 0 to 2π.

even function of ω and the integral can be extended to negative ω,

Q =
e

8π2

∫ ∞

−∞
dω ωTrS†(ω)σyS(ω)

=
ie

4π

∫ ∞

−∞
dtTrS†(t)σy

∂

∂t
S(t). (2.6.4)
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2 Deterministic creation and braiding of chiral edge vortices

This is the superconducting analogue of Brouwer’s charge-pumping formula
[106] (see Ref. 107 for an alternative derivation).

Substitution of S(t) = exp
(
−iη(t)σy

)
results in

Q = (e/2π)δη = e (2.6.5)

if Nvortex is odd, while Q = 0 if Nvortex is even.

2.7 Transferred particle number

This quantized transfer of one electron charge may be accompanied by the
non-quantized transfer of neutral electron-hole pairs. To assess this we
calculate the expectation value of the transferred particle number, given
by Eq. (2.6.3) upon substitution of the charge operator eσy by unity:

Nparticles =
1

4π2

∫ ∞

0+
dω ωTrS†(ω)S(ω). (2.7.1)

This integrand is an odd function of ω, so we cannot easily transform it to
the time domain.

We proceed instead by calculating S(ω) from Eq. (2.5.3), in the approx-
imation η(t) ≈ 2 arccos[− tanh(t/tinj)], accurate when W/ξ0 ≫ 1. The
result is

S(ω) = −
2πωt2injσ0

sinh(πωtinj/2)
−

2πωt2injσy

cosh(πωtinj/2)
− 2πδ(ω)

⇒ Nparticles = (84/π4)ζ(3) = 1.037. (2.7.2)

One can construct a special t-dependent phase variation∗ that makes
Nparticles exactly equal to unity, by analogy with the “leviton” [104, 108],
but even without any fine tuning the charge transfer is nearly noiseless.

2.8 Discussion

We have shown how the chiral motion of edge modes in a topological
superconductor can be harnessed to braid a pair of non-Abelian anyons:
one immobile in a bulk vortex, the other mobile in an edge vortex. The
experimental layout of Fig. 2.2 is directly applicable to the recently reported

∗The special time dependence η(t) = π + 2arctan(t/tinj) produces precisely one
particle with charge e.
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chiral Majorana fermion modes in quantum anomalous Hall insulator–
superconductor structures [27, 109].

While the presence of a bulk vortex and the crossing of its branch cut is
essential for the charge transfer, it is of the essence for braiding that no
tunnel coupling or Coulomb coupling to the edge vortices is needed. This
distinguishes the braiding experiment proposed here to tunnel probes of
Majorana zero-modes that can also produce a quantized charge transfer
[107]. In the quantum Hall effect attempts to use edge modes for braiding
[80] have been inconclusive because of Coulomb coupling with bulk quasi-
particles [110]. The superconductor offers a large gap, to suppress tunnel
coupling, and a large capacitance, to suppress Coulomb coupling, which
could make the edge mode approach to braiding a viable alternative to
existing approaches using zero-modes bound to superconducting nanowires
[89–93].

In the quantum Hall effect there is a drive to use quasiparticles in
edge modes as “flying qubits” for quantum information processing [111].
Edge vortices in a topological superconductor could play the same role
for topological quantum computation. The pair of edge vortices in the
geometry of Fig. 2.1a carries a topologically protected qubit encoded in the
fermion parity. The deterministic voltage-driven injection of edge vortices
that we have proposed here could become a key building block for such
applications.
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2 Deterministic creation and braiding of chiral edge vortices

Figure 2.4: Two scattering geometries of a Josephson junction connecting chiral
Majorana edge modes. We contrast the case of co-propagating modes in the left
panel, with the case of counter-propagating modes in the right panel.

2.A Calculation of the scattering phase shift

We calculate the scattering phase shift at the Fermi level in the dou-
ble Josephson junction geometry of Fig. 2.2. We first consider a single
Josephson junction, shown schematically in Fig. 2.4. We specify the phase
difference ϕ in the interval (−2π, 2π), to accomodate the 4π-periodicity of
the junction Hamiltonian (2.2.1).

