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1 Introduction

1.1 Preface

A quantum computer is a special kind of computer that perform its tasks
by leveraging the laws of quantum mechanics. For particular classes
of problems, such devices are expected to dramatically outperform con-
ventional (classical) computers [1], such as modern-day laptops or even
supercomputers. The greatest possibilities are offered by digital quantum
computers, which possess the flexibility to perform arbitrary quantum
computation. The word ‘digital’ implies that such a computer operates
on standardized memory registers and digitizes the desired computation
into elementary operations called gates∗. The ability of a digital quantum
computer to perform an arbitrary computation is known as universality.
Although highly promising due to their universality, application-ready
digital quantum computers are hard to implement. In particular, most
such realizations need an exceptional degree of precision and noise isolation
[2]. To this date, significant questions remain open: for instance, how to
reliably implement a digital quantum computer? Furthermore, once such
a computer is available, how to utilize it effectively?

One possible way to realize digital quantum computation is by em-
ploying a technique called braiding [3–5]. The key elements in such an
implementation are anyons — particle-like energy excitations supported
by some quantum materials. In a quantum computation, information
is to be encoded and modified via mutual interchanges, or braiding, of
anyons. The term ‘braiding’ refers to a similar exchange of strands in
the familiar process of making a braid. Anyons and their braiding could
be promising building blocks for a digital quantum computer. However,
existing theoretical blueprints for anyons so far were elusive to implement
[6–10]. This thesis addresses the issue by putting forward alternative
proposals for anyon braiding and detection.

For a functioning quantum computer, a promising early application is

∗This method can be contrasted with analog quantum computation, which does
not require digitization but instead is run on a special-purpose device built to perform
a given type of computation.
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1 Introduction

simulating physical systems [11–14]. One type of potential simulation is
preparing a ground state — the lowest energy state of a quantum system.
Information obtained from simulated ground states can be used in research
or engineering since many chemicals and materials occupy low-energy
configurations. On a classical computer, representing a quantum ground
state is generally unfeasible [15–17], due to the many-body quantum
correlations present in the state. On the other hand, a quantum computer
can reproduce these correlations efficiently due to the quantum nature of
its hardware. The very procedure of preparing the ground state, however,
is less trivial and is currently a subject of active research [18]. In this
thesis, we layout several new strategies towards achieving this goal.

1.2 Topological matter and braiding

Solid-state quantum materials have the ability to enter special topological
phases [19, 20], characterized by elementary excitations with unusual
properties. In 2D materials, the topological nature of the phase can
manifest itself in so-called anyonic statistics of its excitations [3, 21]. In
contrast to bosons or fermions, an interchange (braiding) of two anyons
can modify the system wavefunction by a nontrivial complex phase or even
a unitary operation. Perhaps more strikingly, this modification depends
only on the topology of the braided worldlines of the anyons. If a species
of anyons realizes non-commuting unitary operations via braiding, such
anyon statistics is called non-abelian.

Non-abelian statistics is at the foundation of promised quantum comput-
ing applications of anyons. Because braiding is discrete, the computation
realized by such interchange procedures is a digital one. For some species of
anyons, the set of these quantum operations is even universal – they allow
to access the Jones polynomials of the knot theory, which are proven to
efficiently encode an arbitrary quantum computation [22]. Finally, due to
its topological nature, anyon braiding is expected to be robust to external
noise and perturbations.

The above properties make topological matter a viable platform for
quantum computation. However, the existing proposals for such an appli-
cation have not yet been realized in a lab. It is therefore of special interest
to propose alternative realization platforms for non-abelian statistics. For
the same reason, there is an active interest in the novel experimental
signatures of such anyonic excitations. We focus on these questions as
posed for two types of topological systems: topological superconductors
and Fractional Quantum Hall materials.

2



1.2 Topological matter and braiding

-wave superconductor

3D topological insulator

Figure 1.1: Topological superconductivity. A topological superconductor can
be effectively realized in a superconductor-topological insulator heterostructure
[25]. It is characterized by the presence of a gapless edge mode whose physics is
governed by the Hamiltonian Hedge (1.2.2). The elementary excitations of the
edge mode are Majorana fermions γ(x) and edge vortices σ(x). (the dotted line
shows the associated branch cut)

1.2.1 Topological superconductivity

A good example of a topological superconductor in 2 dimensions is a
p-wave superconductor [3, 21, 23, 24]. As a model, one may consider the
following (‘p+ ip’) Bogoliubov-de Gennes Hamiltonian:

Hp+ip =
∑
p

[
(
p2

2m
− µ)(c†pcp − b†pbp) + (px + ipy)c†pbp + (px − ipy)b†pcp

]
,

(1.2.1)
where c (b) operators describe the electron (hole) degrees of freedom∗. For
µ > 0, the Hamiltonian (1.2.1) enters a topological phase, while the phase
at µ < 0 is referred to as trivial. Both of these phases are characterized
by an energy gap for the bulk excitations. But unlike in the trivial phase,
in the topological phase a finite sample of superconductor (1.2.1) would
host an additional gapless mode at its edge (Fig. 1.1). This edge mode is
chiral, being effectively described by the Hamiltonian Hedge:

Hedge =

∫
x

iγ(x)∂xγ(x)dx, (1.2.2)

∗The absence of a spin degree of freedom in this toy model is justified for a p-
wave superconductor, which allows for a superconducting pairing in the spin-polarized
channel.
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1 Introduction

where γ(x) is a Majorana fermion: an operator satisfying γ†(x) = γ(x)
that describes a neutral quasiparticle i.e. one that does not carry charge.

Experimentally, fabricating a topological p-wave superconductor ma-
terial (1.2.1) turns out to be extremely difficult [26]. Instead, a two-
dimensional topological superconductor can effectively be realized [25]
with a layer of an s-wave superconductor on a topological insulator sub-
strate (Fig. 1.1). Such a heterostructure has a similar effective Hamiltonian
to the p+ ip superconductor∗ (1.2.1) and features the gapless edge mode
(1.2.2). Recent experimental works have attempted this realization of
topological superconductivity [27, 28], and observed a signature consistent
with the Majorana edge mode (1.2.2). However, alternative explanations
of the observed data have also been proposed [9, 10, 29], and to date
no consensus has been reached on whether the observed signal is from
a Majorana mode. Optimistically, in the near-future one expects the
body of such evidence to grow further [7], and two-dimensional topological
superconductivity to be finally established and harnessed in a lab setting.

1.2.2 Majorana anyons: bulk and boundary

In addition to the Majorana edge mode, topological superconductors also
provide a platform for anyonic braiding statistics. The anyonic excitation
that has this statistics is an Abrikosov vortex of supercurrent [30], which in
a topological superconductor hosts a zero-energy Majorana bound state (or
zero-mode). While playing a crucial role in the vortex exchange properties,
Majorana zero modes γα themselves obey statistics of a fermionic type:

γαγβ + γβγα = 2δα,β . (1.2.3)

The anyonic statistics of the vortices is rooted in the Aharonov-Bohm
[31] effect imposed by the vortex. In particular, a 2π phase winding of
the superconducting order parameter ∆ can be translated into a π phase
shift for the fermionic variables. This can be represented by a branch-cut
boundary condition for the fermions (Fig. 1.2a), with implications for the
vortex statistics [32]. Consider the example sketched in Fig. 1.2, where two
vortices σ1 and σ2 are interchanged. Due to the inevitable crossing of a

∗Although unlike Hp+ip, it satisfies the time-reversal symmetry.
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1.2 Topological matter and braiding

,

(a)

y

x

,

-

'=' ×

t

(b)

x

y

Figure 1.2: Braiding of vortices in a 2D topological superconductor. (a) In
a topological superconductor, Abrikosov vortices σ1,2 host Majorana fermion
modes γ1,2 at zero energy. The magnetic flux quantum Φ0 = h/2e carried by
each vortex induces a branch-cut boundary condition (dotted lines). Any fermion
operator flips the sign once crossing the branch cut. Such crossing is guaranteed
to happen whenever the two vortices are exchanged. (b) In space and time,
the vortex exchange process implies braiding of their worldlines (on the left).
Compared to no exchange (on the right), such a braiding operation transforms
the Majorana degrees of freedom γ1,2 with a unitary: U12 = e

π
4
γ1γ2 .
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1 Introduction

branch cut, Majorana operator γ2 has to flip a sign. In algebraic form, this
exchange operation produces a unitary U12 such that U−1

12 γ2U12 = −γ1,
U−1
12 γ1U12 = γ2. By virtue of the Majorana operator algebra (1.2.3), these

relations imply the following form of the unitary:

U12 = e
π
4 γ1γ2 =

1√
2

(I + γ1γ2). (1.2.4)

More generally, a similar exchange of vortices σα and σβ would be rep-
resented by a unitary operation Uαβ = e

π
4 γαγβ . As different Uαβ do

not generally commute, the vortices σα have the exchange statistics of
non-abelian anyons.

An intense recent interest has been drawn to the relation between the
edge modes and anyonic excitations. Since Majoranas play a role in the
anyonic statistics of the bulk excitations, some have proposed to use edge
Majoranas to produce the anyonic statistics [33]. Edge mode theory also
permits vortex-like excitations, which can be characterized by branch
cuts (illustrated in Fig. 1.1). Some of the work presented in this thesis is
motivated by the question: can one reproduce the bulk anyonic statistics
using edge vortices?

1.2.3 Fractional Quantum Hall Effect. Laughlin
quasiparticles

In some two-dimensional materials subjected to strong magnetic fields at
low temperatures, the Hall conductivity [34] is measured to be quantized:

σxy = q
e2

h
, (1.2.5)

which is known as the Quantum Hall Effect. In the Integer Quantum Hall
Effect (IQHE) [35], the constant q in (1.2.5) is always an integer, while in
the Fractional Quantum Hall Effect (FQHE) [36] it can also take fractional
values. Similarly to topological superconductivity, the key to Quantum
Hall physics is in the gapless edge modes [37], which in this case carry the
quantized Hall currents. In the IQHE such gapless modes are populated
by ordinary electrons, and the quantization (1.2.5) with an integer q
follows from the conductance quantization theorem for 1D channels [38].
Meanwhile, the non-integer q of the FQHE materials seemingly contradicts
this theorem. This striking effect is explained by the presence of many-
body excitations with fractional charge, rather than electrons which carry
unit charge, in the gapless edge mode. In the Laughlin model [39], which

6



1.2 Topological matter and braiding

SC SCFM

FQHE

FQHE

,

Figure 1.3: Combining two samples of Laughlin FQHE materials allows one
to enact parafermionic zero-modes. For that, one has to deposit a sequence of
ferromagnets (FM) and superconductors (SC) on top of the interfacing sample
edges. Each interface between a ferromagnet and a superconductor hosts two
zero-modes: one per edge mode. The respective operators are characterized by
parafermionic statistics.

describes the subclass of FQHEs with inverse odd q = 1
2n+1 , there is a

single species of such fractional excitations. These Laughlin quasiparticles
ψ(x) carry charge qe and have anyonic exchange statistics:

ψ(x)ψ(y) = ψ(y)ψ(x)eiqπ, x > y. (1.2.6)

Since the exchange unitary is represented only by an overall phase eiqπ,
the Laughlin anyons are abelian.

With material in an FQHE phase of the Laughlin type, one can also
achieve non-abelian braiding statistics. For this, one needs to orchestrate
so-called parafermionic zero-modes [40]. This can be realized if a pair of
counterpropagating FQHE edge modes are gapped out by a sequence of
ferromagnets interlaced with superconductors (Fig. 1.3). On sites j ∈ Z
between the superconducting and ferromagnetic domains, a parafermionic

7



1 Introduction

zero-mode αj,L/R emerges. L and R here stand for left-propagating and
right-propagating, depending on the edge where αj,L/R is localized. The
parafermion operators αj,L/R themselves have statistics similar to Laughlin
quasiparticles, e.g.

αj,Rαk,R = αk,Rαj,Re
iqπ, j > k, (1.2.7)

which is abelian. However, a gradual exchange of two parafermion-hosting
sites can be used to produce a nonabelian operation [40]. Such a relation
between abelian and non-abelian statistics of parafermions can be closely
paralleled with Majorana braiding in a topological superconductor. Indeed,
Majorana fermions in Abrikosov vortices do not carry nonabelian statistics,
while the braiding of those vortices is nonabelian. In contrast to Majorana-
hosting vortices, however, the non-abelian braiding of parafermionic sites
allows for an even larger set of unitary operations [40]. In this thesis, we
will use this fact as a motivation for our investigation of parafermions
but not focus on their braiding per se. Instead, we are interested in
constructing new and useful ways to characterize parafermionic zero mode
statistics (1.2.7) in experiment.

1.3 Preparing ground states with a quantum
computer

In this section, we transition from the basic physics of digital quantum
hardware and move on to its potential utilization. One of the most
promising applications of quantum computers is preparing a simulation of
a many-body ground state. A version of this task is likely [18] to be among
the first problems that are solved on a quantum computer with a speed-up
relative to its classical counterparts. The ground state preparation problem
is relevant to quantum physics as well as classical physics and computer
science. As a natural example, it arises when studying the low-temperature
properties of many-body systems. This includes [18] multi-electron systems
in solid state physics, chemistry, and spin systems. In computer science,
a cost function optimization is also a common task, with application to
machine learning and logistics [41]. Such tasks can also be mapped onto a
ground state finding problem for a particular Hamiltonian [16].

The hope for the success of quantum computers in ground state sim-
ulation lies in the exponentially greater expressiveness of a quantum
computer compared to a classical one. However, one does not expect such
an exponential speed-up in the context of every problem. In particular,

8



1.3 Preparing ground states with a quantum computer

NP-complete ground state search problems, e.g. for classical spin models
[42], are not expected to be polynomially solvable on a quantum computer.
For quantum many-body Hamiltonians, accessing the ground state even
in some restricted Hamiltonian families is already QMA-complete [43]
(quantum analog of NP-complete). On the other hand, any polynomially
complex quantum computation can be mapped [44] onto the problem of
distilling the exact ground state of a particular Hamiltonian from a given
good approximation thereof. These mathematical results highlight the
relevance of ground state preparation to general quantum speed-ups and
the significance of approximating target ground states efficiently.

To prepare a ground state on a quantum computer, one needs to build
and utilize an appropriate quantum algorithm. On a broad level, there
already exist multiple paradigms constructing such algorithms. These
include adiabatic quantum computing [45], quantum phase estimation [46],
and variational quantum algorithms [47]. An ongoing effort is devoted
to optimizing such approaches for practical use. This optimization is
especially critical if an algorithm is to be employed in the near-term [11],
before existing quantum hardware is sufficiently protected from the errors.
For such applications, the exact time complexity of an algorithm is as
crucial as its asymptotic scaling. In addition to optimizing existing ideas,
creating original methods for ground state preparation is also of interest.
A novel approach to this problem may yield a sizeable improvement in
time complexity, especially in the context of specific niche applications.

1.3.1 Variational quantum algorithms

A variational quantum algorithm (Fig. 1.4) is a quantum-classical hybrid
algorithm which aims to approximate the ground state of a given Hamil-
tonian by utilizing the variational principle [47]. Since quantum circuits
are in general exponentially hard to represent classically, a variational
quantum algorithm employs a quantum circuit as a powerful variational
ansatz. To enable the optimization procedure, the energy of the ansatz
state is being measured at the end of the circuit by means of sampling from
the target Hamiltonian. The quantum circuit is then tuned to ensure the
minimization of said energy. Variational quantum algorithm is well-suited
for use on near-term quantum devices [47], being not highly sensitive to
noise and not requiring an implementation of deep quantum circuits. The
success of this method depends on the efficiency of the energy measurement
[48–50], choice of optimization procedure [51–53], and the expressiveness
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Figure 1.4: Variational quantum algorithms. (a) The hybrid quantum-classical
scheme that was introduced in [47]. The algorithm employs a tunable ansatz

circuit U(θ⃗ ), and aims to find the value of parameters θ⃗min which minimizes

the variational energy E(θ⃗ ). Quantum hardware need not be continuously in
a coherent state since the information is processed classically. This is the key
advantage of such an algorithm for near-term implementation. (b) Schematic
illustration of the ansatz expressivity. In the total Hilbert space of the system,
H, only the small subset HU is spanned by the variational states. It is a manifold
that is usually much lower in dimensionality (polynomial versus exponential),

and generally, the ground state |GS⟩ lies outside of it. The state |ψ(θ⃗min)⟩
produced by the variational algorithm only approximates |GS⟩. It is the task of

ansatz construction that the expected separation between |GS⟩ and |ψ(θ⃗min)⟩ is
ensured to be minimal. For that, HU has to span the physically relevant part of
the Hilbert space.

of the ansatz circuits [54–56]. Since the very potential for exponential
speed-up is rooted in the capacity of the quantum circuit, such ansatz
design is particularly crucial.

To be efficient, a variational ansatz circuit needs to be tailored to the
problem at hand. In the quantum chemistry context, a common way to do
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1.3 Preparing ground states with a quantum computer

this [47, 54] is through the unitary coupled-cluster (UCC) method. The
UCC state has the form:

|ψUCC⟩ = U |ψHF ⟩ = eT1+T2+T3+... |ψHF⟩ , (1.3.1)

where |ψHF⟩ is a Hartree-Fock approximation to the fermionic ground
state, and anti-Hermitian generators Tn consist of 2n-fermion operators,
each adding n excitations to the state |ψHF⟩. For example:

T1 =
∑
α,β

Tαβ1 c†αcβ , T2 =
∑
µ,ν,λ,ρ

Tµνλρ2 c†µc
†
νcλcρ (1.3.2)

With the appropriate coefficients in Tn, UCC is able to lower the energy
beyond that of |ψHF⟩ by introducing the right type of correlations. As using
the generators with all possible orders n is computationally prohibitive,
one often truncates the UCC to single and double excitation operators
T1, T2 only. This is also referred to as UCCSD (SD stands for ‘singles and
doubles’). The efficiency of this approach is provable on the perturbative
level, where it is ensured by the linked-cluster theorem [57].

To utilize UCCSD in a variational quantum algorithm, one needs to
implement the unitary in Eq. (1.3.1) as a digital quantum circuit. In
most cases this is not possible directly, and instead requires a Trotter-
Suzuki approximation [58, 59]. For example, a UCCSD unitary can be
approximated (‘Trotterized’) into K Trotter steps as follows:

eT1+T2 ≃
K∏
k=1

∏
α,β

e
1
K (Tαβ1 c†αcβ+h.c.)

∏
µ,ν,λ,ρ

e
1
K (Tµνλρ2 c†µc

†
νcλcρ+h.c.)

 .
(1.3.3)

Given this form of the ansatz, realizing (1.3.3) as a quantum circuit is
a routine procedure. Indeed, fermionic operators can be mapped onto
Pauli matrices, and exponentials of Pauli strings can be represented with
a quantum circuit using the standard procedures of [60]. By tuning
the coefficients Tαβ , one can then employ the ansatz circuit (1.3.3) in a
variational procedure.

Along with UCC, there exist alternative approaches to ansatz construc-
tion. One example is the Hamiltonian Variational Ansatz [56], which is
based on the principle of adiabatic state preparation. Since adiabatic
evolution is capable of producing complex ground states, its crudely Trot-
terized version is expected to have similar capabilities. The accuracy of
such preparation is further enhanced by the variational procedure, making
Hamiltonian Variational Ansatz a sound approach. Another method is
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Figure 1.5: Quantum cooling. (a) In quantum mechanics, cooling implies a
modification of the density matrix such that it shifts to lower energies (red to
blue profile). With perfect cooling, the final state would be dominated by the
ground state (blue profile). (b) To cool a physical system (S), it is standard to
mediate the process by a controlled system (fridge, F). The process is two-fold.
Firstly, the system and fridge are brought to interact. The energy from the
system is then spontaneously transferred to the fridge (illustrated by a change
of color). Secondly, the fridge has to emit surplus energy into the environment.
The latter process is to be driven by external control, and would not happen
under equilibrium thermodynamics. In algorithmic quantum cooling, one can
achieve this by manually driving the fridge to its ground state.

ADAPT [55], which suggests to add tunable elements to the quantum cir-
cuit one at a time, while optimizing the parameters of such an ever-growing
ansatz. The added unitary is to be picked adaptively, by estimating and op-
timizing the energy decrease that is expected from this addition. ADAPT
is digital by construction and automatically adapts itself to the problem
of interest, thus forming another viable approach to ansatz design. The
methods presented above have both strengths and limitations — each is
founded on specific analytical consideration, with some concessions made
for compatibility with near-term quantum hardware. As such, there is an
ongoing effort to design new methods of ansatz construction. The ultimate
goal of these novel methods is to improve the stringent trade-off between
the capacity of the circuit and its ease of implementation.
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1.3 Preparing ground states with a quantum computer

1.3.2 Dissipative quantum algorithms

Dissipative approach to quantum computing [61] implies performing a
computation through an engineered evolution of an open quantum system,
rather than an isolated one. This paradigm is less developed relative
to the more established scheme of unitary-based computing, albeit it is
theoretically sound. In particular, it was proven that any polynomially-
complex algorithm performed with a standard quantum circuit can be
mapped onto dissipative quantum hardware with only polynomial overhead
[61]. Any evolution of an open quantum system, conversely, can be
directly realized on digital quantum hardware by using ancillary registers.
Intriguingly, with the latter procedure, one may apply the dissipative
paradigm directly to digital quantum computing — potentially leading to
new and powerful algorithms.

In the context of applying digital quantum hardware to ground state
preparation, the dissipative paradigm is of direct relevance. Indeed, the
low-energy states in nature are normally produced via a dissipative process
of cooling (Fig. 1.5). Cooling is also employed in quantum engineering, for
instance when initializing a null computational basis state of a quantum
computer [62–64]. In the context of digital quantum computation, cooling
was proposed early on [12] as a method of ground state simulation. In
this case, even a single ancillary qubit can be used to emulate a fridge.
Indeed, to drive the qubit to its ground state is straightforward — and
being able to prepare the low energy state of the fridge is key to controlled
cooling (Fig. 1.5b). Despite this being an interesting possibility, this idea
remained largely undeveloped after the work of Lloyd [12]. Instead, most
of research in algorithmic quantum cooling is focused on analog quantum
computation [65, 66].

Another way to include dissipation into a state preparation protocol
is to introduce weak measurements [67, 68]. Compared to conventional
(projective) quantum measurements, weak measurements extract less in-
formation about the system and modify its state in a less drastic fashion.
These unusual measurements require an auxilliary ‘detector’ system, which
is coupled to the subject system only for a brief period of time. Applica-
tion of such weak measurements to quantum state preparation is actively
studied under the framework of quantum control theory [69–73] . In the
traditional approaches, the system is controlled quantum-coherently, and
the information obtained from the weak measurements can be fed back
to modify the direction of this unitary evolution. A feedback of this type
is classified as closed-loop quantum control. Compared to pre-defined
unitary evolution, including such feedback allows to complete the state
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preparation task with fewer resources or on a shorter timescale. Closed-
loop quantum control can even be taken to the extreme, by removing the
quantum-coherent part of the evolution altogether [69, 74, 75]. In this
case, the weak measurements are used to inform the subsequent evolution,
which is also driven by weak measurements. This approach, which goes
under the name “control-free control”, is now under active investigation
both in experiment and theory [69].

1.4 This thesis

Chapter 2

Non-abelian statistics in topological superconductors can be realized by
exchanging vortices that host Majorana zero-modes. However, using
the bulk Abrikosov vortices for this purpose has proven to be impractical.
Instead, many experimental groups turned to using Majorana zero-modes at
the ends of superconducting nanowires, an effort that has also proven to be
challenging. In this chapter, we propose to use a topological superconductor
to realize the non-abelian braiding of an itinerant edge vortex with a
bulk vortex. A voltage-driven Josephson junction can be employed to
deterministically produce an edge vortex available for a braiding procedure.
After a braiding operation, the vortices are to be fused back at another
Josephson junction utilizing another voltage bias. We predict that the
charge produced after the fusion is sensitive to the braiding operation. In
particular, a single electron charge is produced after the braiding, and no
charge if no braiding has occurred.

