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1 Introduction

1.1 Preface

A quantum computer is a special kind of computer that perform its tasks
by leveraging the laws of quantum mechanics. For particular classes
of problems, such devices are expected to dramatically outperform con-
ventional (classical) computers [1], such as modern-day laptops or even
supercomputers. The greatest possibilities are offered by digital quantum
computers, which possess the flexibility to perform arbitrary quantum
computation. The word ‘digital’ implies that such a computer operates
on standardized memory registers and digitizes the desired computation
into elementary operations called gates∗. The ability of a digital quantum
computer to perform an arbitrary computation is known as universality.
Although highly promising due to their universality, application-ready
digital quantum computers are hard to implement. In particular, most
such realizations need an exceptional degree of precision and noise isolation
[2]. To this date, significant questions remain open: for instance, how to
reliably implement a digital quantum computer? Furthermore, once such
a computer is available, how to utilize it effectively?

One possible way to realize digital quantum computation is by em-
ploying a technique called braiding [3–5]. The key elements in such an
implementation are anyons — particle-like energy excitations supported
by some quantum materials. In a quantum computation, information
is to be encoded and modified via mutual interchanges, or braiding, of
anyons. The term ‘braiding’ refers to a similar exchange of strands in
the familiar process of making a braid. Anyons and their braiding could
be promising building blocks for a digital quantum computer. However,
existing theoretical blueprints for anyons so far were elusive to implement
[6–10]. This thesis addresses the issue by putting forward alternative
proposals for anyon braiding and detection.

For a functioning quantum computer, a promising early application is

∗This method can be contrasted with analog quantum computation, which does
not require digitization but instead is run on a special-purpose device built to perform
a given type of computation.
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1 Introduction

simulating physical systems [11–14]. One type of potential simulation is
preparing a ground state — the lowest energy state of a quantum system.
Information obtained from simulated ground states can be used in research
or engineering since many chemicals and materials occupy low-energy
configurations. On a classical computer, representing a quantum ground
state is generally unfeasible [15–17], due to the many-body quantum
correlations present in the state. On the other hand, a quantum computer
can reproduce these correlations efficiently due to the quantum nature of
its hardware. The very procedure of preparing the ground state, however,
is less trivial and is currently a subject of active research [18]. In this
thesis, we layout several new strategies towards achieving this goal.

1.2 Topological matter and braiding

Solid-state quantum materials have the ability to enter special topological
phases [19, 20], characterized by elementary excitations with unusual
properties. In 2D materials, the topological nature of the phase can
manifest itself in so-called anyonic statistics of its excitations [3, 21]. In
contrast to bosons or fermions, an interchange (braiding) of two anyons
can modify the system wavefunction by a nontrivial complex phase or even
a unitary operation. Perhaps more strikingly, this modification depends
only on the topology of the braided worldlines of the anyons. If a species
of anyons realizes non-commuting unitary operations via braiding, such
anyon statistics is called non-abelian.

Non-abelian statistics is at the foundation of promised quantum comput-
ing applications of anyons. Because braiding is discrete, the computation
realized by such interchange procedures is a digital one. For some species of
anyons, the set of these quantum operations is even universal – they allow
to access the Jones polynomials of the knot theory, which are proven to
efficiently encode an arbitrary quantum computation [22]. Finally, due to
its topological nature, anyon braiding is expected to be robust to external
noise and perturbations.

The above properties make topological matter a viable platform for
quantum computation. However, the existing proposals for such an appli-
cation have not yet been realized in a lab. It is therefore of special interest
to propose alternative realization platforms for non-abelian statistics. For
the same reason, there is an active interest in the novel experimental
signatures of such anyonic excitations. We focus on these questions as
posed for two types of topological systems: topological superconductors
and Fractional Quantum Hall materials.
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1.2 Topological matter and braiding

-wave superconductor

3D topological insulator

Figure 1.1: Topological superconductivity. A topological superconductor can
be effectively realized in a superconductor-topological insulator heterostructure
[25]. It is characterized by the presence of a gapless edge mode whose physics is
governed by the Hamiltonian Hedge (1.2.2). The elementary excitations of the
edge mode are Majorana fermions γ(x) and edge vortices σ(x). (the dotted line
shows the associated branch cut)

1.2.1 Topological superconductivity

A good example of a topological superconductor in 2 dimensions is a
p-wave superconductor [3, 21, 23, 24]. As a model, one may consider the
following (‘p+ ip’) Bogoliubov-de Gennes Hamiltonian:

Hp+ip =
∑
p

[
(
p2

2m
− µ)(c†pcp − b†pbp) + (px + ipy)c†pbp + (px − ipy)b†pcp

]
,

(1.2.1)
where c (b) operators describe the electron (hole) degrees of freedom∗. For
µ > 0, the Hamiltonian (1.2.1) enters a topological phase, while the phase
at µ < 0 is referred to as trivial. Both of these phases are characterized
by an energy gap for the bulk excitations. But unlike in the trivial phase,
in the topological phase a finite sample of superconductor (1.2.1) would
host an additional gapless mode at its edge (Fig. 1.1). This edge mode is
chiral, being effectively described by the Hamiltonian Hedge:

Hedge =

∫
x

iγ(x)∂xγ(x)dx, (1.2.2)

∗The absence of a spin degree of freedom in this toy model is justified for a p-
wave superconductor, which allows for a superconducting pairing in the spin-polarized
channel.
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where γ(x) is a Majorana fermion: an operator satisfying γ†(x) = γ(x)
that describes a neutral quasiparticle i.e. one that does not carry charge.

Experimentally, fabricating a topological p-wave superconductor ma-
terial (1.2.1) turns out to be extremely difficult [26]. Instead, a two-
dimensional topological superconductor can effectively be realized [25]
with a layer of an s-wave superconductor on a topological insulator sub-
strate (Fig. 1.1). Such a heterostructure has a similar effective Hamiltonian
to the p+ ip superconductor∗ (1.2.1) and features the gapless edge mode
(1.2.2). Recent experimental works have attempted this realization of
topological superconductivity [27, 28], and observed a signature consistent
with the Majorana edge mode (1.2.2). However, alternative explanations
of the observed data have also been proposed [9, 10, 29], and to date
no consensus has been reached on whether the observed signal is from
a Majorana mode. Optimistically, in the near-future one expects the
body of such evidence to grow further [7], and two-dimensional topological
superconductivity to be finally established and harnessed in a lab setting.

1.2.2 Majorana anyons: bulk and boundary

In addition to the Majorana edge mode, topological superconductors also
provide a platform for anyonic braiding statistics. The anyonic excitation
that has this statistics is an Abrikosov vortex of supercurrent [30], which in
a topological superconductor hosts a zero-energy Majorana bound state (or
zero-mode). While playing a crucial role in the vortex exchange properties,
Majorana zero modes γα themselves obey statistics of a fermionic type:

γαγβ + γβγα = 2δα,β . (1.2.3)

The anyonic statistics of the vortices is rooted in the Aharonov-Bohm
[31] effect imposed by the vortex. In particular, a 2π phase winding of
the superconducting order parameter ∆ can be translated into a π phase
shift for the fermionic variables. This can be represented by a branch-cut
boundary condition for the fermions (Fig. 1.2a), with implications for the
vortex statistics [32]. Consider the example sketched in Fig. 1.2, where two
vortices σ1 and σ2 are interchanged. Due to the inevitable crossing of a

∗Although unlike Hp+ip, it satisfies the time-reversal symmetry.
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Figure 1.2: Braiding of vortices in a 2D topological superconductor. (a) In
a topological superconductor, Abrikosov vortices σ1,2 host Majorana fermion
modes γ1,2 at zero energy. The magnetic flux quantum Φ0 = h/2e carried by
each vortex induces a branch-cut boundary condition (dotted lines). Any fermion
operator flips the sign once crossing the branch cut. Such crossing is guaranteed
to happen whenever the two vortices are exchanged. (b) In space and time,
the vortex exchange process implies braiding of their worldlines (on the left).
Compared to no exchange (on the right), such a braiding operation transforms
the Majorana degrees of freedom γ1,2 with a unitary: U12 = e

π
4
γ1γ2 .
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branch cut, Majorana operator γ2 has to flip a sign. In algebraic form, this
exchange operation produces a unitary U12 such that U−1

12 γ2U12 = −γ1,
U−1
12 γ1U12 = γ2. By virtue of the Majorana operator algebra (1.2.3), these

relations imply the following form of the unitary:

U12 = e
π
4 γ1γ2 =

1√
2

(I + γ1γ2). (1.2.4)

More generally, a similar exchange of vortices σα and σβ would be rep-
resented by a unitary operation Uαβ = e

π
4 γαγβ . As different Uαβ do

not generally commute, the vortices σα have the exchange statistics of
non-abelian anyons.