2.A.1 Single Josephson junction

The scattering matrix SJ of the Josephson junction relates incoming and
outgoing amplitudes via

SJ

(
a1
a2

)
=

(
b1
b2

)
. (2.A.1)

At the Fermi level SJ ∈ SO(2) is a 2×2 orthogonal matrix with determinant
+1, of the general form

SJ =

(
cosα sinα
− sinα cosα

)
= eiασy . (2.A.2)

We seek the ϕ-dependence of the phase shift α(ϕ), in particular the
increment δα = α(2π) − α(0).

In our geometry of co-propagating edge modes (left panel in Fig. 2.4),
the incoming modes are on one side of the junction and the outgoing modes
are at the other side. Fu and Kane [99] studied a different geometry with
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2.A Calculation of the scattering phase shift

<latexit sha1_base64="IAGR/OQu59l+sKMtKSW8SO1xarA=">AAAB7XicbVBdSwJBFL1rX2ZfVo+9DEnQk+xGoL4JvfSokB+gIrPjVQdnd5aZu4GIv6DXfIte+0nRv2ldl8DqwMDhnDPce48fKWnJdb+c3M7u3v5B/rBwdHxyelY8v2hbHRuBLaGVNl2fW1QyxBZJUtiNDPLAV9jxZw9rv/OMxkodPtE8wkHAJ6EcS8EpkZrusFhyy24K9pd4GSlBhsaw+NkfaREHGJJQ3Nqe50Y0WHBDUihcFvqxxYiLGZ/gIl1vyW4SacTG2iQvJJaqWzkeWDsP/CQZcJra395a/M/rxTSuDhYyjGLCUGwGjWPFSLP1rWwkDQpS84RwYWSyIRNTbrigpJGtKX6wTJuopWAbUrnPSM37aaJ9V/bcstf0SvVq1kkeruAabsGDCtThERrQAgEIL/AKK0c7K+fNed9Ec0725xK24Hx8Aw0tj3g=</latexit>

<latexit sha1_base64="fJSOprwc5h6cVTurKn28ogrLQMs=">AAAB7XicbVBdSwJBFL1jX2ZfVo+9DEnQk8xGYL4JvfSokCaoyOx4Vwdnd5aZ2UDEX9BrvkWv/aTo37SuS2B1YOBwzhnuvcePlbSOsS9S2Nre2d0r7pcODo+OT8qnZx2rEyOwLbTSputzi0pG2HbSKezGBnnoK3zyp/cr/+kZjZU6enSzGAchH0cykIK7VGqxYbnCqiwD/Uu8nFQgR3NY/uyPtEhCjJxQ3Nqex2I3mHPjpFC4KPUTizEXUz7Gebbegl6l0ogG2qQvcjRTN3I8tHYW+mky5G5if3sr8T+vl7jgbjCXUZw4jMR6UJAo6jRd3UpH0qBwapYSLoxMN6Riwg0XLm1kY4ofLrIm6hnomtRuc1L3fpro3FQ9VvVaXqXB8k6KcAGXcA0e1KABD9CENghAeIFXWBJNluSNvK+jBZL/OYcNkI9vCsWPcA==</latexit>

<latexit sha1_base64="6rlqSQDgJFLjbCGb8fuslzpE+r8=">AAAB7XicbVBdSwJBFL1rX2ZfVo+9DEnQk+yGYL4JvfSokB+gIrPjVQdnd5aZu4GIv6DXfIte+0nRv2ldl8DqwMDhnDPce48fKWnJdb+c3M7u3v5B/rBwdHxyelY8v2hbHRuBLaGVNl2fW1QyxBZJUtiNDPLAV9jxZw9rv/OMxkodPtE8wkHAJ6EcS8EpkZresFhyy24K9pd4GSlBhsaw+NkfaREHGJJQ3Nqe50Y0WHBDUihcFvqxxYiLGZ/gIl1vyW4SacTG2iQvJJaqWzkeWDsP/CQZcJra395a/M/rxTS+HyxkGMWEodgMGseKkWbrW9lIGhSk5gnhwshkQyam3HBBSSNbU/xgmTZRS8E2pFrJSM37aaJ9V/bcsteslOpu1kkeruAabsGDKtThERrQAgEIL/AKK0c7K+fNed9Ec0725xK24Hx8Aw0+j3Q=</latexit>