Chapter 3

We put forward a scheme to realize and detect another phenomenon of
non-abelian statistics - anyon fusion. For this, we suggest employing the
chiral edge vortex architecture introduced in the previous chapter. In
a topological superconductor, by fusing Majorana-hosting vortices one
produces a mixture of zero and one Dirac fermion. We design an experiment
to capture this property, using four edge modes and four Josephson junction
terminals. We propose to create two pairs of such vortices (1 and 2, 3
and 4) at the input terminals, and fuse them at the output terminals in a
different configuration (1 with 3, 2 with 4). We predict, that the vortex
fusion produces an equal weight superposition of two electrons and no
electrons in the two output channels. This reproduces the fusion rule with
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a direct effect on the output observables: charge transfer and fermion
parity. In particular, we show that (a) the average fermion parity in each
of the two leads is exactly vanishing upon fusion and (b) charge transfer is
directly correlated, with the difference of output currents exhibiting zero
noise while their sum remaining noiseful.

Chapter 4

Parafermionic zero-modes allow to realize non-abelian braiding based on
a Laughlin type Fractional Quantum Hall material. Unfortunately, they
were not yet shown to be realized in an experiment. It is therefore of
high interest to characterize parafermions with appropriate observables.
To that end, we investigate the possibilities offered by the Clauser-Horne-
Shimony-Holt (CHSH) inequality. It is a version of Bell inequality, which
signifies the extent of quantum correlations between two separated physical
systems. Firstly, we generalize this and other notions of Bell nonlocality to
the context of non-hermitian and potentially non-commuting observables.
These are characteristic for systems of parafermions, due to the anyonic na-
ture of these quasiparticles. Secondly, for such generalized observables, we
draw up several bounds and relations for the intra-system and inter-system
correlations. We show how these can be probed with parafermions, and
predict that our correlation bounds are saturated much tighter when the
two subsystems host non-commuting, rather than commuting observables.
Paradoxically, the non-commutation of observables in these separated
anyonic systems could be interpreted as superluminal signaling. This is
only a simulation of such signaling, however. We show that the relativistic
causality is automatically restored when such paradoxical correlations are
to be probed in a physical experiment.

Chapter 5

Successfully employing a variational quantum algorithm for ground state
preparation requires the use of appropriate ansatz circuits. The main
requirements for such an ansatz are high expressivity and ease of use with
digital quantum hardware. One such prospective ansatz, inspired by com-
putational quantum chemistry, is a Trotterized version of Unitary Coupled
Cluster. The ansatz is analytically justified by the linked cluster theorem,
which proves its efficiency in the perturbation theory. Unfortunately, this
approach relies on Trotterization which is not exact. In this chapter, we
put forward an approach to ansatz creation that follows the linked-cluster
theorem while not relying on Trotterization. The basis of the construction
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is Quantum Combinatorial Ansatz (QCA). QCA is given by a sequence
of tunable Pauli string-generated rotations, spanning the entire N-qubit
Hilbert space in a minimum number of such elementary rotations. We
give a rule for a systematic reduction of QCA to practical size, based on
many-body perturbation theory. This ansatz construction turns out to
satisfy the linked-cluster theorem, therefore proving its efficiency in the
perturbative limit. Finally, we numerically test a few variants of QCA-
based ansatz constructions by applying them to Ising spin chains. We find
that these allow for a good asymptotic convergence to the ground state in
the paramagnetic and the ferromagnetic phases of this model. As expected
from perturbative analytics, in the weakly coupled limit of the model, the
variant of an ansatz construction that satisfies the linked-cluster theorem
shows optimal performance.

Chapter 6

Using dissipative approaches in digital quantum hardware is an area
of research that is currently under active development. One natural
application is ground state preparation. In this chapter, we use the
principle of cooling to design a ground state preparation algorithm. To
that end, we propose to simulate the interaction between the target system
and a single qubit, transferring the energy to the qubit. The qubit,
therefore, plays the role of a fridge. To simulate the cooling process,
this has to be combined with the internal system and fridge evolutions.
The final ingredient of the protocol is the measurement and reset of
the fridge qubit, which introduces the dissipative element necessary to
reduce the system energy. We develop the protocol by first pinning down
the case of a single-qubit system and then extending the protocol to a
general system of N qubits. The role of energy conservation is established,
given by an extension of the Fermi Golden Rule to the case of finite-
time evolution. We study the issues of Trotter error and Heisenberg
energy uncertainty and propose two scalable approaches to tackle these.
The BangBang approach, characterized by high Trotter error and large
Heisenberg uncertainty, yields low implementation complexity and is thus
suitable for near-term implementation. The complementary LogSweep
approach yields an asymptotically vanishing energy uncertainty and Trotter
error. However, this asymptotic accuracy is at the cost of extensive circuit
complexity. Numerically, we apply LogSweep to transverse-field Ising
chains in their paramagnetic and critical states. The time complexity of
such ground preparation turns out to scale algebraically with a desired
precision.
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Chapter 7

This chapter is focused on another dissipative approach to quantum state
preparation: steering by generalized measurements. To reduce the time
in which the target state is prepared, we propose to actively choose the
applied measurements on-the-go. This active choice is to be based on
the information obtained from the previous measurements. The possi-
ble policies for active-decision steering are influenced by the presence of
entanglement in the target state. For strongly correlated target states,
creating a policy for active-decision steering is most challenging, due to
the vastness of the many-body Hilbert space. Therefore, for efficient
decision-making special Hilbert space “navigation techniques” are needed.
Two approximate ways of representing such navigation are developed:
via (i) a cost function landscape and (ii) a semiclassical Quantum State
Machine. From such simplified Hilbert space representations, one derives
the respective active-decision policies. We numerically apply these policies
to two paradigmatic targets: AKLT state and W-state. In each case, the
introduction of active decision achieves up to factor 10 speed-up of the
target state preparation.
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2 Deterministic creation and
braiding of chiral edge
vortices

2.1 Introduction

Non-Abelian anyons have the property that a pairwise exchange operation
may produce a different state, not simply related to the initial state by
a phase factor [76]. Because such “braiding” operations are protected
from local sources of decoherence they are in demand for the purpose
of quantum computations [3]. Charge e/4 quasiparticles in the ν = 5/2
quantum Hall effect were the first candidates for non-Abelian statistics
[77], followed by vortices in topological superconductors [32, 78].

Because experimental evidence for non-Abelian anyons in the quantum
Hall effect [79, 80] has remained inconclusive, the experimental effort now
focuses on the superconducting realizations [81]. While the mathematical
description of the braiding operation (the Clifford algebra) is the same in
both realizations, the way in which braiding is implemented is altogether
different: In the quantum Hall effect one uses the chiral motion along the
edge to exchange pairs of non-Abelian anyons and demonstrate non-Abelian
statistics [82–84]. In contrast, in a superconductor the non-Abelian anyons
are midgap states (“zero-modes”) bound to a defect (a vortex [25, 85] or
the end-point of a nanowire [86–88]). Because they are immobile, existing
proposals to demonstrate non-Abelian statistics do not actually exchange
the zero-modes in real space [89–93].

Topological superconductors do have chiral edge modes [78], and recent
experimental progress [27] has motivated the search for ways to use the
chiral motion for a braiding operation [33]. The obstruction one needs to
overcome is that the Majorana fermions which propagate along the edge of
a superconductor have conventional fermionic exchange statistics. In the
quantum Hall effect each charge e/4 quasiparticle contains a zero-mode
and the exchange of two quasiparticles is a non-Abelian operation on a
topological qubit encoded in the zero-modes. However, Majorana fermions
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Figure 2.1: Panels a) and b): Josephson junction geometries to deterministi-
cally inject a pair of edge vortices σ1, σ2 in chiral edge channels at opposite
boundaries of a superconductor (yellow). The injection happens in response
to a 2π increment in the superconducting phase difference ϕ(t), driven by a
time-dependent voltage V (t) or flux Φ(t). In panel a) edge vortex σ1 crosses
the 2π branch cut of a bulk vortex, resulting in a fermion parity switch. Panel
c) shows the corresponding braiding of world lines in space-time: an overpass
indicates that the vortex crosses a branch cut.

contain no zero-mode which might encode a topological qubit, one needs
vortices for that.

In this chapter we show how one can exploit the chiral motion along the
edge of a topological superconductor to exchange zero-modes in real space.
The key innovative element of our design, which distinguishes it from Ref.
33, is the use of a biased Josephson junction to on demand inject a pair of
isolated vortices into chiral edge channels. Previous studies of such “edge
vortices” relied on quantum fluctuations of the phase to create a vortex
pair in the superconducting condensate [94–97], but here the injection
is entirely deterministic. When the two mobile edge vortices encircle a
localized bulk vortex their fermion parity switches from even to odd, as a
demonstration of non-Abelian braiding statistics. The entire operation,
injection–braiding–detection, can be carried out fully electrically, without
requiring time-dependent control over Coulomb interactions or tunnel
probabilities.

2.2 Edge vortex injection

Fig. 2.1 shows different ways in which the edge vortex can be injected:
driven by a flux bias or by a voltage bias over a Josephson junction.
We show two possible physical systems that support chiral edge channels
moving in the same direction on opposite boundaries of the superconductor.
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2.3 Braiding of an edge vortex with a bulk vortex

Both are hybrid systems, where a topologically trivial superconductor
(spin-singlet s-wave pair potential ∆0) is combined with a topologically
nontrivial material: a 2D Chern insulator (quantum anomalous Hall
insulator) [27, 98] (panel a) or a 3D topological insulator gapped on the
surface by ferromagnets with opposite magnetisation M↑,↓ [94, 99] (panel
b).

The superconducting phase difference ϕ(t) across the Josephson junc-
tion is incremented with 2π by application of a voltage pulse V (t) (with∫
V (t)dt = h/2e), or by an h/2e increase of the flux Φ(t) through an

external superconducting loop. If the width W of the superconductor is
large compared to the coherence length ξ0 = ℏv/∆0, the edge channels at
x = ±W/2 are not coupled by the Josephson junction — except when ϕ is
near π, as follows from the junction Hamiltonian [25, 99]

HJ = vpxσz + ∆0σy cos(ϕ/2). (2.2.1)

The Pauli matrices act on excitations moving in the ±x direction with
velocity v, in a single mode for ξ0 large compared to the thickness of the
junction in the y-direction.

At ϕ = π a Josephson vortex passes through the superconductor [100,
101]. A Josephson vortex is a 2π phase winding for the pair potential, so
a π phase shift for an unpaired fermion. As explained in Ref. 102, the
passage of the Josephson vortex leaves behind a pair of edge vortices: a
phase boundary σ(y) on each edge, at which the phase of the Majorana
fermion wave function ψ(y) jumps by π. Because of the reality constraint
on ψ, a π phase jump (a minus sign) is stable: it can only be removed by
merging with another π phase jump. And because the phase boundary
is tied to the fermion wave function, it shares the same chiral motion,
σ(y, t) = σ(y − vt).

2.3 Braiding of an edge vortex with a bulk
vortex

Two vortices may be in a state of odd or even fermion parity, meaning
that when they fuse they may or may not leave behind an unpaired
electron. The fermion parity of vortices σ1 and σ2 is encoded in the ±1
eigenvalue of the parity operator P12 = iγ1γ2, where γn is the Majorana
operator associated with the zero-mode in vortex n∗. The two edge vortices

∗Abrikosov vortices in the bulk have a normal core, which edge vortices lack. Both
are non-Abelian anyons because a zero-mode does not need a normal core, see the
explicit calculation for a coreless Josephson vortex in Ref. 103.
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Figure 2.2: Starting from the layout of Fig. 2.1a, we have inserted a second
Josephson junction (J2) and we have added normal metal contacts (N1, N2) to
measure the current I(t) carried by the edge modes in response to the voltage V (t)
applied to the superconductor. A unit charge per 2π increment of ϕ is transferred
from the superconductor into the normal metal contact. The counterpropagating
Dirac edge mode along the upper edge of the Chern insulator is decoupled from
the superconductor and plays no role in the analysis.

are created at the Josephson junction in a state of even fermion parity,
P12 = +1, but as illustrated in Fig. 2.1a that may change as they move
away from the junction: If one of the edge vortices, say σ1, crosses the
branch cut of the phase winding around a bulk vortex, γ1 picks up a minus
sign and the fermion parity P12 7→ −1 switches from even to odd [32].
This is the essence of the non-Abelian braiding statistics of vortices.

2.4 Detection of the fermion-parity switch

Fig. 2.2 shows the voltage-biased layout for a fully electrical measurement.
The fermion parity of the edge vortices cannot be detected if they remain
separated on opposite edges, so we first fuse them at a second Josephson
junction. The characteristic time scale of the injection process is the
time tinj ≃ (ξ0/W )(dϕ/dt)−1 when ϕ(t) is within ξ0/W from π, and if the
distance L between the two Josephson junctions is less than vtinj we can
neglect the time delay between the injection at the first junction J1 and
the fusion at the second junction J2. This is convenient, because then
the whole process can be driven by a single voltage pulse V (t) applied to
the region |y| < L/2 between the two junctions, relative to the grounded
regions y < −L/2 and y > L/2 outside.

Both these grounded regions are connected to normal metal electrodes

22



2.5 Mapping onto a scattering problem

N1 and N2 and the electrical current I(t) between them is measured. As
we will now show, the transferred charge Q =

∫
I(t)dt is quantized at unit

electron charge if the region between the Josephson junctions contains a
bulk vortex, while Q = 0 if it does not.

2.5 Mapping onto a scattering problem

Tunneling of edge vortices driven by quantum fluctuations of the phase is
a many-body problem of some complexity [102]. We avoid this because
we rely on an external bias to inject the edge vortices, hence the phase
ϕ(t) can be treated as a classical variable with a given time dependence.

The dynamics of the Majorana fermions remains fully quantum mechan-
ical, governed by the Hamiltonian

H = i

(
−v∂/∂y −µ[y, ϕ(t)]
µ[y, ϕ(t)] −v∂/∂y

)
≡ vpyσ0 + µσy. (2.5.1)

(We set ℏ = 1.) The 2×2 Hermitian matrix H acts on the Majorana fermion
wave functions Ψ = (ψ1, ψ2) at opposite edges of the superconductor, both
propagating in the +y direction (hence the unit matrix σ0) The interedge
coupling µ multiplies the σy Pauli matrix to ensure that H is purely
imaginary and the wave equation ∂Ψ/∂t = −iHΨ is purely real (as it
should be for a Majorana fermion).

For low-energy, long-wavelength wave packets the y-dependence of the
interedge coupling may be replaced by a delta function, µ[y, ϕ(t)] =
vδ(y)η(t). This “instaneous scattering approximation” [104] is valid if the
transit time ttransit ≃ L/v of the wave packet through the system is short
compared to the characteristic time scale tinj of the vortex injection, hence
if dϕ/dt≪ vξ0/Ajunction, where Ajunction = WL is the area of the region
between J1 and J2. In this regime there is no need to explicitly consider
the vortex dynamics in between the Josephson junctions, instead we can
treat this as a scattering problem “from the outside”.

Incoming and outgoing states are related by

Ψout(E) =

∫ ∞

−∞

dω

2π
S(ω)Ψin(E − ω), (2.5.2)

where S(ω) is the adiabatic (or “frozen”) scattering matrix,

S(ω) =

∫ ∞

−∞
dt eiωtS(t), S(t) = exp

(
−iη(t)σy

)
, (2.5.3)
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2 Deterministic creation and braiding of chiral edge vortices

describing the scattering at E = 0 for a fixed ϕ(t).
As we shall see in a moment, the transferred charge is independent of

how η(t) = η[ϕ(t)] is varied as a function of time, only the net increment
δη = η(t → ∞) − η(t → −∞) matters. When there is no vortex in the
region between the two Josephson junctions J1 and J2 there is no difference
between ϕ = 0 and ϕ = 2π hence δη = 0. On the contrary, when there is a
bulk vortex in this region we find∗

η = 2 arccos

(
cos(ϕ/2) + tanhβ

1 + cos(ϕ/2) tanhβ

)
, β =

W

ξ0
cos

ϕ

2
, (2.5.4)

hence δη = 2π. More generally, when there are Nvortex vortices between
J1 and J2 the phase increment is

δη = π(1 − (−1)Nvortex). (2.5.5)

In Fig. 2.3 we show that the analytical result (2.5.4) agrees well with a
computer simulation (using Kwant [105]) of a lattice model of a quantum
anomalous Hall insulator with induced s-wave superconductivity [98].

2.6 Transferred charge

The expectation value of the transferred charge†,

Q = e

∫ ∞

0

dE

2π
⟨Ψ†

out(E)σyΨout(E)⟩, (2.6.1)

is given at zero temperature, when

⟨Ψin,n(E)Ψin,m(E′)⟩ = δnmδ(E − E′)θ(−E), (2.6.2)

by an integral over positive excitation energies,

Q =
e

4π2

∫ ∞

0+
dω ωTrS†(ω)σyS(ω). (2.6.3)

(The factor ω =
∫∞
0
dE θ(ω − E) appears from the integration over the

step function.) Because S(−ω) = S∗(ω) the integrand in Eq. (2.6.3) is an

∗The calculation of the scattering phase shift η(ϕ) is given in App. 2.A. Eq. (2.5.4)
for 0 ≤ ϕ ≤ 2π repeats periodically modulo 2π.

†The charge operator Q = eσz in the electron-hole basis transforms into Q = eσy

in the basis of Majorana fermions.
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2.6 Transferred charge

Figure 2.3: Bottom panel: Scattering phase η(ϕ)−η(0) according to Eq. (2.5.4)
(solid curve) and as obtained numerically (blue data points) from a lattice
model [98] of the system shown in Fig. 2.2. There are no fit parameters in the
comparison, the ratio W/ξ0 = 4.04 was obtained directly from the simulation
The grey data points show the result without vortices, when there is no net
increment as ϕ advances from 0 to 2π.

even function of ω and the integral can be extended to negative ω,

Q =
e

8π2

∫ ∞

−∞
dω ωTrS†(ω)σyS(ω)

=
ie

4π

∫ ∞

−∞
dtTrS†(t)σy

∂

∂t
S(t). (2.6.4)
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2 Deterministic creation and braiding of chiral edge vortices

This is the superconducting analogue of Brouwer’s charge-pumping formula
[106] (see Ref. 107 for an alternative derivation).

Substitution of S(t) = exp
(
−iη(t)σy

)
results in

Q = (e/2π)δη = e (2.6.5)

if Nvortex is odd, while Q = 0 if Nvortex is even.

2.7 Transferred particle number

This quantized transfer of one electron charge may be accompanied by the
non-quantized transfer of neutral electron-hole pairs. To assess this we
calculate the expectation value of the transferred particle number, given
by Eq. (2.6.3) upon substitution of the charge operator eσy by unity:

Nparticles =
1

4π2

∫ ∞

0+
dω ωTrS†(ω)S(ω). (2.7.1)

This integrand is an odd function of ω, so we cannot easily transform it to
the time domain.

We proceed instead by calculating S(ω) from Eq. (2.5.3), in the approx-
imation η(t) ≈ 2 arccos[− tanh(t/tinj)], accurate when W/ξ0 ≫ 1. The
result is

S(ω) = −
2πωt2injσ0

sinh(πωtinj/2)
−

2πωt2injσy

cosh(πωtinj/2)
− 2πδ(ω)

⇒ Nparticles = (84/π4)ζ(3) = 1.037. (2.7.2)

One can construct a special t-dependent phase variation∗ that makes
Nparticles exactly equal to unity, by analogy with the “leviton” [104, 108],
but even without any fine tuning the charge transfer is nearly noiseless.

2.8 Discussion

We have shown how the chiral motion of edge modes in a topological
superconductor can be harnessed to braid a pair of non-Abelian anyons:
one immobile in a bulk vortex, the other mobile in an edge vortex. The
experimental layout of Fig. 2.2 is directly applicable to the recently reported

∗The special time dependence η(t) = π + 2arctan(t/tinj) produces precisely one
particle with charge e.
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2.8 Discussion

chiral Majorana fermion modes in quantum anomalous Hall insulator–
superconductor structures [27, 109].

While the presence of a bulk vortex and the crossing of its branch cut is
essential for the charge transfer, it is of the essence for braiding that no
tunnel coupling or Coulomb coupling to the edge vortices is needed. This
distinguishes the braiding experiment proposed here to tunnel probes of
Majorana zero-modes that can also produce a quantized charge transfer
[107]. In the quantum Hall effect attempts to use edge modes for braiding
[80] have been inconclusive because of Coulomb coupling with bulk quasi-
particles [110]. The superconductor offers a large gap, to suppress tunnel
coupling, and a large capacitance, to suppress Coulomb coupling, which
could make the edge mode approach to braiding a viable alternative to
existing approaches using zero-modes bound to superconducting nanowires
[89–93].

In the quantum Hall effect there is a drive to use quasiparticles in
edge modes as “flying qubits” for quantum information processing [111].
Edge vortices in a topological superconductor could play the same role
for topological quantum computation. The pair of edge vortices in the
geometry of Fig. 2.1a carries a topologically protected qubit encoded in the
fermion parity. The deterministic voltage-driven injection of edge vortices
that we have proposed here could become a key building block for such
applications.
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2 Deterministic creation and braiding of chiral edge vortices

Figure 2.4: Two scattering geometries of a Josephson junction connecting chiral
Majorana edge modes. We contrast the case of co-propagating modes in the left
panel, with the case of counter-propagating modes in the right panel.

2.A Calculation of the scattering phase shift

We calculate the scattering phase shift at the Fermi level in the dou-
ble Josephson junction geometry of Fig. 2.2. We first consider a single
Josephson junction, shown schematically in Fig. 2.4. We specify the phase
difference ϕ in the interval (−2π, 2π), to accomodate the 4π-periodicity of
the junction Hamiltonian (2.2.1).

2.A.1 Single Josephson junction

The scattering matrix SJ of the Josephson junction relates incoming and
outgoing amplitudes via

SJ

(
a1
a2

)
=

(
b1
b2

)
. (2.A.1)

At the Fermi level SJ ∈ SO(2) is a 2×2 orthogonal matrix with determinant
+1, of the general form

SJ =

(
cosα sinα
− sinα cosα

)
= eiασy . (2.A.2)

We seek the ϕ-dependence of the phase shift α(ϕ), in particular the
increment δα = α(2π) − α(0).

In our geometry of co-propagating edge modes (left panel in Fig. 2.4),
the incoming modes are on one side of the junction and the outgoing modes
are at the other side. Fu and Kane [99] studied a different geometry with
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2.A Calculation of the scattering phase shift
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Figure 2.5: Plot of the ϕ-dependence of the scattering phase shift α of a
Josephson junction between counter-propagating Majorana edge modes. The
plot is calculated from Eq. (2.A.5) for three values of the ratio W/ξ0.

counter-propagating modes (right panel), where the two incoming modes,
as well as the two outgoing modes, are on opposite sides of the junction.
As we shall see, the difference is crucial for the quantization of δα.

Counter-propagating edge modes

For counter-propagating edge modes the SO(2) scattering matrix is [99]

SJ =

(
tanhβ 1/ coshβ

−1/ coshβ tanhβ

)
, β =

W

ξ0
cos(ϕ/2). (2.A.3)

If the superconducting phase difference ϕ across the junction is advanced
by 2π, a fermion crossing the junction experiences a phase shift of π. Hence
the diagonal matrix elements of SJ change sign, while the off-diagonal
elements do not change sign, as expressed by the symmetry relation

SJ(ϕ+ 2π) = −ST
J (ϕ). (2.A.4)

The scattering phase shift α in SJ = eiασy from Eq. (2.A.3) equals

α = arccos (tanhβ) ∈ (0, π), (2.A.5)

29



2 Deterministic creation and braiding of chiral edge vortices
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Figure 2.6: Scattering geometries that define S0, TW , and SJ.

plotted in Fig. 2.5. The increment

δα ≈ π − 4e−W/ξ0 (2.A.6)

approaches π for W/ξ0 → ∞, but it is not quantized. Also note that
α(−ϕ) = α(ϕ), so the net phase increment over a 4π period is zero. Both
these results for counter-propagating modes change when we consider
co-propagating modes.

Co-propagating edge modes

In the case of co-propagating edge modes, as in the left panel of Fig. 2.4,
each element of the scattering matrix SJ relates amplitudes on opposite
sides of the Josephson junction, so it should change sign when ϕ is advanced
by 2π. Instead of Eq. (2.A.4) we thus have

SJ(ϕ+ 2π) = −SJ(ϕ). (2.A.7)

It follows that α(2π) = α(0) + π, modulo 2π, hence the phase increment

δα = π (2.A.8)

is exactly quantized, independent of the ratio W/ξ0. The step profile α(ϕ)
does depend on this ratio, as we now calculate.