An intense recent interest has been drawn to the relation between the
edge modes and anyonic excitations. Since Majoranas play a role in the
anyonic statistics of the bulk excitations, some have proposed to use edge
Majoranas to produce the anyonic statistics [33]. Edge mode theory also
permits vortex-like excitations, which can be characterized by branch
cuts (illustrated in Fig. 1.1). Some of the work presented in this thesis is
motivated by the question: can one reproduce the bulk anyonic statistics
using edge vortices?

1.2.3 Fractional Quantum Hall Effect. Laughlin
quasiparticles

In some two-dimensional materials subjected to strong magnetic fields at
low temperatures, the Hall conductivity [34] is measured to be quantized:

σxy = q
e2

h
, (1.2.5)

which is known as the Quantum Hall Effect. In the Integer Quantum Hall
Effect (IQHE) [35], the constant q in (1.2.5) is always an integer, while in
the Fractional Quantum Hall Effect (FQHE) [36] it can also take fractional
values. Similarly to topological superconductivity, the key to Quantum
Hall physics is in the gapless edge modes [37], which in this case carry the
quantized Hall currents. In the IQHE such gapless modes are populated
by ordinary electrons, and the quantization (1.2.5) with an integer q
follows from the conductance quantization theorem for 1D channels [38].
Meanwhile, the non-integer q of the FQHE materials seemingly contradicts
this theorem. This striking effect is explained by the presence of many-
body excitations with fractional charge, rather than electrons which carry
unit charge, in the gapless edge mode. In the Laughlin model [39], which
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Figure 1.3: Combining two samples of Laughlin FQHE materials allows one
to enact parafermionic zero-modes. For that, one has to deposit a sequence of
ferromagnets (FM) and superconductors (SC) on top of the interfacing sample
edges. Each interface between a ferromagnet and a superconductor hosts two
zero-modes: one per edge mode. The respective operators are characterized by
parafermionic statistics.

describes the subclass of FQHEs with inverse odd q = 1
2n+1 , there is a

single species of such fractional excitations. These Laughlin quasiparticles
ψ(x) carry charge qe and have anyonic exchange statistics:

ψ(x)ψ(y) = ψ(y)ψ(x)eiqπ, x > y. (1.2.6)

Since the exchange unitary is represented only by an overall phase eiqπ,
the Laughlin anyons are abelian.

With material in an FQHE phase of the Laughlin type, one can also
achieve non-abelian braiding statistics. For this, one needs to orchestrate
so-called parafermionic zero-modes [40]. This can be realized if a pair of
counterpropagating FQHE edge modes are gapped out by a sequence of
ferromagnets interlaced with superconductors (Fig. 1.3). On sites j ∈ Z
between the superconducting and ferromagnetic domains, a parafermionic
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zero-mode αj,L/R emerges. L and R here stand for left-propagating and
right-propagating, depending on the edge where αj,L/R is localized. The
parafermion operators αj,L/R themselves have statistics similar to Laughlin
quasiparticles, e.g.

αj,Rαk,R = αk,Rαj,Re
iqπ, j > k, (1.2.7)

which is abelian. However, a gradual exchange of two parafermion-hosting
sites can be used to produce a nonabelian operation [40]. Such a relation
between abelian and non-abelian statistics of parafermions can be closely
paralleled with Majorana braiding in a topological superconductor. Indeed,
Majorana fermions in Abrikosov vortices do not carry nonabelian statistics,
while the braiding of those vortices is nonabelian. In contrast to Majorana-
hosting vortices, however, the non-abelian braiding of parafermionic sites
allows for an even larger set of unitary operations [40]. In this thesis, we
will use this fact as a motivation for our investigation of parafermions
but not focus on their braiding per se. Instead, we are interested in
constructing new and useful ways to characterize parafermionic zero mode
statistics (1.2.7) in experiment.

1.3 Preparing ground states with a quantum
computer

In this section, we transition from the basic physics of digital quantum
hardware and move on to its potential utilization. One of the most
promising applications of quantum computers is preparing a simulation of
a many-body ground state. A version of this task is likely [18] to be among
the first problems that are solved on a quantum computer with a speed-up
relative to its classical counterparts. The ground state preparation problem
is relevant to quantum physics as well as classical physics and computer
science. As a natural example, it arises when studying the low-temperature
properties of many-body systems. This includes [18] multi-electron systems
in solid state physics, chemistry, and spin systems. In computer science,
a cost function optimization is also a common task, with application to
machine learning and logistics [41]. Such tasks can also be mapped onto a
ground state finding problem for a particular Hamiltonian [16].