<latexit sha1_base64="miARauz0eqULcvEu/nsFTHcIBGI=">AAAB7XicbVDLagJBEOzN05iXSY65DJFATrIrgvEm5JKjQnyAisyOrQ7O7iwzvQERvyDXeAu55pNC/ibrugRMUjBQVNXQ3eVHSlpy3S9nZ3dv/+Awd5Q/Pjk9Oy9cXLatjo3AltBKm67PLSoZYoskKexGBnngK+z4s4e133lGY6UOn2ge4SDgk1COpeCUSM3ysFB0S24K9pd4GSlChsaw8NkfaREHGJJQ3Nqe50Y0WHBDUihc5vuxxYiLGZ/gIl1vyW4TacTG2iQvJJaqWzkeWDsP/CQZcJra395a/M/rxTS+HyxkGMWEodgMGseKkWbrW9lIGhSk5gnhwshkQyam3HBBSSNbU/xgmTZRS8E2pFrJSM37aaJdLnluyWtWinU36yQH13ADd+BBFerwCA1ogQCEF3iFlaOdlfPmvG+iO0725wq24Hx8Aw7Hj3U=</latexit>

<latexit sha1_base64="tpcXloE1KhSchbgOe3ntKiovsFU=">AAAB7XicbVBdSwJBFL1rX2ZfVo+9DEnQk+yWYL4JvfSokCmoyOx41cHZnWXmbiDiL+g136LXflL0b1rXJbA6MHA45wz33uNHSlpy3S8nt7W9s7uX3y8cHB4dnxRPz56sjo3AltBKm47PLSoZYoskKexEBnngK2z70/uV335GY6UOH2kWYT/g41COpOCUSM3bQbHklt0U7C/xMlKCDI1B8bM31CIOMCShuLVdz42oP+eGpFC4KPRiixEXUz7Gebregl0l0pCNtEleSCxVN3I8sHYW+Eky4DSxv72V+J/XjWl015/LMIoJQ7EeNIoVI81Wt7KhNChIzRLChZHJhkxMuOGCkkY2pvjBIm2iloKtSbWSkZr308TTTdlzy16zUqq7WSd5uIBLuAYPqlCHB2hACwQgvMArLB3tLJ03530dzTnZn3PYgPPxDRBQj3Y=</latexit>

<latexit sha1_base64="IUyog1uJWo9v9lTmxpFaouIZ98Q=">AAAB8XicbVBdSwJBFL3bp9mX1WMvQxL0kuyKYL4JvfRo0KqgIrPjrA7O7C4zdwMRf0Ov+Ra99oOif9O4LoHVgYHDOWe4954gkcKg6345W9s7u3v7hYPi4dHxyWnp7Lxt4lQz7rNYxrobUMOliLiPAiXvJppTFUjeCab3K7/zzLURcfSEs4QPFB1HIhSMopX822o/EcNS2a24Gchf4uWkDDlaw9JnfxSzVPEImaTG9Dw3wcGcahRM8kWxnxqeUDalYz7PVlyQayuNSBhr+yIkmbqRo8qYmQpsUlGcmN/eSvzP66UY3g3mIkpS5BFbDwpTSTAmq3vJSGjOUM4soUwLuyFhE6opQ9vKxpRALbImGhnImtRrOWl4P020qxXPrXiPtXLTzTspwCVcwQ14UIcmPEALfGAg4AVeYekYZ+m8Oe/r6JaT/7mADTgf38R5kP8=</latexit>