We first consider the W → 0 limit, when the Josephson junction is a
point contact as in Fig. 2.6, upper left panel. The two incoming Majorana
operators γ1, γ2 form an electron operator c = (γ1 − iγ2)/

√
2 that is

transmitted through the junction with a ϕ/2 phase shift,

cout = eiϕ/2cin. (2.A.9)
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2.A Calculation of the scattering phase shift

The corresponding scattering matrix for the Majorana modes is

S0 = ei(ϕ/2)σy . (2.A.10)

For a finite width W we insert a line junction described by the Hamilto-
nian (2.2.1). The corresponding transfer matrix (lower left panel in Fig.
2.6) is

TW = e−βσx , β =
W

ξ0
cos(ϕ/2). (2.A.11)

Combination of S0 and TW (right panel in Fig. 2.6) produces upon mode
matching the 2 × 2 scattering matrix SJ of the entire Josephson junction,

TW

(
a1
b1

)
=

(
b′2
a′2

)
, S0

(
b′2
a2

)
=

(
a′2
b2

)
,

⇒ SJ

(
a1
a2

)
=

(
b1
b2

)
. (2.A.12)

The result is

SJ =
1

coshβ + cos(ϕ/2) sinhβ

×
(

cos(ϕ/2) coshβ + sinhβ sin(ϕ/2)
− sin(ϕ/2) cos(ϕ/2) coshβ + sinhβ

)
. (2.A.13)

The corresponding scattering phase shift in SJ = eiασy is

α = arccos

(
cos(ϕ/2) + tanhβ

1 + cos(ϕ/2) tanhβ

)
× sign (ϕ). (2.A.14)

It increases monotonically from α = −π at ϕ = −2π through α = 0 at
ϕ = 0 to α = π at ϕ = 2π. As shown in Fig. 2.7, the increase starts out
linearly for W/ξ0 ≪ 1, and then becomes more and more step-function
like with increasing W .

For W/ξ0 ≫ 1 the ϕ-dependence of α is described with exponential
accuracy by

α ≈ arccos(tanhβ) × sign (ϕ), (2.A.15)

as in Eq. (2.A.5), but now antisymmetric in ϕ. As a consequence the net
phase increment over a 4π period equals 2π rather than zero.
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2 Deterministic creation and braiding of chiral edge vortices
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Figure 2.7: Same as Fig. 2.5, but for co-propagating Majorana edge modes,
calculated from Eq. (2.A.14) .

2.A.2 Double Josephson junction

We combine two Josephson junctions in series with co-propagating edge
modes, as in Fig. 2.2. We denote the result (2.A.13) by

SJ = S1 = eiα1σy , (2.A.16)

with a subscript 1 to indicate that this is the scattering matrix of the first
Josephson junction (J1 in Fig. 2.2).

If the second Josephson junction J2 would be identical to the first,
its scattering matrix would be S2(ϕ) = S1(−ϕ) = S−1

1 . We allow for a
difference in the ratio W/ξ0 at the two junctions, so more generally

S2 = e−iα2σy . (2.A.17)

The parameter α2 still increases by δα2 = π for each 2π increment of ϕ,
but it may do so with a different ϕ-dependence than α1.

If there are no bulk vortices in the superconductor, the scattering matrix
of the two junctions in series is simply the product S2S1. However, if the
geometry is as in Fig. 2.2, with a pair of bulk vortices on opposite sides of
the first Josephson junction, we have to insert a σz to account for each
crossing of a branch cut, so the full scattering matrix is S2σzS1σz. The
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2.B Details of the numerical simulation

Figure 2.8: Plot of the ϕ-dependence of the two scattering phase shifts η+
(with a bulk vortex in the region between the two Josephson junctions J1 and
J2) and η− (without a bulk vortex). The plot is calculated from Eqs. (2.A.14)
and (2.A.18) for W/ξ0 = 3 in the first junction and W/ξ0 = 5 in the second
jnction.

two cases can be combined as

S± = e−iη±σy , η± = α2 ± α1, (2.A.18)

where S+ and S− refer, respectively, to the situation with or without the
bulk vortices. More generally, if the region between Josephson junctions
J1 and J2 has Nvortex bulk vortices, S+ applies if Nvortex is odd while S−
applies if Nvortex is even.

When the phase ϕ across the Josephson junction varies from 0 to 2π
both α1 and α2 advance from 0 to π. It follows that a 2π increment
of ϕ induces a 2π increase of the scattering phase η+, while η− has no
net increase. Fig. 2.8 illustrates the difference for a particular choice of
parameters.

2.B Details of the numerical simulation

For the numerical simulation shown in Fig. 2.3 we applied the Kwant
tight-binding code [105] to the Bogoliubov-De Gennes Hamiltonian of Qi,

33



2 Deterministic creation and braiding of chiral edge vortices

Figure 2.9: Dispersion relation of a superconducting strip in the region 1 <
|y| < 51, with a line junction along y = 0 (∆ = 0, two lattice sites wide),
separating regions with phase 0 and phase ϕ = π + 0.3. Inset: Enlargement of
the region near kx = 0, E = 0. The blue modes are gapless chiral Majorana
edge modes at the boundary of the superconductor, the red mode is a nonchiral
Majorana mode in the line junction, with a gap of 2∆0 cos(ϕ/2). The effective
pair potential ∆0 = 0.0808 is much smaller than the bare value 0.75.

Hughes, and Zhang [98]:

H =

(
h0(p) − EF i∆(r)τy
−i∆∗(r)τy −h∗0(−p) + EF

)
, (2.B.1a)

h0(p) = (C +Bp2x +Bp2y)τz +Apxτx +Apyτy. (2.B.1b)
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2.B Details of the numerical simulation

The blocks of H refer to the electron-hole degree of freedom, while the
Pauli matrices τα act on the spin degree of freedom. This Hamiltonian
was discretized on a two-dimensional square lattice. Lengths are measured
in units of the lattice constant a = 1 and energies in units of the hopping
matrix element t0 = 1. We also set ℏ = 1, so that all parameters are
dimensionless.

The electron block h0(p) describes a quantum anomalous Hall insulator.
We took the parameters A = 1, B = 0.5, C = −0.5, EF = 0, when h0 has
Chern number 1. The insulator covers the region −75 < x < 25. The bulk
is gapped while the edges support a single chiral edge mode. The mode at
the x = 25 boundary moves in the +y direction and a counterpropagating
edge mode flows at the x = −75 boundary. (See Fig. 2.3, top panel, for
the geometry.)

The pair potential ∆ induces spin-singlet s-wave superconductivity in a
strip −25 < x < 25 (so W = 50) streching from y = −77 to y = 77. We
inserted two line junctions J1, J2 (each two lattice sites wide), separating
three superconducting islands I1, I2, I3, by means of the profile

∆ =



0.75 if − 77 < y < −27 (I1),

0 if − 27 < y < −25 (J1),

0.75 eiϕ if − 25 < y < 25 (I2),

0 if 25 < y < 27 (J2),

0.75 if 27 < y < 77 (I3).

(2.B.2)

The effective gap ∆0 cos(ϕ/2) in the Josephson junction was obtained
directly from the excitation spectrum. (See Fig. 2.9.) We found ∆0 =
0.0808 — much smaller than the bare gap of 0.75. At ϕ = π the gap closes,
producing a linear dispersion along the Josephson junction with velocity
v = 1 — the same as the velocity of the edge modes. The corresponding
coherence length is ξ0 = v/∆0 = 12.38, resulting in a ratio W/ξ0 = 4.04.

A pair of vortices is inserted at positions r1 = (1,−51) in I1 and
r2 = (1, 1) in I2. The vortex core does not coincide with a lattice point
(which are at half-integer x, y), so we can keep a constant ampitude
|∆| = 0.75 of the pair potential. Multiplication of ∆(r) by the function

f(r) =
z − z1
|z − z1|

|z − z2|
z − z2

, z = x+ iy, (2.B.3)

ensures that the phase of the pair potential winds by ±2π around each
vortex.

The scattering matrix was calculated at an energy E = 0.001 that
is slightly offset from the Fermi level at E = 0 to avoid the zero-mode
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2 Deterministic creation and braiding of chiral edge vortices

resonance in the vortex cores. The representation S = e−iησy in the
Majorana basis corresponds to S = e−iησz in the electron-hole basis, so
the scattering phase shift η can be calculated by comparing incident and
transmitted electron wave functions along x = 25. The edge at x = −75 is
decoupled from the superconductor and does not contribute to η.

At ϕ = 0 we find η ̸= 0, presumably because of additional phase shifts
acquired when the Dirac mode splits into two Majorana modes and back
at r = (25,−77) and r = (25, 77). In Fig. 2.3 we have plotted the phase
increment η(ϕ) − η(0), to eliminate this ϕ-independent offset.
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3 Electrical detection of the
Majorana fusion rule for
chiral edge vortices in a
topological superconductor

3.1 Introduction

Vortices in a two-dimensional topological superconductor contain a midgap
state, or zero-mode, that can be used to store quantum mechanical in-
formation in a nonlocal way, protected from local sources of decoherence
[3, 4, 78, 112, 113]. The qubit degree of freedom is the fermion parity
of any two widely separated vortices, which may or may not share an
unpaired electron or hole (a fermionic quasiparticle) in the condensate of
Cooper pairs. The pairwise exchange, or braiding, of vortices is a unitary
transformation which can serve as a building block for a quantum compu-
tation [32, 114]. The merging, or fusion, of two vortices is the read-out
operation [115]: The qubit is in the state |1⟩ or |0⟩ depending on whether
or not the vortices leave behind a unpaired fermion. The fact that braiding
operations do not commute, referred to as non-Abelian statistics, goes
hand-in-hand with the fact that the fusion outcome is non-deterministic.
As illustrated in Fig. 3.1, the fusion of two vortices σ produces a quantum
superposition of states ψ and I with and without a quasiparticle excitation.
This is the Majorana fusion rule∗ of non-Abelian anyons, symbolically
written as σ ⊗ σ = ψ ⊕ I.

Neither the braiding nor the fusion of vortices has been realized in
the laboratory. This has motivated a variety of theoretical proposals
for methods to demonstrate the appearance of non-Abelian anyons in a
topological superconductor [90–93]. The obstacle that these proposals
seek to remove, is the need to physically move the zero-modes around.
Ref. [116] proposes an alternative approach: Substitute immobile bulk

∗Because of a mapping onto the Ising model, the term “Ising fusion rule” is also
used.

37



3 Electrical detection of the Majorana fusion rule for chiral edge vortices
in a topological superconductor

Figure 3.1: Schematic illustration of the fusion rule σ2⊗σ4 = ψ⊕I of Majorana
zero-modes (red dots, labeled σn). Pairs of zero-modes may or may not share
a quasiparticle. In the former case the fermion parity is “odd” (indicated by
ψ), in the latter case it is “even” (indicated by I). The overall fermion parity is
conserved, so if the fusion of σ2 and σ4 leaves behind a quasiparticle, then the
fusion of σ1 and σ3 must also produce a quasiparticle.

vortices for mobile edge vortices. In that paper the braiding of vortices
was considered. Here we turn to the fusion of edge vortices, in order to
demonstrate the Majorana fusion rule.

Edge vortices are π-phase domain walls for Majorana fermions propagat-
ing along the edge of a topological superconductor [102]. Edge vortices may
appear stochastically from quantum phase slips at a Josephson junction
[95–97], but for our purpose we use the deterministic injector of Ref. [116]:
A voltage pulse V (t) of integrated magnitude

∫
V (t)dt = h/2e applied over

a Josephson junction injects an edge vortex at each end of the junction.
The injection happens when the phase difference ϕ of the superconducting
pair potential crosses π. At ϕ = π the effective gap ∆0 cos(ϕ/2) in the
junction changes sign [25]. By the same mechanism that is operative in
the Kitaev chain [86], the gap inversion creates a zero-mode at each end
of the junction, which then propagates away from the junction along the
edge mode. The edge modes are chiral, meaning that the motion is in a
single direction only. For our purpose we need that the propagation is
in the same direction along both edges connected by a Josephson junc-
tion. The geometry of Fig. 3.2 shows one way to achieve this using a
topological insulator/magnetic insulator/superconductor heterostructure
[94, 99]. (In Fig. 3.3 we show an alternative realization using a Chern
insulator/superconductor heterostructure [27, 98].)

In the next section 3.2 we describe the way in which the fusion process
shown schematically in Fig. 3.1 can be implemented in the structure of
Figs. 3.2 and 3.3. In the subsequent sections 3.3 and 3.4 we present an
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3.2 Edge vortex injection and fusion in a four-terminal Josephson junction
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Figure 3.2: Geometry to create and fuse two pairs of edge vortices in a topo-
logical insulator/magnetic insulator/superconductor heterostructure. The edge
vortices are created at Josephson junctions J1 and J3, by a 2π increment of the
superconducting phase ϕ(t) on the central superconducting island. Each edge
vortex contains a Majorana zero-mode and two zero-modes define a fermion
parity qubit. The initial state |J1J3⟩ = |00⟩ has even-even fermion parity.
When the edge vortices fuse at Josephson junctions J2 and J4 the final state
|J2J4⟩ = (|00⟩+ i|11⟩)/

√
2 is in an equal-weight superposition of even-even and

odd-odd parity states.

explicit calculation of the fermion parity of the final state, to demonstrate
the equal-weight superposition of even and odd fermion parity implied by
the Majorana fusion rule. Sec. 3.5 addresses an electrical signature of the
fusion process: The sum IL + IR of the currents at the two ends of the
structure shows shot noise, because of the nondeterministic nature of the
fusion process, but the difference IL − IR is nearly noiseless, because of
the correlated fermion parity. We conclude in Sec. 3.6.

3.2 Edge vortex injection and fusion in a
four-terminal Josephson junction

The geometry of Fig. 3.2, with four incoming and four outgoing Majorana
edge modes was introduced in Ref. [117] and studied recently in Refs.
[33, 118, 119]. Those earlier works considered the injection of fermions:
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Figure 3.3: Same as Fig. 3.2, but now in a Chern insulator/superconductor
heterostructure with normal metal contacts (NL, NR) to detect the charge
produced upon fusion of the edge vortices. An integrated voltage pulse

∫
V (t)dt =

h/2e induces a 2π phase shift over the four Josephson junctions J1, J2, J3, J4,
which results in a current pulse IL(t), IR(t) into the left and right contact. While
IL and IR separately, as well as the sum IL+IR, exhibit shot noise, the difference
IL − IR becomes exactly noiseless for identical junctions J1 and J3.

electrons and holes injected into the Majorana edge modes from a normal
metal contact. Here instead we consider the injection of vortices : π-phase
domain walls injected into the edge modes by a Josephson junction. The
injection happens in response to a voltage pulse

∫
V (t)dt = h/2e, which

advances by 2π the phase ϕ(t) of the pair potential ∆0e
iϕ. (Alternatively,

an h/2e flux bias achieves the same.) If the width W of the Josephson
junction is large compared to the superconducting coherence length ξ0 =
ℏvF/∆0, the injection happens in a short time interval tϕ ≃ (ξ0/W )∆t
around ϕ(t) = π, short compared the duration ∆t of the voltage pulse
[116].∗

The edge vortices σn are anyons with a non-Abelian exchange statistics
encoded in the Clifford algebra of Majorana operators γn,

γnγm + γmγn = δnm. (3.2.1)

Each edge vortex has a zero-mode and two zero-modes n,m encode a qubit
degree of freedom in the fermion parity Pnm = 2iγnγm with eigenvalues
±1. Provided the vortices are non-overlapping, the qubit is protected from
local sources of decoherence.

In the four-terminal Josephson junction of Fig. 3.2, one pair of edge
vortices σ1, σ2 is injected at Josephson junction J1 and a second pair

∗This separation of time scales tϕ/∆t ≃ ξ0/W ≪ 1 is why it is meaningful to
distinguish the injection of vortices from the injection of fermions, since a Majorana
fermion in an edge mode is equivalent to a pair of overlapping edge vortices.
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3.3 Scattering formula for the fermion parity

σ3, σ4 is injected at Josephson junction J3. Because the voltage pulse
cannot create an unpaired fermion, the edge vortices are injected in a state
|Ψ⟩ of even fermion parity, P12|Ψ⟩ = |Ψ⟩ = P34|Ψ⟩. Edge vortices σ1 and
σ3 are fused at Josephson junction J2 and vortices σ2 and σ4 are fused
at junction J4. The expectation value of the fermion parity upon fusion
vanishes,

⟨Ψ|P13|Ψ⟩ = ⟨Ψ|P12P13P12|Ψ⟩ = −⟨Ψ|P13P
2
12|Ψ⟩ = −⟨Ψ|P13|Ψ⟩

⇒ ⟨Ψ|P13|Ψ⟩ = 0, (3.2.2)

and similarly ⟨Ψ|P24|Ψ⟩ = 0. So the fusion of edge vortices at J2 and J3
leaves the edge modes in an equal weight superposition of odd and even
fermion parity. This presence of multiple fusion channels is a defining
property of non-Abelian anyons [3, 112, 113].

Because the overall fermion parity is conserved, the fusion outcomes
at J2 and J3 must have the same fermion parity — either even-even or
odd-odd. In the next two sections we present an explicit calculation of
the fermion parity, to demonstrate that an h/2e voltage pulse produces a
superposition of even-even and odd-odd fermion parity states with identical
probabilities P00 and P11 = 1 − P00.

3.3 Scattering formula for the fermion parity

3.3.1 Construction of the fermion parity operator

We focus on the geometry of Fig. 3.3, with incoming and outgoing modes in
the left lead (labeled L) and in the right lead (R). We seek the expectation
value

ρπ ≡
〈
eiπN

〉
= P00 − P11, (3.3.1)

of the fermion parity operator eiπN , with N the particle number operator
of outgoing modes in one of the two leads. We will take the left lead for
definiteness. In terms of the annilation operators bn(E) of outgoing modes
n at excitation energy E > 0 this operator takes the form

N =
∑
n∈L

∑
E>0

b†n(E)bn(E), (3.3.2)

where we have discretized the energy. In the continuum limit
∑
E 7→∫

dE/2π and the Kronecker delta becomes a Dirac delta function, δEE′ 7→
2πδ(E − E′).
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Incoming and outgoing modes are related by a unitary scattering matrix,

bn(E) =
∑
m,E′

Snm(E,E′)am(E′), (3.3.3)

∑
n′′,E′′

S∗
n′′n(E′′, E)Sn′′m(E′′, E′) = δnmδEE′ . (3.3.4)

Note that the sums in these two equations run over positive and negative
energies. Particle-hole symmetry relates

Snm(−E,−E′) = S∗
nm(E,E′). (3.3.5)

We write Eq. (3.3.3) more compactly as b = S · a, collecting the mode
and energy variables in vectors a and b. The unitarity relation (3.3.4)
is then written as S†S = 1. In terms of a projection operator PL onto
modes in lead L, and a projection operator P+ onto positive energies, the
combination of Eqs. (3.3.2) and (3.3.3) reads

N = a† ·M · a, M = S†PLP+S. (3.3.6)

The expectation value ⟨· · · ⟩ = Tr (ρeq · · · ) is with respect to an equilib-
rium distribution of the incoming modes,

ρeq ∝ exp

(
−β
∑
n

∑
E>0

Ea†n(E)an(E)

)
. (3.3.7)

We denote β = 1/kBT and have omitted the normalization constant (fixed
by Tr ρeq = 1).

The combination of particle-hole symmetry,

a†n(E) = an(−E), (3.3.8)

with anticommutation,

{a†n(E), am(E′)} = δnmδEE′ , (3.3.9)

allows us to extend the sum
∑
E>0 in Eq. (3.3.7) to a sum over positive

and negative energies,

ρeq ∝ exp

(
− 1

2β
∑
n,E

Ea†n(E)an(E)

)
≡ e−

1
2βa

†·E·a. (3.3.10)

In the second equation we introduced the diagonal operator Enm(E,E′) =
EδnmδEE′ .
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3.3 Scattering formula for the fermion parity

With this notation the average fermion parity is given by the ratio of
two operator traces,

ρπ =
Tr
(
e−

1
2βa

†·E·aeiπa
†·M ·a)

Tr e−
1
2βa

†·E·a
. (3.3.11)

3.3.2 Klich formula for particle-hole conjugate
Majorana operators

Fermionic operator traces of the form (3.3.11) have been studied by Klich
and collaborators [120–122]. For Dirac fermion creation and annihilation
operators d†,d one has the simple expression [120]

Tr
∏
k

ed
†·Ok·d = Det

(
1 +

∏
k

eOk
)
. (3.3.12)

The answer is different for self-conjugate Majorana operators γ = γ†, with
anticommutator {γn, γm} = δnm, when one has instead [122][

Tr
∏
k

eγ
†·Ok·γ

]2
= e

∑
k TrOk Det

(
1 +

∏
k

eOk−OT
k

)
. (3.3.13)

(The superscript T indicates the transpose of the matrix.)
The Majorana fermion modes in the topological superconductor are not

self-conjugate, instead creation and annihilation operators a†,a are related
by the particle-hole symmetry relation (3.3.8). In view of Eq. (3.3.9) this
implies that annihilation operators at energies ±E fail to anticommute:

{an(E), am(−E′)} = δnmδEE′ . (3.3.14)

This unusual anticommutator expresses the Majorana nature of Bogoliubov
quasiparticles [123].

To arrive at the analogue of Eq. (3.3.13) for particle-hole conjugate
Majorana operators we rewrite the bilinear form a† ·O · a such that the
a,a† operators appear only at positive energies:

a† ·O · a =
∑
n,m

∑
E,E′

a†n(E)Onm(E,E′)am(E′)

=
∑
n,m

∑
E,E′>0

(
a†n(E)
an(E)

)
Onm(E,E′)

(
am(E′)
a†m(E′)

)
. (3.3.15)
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The matrix O imposes on O a 2 × 2 block structure,

O =

(
O++ O+−
O−+ O−−

)
, (3.3.16)

to encode the sign of the energy variables:

(Oss′)nm(E,′E′) = Onm(sE, s′E′) for s, s′ ∈ {+,−} and E,E′ > 0.
(3.3.17)

We introduce the 2× 2 Pauli matrix σx that acts on the block structure
of O and define the generalized antisymmetrization

OA = 1
2O − 1

2σxOTσx

=
1

2

(
O++ −OT

−− O+− −OT
+−

O−+ −OT
−+ O−− −OT

++

)
. (3.3.18)

Only OA and TrO = TrO contribute to the Majorana fermion operator
trace, [

Tr
∏
k

ea
†·Ok·a

]2
= e

∑
k TrOk Det

(
1 +

∏
k

e2O
A
k

)
, (3.3.19)

see App. 3.B. Eq. (3.3.19) is the desired analogue of Eq. (3.3.13) for
particle-hole conjugate Majorana operators.

3.3.3 Fermion parity as the determinant of a
scattering matrix product

For the average fermion parity ρπ we apply Eq. (3.3.19) to the ratio of
operator traces (3.3.11). We start from the block decomposition of E,S,
and M = S†PLP+S,

E =

(
E 0
0 −E

)
= Eσz, S =

(
S++ S+−
S−+ S−−

)
,

M = 1
2S†PL(σ0 + σz)S.

(3.3.20)

In the equation for M we substituted P+ = 1
2 (σ0 + σz), with σ0 the 2 × 2

unit matrix.
The antisymmetrization of E is simple,

EA ≡ 1
2E − 1

2σxETσx = Eσz. (3.3.21)
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3.3 Scattering formula for the fermion parity

For the antisymmetrization of M we note that Eq. (3.3.5) implies σxSσx =
S∗, hence

σxSTσx = S† ⇒ MA = 1
2S†PLσzS. (3.3.22)

We thus arrive at

ρ2π = eiπTrM Det (1 + e−βEσzeiπS
†PLσzS)

Det (1 + e−βEσz )
. (3.3.23)

The ratio of determinants is equivalent to a single determinant,

ρ2π = eiπTrM Det
(

1 −F + FeiπS†PLσzS
)
,

F = (1 + eβEσz )−1, 1 −F = (1 + e−βEσz )−1.
(3.3.24)

To proceed we first rewrite the exponent of the trace of M as a deter-
minant,

eiπTrM = eiπTrPLP+ (3.3.25a)

= Det [−σz]LL = Det [σz]LL with σz ≡ 2P+ − 1, (3.3.25b)

= Det [−τz]++ = Det [τz]++ with τz ≡ 2PL − 1. (3.3.25c)

The notation [· · · ]LL indicates a projection onto mode indices in the left
lead, and [· · · ]++ indicates a projection onto positive energies.