The hope for the success of quantum computers in ground state sim-
ulation lies in the exponentially greater expressiveness of a quantum
computer compared to a classical one. However, one does not expect such
an exponential speed-up in the context of every problem. In particular,
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1.3 Preparing ground states with a quantum computer

NP-complete ground state search problems, e.g. for classical spin models
[42], are not expected to be polynomially solvable on a quantum computer.
For quantum many-body Hamiltonians, accessing the ground state even
in some restricted Hamiltonian families is already QMA-complete [43]
(quantum analog of NP-complete). On the other hand, any polynomially
complex quantum computation can be mapped [44] onto the problem of
distilling the exact ground state of a particular Hamiltonian from a given
good approximation thereof. These mathematical results highlight the
relevance of ground state preparation to general quantum speed-ups and
the significance of approximating target ground states efficiently.

To prepare a ground state on a quantum computer, one needs to build
and utilize an appropriate quantum algorithm. On a broad level, there
already exist multiple paradigms constructing such algorithms. These
include adiabatic quantum computing [45], quantum phase estimation [46],
and variational quantum algorithms [47]. An ongoing effort is devoted
to optimizing such approaches for practical use. This optimization is
especially critical if an algorithm is to be employed in the near-term [11],
before existing quantum hardware is sufficiently protected from the errors.
For such applications, the exact time complexity of an algorithm is as
crucial as its asymptotic scaling. In addition to optimizing existing ideas,
creating original methods for ground state preparation is also of interest.
A novel approach to this problem may yield a sizeable improvement in
time complexity, especially in the context of specific niche applications.

1.3.1 Variational quantum algorithms

A variational quantum algorithm (Fig. 1.4) is a quantum-classical hybrid
algorithm which aims to approximate the ground state of a given Hamil-
tonian by utilizing the variational principle [47]. Since quantum circuits
are in general exponentially hard to represent classically, a variational
quantum algorithm employs a quantum circuit as a powerful variational
ansatz. To enable the optimization procedure, the energy of the ansatz
state is being measured at the end of the circuit by means of sampling from
the target Hamiltonian. The quantum circuit is then tuned to ensure the
minimization of said energy. Variational quantum algorithm is well-suited
for use on near-term quantum devices [47], being not highly sensitive to
noise and not requiring an implementation of deep quantum circuits. The
success of this method depends on the efficiency of the energy measurement
[48–50], choice of optimization procedure [51–53], and the expressiveness
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Figure 1.4: Variational quantum algorithms. (a) The hybrid quantum-classical
scheme that was introduced in [47]. The algorithm employs a tunable ansatz

circuit U(θ⃗ ), and aims to find the value of parameters θ⃗min which minimizes

the variational energy E(θ⃗ ). Quantum hardware need not be continuously in
a coherent state since the information is processed classically. This is the key
advantage of such an algorithm for near-term implementation. (b) Schematic
illustration of the ansatz expressivity. In the total Hilbert space of the system,
H, only the small subset HU is spanned by the variational states. It is a manifold
that is usually much lower in dimensionality (polynomial versus exponential),

and generally, the ground state |GS⟩ lies outside of it. The state |ψ(θ⃗min)⟩
produced by the variational algorithm only approximates |GS⟩. It is the task of

ansatz construction that the expected separation between |GS⟩ and |ψ(θ⃗min)⟩ is
ensured to be minimal. For that, HU has to span the physically relevant part of
the Hilbert space.

of the ansatz circuits [54–56]. Since the very potential for exponential
speed-up is rooted in the capacity of the quantum circuit, such ansatz
design is particularly crucial.