<latexit sha1_base64="yvXamsPURZY+5/PksgpwiSiV7PY=">AAAB9XicbVBdSwJBFL1rX2ZfVo+9DEnQk82GYD4EQi89GuRHqMjsOOrgzO4yc7cS8Vf0mm/Raz8n+jet6xJYHRg4nHOGe+/xQiUtUvrlZNbWNza3stu5nd29/YP84VHDBpHhos4DFZiWx6xQ0hd1lKhEKzSCaU+Jpje+WfjNR2GsDPx7nISiq9nQlwPJGcbSQ/Oi8yx79Jr28gVapAnIX+KmpAApar38Z6cf8EgLH7li1rZdGmJ3ygxKrsQs14msCBkfs6GYJmvOyFks9ckgMPHzkSTqSo5payfai5Oa4cj+9hbif147wsFVdyr9MELh8+WgQaQIBmRxM+lLIziqSUwYNzLekPARM4xj3MzKFE/PkiYqCciSlEspqbg/TTQuiy4tunelQpWmnWThBE7hHFwoQxVuoQZ14KDhBV5h7jw5c+fNeV9GM0765xhW4Hx8AyzmklI=</latexit>

<latexit sha1_base64="tpcXloE1KhSchbgOe3ntKiovsFU=">AAAB7XicbVBdSwJBFL1rX2ZfVo+9DEnQk+yWYL4JvfSokCmoyOx41cHZnWXmbiDiL+g136LXflL0b1rXJbA6MHA45wz33uNHSlpy3S8nt7W9s7uX3y8cHB4dnxRPz56sjo3AltBKm47PLSoZYoskKexEBnngK2z70/uV335GY6UOH2kWYT/g41COpOCUSM3bQbHklt0U7C/xMlKCDI1B8bM31CIOMCShuLVdz42oP+eGpFC4KPRiixEXUz7Gebregl0l0pCNtEleSCxVN3I8sHYW+Eky4DSxv72V+J/XjWl015/LMIoJQ7EeNIoVI81Wt7KhNChIzRLChZHJhkxMuOGCkkY2pvjBIm2iloKtSbWSkZr308TTTdlzy16zUqq7WSd5uIBLuAYPqlCHB2hACwQgvMArLB3tLJ03530dzTnZn3PYgPPxDRBQj3Y=</latexit>

<latexit sha1_base64="YL4lkkjFW/Pzl5jQsjhlmHugEnY=">AAAB8nicbVDLSgNBEOyNrxhfUY9eBoPgKexKIOYW8OIxgnlAEkLvZDYZM/tgplcIIf/g1dzEq/8j/o27m0WIWjBQVNXQ3eVGShqy7S+rsLW9s7tX3C8dHB4dn5RPzzomjDUXbR6qUPdcNELJQLRJkhK9SAv0XSW67uwu9bvPQhsZBo80j8TQx0kgPcmREqkzQBVNcVSu2FU7A/tLnJxUIEdrVP4cjEMe+yIgrtCYvmNHNFygJsmVWJYGsRER8hlOxCLbccmuEmnMvFAnLyCWqRs59I2Z+26S9JGm5reXiv95/Zi82+FCBlFMIuDrQV6sGIUsPZiNpRac1DwhyLVMNmR8iho5JbVsTHH9ZdZEIwNbk3otJw3np4nOTdWxq85DrdK0806KcAGXcA0O1KEJ99CCNnB4ghd4hZVF1sp6s97X0YKV/zmHDVgf3ykwkdc=</latexit>