We then evaluate the exponent of the scattering matrix product,

eiξS
†PLσzS = σ0 + i(sin ξ)S†PLσzS + (cos ξ − 1)S†PLS,

⇒ eiπS
†PLσzS = σ0 − 2S†PLS, (3.3.26)

since (S†PLσzS)2n = S†PLS and (S†PLσzS)2n−1 = S†PLσzS, for n =
1, 2, 3, . . .. It follows that

ρ2π = eiπTrMDet
(
1 − 2FS†PLS

)
(3.3.27a)

= eiπTrMDet
(
1 − 2PLSFS†) (3.3.27b)

= eiπTrMDet
[
1 − 2SFS†]

LL
(3.3.27c)

= Det [σz]LL Det
[
S(1 − 2F)S†]

LL
(3.3.27d)

= Det
[
σzS tanh( 1

2βE)S†]
LL
. (3.3.27e)

In Eq. (3.3.27b) we used the Sylvester identity Det (1−AB) = Det (1−BA),
in Eq. (3.3.27c) we used Det (1 − PLA) = Det [1 −A]LL, in Eq. (3.3.27d)
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we used SS† = 1, and in (3.3.27e) we used that Det [A]LLDet [B]LL =
Det [AB]LL if A or B commutes with PL.

In what follows we restrict ourselves to zero temperature, when F 7→ P−
projects onto negative energies and tanh( 1

2βE) 7→ σz. Eq. (3.3.27e) then
reduces to

ρ2π = Det
[
σzSσzS†]

LL
, (3.3.28)

the determinant of a scattering matrix product projected onto mode indices
in the left lead. An alternative projection onto positive energies is possible:

ρ2π = eiπTrMDet
(
1 − 2P−S†PLS

)
(3.3.29a)

= eiπTrMDet
(
1 − 2P+S†PLS

)
(3.3.29b)

= Det [−τz]++ Det
[
S†(1 − 2PL)S

]
++
, (3.3.29c)

(In Eq. (3.3.29b) we used particle-hole symmetry, S = σxS∗σx, and
σxP−σx = P+.) Because τz commutes with P+, Eq. (3.3.29c) may be
combined into a a single determinant,

ρ2π = Det
[
τzS†τzS

]
++
. (3.3.30)

Equations (3.3.28) and (3.3.30) express the average fermion parity of
a scattering state as the determinant of a product of scattering matrices
projected onto a submatrix in mode space, Eq. (3.3.28), or in energy space,
Eq. (3.3.30).∗ Both equations give the square ρ2π rather than ρπ itself.
Since we wish to show that ρπ = 0, that is not a limitation for the present
study.

3.3.4 Simplification in the adiabatic regime

The energy dependence of the scattering matrix is characterized by the
inverse of two time scales of the Josephson junction: the dwell time
τdwell ≃ L/vF in the superconducting island and the characteristic time
scale

tϕ = (ξ0/W )(dϕ/dt)−1 (3.3.31)

for the variation of the superconducting phase shift. (The time tϕ is the
“vortex injection time” tinj of Ref. [116].) While S(E,E′) depends on the

∗To avoid a possible confusion we note that, because of the projection, the product
rule Det (AB) = (DetA)(DetB) cannot be applied to Det[AB]++ or Det[AB]LL, unless
A or B commutes with the projector.
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3.4 Vanishing of the average fermion parity

average energy Ē = (E + E′)/2 on the scale 1/τdwell, it depends on the
energy difference δE = E − E′ on the scale 1/τϕ.

In the adiabatic regime τdwell ≪ τϕ the scattering matrix S(E,E′) for
Ē ≲ 1/τϕ ≪ 1/τdwell is only a function of δE,

S(E,E′) =

∫ ∞

−∞
dt ei(E−E′)tSF(t) + O(τdwell/τϕ). (3.3.32)

The unitary matrix SF(t) is the “frozen” scattering matrix at the Fermi
level, calculated for a fixed value ϕ ≡ ϕ(t) of the superconducting phase.

The fermion parity determinant can be simplified in the adiabatic regime,
because only energies within 1/τϕ from the Fermi level contribute. This
is most easily seen from Eq. (3.3.28), which is the determinant of the
scattering matrix product Ω = σzSσzS†, projected onto the left lead. A
matrix element of Ω,

Ωnm(E,E′) = (signE)
∑
n′,E′′

(signE′′)Snn′(E,E′′)S∗
mn′(E′, E′′) (3.3.33)

is only nonzero for |E−E′| ≲ 1/τϕ. Moreover, Ωnm(E,E′) ≈ δnmδEE′ for
|E| ≳ 1/τϕ. Hence the determinant of Ω is fully determined by energies in
the range −1/τϕ ≲ E,E′ ≲ 1/τϕ, where S(E,E′) may be approximated
by the frozen scattering matrix (3.3.32).

For computational purposes it is more convenient to rewrite the determi-
nant (3.3.28) in the form (3.3.30), because the scattering matrix product
τzSτzS† is a convolution in energy space when S(E,E′) is a function of
E−E′. The convolution is readily evaluated in the time domain, resulting
in an expression for the fermion parity

ρ2π = Det [Q]++, (3.3.34)

in terms of the determinant of the projection onto E,E′ > 0 of the matrix

Q(E,E′) =

∫ ∞

−∞
dt ei(E−E′)tQ(t), Q(t) = τzS

†
F(t)τzSF(t). (3.3.35)

In the next section we shall show how to evaluate this determinant.

3.4 Vanishing of the average fermion parity

We apply the formalism that we developed in Sec. 3.3 to the four-terminal
Josephson junction of Sec. 3.2, in order to demonstrate that the 2π phase
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shift produces a state with an equal weight P00 = P11 of even-even and
odd-odd fermion parity in the left and right leads. We work in the adiabatic
regime, when ρπ = P00 − P11 is given by Eqs. 3.3.34 and (3.3.35) in terms
of the “frozen” scattering matrix SF(t), for a fixed phase ϕ(t).

3.4.1 Frozen scattering matrix of the Josephson
junction

The frozen scattering matrix SF ∈ SO(4) is calculated in App. 3.A, resulting
in

SF =

(
e−iα4νy 0

0 e−iα2νy

)
·Π ·

(
eiα1νy 0

0 eiα3νy

)
, Π =


0 0 1 0
0 −1 0 0
1 0 0 0
0 0 0 1

 .

(3.4.1)
The Pauli matrix νy acts on the two Majorana modes in each lead. The
scattering phase αn depends on the superconducting phase difference ϕ
through the relation [116]

αn = arccos

(
cos(ϕ/2) + tanhβn

1 + cos(ϕ/2) tanhβn

)
× sign (ϕ), βn =

Wn

ξ0
cos(ϕ/2).

(3.4.2)
A 2π increment of ϕ corresponds to a π increment of αn, irrespective of
the width Wn of the Josephson junction or the superconducting coherence
length ξ0 = ℏvF/∆0.

We need to evaluate the matrix product τzS
†
FτzSF, where the Pauli

matrix

τz =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (3.4.3)

is defined with respect to the block structure of modes in the left and right
lead. Because of the identity

ΠτzΠ =

(
νz 0
0 νz

)
, (3.4.4)

this matrix product is block-diagonal,

Q(t) = τzS
†
F(t)τzSF(t) = −

(
νze

2iνyα1(t) 0
0 νze

2iνyα3(t)

)
, (3.4.5)

independent of α2 and α4.
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3.4 Vanishing of the average fermion parity

3.4.2 Reduction of the fermion parity to a Toeplitz
determinant

Instead of taking a single 2π phase increment it is more convenient to
assume a sequence of 2π phase shifts with period ∆t. Then αn(t) varies
periodically in time with αn(t+ ∆t) = π + αn(t). We Fourier transform
to the energy domain,

Tn(k, k′) =
1

∆t

∫ ∆t

0

dt e2πi(k−k
′)t/∆te2iαn(t)νy ,

Tn(k, k′) =
1

∆t

∫ ∆t

0

dt e2πi(k−k
′)t/∆te2iαn(t),

(3.4.6)

and restrict k, k′ ∈ {1, 2, 3, . . .} to positive integers. The infinite matrix
Tn(k, k′) has constant diagonals, so it is a Toeplitz matrix. Eq. (3.3.30)
becomes the product of Toeplitz determinants,

ρ2π = (DetT1)(DetT3) = |DetT1|2 |DetT3|2. (3.4.7)

The Toeplitz matrices Tn are banded matrices which extend over a large
number of order W/ξ0 of diagonals around the main diagonal. This follows
from the fact that the π increment of α(t) happens in the time interval
tϕ = (ξ0/W )(∆t/2π) which is much shorter than ∆t for ξ0 ≪ W . The
ratio tϕ/∆t governs the exponential decay of the Toeplitz matrix elements
as one moves away from the main diagonal, according to

|Tn(k, k′)| ≃ exp(−cdecay|k − k′|), cdecay =
π2tϕ
∆t

=
πξ0
2W

. (3.4.8)

3.4.3 Fisher-Hartwig asymptotics

In a general formulation, the function b(θ) defines the K ×K Toeplitz
matrix

BK(k, k′) =

∫ 2π

0

ei(k−k
′)θb(θ)

dθ

2π
, k, k′ ∈ {1, 2, . . .K}. (3.4.9)

If b is smooth and nonvanishing on the unit circle 0 < θ < 2π, it has a
well-defined winding number

ν =
1

2πi

∫ 2π

0

b′(θ)

b(θ)
dθ. (3.4.10)
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The number ν may be non-integer, or even complex, if b has a jump
discontinuity at θ = 0.

The Fisher-Hartwig asymptotics [124, 125] determines the large-K limit
of the determinant of BK from the decomposition b(θ) = b0(θ)eiνθ, where
b0 has zero winding number. In the most general case the function b0
may have (integrable) singularities, but if we assume it is smooth the
asymptotics reads

DetBK ≃ exp

(
K

2π

∫ 2π

0

ln b0(θ) dθ

)
×
{
K−ν2

for non-integer ν,

e−|ν|cdecayK for integer ν.
. (3.4.11)

The coefficient cdecay in the exponent is the decay rate |BK(k, k′)| ≃
exp(−cdecay|k−k′|) of the Toeplitz matrix elements as we move away from
the diagonal.

Applied to b(t) = e2iα(t), θ = 2πt/∆t, we have ν = 1, b0(t) =
e2iα(t)−2πit/∆t. The Toeplitz determinant

DetBK ≃ e−cdecayK exp

(
2iK

∆t

∫ ∆t

0

α(t)dt− iπK

)
(3.4.12)

vanishes exponentially in the limit K → ∞, with decay rate cdecay =
πξ0/W determined by the ratio of the superconducting coherence length
ξ0 and the width W of the Josephson junction.

For the evaluation of the fermion parity, the band width K/∆t is limited
by the energy range |Ē| ≲ 1/tdwell where the dependence of the scattering
matrix S(E,E′) on the average energy Ē = (E + E′)/2 may be neglected.
We thus conclude that

|ρπ| ≃ exp(−2cdecayK) ≃ exp

(
−2πξ0

W

∆t

tdwell

)
≃ exp

(
−4π2tϕ
tdwell

)
, (3.4.13)

which is exponentially small in the adiabatic regime tϕ ≫ tdwell.
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3.5 Transferred charge

Figure 3.4: Decay of the Toeplitz determinant (data points), compared with
the exponential decay expected from Eq. (3.4.12). The constant cdecay was
calculated separately from |BK(k, k′)| ≃ exp(−cdecay|k − k′|). The estimate
cdecay = πξ0/W is off by 15%.

3.5 Transferred charge

3.5.1 Average charge

The average charge ⟨QL⟩, ⟨QR⟩ transferred into the left or right lead
during one 2π increment of ϕ is given, in the adiabatic regime, by the
superconducting analogue of Brouwer’s formula [106, 107]:

⟨QL⟩ =
ie

4π

∫ ∞

−∞
dtTrS†

F(t)

(
νy 0
0 0

)
∂

∂t
SF(t),

⟨QR⟩ =
ie

4π

∫ ∞

−∞
dtTrS†

F(t)

(
0 0
0 νy

)
∂

∂t
SF(t).

(3.5.1)

Substitution of Eq. (3.4.1) gives

⟨QL⟩ =
e

2π

∫ ∞

−∞
dt

d

dt
α4(t),

⟨QR⟩ =
e

2π

∫ ∞

−∞
dt

d

dt
α2(t).

(3.5.2)

Because both α2 and α4 increase by π when ϕ is incremented by 2π, see
Eq. (3.4.2), we conclude that

⟨QL⟩ = ⟨QR⟩ =
e

2
. (3.5.3)
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While the average transferred charge per cycle is exactly e/2, the average
particle number is close to but not exactly equal to 1/2 — indicating that
there is a small contribution from charge-neutral particle-hole pairs.∗

3.5.2 Charge correlations

Fluctuations in the transferred charge are described by the second moments
⟨Q2

L⟩, ⟨Q2
R⟩, and ⟨QLQR⟩. Scattering matrix formulas for these correlators

are derived in App. 3.C. In the adiabatic regime one has

var(QL) ≡ ⟨Q2
L⟩ − ⟨QL⟩2 =

e2

8π2

∫ ∞

0+
dω ωTr Σ†

L(ω)ΣL(ω), (3.5.4a)

var(QR) ≡ ⟨Q2
R⟩ − ⟨QR⟩2 =

e2

8π2

∫ ∞

0+
dω ωTr Σ†

R(ω)ΣR(ω), (3.5.4b)

covar(QLQR) ≡ 1
2 ⟨QLQR⟩ + 1

2 ⟨QRQL⟩ − ⟨QL⟩⟨QR⟩

=
e2

16π2

∫ ∞

0+
dω ωTr

[
Σ†

L(ω)ΣR(ω) + Σ†
R(ω)ΣL(ω)

]
,

(3.5.4c)

in terms of the matrices

ΣL(ω) =

∫ ∞

−∞
dt eiωt ΣL(t), ΣL(t) = S†

F(t)

(
νy 0
0 0

)
SF(t), (3.5.5a)

ΣR(ω) =

∫ ∞

−∞
dt eiωt ΣR(t), ΣR(t) = S†

F(t)

(
0 0
0 νy

)
SF(t). (3.5.5b)

The lower limit 0+ in the ω-integrals (3.5.4) avoids a spurious contribution
∝ δ(ω).

From the expression (3.4.1) for SF(t) we find

Tr Σ†
L(ω)ΣL(ω) = Tr Σ†

R(ω)ΣR(ω)

= 1
2 |Z+(ω)|2 + 1

2 |Z+(−ω)|2 + 1
2 |Z−(ω)|2 + 1

2 |Z−(−ω)|2,
(3.5.6a)

Tr Σ†
L(ω)ΣR(ω) = Tr Σ†

R(ω)ΣL(ω)

= 1
2 |Z+(ω)|2 + 1

2 |Z+(−ω)|2 − 1
2 |Z−(ω)|2 − 1

2 |Z−(−ω)|2,
(3.5.6b)

Z±(ω) =

∫ ∞

−∞
dt eiωteiα1(t)±iα3(t). (3.5.6c)

∗A calculation along the lines of Ref. [116] of the average number of quasiparticles
transferred per cycle into the left or the right lead gives ⟨NL⟩ = ⟨NR⟩ = 42ζ(3)/π4 =
0.518.
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Figure 3.5: Variance of the sum and difference of the transferred charges upon
fusion of the edge vortices in Josephson junctions J2 and J4, as a function of
the asymmetry in the width of the injecting Josephson junctions J1 and J3.

The dependence on α2 and α4 drops out.
Without further calculation we see that for α1 = α3 the contribution of

Z−(ω) to the correlators (3.5.4) vanishes, hence covar(QLQR) = var(QL) =
var(QR). This implies that the charge difference QL −QR is zero without
fluctuations,

var (QL −QR) = var (QL) + var (QR) − 2 covar(QLQR) = 0. (3.5.7)

The charges QL and QR do fluctuate individually, with a variance close to
e2/4, and so does the sum QL +QR, with a variance close to e2. These
values can be calculated precisely for the time dependence [116]

α(t) ≈ arccos

[
tanh

(
W

ξ0

π − ϕ(t)

2

)]
≈ arccos[− tanh(t/2tϕ)], (3.5.8)

which is an accurate representation of Eq. (3.4.2) for W/ξ0 ≫ 1. We find

Z+(ω) = 2πδ(ω) −
8πωt2ϕ

sinh(πωtϕ)
+

8πωt2ϕ
cosh(πωtϕ)

, Z−(ω) = 2πδ(ω),

(3.5.9)

⇒ var (QL) = var (QR) = 1
4var (QL +QR) =

21ζ(3)

π4
e2 = 0.259 e2.

(3.5.10)

For α1 ≠ α3 we can evaluate the integrals numerically using the time
dependence

αn = arccos [− tanh(t/2tn)], (3.5.11)
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increasing from 0 to π in a time tn = (ξ0/Wn)(∆t/2π) around t = 0.
Results for var (QL ±QR) are shown in Fig. 3.5. The shot noise for the
charge difference remains suppressed for a moderately large deviation from
unity of W1/W3.

3.6 Conclusion

We have shown how the method of time-resolved and “on-demand” injection
of edge vortices proposed in Ref. [116] can be used to demonstrate the
non-Abelian fusion rule of Majorana zero-modes. The signature of the
correlated but non-deterministic outcome of the fusion of two pairs of
edge vortices is a fluctuating electrical current IL and IR through two
Josephson junctions, induced by a 2π phase shift of the pair potential.
While the sum IL + IR has average e per cycle and variance close to e2, the
difference IL − IR vanishes without fluctuations in a symmetric structure
(and remains much below e2 for moderate asymmetries).

The four-terminal structure of chiral Majorana edge modes that we
have studied has been investigated before in the context of the injection of
fermions [33, 117–119]. A Majorana fermion that splits into partial waves
at opposite edges defines a nonlocally encoded charge qubit : a coherent
superposition of an electron and a hole.∗ In contrast, the injection of
vortices at opposite edges is a nonlocal encoding of the fermion parity.
The difference could be significant for quantum information processing
if the fermion parity qubit is more robust against decoherence than the
charge qubit. We surmise that zero-modes in edge vortices are better
protected against charge noise and other local sources of decoherence than
Majorana fermions — basically because a Majorana fermion is charge
neutral on average but does exhibit quantum fluctuations of the charge.

Much further research is needed to substantiate the potential of edge
vortices as carriers of quantum information, but we feel that they have much
to offer at least for the demonstration of basic operations in topological
quantum computation: the braiding operation of Ref. [116] and the non-
deterministic fusion operation considered here.

∗The splitting of a Majorana fermion into partial waves does not provide a local
encoding of the fermion parity because a measurement at one edge can detect the
presence or absence of a fermion.
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Figure 3.6: Labeling of incoming and outgoing Majorana edge modes in a
four-terminal Josephson junction.

3.A Calculation of the frozen scattering
matrix

Consider first the stationary scattering problem, when the four-terminal
Josephson junction from Fig. 3.3 has a time-independent phase difference
ϕ. This gives the “frozen” scattering matrix SF(E, ϕ), which we evaluate
at the Fermi level (E = 0).

As calculated in Ref. [116], each of the four terminals (width Wn) has
at the Fermi level a scattering matrix in SO(2) given by

Sn =

(
cosαn sinαn
− sinαn cosαn

)
= eiαnνy for n = 1, 3,

Sn =

(
cosαn − sinαn
sinαn cosαn

)
= e−iαnνy for n = 2, 4.

(3.A.1)

The Pauli matrix νy acts on the two Majorana modes at a Josephson
junction. The angles αn are given as a function of ϕ and the ratio Wn/ξ0
by Eq. (3.4.2) from the main text.

Referring to the labeling of modes from Fig. 3.6, we have the linear
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relations 
d1
d2
d3
d4

 = SF


c1
c2
c3
c4

 , (3.A.2a)

(
a1
a2

)
= S1

(
c1
c2

)
,

(
d3
d4

)
= S2

(
a1
b2

)
,(

b1
b2

)
= S3

(
c3
c4

)
,

(
d1
d2

)
= S4

(
b1
−a2

)
. (3.A.2b)

The minus sign for the coefficient a2 in the last equality accounts for the
π Berry phase of a circulating Majorana edge mode. As indicated by
the dotted lines in Fig. 3.6, the edge modes are segments of three closed
loops. We choose a gauge where the minus sign in each loop is acquired
on the downward branch, indicated by the blue circle. This only affects
the branch with amplitude a2, because the other two downward branches
are outside of the scattering region.

Elimination of the an and bn variables gives

SF =


− sinα1 sinα4 cosα1 sinα4 cosα3 cosα4 cosα4 sinα3

cosα4 sinα1 − cosα1 cosα4 cosα3 sinα4 sinα3 sinα4

cosα1 cosα2 cosα2 sinα1 sinα2 sinα3 − cosα3 sinα2

cosα1 sinα2 sinα1 sinα2 − cosα2 sinα3 cosα2 cosα3,

 ,

(3.A.3)
which may be written more compactly as Eq. (3.4.1). One can check that
SF ∈ SO(4), in particular, it has determinant +1 as it should be in the
absence of a Majorana zero-mode [126].∗

In the adiabatic regime the scattering matrix S(E,E′) of the time-
dependent problem is related to the frozen scattering matrix SF(E, ϕ)
via

S(E + 1
2ω,E − 1

2ω) ≈
∫ ∞

−∞
dt eiωtSF(E, ϕ(t)). (3.A.4)

Near the Fermi level we may furthermore neglect the dependence on the
average energy, approximating

S(E,E′) ≈
∫ ∞

−∞
dt ei(E−E′)tSF(0, ϕ(t)). (3.A.5)

∗If we would not have accounted for the sign change of a2 the determinant of SF

would have been −1.
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3.B Derivation of the Klich formula

The operator trace (3.3.19) for particle-hole conjugate Majorana oper-
ators a(E) = a†(−E) can be derived from the Klich formula (3.3.13)
for self-conjugate Majorana operators γ = γ†, by performing a unitary
transformation:(

γn(E)
γ′n(E)

)
= U

(
an(E)
a†n(E)

)
, U =

1√
2

(
1 1
−i i

)
. (3.B.1)

At positive energies the γ operators satisfy the Clifford algebra of Majorana
operators,

{γn(E),γm(E′)} = {γ′n(E), γ′m(E′)}
= {γn(E), γ′m(E′)} = δnmδEE′ , E,E′ > 0. (3.B.2)

Note that
γn(E)2 = γ′n(E)2 = 1/2. (3.B.3)

The bilinear form (3.3.15) of the a operators transforms into

a† ·O · a =
∑
n,m

∑
E,E′>0

(
γn(E)
γ′n(E)

)
Õnm(E,E′)

(
γm(E′)
γ′m(E′)

)
, (3.B.4)

with Õ = UOU†. Because only positive energies appear in Eq. (3.B.4), we
may apply the anticommutator (3.B.2), which implies that the traceless
symmetric part of Õ drops out. Only the trace Tr Õ = TrO and the
antisymmetric part (Õ − ÕT)/2 contribute,

a† ·O · a = 1
2γ · (Õ − ÕT) · γ + 1

2 TrO. (3.B.5)

After these preparations we can apply Klich’s original formula [122],[
Tr
∏
k

exp(a† ·Ok · a)

]2
= exp

(∑
k

TrOk

)

× Det

(
1 +

∏
k

exp(Õk − ÕT
k )

)
. (3.B.6)

Finally we invert the unitary transformation,

U†ÕU = O, U†ÕTU = (UTU)†OT(UTU) = σxOTσx, (3.B.7)
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to arrive at[
Tr
∏
k

exp(a† ·Ok · a)

]2
= exp

(∑
k

TrOk

)

× Det

(
1 +

∏
k

exp(Ok − σxOT
k σx)

)
,

(3.B.8)

which is Eq. (3.3.19).