To be efficient, a variational ansatz circuit needs to be tailored to the
problem at hand. In the quantum chemistry context, a common way to do
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1.3 Preparing ground states with a quantum computer

this [47, 54] is through the unitary coupled-cluster (UCC) method. The
UCC state has the form:

|ψUCC⟩ = U |ψHF ⟩ = eT1+T2+T3+... |ψHF⟩ , (1.3.1)

where |ψHF⟩ is a Hartree-Fock approximation to the fermionic ground
state, and anti-Hermitian generators Tn consist of 2n-fermion operators,
each adding n excitations to the state |ψHF⟩. For example:

T1 =
∑
α,β

Tαβ1 c†αcβ , T2 =
∑
µ,ν,λ,ρ

Tµνλρ2 c†µc
†
νcλcρ (1.3.2)

With the appropriate coefficients in Tn, UCC is able to lower the energy
beyond that of |ψHF⟩ by introducing the right type of correlations. As using
the generators with all possible orders n is computationally prohibitive,
one often truncates the UCC to single and double excitation operators
T1, T2 only. This is also referred to as UCCSD (SD stands for ‘singles and
doubles’). The efficiency of this approach is provable on the perturbative
level, where it is ensured by the linked-cluster theorem [57].

To utilize UCCSD in a variational quantum algorithm, one needs to
implement the unitary in Eq. (1.3.1) as a digital quantum circuit. In
most cases this is not possible directly, and instead requires a Trotter-
Suzuki approximation [58, 59]. For example, a UCCSD unitary can be
approximated (‘Trotterized’) into K Trotter steps as follows:

eT1+T2 ≃
K∏
k=1

∏
α,β

e
1
K (Tαβ1 c†αcβ+h.c.)

∏
µ,ν,λ,ρ

e
1
K (Tµνλρ2 c†µc

†
νcλcρ+h.c.)

 .
(1.3.3)

Given this form of the ansatz, realizing (1.3.3) as a quantum circuit is
a routine procedure. Indeed, fermionic operators can be mapped onto
Pauli matrices, and exponentials of Pauli strings can be represented with
a quantum circuit using the standard procedures of [60]. By tuning
the coefficients Tαβ , one can then employ the ansatz circuit (1.3.3) in a
variational procedure.

Along with UCC, there exist alternative approaches to ansatz construc-
tion. One example is the Hamiltonian Variational Ansatz [56], which is
based on the principle of adiabatic state preparation. Since adiabatic
evolution is capable of producing complex ground states, its crudely Trot-
terized version is expected to have similar capabilities. The accuracy of
such preparation is further enhanced by the variational procedure, making
Hamiltonian Variational Ansatz a sound approach. Another method is
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Figure 1.5: Quantum cooling. (a) In quantum mechanics, cooling implies a
modification of the density matrix such that it shifts to lower energies (red to
blue profile). With perfect cooling, the final state would be dominated by the
ground state (blue profile). (b) To cool a physical system (S), it is standard to
mediate the process by a controlled system (fridge, F). The process is two-fold.
Firstly, the system and fridge are brought to interact. The energy from the
system is then spontaneously transferred to the fridge (illustrated by a change
of color). Secondly, the fridge has to emit surplus energy into the environment.
The latter process is to be driven by external control, and would not happen
under equilibrium thermodynamics. In algorithmic quantum cooling, one can
achieve this by manually driving the fridge to its ground state.

ADAPT [55], which suggests to add tunable elements to the quantum cir-
cuit one at a time, while optimizing the parameters of such an ever-growing
ansatz. The added unitary is to be picked adaptively, by estimating and op-
timizing the energy decrease that is expected from this addition. ADAPT
is digital by construction and automatically adapts itself to the problem
of interest, thus forming another viable approach to ansatz design. The
methods presented above have both strengths and limitations — each is
founded on specific analytical consideration, with some concessions made
for compatibility with near-term quantum hardware. As such, there is an
ongoing effort to design new methods of ansatz construction. The ultimate
goal of these novel methods is to improve the stringent trade-off between
the capacity of the circuit and its ease of implementation.

12



1.3 Preparing ground states with a quantum computer

1.3.2 Dissipative quantum algorithms

Dissipative approach to quantum computing [61] implies performing a
computation through an engineered evolution of an open quantum system,
rather than an isolated one. This paradigm is less developed relative
to the more established scheme of unitary-based computing, albeit it is
theoretically sound. In particular, it was proven that any polynomially-
complex algorithm performed with a standard quantum circuit can be
mapped onto dissipative quantum hardware with only polynomial overhead
[61]. Any evolution of an open quantum system, conversely, can be
directly realized on digital quantum hardware by using ancillary registers.
Intriguingly, with the latter procedure, one may apply the dissipative
paradigm directly to digital quantum computing — potentially leading to
new and powerful algorithms.