<latexit sha1_base64="KJlN/uZQFH0q9s0N+dGucIni9DE=">AAACB3icbVDLSgMxFM3UV62vUVfiJlgEN5aZItTuCm5cVrC10JaSyaTT0LxIMkIpxbUf4tbuxK1fIf6N6XQQqh64cDjnXO7lRIpRY4PgyyusrW9sbhW3Szu7e/sH/uFR28hUY9LCkkndiZAhjArSstQy0lGaIB4x8hCNbxb+wyPRhkpxbyeK9DlKBB1SjKyTBv4JlqmwRF8qLRVKnCoSyGVMzMAvB5UgA/xLwpyUQY7mwP/sxRKnnAiLGTKmGwbK9qdIW4oZmZV6qSEK4TFKyDR7fAbPnRTDodRuhIWZupJD3JgJj1ySIzsyv72F+J/XTe3wuj+lQqWWCLw8NEwZtBIuWoAx1QRbNnEEYU3dhxCPkEbYVbF6JeKzrIl6Brgktauc1MOfJtrVShhUwrtquRHknRTBKTgDFyAENdAAt6AJWgCDJ/ACXsHce/bm3pv3vowWvHznGKzA+/gGiT+aYw==</latexit>

Figure 2.5: Plot of the ϕ-dependence of the scattering phase shift α of a
Josephson junction between counter-propagating Majorana edge modes. The
plot is calculated from Eq. (2.A.5) for three values of the ratio W/ξ0.

counter-propagating modes (right panel), where the two incoming modes,
as well as the two outgoing modes, are on opposite sides of the junction.
As we shall see, the difference is crucial for the quantization of δα.

Counter-propagating edge modes

For counter-propagating edge modes the SO(2) scattering matrix is [99]

SJ =

(
tanhβ 1/ coshβ

−1/ coshβ tanhβ

)
, β =

W

ξ0
cos(ϕ/2). (2.A.3)

If the superconducting phase difference ϕ across the junction is advanced
by 2π, a fermion crossing the junction experiences a phase shift of π. Hence
the diagonal matrix elements of SJ change sign, while the off-diagonal
elements do not change sign, as expressed by the symmetry relation

SJ(ϕ+ 2π) = −ST
J (ϕ). (2.A.4)

The scattering phase shift α in SJ = eiασy from Eq. (2.A.3) equals

α = arccos (tanhβ) ∈ (0, π), (2.A.5)
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Figure 2.6: Scattering geometries that define S0, TW , and SJ.

plotted in Fig. 2.5. The increment

δα ≈ π − 4e−W/ξ0 (2.A.6)

approaches π for W/ξ0 → ∞, but it is not quantized. Also note that
α(−ϕ) = α(ϕ), so the net phase increment over a 4π period is zero. Both
these results for counter-propagating modes change when we consider
co-propagating modes.

Co-propagating edge modes

In the case of co-propagating edge modes, as in the left panel of Fig. 2.4,
each element of the scattering matrix SJ relates amplitudes on opposite
sides of the Josephson junction, so it should change sign when ϕ is advanced
by 2π. Instead of Eq. (2.A.4) we thus have

SJ(ϕ+ 2π) = −SJ(ϕ). (2.A.7)

It follows that α(2π) = α(0) + π, modulo 2π, hence the phase increment

δα = π (2.A.8)

is exactly quantized, independent of the ratio W/ξ0. The step profile α(ϕ)
does depend on this ratio, as we now calculate.

We first consider the W → 0 limit, when the Josephson junction is a
point contact as in Fig. 2.6, upper left panel. The two incoming Majorana
operators γ1, γ2 form an electron operator c = (γ1 − iγ2)/

√
2 that is

transmitted through the junction with a ϕ/2 phase shift,

cout = eiϕ/2cin. (2.A.9)
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2.A Calculation of the scattering phase shift

The corresponding scattering matrix for the Majorana modes is

S0 = ei(ϕ/2)σy . (2.A.10)

For a finite width W we insert a line junction described by the Hamilto-
nian (2.2.1). The corresponding transfer matrix (lower left panel in Fig.
2.6) is

TW = e−βσx , β =
W

ξ0
cos(ϕ/2). (2.A.11)

Combination of S0 and TW (right panel in Fig. 2.6) produces upon mode
matching the 2 × 2 scattering matrix SJ of the entire Josephson junction,