3.C Scattering formulas for charge
correlators

3.C.1 General expressions for first and second
moments

Moments of the transferred charge in the left lead are given by the expec-
tation value

⟨QpL⟩ =
〈(

a† ·Q · a
)p〉

, Q = S†PLP+eνyS. (3.C.1)

In comparison with the number operator (3.3.6) there is a matrix eνy
which is the charge operator in the Majorana basis. (It would be eνz in
the particle-hole basis.) The expectation value ⟨· · · ⟩ = Tr (ρeq · · · ) is with
respect to an equilibrium distribution of the a operators, with density
matrix (3.3.7).

Because of the Majorana commutator (3.3.14), we have both the usual
type-I average

⟨a†n(E)am(E′)⟩ = δnmδ(E − E′)f(E), f(E) = (1 + eβE)−1, (3.C.2)

and the unusual type-II average

⟨an(E)am(E′)⟩ = δnmδ(E + E′)f(−E), f(−E) = 1 − f(E). (3.C.3)

Averages of strings of a and a† operators are obtained by summing over
all pairwise averages of both types I and II, signed by the permutation.∗

∗An equivalent procedure [123] is to first use the relation an(−E) = a†n(E) to
rewrite the expectation value such that only positive energies appear, and then apply
Wick’s theorem as usual.
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We assume zero temperature, when f(E) = P− and 1 − f(E) = P+ are
step functions of energy.

The first moment of the transferred charge contains a single type-I
average,

⟨QL⟩ = TrP−Q =

∫ ∞

0

dE

2π

∫ 0

−∞

dE′

2π
TrS†(E,E′)eνyPLS(E,E′).

(3.C.4)
The variance contains a term with two type-I averages and a term with
two type-II averages,

var (QL) = TrP−QP+Q

−
∫ ∞

0

dE

2π

∫ 0

−∞

dE′

2π

∑
n,m

Qnm(−E,−E′)Qnm(E,E′). (3.C.5)

The particle-hole symmetry relation (3.3.5) of the scattering matrix implies
that

Qnm(−E,−E′) = −(S†PLP−eνyS)mn(E′, E). (3.C.6)

Substitution into Eq. (3.C.5) gives

var (QL) = TrP−QP+Q + TrP−Q
′P+Q, (3.C.7)

with Q′ as in Eq. (3.C.1) upon replacement of P+ by P−. Since P++P− =
1, this reduces to

var (QL) = TrP−(S†PLeνyS)P+(S†PLP+eνyS). (3.C.8)

It is convenient to eliminate the second P+ projector from Eq. (3.C.8).
This can be done via particle-hole symmetry, which implies that

TrP−(S†PLeνyS)P+(S†PLP+eνyS)

= Tr (S†PLP+eνyS)TP+(S†PLeνyS)TP−

= Tr (S†PLP−eνyS)P−(S†PLeνyS)P+

= TrP−(S†PLeνyS)P+(S†PLP−eνyS). (3.C.9)

Hence

1
2TrP−(S†PLeνyS)P+(S†PL(P− − P+)eνyS) = 0, (3.C.10)
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and adding this to Eq. (3.C.8) we arrive at

var (QL) =
1

2
TrP−(S†PLeνyS)P+(S†PLeνyS)

=
1

2
e2
∫ ∞

0

dE

2π

∫ 0

−∞

dE′

2π
Tr Σ†

L(E,E′, )ΣL(E,E′), (3.C.11)

ΣL = S†PLνyS.

The expressions for the other correlators are analogous,

var (QR) =
1

2
e2
∫ ∞

0

dE

2π

∫ 0

−∞

dE′

2π
Tr Σ†

R(E,E′)ΣR(E,E′),

(3.C.12)

ΣR = S†PRνyS,

covar (QLQR) =
1

4
e2
∫ ∞

0

dE

2π

∫ 0

−∞

dE′

2π
Tr
[
Σ†

L(E,E′)ΣR(E,E′)

+ Σ†
R(E,E′)ΣL(E,E′)

]
. (3.C.13)

Eq. (3.C.13) gives the symmetrized covariance,

covar(QLQR) ≡ 1
2 ⟨QLQR⟩ + 1

2 ⟨QRQL⟩ − ⟨QL⟩⟨QR⟩, (3.C.14)

appropriate for a calculation of var (QL ±QR).

3.C.2 Adiabatic approximation

The general expressions (3.C.4) and (3.C.11)–(3.C.13) can be simplified
in the adiabatic regime, when near the Fermi level S(E,E′) depends only
on the energy difference ω = E − E′. We use the identity∫ ∞

0

dE

∫ 0

−∞
dE′ F (E − E′) =

∫ ∞

0+
dω ωF (ω). (3.C.15)

The lower integration limit 0+ eliminates a possibly singular delta function
in F (ω), which should not enter in the excitation spectrum.

For the average transferred charge (3.C.4) we thus have

⟨QL⟩ =
1

4π2

∫ ∞

0+
dω ωTrS†(ω)eνyPLS(ω). (3.C.16)
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As explained in Ref. [116], this is equivalent to the Brouwer formula (3.5.1):
Because of

[S†(ω)νyPLS(ω)]T = −S†(−ω)νyPLS(−ω) (3.C.17)

the integrand in Eq. (3.C.16) is an even function of ω, hence the integration
can be extended to

∫∞
−∞ dω, and then transformation to the time domain

gives Eq. (3.5.1).
For the second moments we use that the kernels Σ(E,E′) 7→ Σ(ω) are

functions of ω = E − E′ when S(E,E′) 7→ S(ω),

ΣL,R(E,E′) =

∫ ∞

−∞

dE′′

2π
S†(E′′, E)PL,RνyS(E′′, E′)

⇒ ΣL,R(ω) =

∫ ∞

−∞

dω′

2π
S†(ω′ − ω)PL,RνyS(ω′)

=

∫ ∞

−∞
dt eiωtS†(t)PL,RνyS(t). (3.C.18)

The Fourier transform is defined as

S(ω) =

∫ ∞

−∞
dt eiωtS(t). (3.C.19)

Note that for the representation (3.C.18) of Σ(ω) as a single time integral
it was essential that we eliminated the P+ projector from the scattering
matrix product.

Application of Eqs. (3.C.15) and (3.C.18) to Eqs. (3.C.11)–(3.C.13) then
gives the formulas (3.5.4) from the main text.

61





4 Bounds on nonlocal
correlations in the presence
of signaling and their
application to topological
zero modes

4.1 Introduction

In a Bell test [127, 128], Alice and Bob measure pairs of particles (possibly
having a common source in their past) and then communicate in order to
calculate the correlations between these measurements. The strength of
empirical correlations enables one to characterize the underlying theory.
In quantum mechanics, the above procedure corresponds to local mea-
surements of Hermitian operators A0/A1 on Alice’s side and B0/B1 on
Bob’s side. The correlators are defined using the quantum expectation
value cij = ⟨AiBj⟩ and, when the operators have eigenvalues ±1, it can
be shown that the CHSH parameter obeys

|B| ≡ |c00 + c10 + c01 − c11| ≤ 2
√

2, (4.1.1)

which is known as the Tsirelson bound [129]. Stronger bounds on the
correlators (i.e., bounds from which the Tsirelson bound can be derived)
were proposed, e.g., by Uffink [130] and independently by Tsirelson, Landau
and Masanes (TLM) [131–133]. The latter implies that

|c00c10 − c01c11| ≤
∑
j=0,1

√
(1 − c20j)(1 − c21j). (4.1.2)

The TLM inequality is known to be necessary and sufficient for the corre-
lators cij to be realizable in quantum mechanics [131–133] (implying, in
particular, that if a set of correlators satisfies Eq. (4.1.2), it necessarily sat-
isfies Eq. (4.1.1); the converse is not true). Importantly, when calculating
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B in any local-realistic model it turns out that |B| ≤ 2, which is a fa-
mous variant of Bell’s theorem known as the Clauser-Horne-Shimony-Holt
(CHSH) inequality [134], which provides a measurable distinction between
correlations achievable in local-realistic models and in quantum theory.
These bounds, however, are not enough for fully characterizing the Alice-
Bob quantum correlations. For the latter task, the Navascues-Pironio-Acin
(NPA) hierarchical scheme of semidefinite programs was proposed [135].

All the above works plausibly assuming that Alice’s and Bob’s measure-
ments are described by spatially local and Hermitian operators, implying
that [Ai, Bj ] = 0 for all i, j. As such, they cannot lead to superluminal
signaling between Alice and Bob.

Trying, on the one hand, to generalize some of the above results, and
on the other hand to pin-point the core reason they work so well, we relax
below these two assumptions and examine the consequences of complex-
valued correlations emerging from non-Hermitian non-commuting Alice
and Bob operators. We thus allow a restricted form of signaling between
the parties (similar to the one in [136]), but we maintain the Hilbert
space structure, as well as other core ingredients of quantum mechanics.
Surprisingly, the Tsirelson bound and TLM inequality remain valid in this
generalized setting. Apart from that, we find intriguing relations between
nonlocality, local correlations of Alice (or Bob), and signaling in the case
of Hermitian yet non-commuting observables.

Considering non-Hermitian non-commuting observables may seem far
from any sensible model. To alleviate this impression, we study an explicit
example of a parafermionic system, which is a proper quantum system that
provides a natural setting for comparing commuting and non-commuting
sets of observables. The natural observables in the parafermionic system
happen to be non-Hermitian. Parafermions (or rather parafermionic
zero modes) are topological zero modes that generalize the better-known
Majorana zero modes [6, 21, 113]. Parafermions can be realized in various
quasi-one-dimensional systems [40, 137–142], see [143] for a comprehensive
review. Similarly to the case of Majoranas, observables in a system
of parafermions are inherently non-local as they comprise at least two
parafermionic operators hosted at different spatial locations. In the case
of Majoranas, this nonlocality is known to have manifestations through
the standard CHSH inequality [144]. We do not follow the investigation
line of Ref. [144], but rather investigate a different aspect of nonlocality,
which is absent for Majoranas yet present for parafermions.

Specifically, we construct two examples. In the first, the system of
parafermions is split into two spatially separated parts, A and B, with
commuting observables [Ai, Bj ] = 0. In the second example, Alice’s and
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Bob’s parts are still spatially separated; the local permutation properties
of A0, A1, as well as those of B0, B1 are exactly the same as in the first
example, yet [Ai, Bj ] ̸= 0. This property alone has the potential to con-
tradict relativistic causality since we have spatially separated observables
which do not commute and thus allow for superluminal signaling (thus
these systems can indeed simulate the case of non-Hermitian signaling
operators). However, as we explain in Sec. 4.3.2, in order to measure
their respective observables, Alice and Bob in our system must share a
common region of space, which resolves the paradox. In this sense, Alice
and Bob can be thought of as two experimenters acting on the same system.
Therefore, the system of parafermions does not constitute a system in
which the spatial and quantum mechanical notions of locality disagree.
However, it simulates such a system (with spatial locality interpreted in
a very naive way). Using these examples we investigate the theoretical
bounds on correlations. We find that both systems obey the derived
bounds. However, the maximal achievable correlations in the truly local
system (first example) are significantly weaker than those of the non-local
one.

Before we present our results in the next sections, one comment is
due. One may think that investigating Bell-CHSH correlations with
[Ai, Bj ] ̸= 0 is an abuse of notation. Originally introduced for distin-
guishing local-realistic theories from the standard quantum theory, the
Bell-CHSH inequalities imply the use of conditional probabilities P (a, b|i, j)
that are defined in both. With [Ai, Bj ] ̸= 0, the correlators that have the
same operator form are expressed not through probability distributions
P (a, b|i, j) but rather through quasiprobability distributions W (a, b|i, j),
cf. Appendix 4.C. Therefore, a formal replacement of commuting oper-
ators with non-commuting ones may seem an illegitimate operation in
this context. We would like to emphasize that the key to comparing
properties of different theories is considering objects that are defined in
these theories in an operationally identical way. This is the reason that
local-realistic theories are compared to quantum mechanics not in terms
of the joint probability distribution P (a0, a1, b0, b1) (that does not exist
in quantum theory when [Ai, Aj ] ̸= 0 and/or [Bi, Bj ] ̸= 0) but in terms
of P (a, b|i, j) conditioned on the choice of observables: P (a, b|i, j) are
defined in both theories and can be measured by the same measurement
procedure. Since our aim here is to compare the standard quantum theory
with that allowing for [Ai, Bj ] ̸= 0, working in the language of correlators
that are defined and can be measured (even if they are complex) by means
of weak measurements in both theories [145] is a natural decision. We
thus compare nonlocal theories having a Hilbert space structure, rather
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than a probabilistic structure (common, e.g., to local hidden variables
theories and quantum mechanics, but not to the post-quantum theories
discussed here). However, in the case of the standard quantum theory,
the correlation functions (and thus our new bounds) can be expressed in
terms of P (a, b|i, j), making them new bounds on the possible probability
distributions in the standard quantum theory.

In what follows, we start in Sec. 4.2 by defining an operator-based (rather
than probability-based) notion of complex correlations arising in nonlocal,
non-Hermitian systems admitting signaling and then find the generalized
inequalities bounding them. Importantly, this notion has an operational
sense in terms of weak measurements, as discussed in the Appendix 4.C.2.
In Sec. 4.3, we review parafermionic systems and show they can simulate
such non-Hermitian signaing systems. We then numerically prove they are
indeed bounded by the proposed bounds. Sec. 4.4 concludes the chapter.
Some technical details appear in the Appendices.

4.2 Analytic results for correlations of
general non-Hermitian non-commuting
operators

Below we prove a number of bounds on quantum correlations of non-
Hermitian non-commuting operators. We generalize the Tsirelson and the
TLM bounds (Theorems 1 and 2, which have been previously derived for
Hermitian commuting operators, see [146]) and derive previously unknown
bounds (Theorems 3 and 4, which are applicable to the Hermitian, non-
signaling case as well). Here we introduce the bounds and discuss them,
while their proofs are deferred to Sec. 4.2.1. The bounds are expressed in
terms of Pearson correlation functions of operators X and Y defined as

C(X,Y ) =
⟨XY †⟩ − ⟨X⟩⟨Y ⟩†

∆X∆Y
, (4.2.1)

where ∆X =

√
⟨XX†⟩ − |⟨X⟩|2 is the variance of X (which is assumed to

be non-zero), and averaging is performed with respect to some state |ψ⟩ in
the Hilbert space. This definition is a straightforward generalization of the
usual Pearson correlation between commuting Hermitian operators. The
Pearson correlations reduce to the standard cXY = ⟨XY ⟩ for Hermitian
X and Y on states |ψ⟩ such that ⟨X⟩ = ⟨Y ⟩ = 0 and ∆X = ∆Y = 1. We
note that C(X,Y ) is ill-defined when ∆X = 0 or ∆Y = 0; yet, as we show
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in Sec. 4.2.1, |C(X,Y )| ≤ 1 everywhere, including the vicinity of such
special points.

For the case of commuting operators X, Y , the definition of C(X,Y )
can be expressed in terms of the joint probability distributions, and our
below bounds can be thought of as restricting the possible probability
distributions in quantum theory. When X and Y do not commute, this
is not the case, which defies the notions that conventionally underlie
Bell inequalities. However, our aim here is not to analyze complex local
hidden variables models but rather to examine general models which are
manifestly nonlocal. In particular, we wish to analyze whether known
bounds on quantum correlations remain effective when generalized to
cases of non-Hermitian signaling operators. We argue that these complex
correlations are physically meaningful because there is an empirical protocol
for measuring them. That operational meaning of the above correlations
in terms of weak measurements is given in Appendix 4.C.2. Alternatively,
for the case of non-commuting observables, C(X,Y ) can be expressed
in terms of quasiprobability distibutions, and thus our bounds restrict
possible quasiprobability distributions in that case. We discuss this in
detail in Appendix 4.A.

We now discuss the bounds on Alice-Bob correlations.

Theorem 1. (Generalized Tsirelson bound). Define B def
= C(A0, B0)+

C(A1, B0) + C(A0, B1) − C(A1, B1) as the complex-valued Bell-CHSH
parameter of any operators Ai and Bj. The following holds

|B| =
√

Re(B)2 + Im(B)2

≤
√

2
[√

1 + Re(η) +
√

1 − Re(η)
]

≤ 2
√

2, (4.2.2)

where η is either C(A0, A1) or C(B0, B1) (the one having the larger |Re(η)|
among them will give rise to a tighter inequality).

Despite the fact that C(X,Y ) ̸= cXY , the Bell-CHSH parameter defined
through C(X,Y ) obeys the same Tsirelson bound as for cXY in Eq. (4.1.1).
Moreover, the proof of the Tsirelson bound for C(X,Y ) is valid indepen-
dently of whether [Ai, Bj ] = 0. A somewhat tighter bound (the middle row
of Eq. (4.2.2)) is obtained in terms of η that expresses on-site correlations
on Alice’s or Bob’s side. This is also insensitive to whether [Ai, Bj ] = 0.

Theorem 2. (Generalized TLM bound). The following holds for any
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operators Ai, Bj, i, j ∈ {0, 1},∣∣C(B0, A0)†C(B0, A1) − C(B1, A0)†C(B1, A1)
∣∣

≤
∑
j=0,1

√
(1 − |C(Bj , A0)|2)(1 − |C(Bj , A1)|2). (4.2.3)

Similarly to the previous theorem, this bound is insensitive to whether
[Ai, Bj ] = 0 and has the same form as the standard TLM bound, Eq. (4.1.2),
modulo replacing C(X,Y ) with real-valued cXY .

We note in passing that our bounds apply to both operators with
bounded and unbounded spectrum. Implementing Bell tests in mesoscopic
systems often requires dealing with operators having an unbounded spec-
trum, cf. Ref. [147]. Our theorems 1 and 2 may thus be useful for studies
in such systems.

Theorem 3. (Relation between nonlocality, local correlations, and
signaling). Let B be the complex-valued Bell-CHSH parameter defined in
Theorem 1. Then,(

Re(η)

2

)2

+

(
Re(B)

2
√

2

)2

+

(
Im(B)

2
√

2

)2

≤ 1. (4.2.4)

This bound is also valid independently of [Ai, Bj ] = 0. In the case
of Hermitian Ai, Bj that obey [Ai, Bj ] = 0, C(Ai, Bj) is real, implying
Im(B) = 0. If Ai and Bj are Hermitian but do not mutually commute,
there can appear imaginary components to C(Ai, Bj) and B. Therefore,
this relation may be interpreted as a constraint on non-local correlations
(represented by Re(B)/(2

√
2)), local on-site correlations (Re(η)/2), and

signaling (represented by Im(B)/(2
√

2) ̸= 0). These three quantities are
thus confined to the unit ball.

Theorem 4. Let B be the complex-valued Bell-CHSH parameter defined
in Theorem 1. In the case of isotropic correlations, C(Ai, Bj) = (−1)ijϱ
(such that B = 4ϱ) for some complex-valued ϱ,

|η|2 +

(
Re(B)

2
√

2

)2

+

(
Im(B)

2
√

2

)2

≤ 1. (4.2.5)

Note that Eq. (4.2.5) provides a tighter bound than Eq. (4.2.4). However,
Eq. (4.2.5) is proved under the rather restrictive assumption of C(Ai, Bj) =
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(−1)ijϱ. This is a valid assumption within non-signaling theories in the
following sense. Reference [148] argued that the standard Bell-CHSH
parameter B = c00 + c10 + c01 − c11 for ±1-valued observables in a non-
signaling theory (not necessarily classical or quantum) can always be
maximized on a state satisfying cij = (−1)ijρ with a real ρ. While the
statement of Ref. [148] was proved for the standard correlations cXY
(and not our C(X,Y )) and maximizing the l.h.s. of Eq. (4.2.5) is not
equivalent to maximizing |B|, one might hope that the possibility of
arranging C(Ai, Bj) = (−1)ijϱ is related to non-signaling, and the bound
of Eq. (4.2.5) would discriminate the cases of [Ai, Bj ] = 0 and [Ai, Bj ] ̸= 0.
We provide some numerical evidence for the last statement in Sec. 4.3.

4.2.1 Proofs of analytic bounds

Lemma 1. (Generalized uncertainty relations, see Ref. [149] for
elaboration on the term). Denote by X1, . . . , Xn, a number of operators.
Let C be an n× n Hermitian matrix whose ij-th entry is

C(Xi, Xj) =
⟨XiX

†
j ⟩ − ⟨Xi⟩⟨Xj⟩†
∆Xi∆Xj

, (4.2.6)

where ∆X =

√
⟨XX†⟩ − |⟨X⟩|2 is the uncertainty in X (which is assumed

to be non-zero). Then C ⪰ 0, i.e., it is positive semidefinite.

Proof. Denote |ψ⟩, the underlying quantum state. For any n-dimensional
vector, vT = [v1, . . . , vn], it follows that

vTDCDT v = ⟨ϕ|ϕ⟩ ≥ 0, (4.2.7)

where D is a (positive semidefinite) diagonal matrix whose entries are
Dii = ∆Xi , and |ϕ⟩ =

∑n
i=1 vi (Xi − ⟨Xi⟩) |ψ⟩. Therefore, DCDT ⪰ 0

and so is C ⪰ 0. 2

Applying this lemma to two operators, X1, X2, one obtains an inequality
|C(X1, X2)| ≤ 1, implying that the correlation functions are bounded even
near ∆X1,2

= 0.

Theorem 1. Proof. Construct the matrix C for the operators A0, A1,
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and Bj , C(Bj , Bj) C(Bj , A1) C(Bj , A0)
C(Bj , A1)† C(A1, A1) C(A0, A1)
C(Bj , A0)† C(A0, A1)† C(A0, A0)


=

 1 C(Bj , A1) C(Bj , A0)
C(Bj , A1)† 1 η
C(Bj , A0)† η† 1

 ⪰ 0, (4.2.8)

where η
def
= C(A0, A1). By the Schur complement condition for positive

semidefiniteness this is equivalent to

CA
def
=

[
1 η
η† 1

]
⪰
[
C(Bj , A1)†

C(Bj , A0)†

] [
C(Bj , A1) C(Bj , A0)

]
. (4.2.9)

Let vTj = [(−1)j , 1]. The above inequality implies

2(1 + (−1)jRe(η)) = vTj C
Avj

≥
∣∣C(Bj , A0) + (−1)jC(Bj , A1)

∣∣2 . (4.2.10)

This together with the triangle inequality yield

|B| ≤
∑
j=0,1

∣∣C(Bj , A0) + (−1)jC(Bj , A1)
∣∣

≤
√

2
∑
j=0,1

√
1 + (−1)jRe(η), (4.2.11)

which completes the proof. Note that by swapping the roles of A and B, a
similar inequality is obtained where η = C(B0, B1). 2
Theorem 2. Proof. The inequality (4.2.9) implies

(1 − |C(Bj , A0)|2)(1 − |C(Bj , A1)|2)

−
∣∣η − C(Bj , A0)†C(Bj , A1)

∣∣2 ≥ 0, (4.2.12)

which follows from the non-negativity of the determinant of the matrix
obtained by subtracting the right hand side from the left hand side in
(4.2.9). Therefore,∣∣η − C(Bj , A0)†C(Bj , A1)

∣∣
≤
√

(1 − |C(Bj , A0)|2)(1 − |C(Bj , A1)|2). (4.2.13)
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This and the triangle inequality give rise to the theorem,∣∣C(B0, A0)†C(B0, A1) − C(B1, A0)†C(B1, A1)
∣∣

≤
∑
j=0,1

∣∣η − C(Bj , A0)†C(Bj , A1)
∣∣

≤
∑
j=0,1

√
(1 − |C(Bj , A0)|2)(1 − |C(Bj , A1)|2). 2 (4.2.14)

Theorem 3. Proof. We have seen that

|B| ≤
√

2
(√

1 + Re(η) +
√

1 − Re(η)
)
. (4.2.15)

Therefore,

|B|2 = Re(B)2 + Im(B)2 ≤ 4
(

1 +
√

1 − Re(η)2
)
. (4.2.16)

Because,
√

1 − a ≤ 1 − a/2 for a ∈ [0, 1], it follows that

Re(B)2 + Im(B)2 ≤ 8 − 2Re(η)2, (4.2.17)

from which the theorem follows. 2
Theorem 4. Proof. In case the isotropy holds, i.e., C(Ai, Bj) =

C(Bj , Ai)
∗ = (−1)ijϱ, (4.2.12) reads∣∣∣η − (−1)j |ϱ|2

∣∣∣2 ≤ (1 − |ϱ|2)2, (4.2.18)

and thus
|η|2 − 2(−1)j |ϱ|2 Re(η) ≤ 1 − 2 |ϱ|2 . (4.2.19)

Averaging both sides in this inequality over j = 0, 1, and rearranging give

|η|2 + 2 |ϱ|2 ≤ 1. (4.2.20)

Finally, substituting ϱ = B/4 into (4.2.20) yields the theorem. 2

4.3 Investigating the bounds in the system of
parafermions

Parafermions provide a unique test system for the bounds proven in the
previous section. First, the natural observables in a system of parafermions
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are non-Hermitian. Second, in this system the non-commutativity between
Alice’s and Bob’s operators can be switched on and off without changing
anything else about the algebra of operators, enabling a clean investigation
of the effect of Alice-Bob non-commutativity. Finally, there have been a
number of proposals for experimental implementations of parafermions
[40, 137–142], which opens the way for experimental verification of our
predictions.