In the context of applying digital quantum hardware to ground state
preparation, the dissipative paradigm is of direct relevance. Indeed, the
low-energy states in nature are normally produced via a dissipative process
of cooling (Fig. 1.5). Cooling is also employed in quantum engineering, for
instance when initializing a null computational basis state of a quantum
computer [62–64]. In the context of digital quantum computation, cooling
was proposed early on [12] as a method of ground state simulation. In
this case, even a single ancillary qubit can be used to emulate a fridge.
Indeed, to drive the qubit to its ground state is straightforward — and
being able to prepare the low energy state of the fridge is key to controlled
cooling (Fig. 1.5b). Despite this being an interesting possibility, this idea
remained largely undeveloped after the work of Lloyd [12]. Instead, most
of research in algorithmic quantum cooling is focused on analog quantum
computation [65, 66].

Another way to include dissipation into a state preparation protocol
is to introduce weak measurements [67, 68]. Compared to conventional
(projective) quantum measurements, weak measurements extract less in-
formation about the system and modify its state in a less drastic fashion.
These unusual measurements require an auxilliary ‘detector’ system, which
is coupled to the subject system only for a brief period of time. Applica-
tion of such weak measurements to quantum state preparation is actively
studied under the framework of quantum control theory [69–73] . In the
traditional approaches, the system is controlled quantum-coherently, and
the information obtained from the weak measurements can be fed back
to modify the direction of this unitary evolution. A feedback of this type
is classified as closed-loop quantum control. Compared to pre-defined
unitary evolution, including such feedback allows to complete the state

13
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preparation task with fewer resources or on a shorter timescale. Closed-
loop quantum control can even be taken to the extreme, by removing the
quantum-coherent part of the evolution altogether [69, 74, 75]. In this
case, the weak measurements are used to inform the subsequent evolution,
which is also driven by weak measurements. This approach, which goes
under the name “control-free control”, is now under active investigation
both in experiment and theory [69].

1.4 This thesis

Chapter 2

Non-abelian statistics in topological superconductors can be realized by
exchanging vortices that host Majorana zero-modes. However, using
the bulk Abrikosov vortices for this purpose has proven to be impractical.
Instead, many experimental groups turned to using Majorana zero-modes at
the ends of superconducting nanowires, an effort that has also proven to be
challenging. In this chapter, we propose to use a topological superconductor
to realize the non-abelian braiding of an itinerant edge vortex with a
bulk vortex. A voltage-driven Josephson junction can be employed to
deterministically produce an edge vortex available for a braiding procedure.
After a braiding operation, the vortices are to be fused back at another
Josephson junction utilizing another voltage bias. We predict that the
charge produced after the fusion is sensitive to the braiding operation. In
particular, a single electron charge is produced after the braiding, and no
charge if no braiding has occurred.

Chapter 3

We put forward a scheme to realize and detect another phenomenon of
non-abelian statistics - anyon fusion. For this, we suggest employing the
chiral edge vortex architecture introduced in the previous chapter. In
a topological superconductor, by fusing Majorana-hosting vortices one
produces a mixture of zero and one Dirac fermion. We design an experiment
to capture this property, using four edge modes and four Josephson junction
terminals. We propose to create two pairs of such vortices (1 and 2, 3
and 4) at the input terminals, and fuse them at the output terminals in a
different configuration (1 with 3, 2 with 4). We predict, that the vortex
fusion produces an equal weight superposition of two electrons and no
electrons in the two output channels. This reproduces the fusion rule with

14



1.4 This thesis

a direct effect on the output observables: charge transfer and fermion
parity. In particular, we show that (a) the average fermion parity in each
of the two leads is exactly vanishing upon fusion and (b) charge transfer is
directly correlated, with the difference of output currents exhibiting zero
noise while their sum remaining noiseful.