TW

(
a1
b1

)
=

(
b′2
a′2

)
, S0

(
b′2
a2

)
=

(
a′2
b2

)
,

⇒ SJ

(
a1
a2

)
=

(
b1
b2

)
. (2.A.12)

The result is

SJ =
1

coshβ + cos(ϕ/2) sinhβ

×
(

cos(ϕ/2) coshβ + sinhβ sin(ϕ/2)
− sin(ϕ/2) cos(ϕ/2) coshβ + sinhβ

)
. (2.A.13)

The corresponding scattering phase shift in SJ = eiασy is

α = arccos

(
cos(ϕ/2) + tanhβ

1 + cos(ϕ/2) tanhβ

)
× sign (ϕ). (2.A.14)

It increases monotonically from α = −π at ϕ = −2π through α = 0 at
ϕ = 0 to α = π at ϕ = 2π. As shown in Fig. 2.7, the increase starts out
linearly for W/ξ0 ≪ 1, and then becomes more and more step-function
like with increasing W .

For W/ξ0 ≫ 1 the ϕ-dependence of α is described with exponential
accuracy by

α ≈ arccos(tanhβ) × sign (ϕ), (2.A.15)

as in Eq. (2.A.5), but now antisymmetric in ϕ. As a consequence the net
phase increment over a 4π period equals 2π rather than zero.
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Figure 2.7: Same as Fig. 2.5, but for co-propagating Majorana edge modes,
calculated from Eq. (2.A.14) .

2.A.2 Double Josephson junction

We combine two Josephson junctions in series with co-propagating edge
modes, as in Fig. 2.2. We denote the result (2.A.13) by

SJ = S1 = eiα1σy , (2.A.16)

with a subscript 1 to indicate that this is the scattering matrix of the first
Josephson junction (J1 in Fig. 2.2).

If the second Josephson junction J2 would be identical to the first,
its scattering matrix would be S2(ϕ) = S1(−ϕ) = S−1

1 . We allow for a
difference in the ratio W/ξ0 at the two junctions, so more generally

S2 = e−iα2σy . (2.A.17)

The parameter α2 still increases by δα2 = π for each 2π increment of ϕ,
but it may do so with a different ϕ-dependence than α1.

If there are no bulk vortices in the superconductor, the scattering matrix
of the two junctions in series is simply the product S2S1. However, if the
geometry is as in Fig. 2.2, with a pair of bulk vortices on opposite sides of
the first Josephson junction, we have to insert a σz to account for each
crossing of a branch cut, so the full scattering matrix is S2σzS1σz. The
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2.B Details of the numerical simulation

Figure 2.8: Plot of the ϕ-dependence of the two scattering phase shifts η+
(with a bulk vortex in the region between the two Josephson junctions J1 and
J2) and η− (without a bulk vortex). The plot is calculated from Eqs. (2.A.14)
and (2.A.18) for W/ξ0 = 3 in the first junction and W/ξ0 = 5 in the second
jnction.

two cases can be combined as

S± = e−iη±σy , η± = α2 ± α1, (2.A.18)

where S+ and S− refer, respectively, to the situation with or without the
bulk vortices. More generally, if the region between Josephson junctions
J1 and J2 has Nvortex bulk vortices, S+ applies if Nvortex is odd while S−
applies if Nvortex is even.

When the phase ϕ across the Josephson junction varies from 0 to 2π
both α1 and α2 advance from 0 to π. It follows that a 2π increment
of ϕ induces a 2π increase of the scattering phase η+, while η− has no
net increase. Fig. 2.8 illustrates the difference for a particular choice of
parameters.