The structure of the section is as follows. In Sec. 4.3.1, we give a
brief introduction to the physics of parafermions and the algebra of their
operators. In Sec. 4.3.2, we construct the observables of Alice and Bob.
Those not interested in the physics of parafermions may skip directly to
Eqs. (4.3.8–4.3.10) detailing the permutation relations of the observables
and Eqs. (4.3.11–4.3.16) introducing their explicit matrix representation.
In Sec. 4.3.3, we provide the results of the numerical investigation of
bounds (4.2.2–4.2.5).

4.3.1 Parafermion physics and algebra

Parafermionic zero modes can be created in a variety of settings [40, 137–
142]. In different settings, they have subtly different properties. We focus
on parafermions implemented with the help of fractional quantum Hall
(FQH) edges proximitized by a superconductor [40, 137, 140]. The setup
employs two FQH puddles of the same filling factor ν (grey regions in
Fig. 4.1a) separated by vacuum. This gives rise to two counter-propagating
chiral FQH edges. The edges can be gapped either by electron tunneling
between them (T domains) or by proximity-induced superconducting
pairing of electrons at the edges (SC domains). Domain walls between the
domains of two types host parafermionic zero modes αs,j with s = R/L =
±1 denoting whether a parafermion belongs to the right- or left-propagating
edge respectively, and j denoting the domain wall number.

Parafermion operators have the following properties:

α
2/ν
s,j = αs,jα

†
s,j = α†

s,jαs,j = 1, (4.3.1)

αs,jαs,k = αs,kαs,je
iπνssgn(k−j), (4.3.2)

αR,jαL,k = αL,kαR,j


eiπν , k ̸= j,

1 , k = j are even,

e2iπν , k = j are odd,

(4.3.3)

where sgn is the sign function. These properties are valid for ν = 1/(2m+1),
m ∈ Z+ considered in Refs. [40, 137] and for ν = 2/3 considered in
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Figure 4.1: a, b — A physical setup for creating and measuring parafermions.
a — Setup for implementing parafermions (represented in cyan) with two frac-
tional quantum Hall (FQH) edges (arrows) supporting a series of electron-
tunneling-gapped (T) and superconductivity-gapped (SC) domains. b — Setup
for measuring parafermionic observables with the help of two additional FQH
edges (curved arrows) as in Ref. [150] (cf. Appendix 4.B). c, d — Parafermionic
observables and their mutual locality. c — Grouping parafermions into groups
belonging to Alice (A) and Bob (B/B′). d — A and B do not have common
parafermions, are mutually local, and can be made arbitrarily distant in space.
While A and B′ do not have common parafermions, they are not mutually local:
for Alice to measure A while Bob can measure B′, there should be a region of
the upper FQH puddle accessible both to Alice and Bob.
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Ref. [140]. In the case of ν = 1, parafermions reduce to Majorana operators
and αR,j = αL,j .

The physics of parafermions is associated with degenerate ground states
of the system. Namely, beyond hosting Cooper pairs, each superconducting
domain SCj can host a certain charge Qj (mod2e) quantized in the units of
charge of FQH quasiparticles νe. Thus each Qj has d = 2/ν distinct values,
and the ground state degeneracy of a system as in Fig. 4.1a is therefore dNSC ,
where NSC is the number of SC domains. Parafermionic operators αs,j act
in this degenerate space of ground states and represent the effect of adding
a FQH quasiparticle to the system from a FQH puddle corresponding to
s at domain wall j. Various observables in the system of parafemions
can be expressed through unitary operators αs,jα

†
s,k. In particular, Qj

themselves can be expressed through eiπs(Qj/e−ν/2) = (−1)2/να†
s,2j−1αs,2j .

One can show that
(
αs,jα

†
s,k

)d
= −e2iπ/ν , which implies that αs,jα

†
s,k has

d distinct eigenvalues, all having the form −eiπν(r+1/2) with r ∈ Z.
Unitary operators αs,jα

†
s,k are thus natural “observables” in the system

despite being non-Hermitian. The permutation relations of such operators
immediately follow from Eqs. (4.3.1-4.3.3). Despite being spatially discon-
nected, such operators composed of different pairs of parafermions may
not commute, e.g.,

αR,2α
†
R,4αR,3α

†
R,5 = αR,3α

†
R,5αR,2α

†
R,4e

2iπν . (4.3.4)

It is interesting to note that in the case of Majoranas (ν = 1), none of

these two unique properties would hold: the operators iαs,jα
†
s,k would be

Hermitian, while two such operators having no common Majoranas would
commute.

4.3.2 Alice’s and Bob’s observables

For a parfermionic system with three SC domains (as in Fig. 4.1) with
a fixed total charge, the ground state is d2-degenerate, which allows to
split it into two distinct subsystems: SC1 and SC3 domains, each having
degeneracy d as each can have d distinct values of charge Qj . The charge
of SC2 domain is determined by the state of SC1 and SC3 in order for
the total charge to be fixed. This system is thus a natural candidate for
studying quantum correlations between two subsystems. To this end, we
introduce observables accessible to Alice,

A0 = αR,2α
†
R,4, A1 = αR,1α

†
R,4, (4.3.5)
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and two different sets of observables accessible to Bob:

B0 = αL,3α
†
L,5, B1 = αL,3α

†
L,6, (4.3.6)

and
B′

0 = αR,3α
†
R,6, B′

1 = αR,3α
†
R,5. (4.3.7)

They have identical local algebra, yet different commutation properties of
Alice’s and Bob’s observables:

A0A1 = A1A0e
−iπν , (4.3.8)

B0B1 = B1B0e
−iπν , B′

0B
′
1 = B′

1B
′
0e

−iπν , (4.3.9)

[Aj , Bk] = 0, AjB
′
k = B′

kAje
2iπν . (4.3.10)

The non-commutation of A and B′ observables would imply the possiblity
of superluminal signaling had the observables been truly spatially separate
(which is not the case, as we explain below). Therefore, we call the set of
A and B a non-signaling set, and the set of A and B′ a signaling set of
observables.

Naively, Alice’s observables are local with respect to either set of Bob’s
observables, cf. Fig. 4.1c. Indeed, A and either the B or B′ set use
different parafermions, which can be made arbitrarily distant from each
other, cf. Fig. 4.1d. However, the locality issue in this system is subtler
as in order to probe an observable of the form αs,jα

†
s,k, one needs to

enable FQH quasiparticle tunneling to both parafermions simultaneously
(see Appendix 4.B). At the same time, quasiparticles can tunnel to a
parafermion only from the FQH puddle corresponding to the parafermion
index s, not through vacuum and not from the other puddle. Therefore,
as can be seen from Fig. 4.1d, the A and B sets are indeed mutually local,
while A and B′ are not. The ability of Alice to measure observables in A
and of Bob to measure observables in B′, requires them to have access
to a common region of the upper FQH puddle. Thus, the system does
not violate the laws of quantum mechanics, nor exhibits superluminal
signaling. Nevertheless, it presents a unique opportunity for comparing
correlations of commuting and non-commuting (but otherwise equivalent)
sets of observables.

The standard tool for studying quantum correlations is given by Bell
inequalities. However, since the observables considered here have more
than two eigenvalues, we require CHSH-like inequalities suitable for multi-
outcome measurements. We study the inequalities introduced in The-
orems 1–4, as well as an inequality from Ref. [151]. These inequalities
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involve correlators of the form ⟨AjB†
k⟩ and ⟨Aj (B′

k)
†⟩. Since [Aj , Bk] = 0,

⟨AjB†
k⟩ can be experimentally obtained by performing strong measure-

ments of Aj and Bk separately according to the protocol of Appendix 4.B
and then calculating the correlations. Alternatively, these correlations can
be measured with weak measurements [67, 68]. The non-commutativity of
Aj and B′

k does not allow for a strong-measurement-based approach in

the case of ⟨Aj (B′
k)

†⟩. However, this correlator can be measured with the
help of weak measurements as described in Appendix 4.C.

From now on we focus on parafermions implemented using ν = 2/3 FQH
puddles. Using permutation relations (4.3.8–4.3.10) supplemented by the

permutation relations of Bj and B′
k, as well as

(
αs,jα

†
s,k

)3
= 1, one can

derive an explicit matrix representation for observables (4.3.5–4.3.7):

A0 =

1 0 0
0 e2πi/3 0
0 0 e−2πi/3

⊗

1 0 0
0 1 0
0 0 1

 , (4.3.11)

A1 =

0 1 0
0 0 1
1 0 0

⊗

1 0 0
0 1 0
0 0 1

 , (4.3.12)

B0 =

1 0 0
0 1 0
0 0 1

⊗

1 0 0
0 e2πi/3 0
0 0 e−2πi/3

 , (4.3.13)

B1 =

1 0 0
0 1 0
0 0 1

⊗

0 1 0
0 0 1
1 0 0

 , (4.3.14)

B′
0 =

0 e−2πi/3 0
0 0 e2πi/3

1 0 0

⊗

0 1 0
0 0 1
1 0 0

 , (4.3.15)

B′
1 =

0 e−2πi/3 0
0 0 e2πi/3

1 0 0

⊗

 0 0 1
e−2πi/3 0 0

0 e2πi/3 0

 . (4.3.16)

This is used in the numerical investigation in the next section.
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Bound: I3
Tsirelson

type

TLM-

type,

l.h.s/r.h.s.

L.h.s.
of

(4.2.4)

L.h.s. of
(4.2.5)

Theoretical maximum
2.91
[152]

2
√
2

(≈ 2.83)
1 1

1 (if as-
sumptions

hold)

Parafermion

maximum

non-
signaling
(A+B)

2.60 2.44 0.71 0.74 1.00

signaling
(A+B′)

2.60 2.82 1.00 1.00 1.56

Table 4.1: Characterization of various bounds on non-local correlations for the
signaling and non-signaling sets of parafermionic observables. Maximal values
achieved with parafermionic observables (‘Parafermion maximum’) are compared
to the theoretical maximum. The quantities considered are I3 (4.3.17, l.h.s.),
generalized Tsirelson (4.2.2, l.h.s.), generalized TLM (4.2.3, l.h.s/r.h.s.), relation
(4.2.4, l.h.s.), and relation (4.2.5, l.h.s.).

4.3.3 Numerical results for correlations of
parafermions

Here we numerically investigate the bounds on correlations presented
above (4.2.2–4.2.5) and the CHSH-like inequality derived in Ref. [151].
The inequality of Ref. [151] states that for a local-realistic system

I3 = Q00 +Q01 −Q10 +Q11 ≤ 2, (4.3.17)

whereQjk = Re [⟨AjBk⟩]+ 1√
3
Im [⟨AjBk⟩] for i ≥ j, andQ01 = Re [⟨A0B1⟩]−

1√
3
Im [⟨A0B1⟩]. The observables are assumed to have possible values (for

the quantum case that we are interested in, eigenvalues) e2πir/3, r ∈ Z,
which is the case for the observables defined in Eqs. (4.3.11–4.3.16). In
the standard quantum theory, i.e., for quantum observables such that
[Aj , Bk] = 0, the maximum attainable value is known to be ≈ 2.91 [152].

For all the inequalities investigated, we calculated the corresponding
correlations C(Ai, Bj) or ⟨AjBk⟩, and maximized the relevant expressions
numerically over all possible states |ψ⟩. The expressions maximized were
the left-hand side of bounds (4.3.17, 4.2.2, 4.2.4, 4.2.5) and the ratio of the
left-hand side to the right-hand side of inequality (4.2.3). The numerical
maximization was performed independently via Wolfram Mathematica
(functions NMaximize for finding the global maximum and FindMaximum

for investigating local maxima) and Python (package scipy.optimize,
functions basinhopping for finding the global maximum with SLSQP op-
timization method for investigating local maxima). One aspect deserves
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mentioning. Correlation functions C(Ai, Bj) defined in Eq. (4.2.6) are not
well-defined in all of the Hilbert space as the denominator can turn out to
be zero. However, the points where it does, constitute a set of measure
zero among all the states. Moreover, in the vicinity of these special points,
C(Ai, Bj) does not diverge but stays bounded as |C(Ai, Bj)| ≤ 1; however,
the limiting value as one approaches the special point depends on the
direction of approach. Therefore, with careful treatment, these special
points do not constitute a problem for investigation. Namely, we replaced
∆Ai → ∆Ai + ϵ2, ∆Bj → ∆Bj + ϵ2 with a small cutoff ϵ, and checked that
our results do not change as ϵ→ 0. Furthermore, the states |ψ⟩ on which
the maximum values in Table 4.1 are achieved are such that ∆Ai ,∆Bj ̸= 0
for all Ai, Bj .

The results of our investigation are presented in Table 4.1. First, we
note that the l.h.s. of Eq. (4.3.17) does not distinguish the signaling and
non-signaling sets of observables. Second, our bounds (4.2.2-4.2.4) are
obeyed by both sets. However, the signaling set saturates the bounds much
better than the non-signaling one. Finally, the bound of Theorem 4, (4.2.5),
is saturated by the non-signaling set and violated by the signaling one.
This does not contradict the proof, which assumes C(Ai, Bj) = (−1)ijϱ.
In fact, this property is not satisfied by the states |ψ⟩ maximizing the
l.h.s. of (4.2.5) for either of the sets. However, this numerical evidence
together with the fact that C(Ai, Bj) = (−1)ijϱ correlations might be
special for non-signaling theories (cf. the discussion after Theorem 4)
imply that Eq. (4.2.5) may be a good bound for distinguishing signaling
and non-signaling quantum theories. We provide further evidence for the
last statement in Appendix 4.D.

4.4 Discussion

Our analytic results have important implications for understanding quan-
tum correlations. It is known that the standard CHSH parameter has
distinct bounds for classical local (|B| ≤ 2) and non-local (|B| ≤ 4) hidden
variable theories, while the standard quantum theory obeys the Tsirelson
bound (4.1.1). Our variation of the Tsirelson bound (4.2.2) is closely related
to the original Tsirelson bound. In particular, for Hermitian observables
X = Ai, Bj such that XX† = 1 and states |ψ⟩ such that ⟨ψ|X|ψ⟩ = 0,
our Bell-CHSH parameter |B| (4.2.2) coincides with the original one. At
the same time, our proof shows that the Tsirelson bound (4.2.2), as well
as the TLM bound (4.2.3), do not distinguish between the standard and
non-local signaling quantum theories. This implies that the Hilbert space
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structure is much more restrictive than it was previously thought (see, e.g.,
Eq. 4.2.8 which underlies our proofs). Naively, one could expect that the
possibility of signaling would allow nonlocal correlations to be stronger
than quantum, because one party can directly affect from a distance the
others’ outcomes and in particular make them more correlated with hers.
However, the limited kind of signaling we have introduced here, still within
a quantum-like structure, is insufficient for this purpose.

At the same time, understanding the bounds on correlations in the
standard quantum theory, that explicitly takes into account the absence
of signaling, may be beneficial both for deepening its understanding,
further testing its validity, and deriving bounds on protocols for quantum
information processing. Our numerical results with parafermions provide
a candidate for such a bound, Eq. (4.2.5). Indeed, the “non-signaling”
parafermionic set stayed within the bound, while the “signaling” one
violated it. Moreover, Ref. [148] argued that the assumptions we used to
prove theorem 4 hold generally for the states maximizing the standard
Bell-CHSH parameter in non-signaling theories (not in the sense that any
maximizing state satisfies the assumptions, but in the sense that it is
always possible to find a state that maximizes the standard Bell-CHSH
parameter and satisfies the assumptions). Therefore, we believe that
inequality (4.2.5) deserves further investigation.
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4.A Relation between the correlation
functions C(X, Y ) and joint probability
distributions

For the standard case of commuting operators X and Y , it is possible to
express correlators C(X,Y ) defined in Eq. (4.2.1) through the joint proba-
bility distribution P (x, y) of outcomes of X and Y measurements. Indeed,
for commuting X and Y , it is possible to find their common eigenbasis
|xyλ⟩, where X|xyλ⟩ = x|xyλ⟩ and similarly for Y ; λ represents possible
additional quantum numbers. Then any state allows for a decomposition

|ψ⟩ =
∑
x,y,λ

αxyλ|xyλ⟩. (4.A.1)

The probability of one observer obtaining x in a measurement of X, while
the other obtains y in a measurement of Y is given by

P (x, y) = Tr|ψ⟩⟨ψ|P(X)
x P(Y )

y =
∑
λ

|αabλ|2 , (4.A.2)

where P(X)
x and P(Y )

y are the projectors onto the eigenspaces of X and
Y respectively. Then ⟨XY †⟩ =

∑
x,y xy

∗P (x, y), ⟨X⟩ =
∑
x xP (x, y)

etc. This allows for expressing C(X,Y ) as a non-linear functional of the
probability distribution P (x, y). Therefore, for the case of commuting Alice-
Bob observables, [Ai, Bj ] = 0 our bounds (4.2.2,4.2.3) can be considered
restrictions on the possible joint probability distributions P (a, b|i, j) in the
quantum theory, defined exactly as in Eq. (4.A.2) modulo a replacement
X → Ai and Y → Bj .

For the case of non-commuting X and Y , one cannot define a joint
eigenbasis, but rather eigenbases |xλ⟩ of X and |yλ̃⟩ of Y . One can still
expand any state

|ψ⟩ =
∑
x

αxλ|xλ⟩ (4.A.3)

and define

W (x, y) = Tr|ψ⟩⟨ψ|P(X)
x P(Y )

y

=
∑

x′,λ,λ′,λ̃

αx′λ′α∗
xλ⟨xλ|yλ̃⟩⟨yλ̃|x′λ′⟩. (4.A.4)

Moreover, ⟨XY †⟩ =
∑
x,y xy

∗W (x, y), ⟨X⟩ =
∑
x xW (x, y) etc., leading to

exactly the same expression of C(X,Y ) in terms of W (x, y) as previously
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in terms of P (x, y). However, W (x, y) is not a probability distribution
as the r.h.s. of Eq. (4.A.4) can acquire complex values. W (x, y) is a
quasiprobability distribution (somewhat similar to the Wigner function)
in the case of non-commuting X and Y . Therefore, when [Ai, Bj ] ̸= 0
can be considered as restrictions on the possible joint quasiprobability
distributions W (a, b|i, j).

4.B Measuring parafermionic observables

A system combining parafermions with charging energy was introduced in
Ref. [150]. In such a system there is a charging energy associated with the
total system charge Qtot =

∑
j Qj +Q0, where Q0 = 2enC is the charge of

the proximitizing superconductor, and nC is the number of Cooper pairs
in it. However, no energy cost is associated with different distributions
of a given total charge over different SC domains. Therefore, the ground
state of such a system has degeneracy dNSC−1, where the reduction by a
factor of d corresponds to fixing the system’s total charge. The properties
of operators αs,jα

†
s,k acting in this reduced subspace are identical to those

in the original system of parafermions with unrestricted total charge.
Introducing charging energy allows for designing a relatively simple

protocol for measuring αs,jα
†
s,k (both parafermions have the same s!) [150].

A sketch of the measurement setup is shown in Fig. 4.1b. Two additional
FQH edges (belonging to one of the puddles) are required in this setup.
Tunneling of FQH quasiparticles is allowed directly between the two edges
with tunnelling amplitude ηref or between each edge and the corresponding
parafermion αs,j/k with amplitude ηj/k. As changing the charge of the
parafermionic system is energetically costly, the leading non-trivial process
resulting from coupling of the edges to the parafermions is co-tunneling
of quasiparticles: a quasiparticle is transferred between the edges, while
the parafermion state is changed via αs,jα

†
s,k and the effective tunneling

amplitude is ηcot ≃ −ηkη∗j /EC , where EC is the charging energy. The two
processes, direct and parafermion-mediated tunneling of a quasiparticle
between the edges, interfere quantum-mechanically. When a voltage bias
V is applied between the edges, the tunneling current between the edges
is sensitive to this interference:

IT ∝ |V |2ν−1
sgnV

×
(
|ηref |2 + |ηcot|2 + 2κRe

[
η∗refηcotαs,jα

†
s,k

])
, (4.B.1)

where κ is the interference suppression factor due to finite temperature
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and other effects, Re [A] =
(
A+A†) /2, and |V | is assumed to be much

larger than the temperature T of the probing edges. As a result, by

measuring IT, one can measure the operator Re
[
eiφαs,jα

†
s,k

]
with phase

φ depending on the phases of ηref and ηcot. Thus, one can measure the
system in the eigenstates of αs,jα

†
s,k employing the fact that the eigen-

values of the αs,jα
†
s,k are discrete: for a generic φ, distinct eigenvalues

of αs,jα
†
s,k correspond to distinct eigenvalues of Re

[
eiφαs,jα

†
s,k

]
. Alter-

natively, through tuning the phase φ, one can measure independently

Re
[
αs,jα

†
s,k

]
and Im

[
αs,jα

†
s,k

]
= Re

[
e−iπ/2αs,jα

†
s,k

]
, and combine the

measurement results for calculating the expectation value ⟨αs,jα†
s,k⟩.

4.C How to measure correlations of
non-commuting observables

4.C.1 Measuring correlations of non-commuting
parafermionic observables

Here we discuss how one can measure the correlators ⟨Aj (B′
k)

†⟩ for
non-commuting parafermionic observables. The procedure outlined in
Appendix 4.C.2 enables one to measure ⟨{Aj , (B′

k)
†}⟩, where {X,Y }

denotes the anti-commutator of operators X and Y , using weak mea-
surements [67, 68]. For the observables defined in Sec. 4.3.2, the follow-

ing permutation relation holds: Aj (B′
k)

†
= (B′

k)
†
Aje

−2iπν . Therefore,

⟨{Aj , (B′
k)

†}⟩ = ⟨Aj (B′
k)

†
(1 + e2iπν)⟩ = 2⟨Aj (B′

k)
†⟩eiπν cosπν, and mea-

suring ⟨{Aj , (B′
k)

†}⟩ is sufficient for measuring ⟨Aj (B′
k)

†⟩.
The rest of this appendix is dedicated to designing weak measurements

of the required type and adapting the protocol of Appendix 4.C.2 to
measuring parafermionic observables. Note that this measurement method
is specific to the particular implementation of parafermions. We start
with the measurement protocol discussed in Appendix 4.B. Suppose one of
the additional FQH edges involved in the protocol has voltage V applied
to it, while the other edge is grounded. The current injected to the first
edge is Iin = νe2V/h, while the tunneling current between the edges is
IT, cf. Eq. (4.B.1). Suppose one measures the current for time t, so that
the number of quasiparticles injected into the system is N = Iint/(νe).
The number of quasiparticles q tunneling within the time window will be
fluctuating around the average ⟨q⟩ = pN = ITt/(νe) with p = IT/Iin. The
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expression for IT in Eq. (4.B.1) is valid as long as |IT| ≪ |Iin|. In this
regime, tunneling of different quasiparticles can be considered independent,
and thus the probability of observing tunneling of q quasiparticles should
be approximated well by the binomial distribution

P (q) = CqNp
q(1 − p)N−q, CqN =

N !

q!(N − q)!
. (4.C.1)

If one measures for a sufficiently long time, i.e., N ≫ 1, the binomial
distribution is well-approximated by the Gaussian distribution

P (q) ≈ 1√
2πNp(1 − p)

exp

(
− (q − pN)2

2Np(1 − p)

)
. (4.C.2)

Depending on the eigenvalue −eiπν(r+1/2) of the measured observable
αs,jα

†
s,k, the tunneling probability p = p0 + δpr, with

p0 ∝ |ηref |2 + |ηcot|2 , (4.C.3)

δpr ∝ −2κ |ηref | |ηcot| cos (πνr + πν/2 + φ) , (4.C.4)

where φ = arg(η∗refηcot), cf. Eq. (4.B.1). From now on we assume |ηcot| ≪
|ηref |, p0 ≪ 1 and p0N ≫ 1. Then the average number of tunneled
quasiparticles is ⟨q⟩r = p0N + δprN , while the size of fluctuations in the
measured values of q is of the order σ:

σ =
√

2Np(1 − p) =
√

2Np0 (1 +O(|ηcot/ηref | , p0)) .