Chapter 4

Parafermionic zero-modes allow to realize non-abelian braiding based on
a Laughlin type Fractional Quantum Hall material. Unfortunately, they
were not yet shown to be realized in an experiment. It is therefore of
high interest to characterize parafermions with appropriate observables.
To that end, we investigate the possibilities offered by the Clauser-Horne-
Shimony-Holt (CHSH) inequality. It is a version of Bell inequality, which
signifies the extent of quantum correlations between two separated physical
systems. Firstly, we generalize this and other notions of Bell nonlocality to
the context of non-hermitian and potentially non-commuting observables.
These are characteristic for systems of parafermions, due to the anyonic na-
ture of these quasiparticles. Secondly, for such generalized observables, we
draw up several bounds and relations for the intra-system and inter-system
correlations. We show how these can be probed with parafermions, and
predict that our correlation bounds are saturated much tighter when the
two subsystems host non-commuting, rather than commuting observables.
Paradoxically, the non-commutation of observables in these separated
anyonic systems could be interpreted as superluminal signaling. This is
only a simulation of such signaling, however. We show that the relativistic
causality is automatically restored when such paradoxical correlations are
to be probed in a physical experiment.

Chapter 5

Successfully employing a variational quantum algorithm for ground state
preparation requires the use of appropriate ansatz circuits. The main
requirements for such an ansatz are high expressivity and ease of use with
digital quantum hardware. One such prospective ansatz, inspired by com-
putational quantum chemistry, is a Trotterized version of Unitary Coupled
Cluster. The ansatz is analytically justified by the linked cluster theorem,
which proves its efficiency in the perturbation theory. Unfortunately, this
approach relies on Trotterization which is not exact. In this chapter, we
put forward an approach to ansatz creation that follows the linked-cluster
theorem while not relying on Trotterization. The basis of the construction
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is Quantum Combinatorial Ansatz (QCA). QCA is given by a sequence
of tunable Pauli string-generated rotations, spanning the entire N-qubit
Hilbert space in a minimum number of such elementary rotations. We
give a rule for a systematic reduction of QCA to practical size, based on
many-body perturbation theory. This ansatz construction turns out to
satisfy the linked-cluster theorem, therefore proving its efficiency in the
perturbative limit. Finally, we numerically test a few variants of QCA-
based ansatz constructions by applying them to Ising spin chains. We find
that these allow for a good asymptotic convergence to the ground state in
the paramagnetic and the ferromagnetic phases of this model. As expected
from perturbative analytics, in the weakly coupled limit of the model, the
variant of an ansatz construction that satisfies the linked-cluster theorem
shows optimal performance.

Chapter 6

Using dissipative approaches in digital quantum hardware is an area
of research that is currently under active development. One natural
application is ground state preparation. In this chapter, we use the
principle of cooling to design a ground state preparation algorithm. To
that end, we propose to simulate the interaction between the target system
and a single qubit, transferring the energy to the qubit. The qubit,
therefore, plays the role of a fridge. To simulate the cooling process,
this has to be combined with the internal system and fridge evolutions.
The final ingredient of the protocol is the measurement and reset of
the fridge qubit, which introduces the dissipative element necessary to
reduce the system energy. We develop the protocol by first pinning down
the case of a single-qubit system and then extending the protocol to a
general system of N qubits. The role of energy conservation is established,
given by an extension of the Fermi Golden Rule to the case of finite-
time evolution. We study the issues of Trotter error and Heisenberg
energy uncertainty and propose two scalable approaches to tackle these.
The BangBang approach, characterized by high Trotter error and large
Heisenberg uncertainty, yields low implementation complexity and is thus
suitable for near-term implementation. The complementary LogSweep
approach yields an asymptotically vanishing energy uncertainty and Trotter
error. However, this asymptotic accuracy is at the cost of extensive circuit
complexity. Numerically, we apply LogSweep to transverse-field Ising
chains in their paramagnetic and critical states. The time complexity of
such ground preparation turns out to scale algebraically with a desired
precision.
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1.4 This thesis

Chapter 7

This chapter is focused on another dissipative approach to quantum state
preparation: steering by generalized measurements. To reduce the time
in which the target state is prepared, we propose to actively choose the
applied measurements on-the-go. This active choice is to be based on
the information obtained from the previous measurements. The possi-
ble policies for active-decision steering are influenced by the presence of
entanglement in the target state. For strongly correlated target states,
creating a policy for active-decision steering is most challenging, due to
the vastness of the many-body Hilbert space. Therefore, for efficient
decision-making special Hilbert space “navigation techniques” are needed.
Two approximate ways of representing such navigation are developed:
via (i) a cost function landscape and (ii) a semiclassical Quantum State
Machine. From such simplified Hilbert space representations, one derives
the respective active-decision policies. We numerically apply these policies
to two paradigmatic targets: AKLT state and W-state. In each case, the
introduction of active decision achieves up to factor 10 speed-up of the
target state preparation.
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