2.B Details of the numerical simulation

For the numerical simulation shown in Fig. 2.3 we applied the Kwant
tight-binding code [105] to the Bogoliubov-De Gennes Hamiltonian of Qi,
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2 Deterministic creation and braiding of chiral edge vortices

Figure 2.9: Dispersion relation of a superconducting strip in the region 1 <
|y| < 51, with a line junction along y = 0 (∆ = 0, two lattice sites wide),
separating regions with phase 0 and phase ϕ = π + 0.3. Inset: Enlargement of
the region near kx = 0, E = 0. The blue modes are gapless chiral Majorana
edge modes at the boundary of the superconductor, the red mode is a nonchiral
Majorana mode in the line junction, with a gap of 2∆0 cos(ϕ/2). The effective
pair potential ∆0 = 0.0808 is much smaller than the bare value 0.75.

Hughes, and Zhang [98]:

H =

(
h0(p) − EF i∆(r)τy
−i∆∗(r)τy −h∗0(−p) + EF

)
, (2.B.1a)

h0(p) = (C +Bp2x +Bp2y)τz +Apxτx +Apyτy. (2.B.1b)

34



2.B Details of the numerical simulation

The blocks of H refer to the electron-hole degree of freedom, while the
Pauli matrices τα act on the spin degree of freedom. This Hamiltonian
was discretized on a two-dimensional square lattice. Lengths are measured
in units of the lattice constant a = 1 and energies in units of the hopping
matrix element t0 = 1. We also set ℏ = 1, so that all parameters are
dimensionless.

The electron block h0(p) describes a quantum anomalous Hall insulator.
We took the parameters A = 1, B = 0.5, C = −0.5, EF = 0, when h0 has
Chern number 1. The insulator covers the region −75 < x < 25. The bulk
is gapped while the edges support a single chiral edge mode. The mode at
the x = 25 boundary moves in the +y direction and a counterpropagating
edge mode flows at the x = −75 boundary. (See Fig. 2.3, top panel, for
the geometry.)

The pair potential ∆ induces spin-singlet s-wave superconductivity in a
strip −25 < x < 25 (so W = 50) streching from y = −77 to y = 77. We
inserted two line junctions J1, J2 (each two lattice sites wide), separating
three superconducting islands I1, I2, I3, by means of the profile

∆ =



0.75 if − 77 < y < −27 (I1),

0 if − 27 < y < −25 (J1),

0.75 eiϕ if − 25 < y < 25 (I2),

0 if 25 < y < 27 (J2),

0.75 if 27 < y < 77 (I3).

(2.B.2)

The effective gap ∆0 cos(ϕ/2) in the Josephson junction was obtained
directly from the excitation spectrum. (See Fig. 2.9.) We found ∆0 =
0.0808 — much smaller than the bare gap of 0.75. At ϕ = π the gap closes,
producing a linear dispersion along the Josephson junction with velocity
v = 1 — the same as the velocity of the edge modes. The corresponding
coherence length is ξ0 = v/∆0 = 12.38, resulting in a ratio W/ξ0 = 4.04.

A pair of vortices is inserted at positions r1 = (1,−51) in I1 and
r2 = (1, 1) in I2. The vortex core does not coincide with a lattice point
(which are at half-integer x, y), so we can keep a constant ampitude
|∆| = 0.75 of the pair potential. Multiplication of ∆(r) by the function

f(r) =
z − z1
|z − z1|

|z − z2|
z − z2

, z = x+ iy, (2.B.3)

ensures that the phase of the pair potential winds by ±2π around each
vortex.

The scattering matrix was calculated at an energy E = 0.001 that
is slightly offset from the Fermi level at E = 0 to avoid the zero-mode
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2 Deterministic creation and braiding of chiral edge vortices

resonance in the vortex cores. The representation S = e−iησy in the
Majorana basis corresponds to S = e−iησz in the electron-hole basis, so
the scattering phase shift η can be calculated by comparing incident and
transmitted electron wave functions along x = 25. The edge at x = −75 is
decoupled from the superconductor and does not contribute to η.

At ϕ = 0 we find η ̸= 0, presumably because of additional phase shifts
acquired when the Dirac mode splits into two Majorana modes and back
at r = (25,−77) and r = (25, 77). In Fig. 2.3 we have plotted the phase
increment η(ϕ) − η(0), to eliminate this ϕ-independent offset.
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