The parameter determining the distinguishability of different r, and thus

the measurement strength, is δprN/σ ∝
∣∣∣ηcotηref

∣∣∣√N . For sufficiently large∣∣∣ηcotηref

∣∣∣√N , the scheme thus implements a strong measurement, while the

limit
∣∣∣ηcotηref

∣∣∣√N ≪ 1 implies a weak measurement.

Denoting the initial state of parafermions as
∑
r ψr|r⟩ and using some

approximations, one can derive the state of the system after switching on
the tunnel couplings for time t,

|Φ̃⟩ =
∑
r,q,λ

fλ(q, r)ψr

(
ηref − ηcote

iπν(r+1/2)∣∣ηref − ηcoteiπν(r+1/2)
∣∣
)q

|r⟩|q, λ⟩, (4.C.5)

where λ represents additional quantum numbers of the edges. It follows
from Eq. (4.C.2) that:∑

λ

f∗λ(q, r)fλ(q, r) = N 2 exp

[
− (q − ⟨q⟩r)2

2Np0

] [
1 +O

(∣∣∣∣ηcotηref

∣∣∣∣ , p0)]
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, with normalization factor N = (2πNp0)
−1/4

. Having not performed the
calculation, we make a plausible assumption that also∑

λ

f∗λ(q, r)fλ(q, r′) = N 2

× exp

[
−
(
q − ⟨q⟩r + ⟨q⟩r′

2

)2

× 1

2Np0
− (⟨q⟩r − ⟨q⟩r′)2

8Np0

]

×
[
1 +O

(∣∣∣∣ηcotηref

∣∣∣∣ , p0)] . (4.C.6)

Further assuming the limit
∣∣∣ηcotηref

∣∣∣ p0N ≪ 1, we can neglect ηcote
iπν(r+1/2)

in Eq. (4.C.5) and obtain that for our purposes one can replace |Φ̃⟩ with

|Φ⟩ = N
∑
r,q

ψr exp

[
− (q − ⟨q⟩r)2

4Np0

]

×
[
1 +O

(∣∣∣∣ηcotηref

∣∣∣∣ p0N, ∣∣∣∣ηcotηref

∣∣∣∣ , p0)] |r⟩|q⟩, (4.C.7)

which brings us to weak measurements of the type considered in Ap-
pendix 4.C.2.

Consider now two weak measurements accessing Aj and (B′
k)

†
per-

formed one after the other, with the number of quasiparticles tunneled in
each of the measurements being q1 and q2. Repeating the calculation of
Appendix 4.C.2, we obtain

⟨(q1 − p0N)(q2 − p0N)⟩ ∝ ⟨Re
[
eiφAj

]
Re
[
eiφ

′
(B′

k)
†
]
⟩

×
[
1 +O

(∣∣∣∣ηcotηref

∣∣∣∣ p0N, ∣∣∣∣ηcotηref

∣∣∣∣ , p0)] . (4.C.8)

Using Eq. (4.C.16), one sees that by choosing different phases φ, φ′, one

can measure ⟨{Aj , (B′
k)

†}⟩ = 2⟨Aj (B′
k)

†⟩eiπν cosπν.

4.C.2 Measuring correlations of non-commuting
observables with weak measurements

Here we discuss how to measure the averages ⟨{A,B}⟩ of non-Hermitian
non-commuting A and B, where {A,B} = AB + BA, with the help of
weak measurements. Our protocol uses essentially the same measurement
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procedure as in Refs. [153–155], and is similar in spirit (yet has important
differences) to Refs. [156, 157]. We note in passing that by more elaborate
methods, one can measure also the expectation value of a commutator [145].
However, measuring the anti-commutator will suffice for our purposes. We
first discuss how to measure correlations of Hermitian non-commuting
observables, and then generalize the scheme to non-Hermitian observables.

Suppose one wants to measure the average ⟨{A,B}⟩ = ⟨ψ|{A,B}|ψ⟩,
where A and B are Hermitian non-commuting operators, and |ψ⟩ is
some quantum state. Introduce the eigenbases of A and B: A|a⟩ = a|a⟩,
B|b⟩ = b|b⟩. Any system state |ψ⟩ can then be written as |ψ⟩ =

∑
a ψa|a⟩ =∑

a,b ψa|b⟩⟨b|a⟩ with some coefficients ψa. We assumed that there is
no degeneracy in the spectra of A and B; generalization of the below
consideration for the case with degeneracy is straightforward.

Consider two detectors, D1 and D2 each having coordinate Qj and
momentum Pj operators, [Pj , Qk] = −iδjk, with j and k having values 1
and 2. Prepare the system and detectors in initial state

|Φin⟩ = |ψ⟩|D1,in⟩|D2,in⟩, (4.C.9)

|Dj,in⟩ = N
∫
dqj exp

(
−
q2j

2σ2

)
|qj⟩, (4.C.10)

where |qj⟩ is an eigenstate of Qj with eigenvalue qj , and N =
(
πσ2

)−1/4
.

The Hamiltonian describing the system and the detectors is

H(t) = λ1(t)H1 + λ2(t)H2, (4.C.11)

H1 = P1A, H2 = P2B, (4.C.12)

where the coupling constants λj(t) = 0 except for λ1(t) = g/T for t ∈ (0;T )
and λ2(t) = g/T for t ∈ (T ; 2T ). Then after the system has interacted
with the detectors, their state is

|Φ⟩ = e−igH2e−igH1 |Φin⟩

= N 2
∑
a,b

∫
dq1dq2ψa⟨b|a⟩|b⟩|q1⟩|q2⟩

× exp

(
− (q1 − ga)2

2σ2
− (q2 − gb)2

2σ2

)
. (4.C.13)
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Measuring Q1 and Q2 of the detectors and calculating their correlations
then yields the desired quantity. Indeed,

⟨Φ|Q1Q2|Φ⟩ = N 4
∑
a,a′,b

ψ∗
aψa′⟨a|b⟩⟨b|a′⟩

×
∫
dq2q2 exp

(
− (q2 − gb)2

σ2

)
×
∫
dq1q1 exp

(
− (q1 − g(a+ a′)/2)2

σ2
− g2(a− a′)2

4σ2

)
=
∑
a,a′,b

α∗
aαa′⟨a|b⟩⟨b|a′⟩

g2

2
b(a+ a′) exp

(
−g

2(a− a′)2

4σ2

)
. (4.C.14)

Provided that g |a− a′| ≪ 2σ for all a, a′ (which is the condition for
weakness of the measurement), one obtains

⟨Φ|Q1Q2|Φ⟩

=
g2

2

∑
a,a′,b

ψ∗
a⟨a| (a|b⟩b⟨b| + |b⟩b⟨b|a′)ψa′ |a′⟩

=
g2

2
⟨ψ|{A,B}|ψ⟩. (4.C.15)

Suppose now one wants to measure ⟨{A,B}⟩ = ⟨ψ|{A,B}|ψ⟩ for non-
Hermitian A and B. Define the real and imaginary part of each operator:
RA = (A+A†), IA = i(A† −A)/2, and similarly for B. It is easy to see
that {A,B} = {RA, RB} − {IA, IB} + i{IA, RB} + i{RA, IB}. Then

⟨{A,B}⟩ = ⟨{RA, RB}⟩ − ⟨{IA, IB}⟩
+ i⟨{IA, RB}⟩ + i⟨{RA, IB}⟩. (4.C.16)

Each of the averages in the r.h.s. can be measured using the protocol for
Hermitian observables outlined above. Then combining them according to
Eq. (4.C.16) yields the desired correlation of non-Hermitian non-commuting
observables.
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parafermions

4.D Extra numerical data on the bounds for
correlations in the system of
parafermions

In the main text, Table 4.1, we provided the results of testing the bounds
on correlations for two sets of observables, non-signaling (A0, A1, B0, B1)
and signaling (A0, A1, B′

0, B′
1). Here, in Table 4.2, we present the results

for several more sets of observables. Namely, we checked what happens
when the roles of Alice’s operators A0 and A1 are exchanged, and similarly
for Bob. Apart from that, we also tested the sets involving B2 = B†

0B1 =

αL,5α
†
L,6 and B′

2 = B′†
0 B

′
1 = αR,6α

†
R,5; [B2, Aj ] = [B′

2, Aj ] = 0, with Aj ,
Bj , B

′
j defined in Eqs. (4.3.11–4.3.16). In all the sets we tested, all Alice’s

and Bob’s operators commute when Bob uses unprimed observables; some
of Alice’s operators do not commute with some of the Bob’s observables
when Bob uses primed observables, B′

j .
Note that all the sets we have tested obey all bounds except for relation

(4.2.5). The latter is obeyed by all the non-signaling sets (when Bob uses
Bj observables) and violated by all the signaling sets (when Bob uses B′

j

observables). This strengthens the numerical evidence that relation (4.2.5)
is a good candidate for quantifying the effect of signaling on quantum
correlations.

In principle, the system of parafermions has many more possible sets
of observables. First, assigning different parafermions to Alice and Bob,
one can have different local algebras at Alice’s and Bob’s sites, as well
as different Alice-Bob commutation relations. We investigate them in
part by switching the order of A0 and A1 etc. or replacing B1 with
B2 in Table 4.2. While this does not exhaust all the possibilities, the
numerical results we do have, indicate that our conclusions are likely to
hold in the cases we did not check. An even richer set of algebras can
be accessed by using operators beyond quadratic in parafermions, e.g.,(
αs,jα

†
s,k

)n
or α2

s,jα
†
s,kα

†
s,l, as well as arbitrary linear combinations of

quadratic operators, e.g., xαs,jα
†
s,k + yαs,jα

†
s,l. While investigating our

bounds with these would be an interesting non-trivial check, we believe
that the more important task is understanding and proving the role of
Theorem 4 and bound (4.2.5) in the general context.
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Bound: I3
Tsirelson

type

TLM-

type,

l.h.s/r.h.s.

L.h.s.
of

(4.2.4)

L.h.s.
of

(4.2.5)

Theoretical maximum
2.91
[152]

2
√
2

(≈
2.83)

1 1

1 (if as-
sump-
tions
hold)

Parafermion

maximum

Alice’s
opera-
tors

Bob’s
opera-
tors

A0, A1 B0, B1 2.60 2.44 0.71 0.74 1.00
A0, A1 B′

0, B
′
1 2.60 2.82 1.00 1.00 1.56

A1, A0 B1, B0 2.60 2.44 0.71 0.74 1.00
A1, A0 B′

1, B
′
0 2.60 2.82 1.00 1.00 1.56

A0, A1 B1, B0 2.60 2.22 0.71 0.62 1.00
A0, A1 B′

1, B
′
0 2.60 2.71 1.00 0.97 1.56

A0, A1 B0, B2 2.60 2.44 0.71 0.74 1.00
A0, A1 B′

0, B
′
2 2.00 2.23 1.00 0.75 1.50

A0, A1 B2, B0 2.60 2.22 0.71 0.62 1.00
A0, A1 B′

2, B
′
0 2.00 2.44 1.00 0.75 1.50

Table 4.2: Characterization of bounds on non-local correlations for various sets
of parafermionic observables. Similarly to the Table 4.1, the maximal values
achieved with parafermionic observables (‘Parafermion maximum’) are compared
to the theoretical maximum.
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5 A diagrammatic approach to
variational quantum ansatz
construction

5.1 Introduction

Despite promises of exponential speedups, quantum algorithms require
optimization to achieve an advantage over their classical counterparts on
state of the art supercomputers for problems of interest. This is the case
both in the Noisy Intermediate-Scale Quantum era [11], where coherence
times in quantum devices prohibit all but the shortest experiments to be
performed, and in first-generation fault-tolerant devices, where a single non-
Clifford rotation requires thousands of additional qubits and hundreds of
error correcting cycles [158]. In the field of digital quantum simulation, the
variational quantum eigensolver (VQE) [159] has emerged as a competitive
class of algorithms for generating approximate ground states of quantum
systems, due to its relatively low circuit length. These algorithms consist
of parametrizing a quantum circuit with a small number of classical control
variables, which may be tuned to minimize the energy of the state produced
by the circuit, given a target Hamiltonian. As the manifold of obtainable
states for a given VQE will only ever be an exponentially small region in
the larger Hilbert space, optimizing VQE design is critical to obtain good
approximations of the system’s ground state [47, 47, 54]. This has spurred
much recent work in optimizing VQEs based on the unitary coupled cluster
expansion [47, 54, 161], or on the quantum approximate optimization
algorithm [162, 163]. The efficiency of coupled cluster methods is based on
the principle of size-extensivity. This means that the ansatz systematically
accounts for ground state correlations, as ensured in perturbative language
by the linked-cluster theorem [57]. However, to be realized as a quantum
circuit size-extensive ansatzes typically require expansion via Trotter-
Suzuki-based methods [58, 59]. At low circuit depth, these expansions
introduce significant errors. Alleviating this issue would help to ensure
the efficiency of the VQE algorithm.
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5 A diagrammatic approach to variational quantum ansatz construction

In this chapter, we develop a Trotterization-free diagrammatic method
to generate size-extensive VQEs. We start by designing a class of VQE
ansatzes, based on the stabilizer formalism in quantum error correction,
which provably tightly span the entire Hilbert space of Nq qubits. We
then demonstrate how one may compress an arbitrary variational ansatz
to account for symmetries of a target Hamiltonian. We further show
how to construct a hierarchy of ansatz generators, allowing one to trade
between circuit length and accuracy in a practical manner by choosing
only those generators that contribute well to solving the problem. We
motivate the construction of one particular such hierarchy from a general
perturbative analysis of weakly coupled target Hamiltonians, for which
we develop a simple-to-use diagrammatic formalism. We find that our
geometrically tight stabilizer ansatz may be compressed to a practical
size using this perturbative scheme. The analogue of the linked-cluster
theorem for such compressed digital ansatzes is stated and proven, ensuring
the size-extensivity of the construction. We also propose some possible
modifications to our perturbative scheme to account for circuit depth and
locality. We compare the performance of these constructions on simulations
of the transverse-field Ising model in three different physical regimes (weak-
coupling, strong-coupling, and critical). We find that strictly following
the perturbative approach is beneficial in the weak-coupling regime, but
restricting the ansatz to lowest-order gives better convergence in the strong-
coupling regime — even though such ansatzes are seemingly less-informed
about the strong-coupling physics.

5.2 Variational quantum eigensolvers

A variational quantum eigensolver (VQE) is an algorithm executed on a
quantum register that aims to approximate the minimum eigenvalue E0 of

a target Hamiltonian H on C2Nq by finding low energy states |ψ⟩ ∈ C2Nq

variationally. To be precise, this algorithm minimizes ⟨ψ|H|ψ⟩ over a
variational ansatz:

Definition 1. A variational ansatz on Np parameters corresponds to a pair

(U, |⃗0⟩), where U is a smooth map from the parameter space θ⃗ ∈ RNp to

the unitary operator U(θ⃗) on C2Nq , and |⃗0⟩ ∈ C2Nq is the starting state,

which is acted on to generate the variational state |ψ(θ⃗)⟩ = U(θ⃗)|⃗0⟩,
with variational energy E(θ⃗) = ⟨ψ(θ⃗)|H|ψ(θ⃗)⟩.

As a brief example, let us define the following toy two-qubit variational
ansatz:
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Figure 5.1: (top) A circuit to implement the YYX two-qubit variational ansatz
in terms of Pauli rotations RA(θ) = eiAjθ on single qubits j (A = X,Y, Z) and
CNOT gates. Shaded regions denote subcircuits to implement the three separate
unitary rotations in Eq. (5.2.1), as color coded with the variational parameters
θi. (below) The above circuit in a compressed notation, treating each rotation U
as a single gate labeled by the elements of the rotation generators (Eq. (5.2.4))
on each qubit.

Example 2. The 3-parameter YYX variational ansatz (UY Y X , |00⟩)
is defined on two qubits {Q1, Q2}, with the starting state |00⟩ in the
computational (Z) basis, and

UY Y X(θ1, θ2, θ3) := eiθ3Y1X2eiθ2Y2eiθ1Y1 . (5.2.1)

A quantum circuit that implements this toy ansatz is given in Fig. 5.1,
using standard methods [60] to decompose the two-qubit eiθ2Y1X2 term in
terms of single-qubit rotations and CNOT gates.

VQEs are appealing because they reduce the computational complexity
of searching the (exponentially large) Nq-qubit Hilbert space to the com-
plexity of searching the parameter space (which may be made arbitrarily

small). However, this comes at a cost, as none of the states |ψ(θ⃗)⟩ may be
close (in energy or overlap) to the target ground state. The variance in
the energy ⟨ψ|H|ψ⟩ of states |ψ⟩ randomly drawn (i.e. with Haar measure)
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5 A diagrammatic approach to variational quantum ansatz construction

from an Nq-qubit Hilbert space is given by

∥H∥2F − Trace[H]2

4Nq
≤ ∥H − Trace[H]∥2S

2Nq
, (5.2.2)

with ∥ · ∥F the Frobenius norm and ∥ · ∥S the spectral norm. This implies
that the probability of a random state having energy close to the ground

state energy of H scales as e−2Nq , while one expects the volume of space
explored by a VQE to grow only as eNp . This, and similar results for
derivatives of the energy with respect to variational parameters [160], imply
that random ansatz choice has little to no chance of success for finding
ground state energies. Instead, a variational ansatz should be designed
to cover as much of the Nq-qubit Hilbert space as possible, in a way that
maximises the chance of finding low-energy states (or states that overlap
well with the true ground state).

A full VQE protocol must also concern itself with optimizing the mini-
mization procedure, especially to prevent being stuck in local minima or
barren plateaus [160]. One should further take care to make the resulting
quantum circuit as hardware efficient [164, 165] as possible. Hardware-
efficiency is an active field of research and dependent upon the physical
implementation of the quantum computer, and recent work has gone into
optimizing the minimization procedure of a VQE [54, 166], including the
choice of cost function to minimize (e.g. to target excited states [167, 168]).
In this chapter, we focus instead on studying the variational ansatzes
themselves. We first focus on constructing ‘geometrically efficient’ vari-
ational ansatzes. Then we tailor these to target specific Hamiltonians
based on a perturbative approach. This generic approach is in complement
with previous work on ansatz design targeting specific (classically hard)
problems of interest in e.g. optimization [162] and quantum chemistry [47].

To pin down a working definition of ‘fundamentally digital’ quantum
ansatzes, we will use the following conditions (similar to those stated
in [54, 160, 166, 169]):

Definition 3. A variational ansatz (U, |⃗0⟩) is a product ansatz if it is a
product of units Ui,

U(θ⃗) =

Nu∏
i=1

Ui(θni), (5.2.3)

where each Ui has a generator Ti:

Ui(θni) = eiTiθni . (5.2.4)
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5.2 Variational quantum eigensolvers

If ni > nj whenever i > j, we call the ansatz ordered, and if each
generator is a Pauli operator - Ti ∈ PNq := {I,X, Y, Z}⊗Nq - we call the
ansatz a Pauli-type ansatz.

We take the product in Eq. (5.2.3) from right to left (i.e. U1(θn1
) acts

first on the state |⃗0⟩). As we allow ni = nj when i ̸= j, we may have
strictly more unitaries than parameters: Nu ≥ Np. In the rest of the
chapter, we will refer to Pauli-type ansatzes as fundamentally digital: note
that Pauli rotations can be directly implemented in a quantum circuit
via the techniques of [60]. When used in a VQE, Pauli-type ansatzes also
have the advantage that some derivatives of the variational energy may be
obtained ‘for free’ [169].

Example 4. The YYX toy ansatz is a Pauli-type ansatz, with generators
T1 = Y1, T2 = Y2, T3 = Y1X2.

5.2.1 Variational manifolds

Although tailoring a VQE to a Hamiltonian is essential for its success [160],
interesting statements may be made about the variational ansatz prior to
fixing such a target, by focusing on the manifold of states it explores.

Definition 5. The variational manifold M(U, |⃗0⟩) of a variational

ansatz (U, |⃗0⟩) is the set {|ψ(θ⃗)⟩ = U(θ⃗)|⃗0⟩, (θ⃗) ∈ RNp} ⊂ C2Nq .

We note that, despite being a ‘manifold generated by unitary rotations’,
M(U, |⃗0⟩) does not have a structure of a Lie group. This is because we

only apply U once to create the variational state; a state U(θ⃗)U(θ⃗′)|⃗0⟩
may not correspond to any state U(θ⃗′′)|⃗0⟩ (and most often will not). If
U is a product ansatz, one can defined a Lie group L(U) ⊂ U(2Nq ) from
the set of generators Ti. The manifold L(U)|⃗0⟩ then contains M(U, |⃗0⟩)
as a submanifold, though it is almost always larger. Indeed, when eiθTi

defines a universal gate set, L(U) = U(2Nq ) and L(U)|⃗0⟩ is the entire set
of Nq-qubit states, which is not terribly informative about the structure

of M(U, |⃗0⟩).
As a rough guide, the bigger the variational manifold the better; simply

adding more manifold to an ansatz can never shift it further from the target
ground state. However, measuring the size of a variational manifold is
made somewhat difficult by dimensionality concerns. The (real) dimension
DM(U,|⃗0⟩) of M(U, |⃗0⟩) is at most Np, but it may not achieve this upper

bound, and M(U, |⃗0⟩) may contain boundary regions of lower dimension.

(Curiously, the minimal subspace of C2Nq containing M(U, |⃗0⟩) may be of
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much higher dimension than Np.) As M(U, |⃗0⟩) inherits a metric from

C2Nq , one can use this to define a Borel measure d|ψ⟩, and thus define the
area of the manifold:

AM(U,|⃗0⟩) =

∫
M(U,|⃗0⟩)

d|ψ⟩. (5.2.5)

When the map (θ⃗) → |ψ(θ⃗)⟩ is invertible on some range of parameters, its
Jacobian J is full-rank, and the manifold area may be calculated as

AM(U,|⃗0⟩) =

∫
dNpθ

√
det(J†J). (5.2.6)

However, when evaluating this integral one must take care to avoid double-
counting points θ⃗ ̸= θ⃗′ when |ψ(θ⃗)⟩ = |ψ(θ⃗′)⟩.

Example 6. For the YYX toy ansatz, one may calculate

J†J =

 1 0 − sin(2θ2)
0 1 0

− sin(2θ2) 0 1

 . (5.2.7)

The variational manifold M(UY Y X , |00⟩) double-covers the Hilbert space,
as

|ψ(θ3 − π/2, π/2 − θ2, θ1 − π/2)⟩ = |ψ(θ3, θ2, θ1)⟩ (5.2.8)

(no other identifications exist). Following this identification, one can
evaluate AM(UY YX ,|⃗0⟩) = π2.

5.3 Stabilizer ansatzes

Clearly the largest space that can be spanned by any variational ansatz
is the entire Hilbert space. The minimal number of (real) parameters
required to achieve this spanning is 2(2Nq − 1), and it is an interesting
question whether this may be provably achieved. In this section we answer
this question in the affirmative, constructing a class of ansatzes from
sequential layers of n = 1, . . . , Nq-qubit stabilizer groups [170] (defined in
App. 5.A). Although such a construction has impractically large overhead,
one may use this construction as a base to generate tractable variational
ansatzes with the methods developed in Sec. 5.4 and Sec. 5.5.
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5.3 Stabilizer ansatzes

Definition 7. A stabilizer ansatz (U, |⃗0⟩) on Nq qubits is constructed
by choosing for each n = 1, . . . , Nq:

1. A [n− 1, n− 1] stabilizer group S(n), and

2. A single-qubit starting state |sn⟩ for the n-th qubit, and

3. Two single-qubit Pauli operators R
(n)
0 , R

(n)
1 , such that ⟨sn|Ri|sn⟩ = 0,

and Trace[R0R1] = 0.

Then, one takes |⃗0⟩ = ⊗Nqn=1|sn⟩, and U =
∏Nq
n=1 U

(n), where

U (n) =
∏
j=0,1

∏
S∈S(n)

eiθ
n
S,jR

(n)
j S . (5.3.1)

The definition above allows for any choice of the [n− 1, n− 1] stabilizer
groups S(n), including ones with non-commuting elements between different
S(n). However, we use the following prototypical example throughout the
rest of this chapter.

Example 8. The quantum combinatorial ansatz, or QCA, is a

stabilizer ansatz with |si⟩ = |0⟩, R(n)
0 = X, R

(n)
1 = Y , and S(n) = ⟨Xi, i =

1, . . . , n− 1⟩.

A compressed circuit for the quantum combinatorial ansatz on 3 qubits
is given in Fig. 5.2

Theorem 9. A stabilizer ansatz (U, |⃗0⟩) spans the entire Hilbert space of
Nq-qubit states with the minimal number of parameters.

Proof — That the number of parameters is minimal may be immediately
calculated,

Np =

Nq∑
n=1

2 × 2n−1 = 2(2Nq − 1). (5.3.2)

We then prove that the ansatz spans the entire Hilbert space by induction.
The stabilizer group S(n) gives a basis |p⟩ for the n− 1 qubit Hilbert space.

Then, as [R
(n)
j S,R

(n)
j S′] = 0, one may rewrite U (n) as

U (n) =
∏
j=0,1

exp

i ∑
S∈S(n)

θnS,jR
(n)
j S

 . (5.3.3)
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Figure 5.2: A circuit for the QCA on 3 qubits. For simplicity, we label each
circuit element Ui(θ⃗) by the tensor factors of its generating Pauli operator Ti

(=: R(n)S in Eq. (5.3.1)) on each qubit. For example, the label XXX corresponds

to the rotation eiθ
3
XX,0XXX . This compression may be expanded on as shown

in Fig. 5.1 using the methods of [60]. For Nq qubits, QCA contains 2(2Nq − 1)
gates and is proven to cover the entire Hilbert space (Theorem 9). In a practical
application, QCA is to be reduced to polynomial size via a hierarchical approach
outlined in Sec. 5.5. Note that the order of gate multiplication in QCA does
not imply the order of gate importance in the hierarchical reduction scheme
of Sec. 5.5. For instance, consider an application of the displayed QCA circuit
to the open transverse-field Ising chain (Sec. 5.6). In this case, the two gates
preferred in the reduction are those generated by Paulis XY I and IXY , followed
by the one generated by XIY (cf. Fig. 5.5).

This sends the state |p⟩|sn⟩ to the state

|p⟩
(
eiθ

n
p,0R

(n)
0 eiθ

n
p,1R

(n)
1

)
|sn⟩, (5.3.4)

where the angles θnp,j are given by the following linear transformation:

θnp,j =
∑

S∈S(n)

Spθ
n
S,j , Sp = ⟨p|S|p⟩ ∈ {±1}. (5.3.5)

This is the Hadamard-Walsh transformation, which is invertible, so θnp,j
can now be treated as independent parameters. On the other hand, our

choice of R
(n)
j explicitly takes the starting state |sn⟩ on qubit n to any

state on the Bloch sphere. This implies that if we have the ability to create
an arbitrary n− 1-qubit state

|Ψ(n−1)⟩ =
∑
p

ap|p⟩, (5.3.6)

U (n)|Ψ(n−1)⟩|sn⟩ may be tuned to achieve any state of the form∑
p

ap|p⟩
(
eiθ

n
p,0R

(n)
0 eiθ

n
p,1R

(n)
1

)
|sn⟩, (5.3.7)
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which describes an arbitrary n-qubit state. This then completes the proof
of coverage by induction, as U (1)|s1⟩ covers the entire Bloch sphere.

5.4 Children ansatzes and their construction

The cost of implementing a product VQE grows polynomially in both
the number of units Nu (as this dictates the circuit size) and the number
of parameters Np (as this dictates the size of the optimization problem).
Thus, an ansatz that covers the entire Hilbert space is too expensive to be
of use; one must use it to construct child ansatzes of a manageable size.

Definition 10. A product ansatz (U ′, |⃗0′⟩) is a child ansatz of a parent
product ansatz (U, |⃗0⟩) when each unit U ′

i of U
′ also appears in U .

This definition is operational rather than fundamental; the variational
manifold of a child ansatz is not necessarily a submanifold of the parent
ansatz’ variational manifold. However, one expects that these children
ansatzes will still inherit some properties of the parent. In particular, we
expect that a parent ansatz that spans as large a part of the Hilbert space
as possible will lead to children ansatzes that are similarly large.

5.4.1 Ansatz compression and hierarchical
construction

An obvious method to construct a child ansatz from a parent is to simply
get rid of individual units or parameters:

Definition 11. Given a product ansatz (
∏
j Uj(θnj ), |⃗0⟩), one may remove

a parameter θni to obtain the child ansatz (
∏
nj ̸=ni Uj(θnj ), |⃗0⟩), or fix a

parameter θni = cθnj with c ∈ R to obtain the child ansatz (
∏
l U

′
l (θml)|⃗0⟩),

where mi = nj, ml = nl for l ̸= i, and T ′
l = cTl whenever nl = ni.

Parameter fixing may be considered strictly more general than unit
removal, as fixing θni = 0θnj produces the same variational manifold as
removing θni . However, unit removal reduces both Nu and Np, while
parameter fixing does not reduce the resulting circuit length.

Alternatively, one may construct child ansatzes using a bottom-up
approach:

Definition 12. Given a product ansatz (
∏
j Uj(θnj ), |⃗0⟩), one may con-

struct a priority list (Uj1 , Uj2 , . . .) of the possibly-repeated units of the
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ansatz. Such a priority list allows the construction of a hierarchy of child
ansatzes (UM , |⃗0⟩) (for M > 0), where

UM (θ⃗) =

M∏
m=1

Ujm(θnm). (5.4.1)

The two methods described above may be combined if desired. Sub-
sequent generations of ansatzes will trade off a lower cost to implement
against a smaller-sized variational manifold. We now focus on methods
to optimize this balance. We first demonstrate how one may use unit
reduction and parameter fixing to force a large VQE to respect symmetry
constraints on the system. Following this, we take a rigorous perturbative
approach to construct priority lists for a given target Hamiltonian.

5.4.2 Compression over symmetries

One may often restrict the ground state of a system by symmetries of the
Hamiltonian; that is, operators S that commute with H. When this is
true, all eigenstates |E0⟩ of H may be chosen to be eigenstates of S. This
is particularly relevant in electronic systems where the particle number∑
i Zi or parity

∏
i Zi is conserved. The symmetry is enforced on all

states in a variational ansatz (U, |⃗0⟩) when |⃗0⟩ is an eigenstate of S, and

[U(θ⃗), S] = 0 for all choices of the parameters θ. This in turn requires for

an ordered product ansatz U(θ⃗) =
∏
i Ui(θni) that [

∏
i,ni=n

Ui(θni), S] = 0
for all unique parameters n and for all choices of θni . If a parameter
θni is associated to a single generator Ti, then this occurs if and only if
[Ti, S] = 0.

When a symmetry is not respected by a variational ansatz, one may
choose to either remove or fix the offending terms (see [171] for an al-
ternative approach). Removal of generators that do not respect a given
symmetry is simplest, but may be too restrictive for our desires. One may
fix an ordered product ansatz to obey a symmetry that is broken by a set
of commuting generators {TM0 , TM0+1, . . . , TM1}. To do this, one needs
to solve the system of linear equations

M1∑
m=M0

cm
∑

i,ni=m

[S, Ti] = 0, (5.4.2)

and fix cnθn = cmθn for N ≤ n,m ≤ M . This requires fixing all param-
eters between N and M , which in turn might require rearranging the
original ansatz to place specific units next to each other.
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5.4 Children ansatzes and their construction

A very simple symmetry to enforce in a problem is the (antiunitary)
complex conjugation operator, Ki = −iK. (This symmetry is respected
whenever the Hamiltonian is purely real.) As we have defined our genera-
tors Ti with an imaginary unit, Ui = eiθniTi commutes with K when Ti
anti-commutes with K. (e.g. for a single qubit, the rotation eiθY rotates
between the real eigenstates of the real X and Z Pauli operators.)

Example 13. The YYX toy ansatz is the compression of the QCA stabi-
lizer ansatz for two qubits over K. It thus spans the entire Hilbert space of
2-qubit states with real coefficients (which matches the calculation of its
variational area).

In App. 5.B, we give another example of a symmetry-compressed Pauli-
type ansatz - the fermionic unitary coupled cluster ansatz.

5.4.3 Size-extensivity of a variational ansatz

To show beyond-classical performance, we desire our variational quantum
algorithms to be able to produce strongly entangled states, inaccessible to
a classical computer. For this, we would like the VQE ansatz to represent
quantum correlations in a maximally compact manner. To achieve this,
we are guided by the idea of size-extensivity. The notion of size-extensivity
has its origins in strongly-correlated physics, and is formalized there by the
linked cluster theorem [57]. The rough notion is that: (1) if a computation
treats two uncoupled systems together, it should converge to the same
solution as when it treats them independently, and (2) the only complexity
one should be adding to the solution of coupled systems is that which
is minimally demanded. Formalizing this idea requires somewhat heavy
machinery; we give a formal definition later in the text (Def. 23) and now
put forward the following (weaker) statement as an informal definition.

Definition 14. (informal) Consider variational ansatz (U, |⃗0⟩) for a
Hamiltonian H on a system S, and an arbitrary (disjoint) partition
S = ∪iSi with a decomposition H =

∑
iHi + Hother where each Hi

acts only on Si (and each term in Hother acts on multiple Si). In this case,
the ansatz (U, |⃗0⟩) is size-extensive if for any such partition, the unitary

U(θ⃗) that minimizes the variational energy E(θ⃗) (Def. 1) reduces to the
form

U(θ⃗) =
∏
i

U(θ⃗i) (5.4.3)

if Hother is reduced to 0. In (5.4.3), each U(θ⃗i) acts only on system Si
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5 A diagrammatic approach to variational quantum ansatz construction

(i.e. the coefficients of any part of the ansatz U that acts outside of Si are
set to 0).

In the language of Def. 14, the stronger statement of Def. 23 is needed
to treat the case where {Si} together form a connected system, but some
pairs (Sk, Sl) are mutually separated (e.g. because of spatial locality).
It appears that in this case, a variational ansatz is efficient if it tends
to introduce more correlations between less separated subsystem pairs
(Sk, Sl). However, this heuristic needs to be re-stated more rigorously. In
Def. 23, we provide such a rigorous formulation and apply it in an explicit
construction of size-extensive ansatzes.

5.5 Perturbative construction for digital
size-extensive ansatzes

We now propose a perturbative approach for the construction of digital
size-extensive ansatzes. We formulate it in terms of a gate hierarchy list
(U1, . . .) derived from a large parent ansatz (U, |⃗0⟩). To decide on the
hierarchy list, we split the system Hamiltonian H into the non-interacting
part H0 and the coupling JV (∥H0∥, ∥V ∥ ∼ 1):

H = H0 + JV (5.5.1)

To allow for analytical treatment we consider the weak coupling limit,
J ≪ 1. In this limit, the overlap between the true ground state |E0⟩
and unperturbed excited states |E0

j ⟩ is exponentially small in the number

of applications of V required to couple |E0
j ⟩ to the unperturbed ground

state |E0
0⟩. We may rewrite the non-interacting part H0 via a unitary

transformation as

H0 =

Nq∑
n=1

hnZn, (5.5.2)

which ties each |E0
j ⟩ to a computational basis state |s⃗⟩

H0|s⃗⟩ = −
Nq∑
n=1

(−1)snhn|s⃗⟩. (5.5.3)

If we can further tie each state |s⃗⟩ to one or a few variational units Ui(θi),
we can construct a hierarchy list of these Ui(θi) based on the approximate
magnitude of |⟨s⃗|E0⟩|. The resulting hierarchy list is to be used in the
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5.5 Perturbative construction for digital size-extensive ansatzes

VQE procedure for the original, potentially strongly coupled Hamiltonian
H (J = O(1)).

Performing this construction in a size-extensive way runs into a challenge
which we call ‘back-action’. Namely, the action of any unit Ui(θi) on the
state

∏
j<i Uj(θj)|⃗0⟩ may be very different to the action of Ui(θi) on the

starting state. In particular, one could imagine this action generating an
undesired term to the variational wavefunction which must be cancelled by
later rotations. As we will show, one can deal with this back-action while
retaining the size-extensivity. To achieve this, in the rest of this section
we will expand the target equality,

|E0⟩ ≃ |ψ(θ⃗)⟩, (5.5.4)

assuming that |ψ(θ⃗)⟩ is given by a digital (i.e., Pauli-type) ansatz. We
will do so in terms of a Pauli decomposition of the perturbation

JV =

Nc∑
i=1

JiVi, Vi ∈ PNq , (5.5.5)

and then we will equate terms based on the order of their polynomial
dependence on each Ji. On the left-hand side (Sec. 5.5.1), we will use
a Dyson expansion, with a convenient diagrammatic representation. On
the right-hand side (Sec. 5.5.2) we will use a Taylor expansion of the
exponential operators. We will show that a single condition (Def. 21)
on the parent ansatz is sufficient to automatically cancel all undesired
back-action. Then, we will show that an additional condition (Def. 24)
causes the back-action terms to precisely cancel out any need for entangling
circuits between disconnected regions (Theorem 26). This ensures the
desired feature of size-extensivity, thus providing the digital quantum
version of the linked-cluster theorem [57]. The QCA ansatz of Example 8
will be seen to satisfy the above conditions, and therefore gives rise to a
hierarchy of size-extensive digital ansatzes.

Our perturbative approach can be thought of as a digital unitary relative
of the Kirkwood-Thomas expansion [172, 173]. Also note, that as we intend

to optimize the parameters θ⃗ as part of the VQE, we will approximate
these only to leading order in the interaction strength J. This makes our
method potentially applicable even in the strongly correlated regime where
perturbation theory breaks down.
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5 A diagrammatic approach to variational quantum ansatz construction

5.5.1 Diagrammatic expansion of the ground state

To expand the left-hand side of Eq. (5.5.4), let us use vector notation J⃗ for

the coupling terms Ji (and V⃗ for the operators Vi). Then, let us introduce
some notation that simplifies the following expressions:

a⃗·⃗k :=
∏
i

akii = exp(k⃗ · log(⃗a)). (5.5.6)

We wish to use this expression for both vectors of numbers (e.g. J⃗) and

vectors of operators (e.g. V⃗ ). In the latter we must take care of ordering;
as previous, we assume that the product runs right-to-left. As Pauli
operators either commute or anticommute, rearranging these products
simply requires one to keep track of minus signs. This may be assisted by
the following definition

Definition 15. A vector V⃗ of Nc Pauli operators defines a phase Γ(k⃗) ∈
{0, 1, 2, 3} and a state s⃗(k⃗) on a vector k⃗ ∈ NNc ∗ by

V⃗ ·⃗k |⃗0⟩ = iΓ(k⃗)|s⃗(k⃗)⟩, (5.5.7)

and a relative sign Sk⃗,⃗k′ ∈ {−1, 1} for k⃗, k⃗′ ∈ NNc by

V⃗ ·⃗kV⃗ ·⃗k′ = Sk⃗,⃗k′ V⃗
·(k⃗+k⃗′). (5.5.8)

Then, as Pauli operators map computational basis states to computa-

tional basis states, V⃗ k⃗ |⃗0⟩ is an eigenstate of H0, with energy

Es⃗(k⃗) := −
Nq∑
n=1

(−1)s⃗(k)nhn. (5.5.9)

Let us now expand the ground state as a Taylor series in J⃗ :

|E0⟩ =
∑

k⃗∈NNc

J⃗ ·⃗k|Ψk⃗⟩. (5.5.10)

Following a standard Dyson expansion (details in App. 5.C), we observe
that

∗We take the natural numbers N to include 0.
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5.5 Perturbative construction for digital size-extensive ansatzes

Lemma 16. The vectors |Ψk⃗⟩ take the form

|Ψk⃗⟩ = Ck⃗V⃗
·⃗k |⃗0⟩, (5.5.11)

where Ck⃗ is a real number.

To find the values of coefficients Ck⃗, we first develop a perturbative

expansion for a ground state |Ẽ0⟩ with a special normalization condition
⟨⃗0|Ẽ0⟩ = 1,

|Ẽ0⟩ =
∑

k⃗∈NNc

J⃗ ·⃗k|Ψ̃k⃗⟩. (5.5.12)

The states |Ψ̃k⃗⟩ then satisfy (see App. 5.C):

|Ψ̃k⃗⟩ = C̃k⃗V⃗
·⃗k |⃗0⟩, (5.5.13)

where C̃k⃗ is a real number. In particular, if δ⃗β is the unit vector with

a 1 in the β index, C̃k⃗ = δk⃗,⃗0 if s⃗(k⃗) = 0⃗, and is otherwise given by the
recursive relation

C̃k⃗ =(E
(0)

0⃗
− E

(0)

s⃗(k⃗)
)−1

∑
β,kβ>0

{
C̃k⃗−δ⃗βSδ⃗β ,⃗k−δ⃗β

−
∑

k⃗′<k⃗, k′β>0

s⃗(k⃗′)=0

C̃k⃗′−δ⃗β C̃k⃗−k⃗′Sδ⃗β ,⃗k′−δ⃗βSk⃗−k⃗′ ,⃗k′

}
, (5.5.14)

where k⃗′ < k⃗ if k′β ≤ kβ for all β and k⃗′ ̸= k⃗. To find the coefficients
Ck⃗ of the normalized ground state, one may then expand the expression

|E0⟩ = ⟨Ẽ0|Ẽ0⟩
−1/2 |Ẽ0⟩ in powers of J⃗ , which allows to express Ck⃗ in

terms of C̃k⃗ obtained from (5.5.14).
We note here that we have no guarantee that the normalization constant

N = ⟨Ẽ0|Ẽ0⟩
−1/2

behaves regularly in thermodynamic limit Nq → ∞.
This is a standard breakdown of perturbation theory for the wavefunction,
however when this occurs our approach to VQE construction is still possible,
and may indeed still be practical. At the stage of estimating the variational
parameters θ⃗, we will be using the C̃k⃗ coefficients, since they behave

regularly and are more practical to calculate. As θ⃗ will be optimized later
on the quantum device, the estimation itself need not be exact.

The size-extensivity of our approach relies on an important relationship
between Ck⃗ terms that are the combination of disconnected pieces. To
formalize this notion of connectedness, we introduce some terminology:
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5 A diagrammatic approach to variational quantum ansatz construction

Definition 17. For a perturbative contribution Ck⃗, the set of couplings

Vi s.t. ki ̸= 0, is said to be activated in k⃗. The set of qubits on which at
least one activated coupling Vi acts non-trivially is called the support of
k⃗.

Then the connectedness of the contribution Ck⃗ is defined as follows:

Definition 18. A perturbative contribution Ck⃗ is disconnected if one may
write

k⃗ = k⃗A + k⃗B , (5.5.15)

such that the respective supports of k⃗A and k⃗B do not share any qubits.
This implies, but is not equivalent to, the following statement:

V⃗ ·⃗k = V⃗ ·⃗kA V⃗ ·⃗kB (5.5.16)

The disconnected contributions Ck⃗ obey the following special property
(proven in App. 5.D).

Lemma 19. If a perturbative contribution Ck⃗ is disconnected w.r.t. a

splitting (5.5.16) into k⃗A and k⃗B,

Ck⃗ = Ck⃗ACk⃗B . (5.5.17)

This idea of connectedness of contributions may be described in a

graphical representation of the product of operators V⃗ ·⃗k:

Definition 20. Let V⃗ define the order of a decomposition of the perturba-
tion J⃗ · V⃗ to a non-interacting Hamiltonian H0. A perturbative diagram
for a vector k⃗, is a bipartite graph with one circular vertex for each qubit,
and kβ square vertices for each interaction Vβ. We draw edges between
each square vertex and the qubits that the corresponding Vβ term acts non-
trivially on, and color the edge to qubit i blue, red or black if [Vβ ]i = X,Y
or Z respectively. Each circular vertex is then coloured black or white if it
is connected to by an odd or even number of coloured edges respectively.

A contribution Ck⃗ is connected if all square vertices in the perturbative
diagram are connected ∗. In Fig. 5.3, we show some examples of connected
and disconnected perturbative diagrams. Diagrams also allow one to read
off s⃗(k⃗) (si(k⃗) = 0 when the corresponding vertex is white), and Γ(k⃗) mod

2 (being the number of red lines modulo 2). (The rest of Γ(k⃗) depends on
the order in which the operations Vi are applied, which is not captured in
the perturbative diagrams.)

∗The circular vertices, corresponding to qubits, need not be connected, as a con-
nected contribution need not act on all qubits.
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5.5 Perturbative construction for digital size-extensive ansatzes

(a)

(b)

Figure 5.3: Example perturbative diagrams. (a) A connected diagram for a

real contribution (even number of Y terms) to |s⃗(k⃗)⟩ = |100100⟩. Labels for
qubits i and terms Vβ are added for reference. (b) A disconnected diagram for

an imaginary contribution to |s⃗(k⃗)⟩ = |100111⟩. Unnecessary labels here are
excluded.
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5 A diagrammatic approach to variational quantum ansatz construction

5.5.2 Taylor expansion of the variational ansatz

We now consider the expansion of the right hand side of Eq. (5.5.4). In
keeping with the previous subsection, we wish to do this in terms of the
individual perturbations Ji. Let us expand each coefficient θi in a power
series over all interaction terms Ji

θi =
∑
k⃗

θ
(k⃗)
i J⃗ ·⃗k

=
∑
k⃗

θ
(k⃗)
i Jk11 Jk22 . . .

 , (5.5.18)

where the shorthand vector power notation was defined in Eq. (5.5.6).
This may be substituted into the variational ansatz (U, |⃗0⟩)

U(θ⃗) =
∏
i

∏
k⃗

exp
[
iθ

(k⃗)
i J⃗ ·⃗kTi

] , (5.5.19)

where we added the brackets to emphasize the ordering of the product
over i. Now, we take the Taylor series of the exponentials in Eq. (5.5.19),
obtaining

U(θ⃗) =
∏
i

∏
k⃗

∞∑
f=0

1

f !

[
iθ

(k⃗)
i J⃗ ·⃗kTi

]f . (5.5.20)

We will eventually wish to rearrange this product to identify all terms
that share the same power of each Ji — that is, those that share the same

J⃗ ·⃗k. This requires first expanding our product over sums to a sum over
products (pulling the sum over integers g in front of the products over
k and i). Each term in the resulting sum will have a unique product of

powers of the different θ
(k)
i . We can then associate this term to a function

f⃗ : NNc → NNp ; i.e. the power of θ
(k)
i in our term is given by fi(k⃗).

(Each such function f⃗ will correspond in Sec. 5.5.3 to a unique way to
map the activations of couplings Vα from the left-hand side of Eq. (5.5.4)

onto the generators Ti.) One may confirm that every unique function f⃗

corresponds to a single term in Eq. (5.5.20), and the powers of the Ti, J⃗ ,
and the coefficient of each term may be expressed in terms of this function,
allowing us to expand our unitary U(θ⃗) as

U(θ⃗) =
∑
f⃗

J⃗ ·
∑
i,k⃗

fi(k⃗)k⃗
(
iT⃗
)·∑

k⃗
f⃗(k⃗)∏

k⃗,i

[
θ
(k⃗)
i

]fi(k⃗)
fi(k⃗)!

, (5.5.21)
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To put (5.5.21) in a simpler form, we define:

K⃗(f⃗) =
∑
i,⃗k′

fi(k⃗
′)k⃗′ (5.5.22)

N⃗(f⃗) =
∑
k⃗

f⃗(k⃗), (5.5.23)

Θ(f⃗) =
∏
k⃗,i

[
θ
(k⃗)
i

]fi(k⃗)
fi(k⃗)!

, (5.5.24)

which allows us to rewrite the sum as

U(θ⃗) =
∑

f :NNc→NNp

J⃗ ·K⃗(f⃗)
(
iT⃗
)·N⃗(f⃗)

Θ(f⃗). (5.5.25)

One can give an interpretation for K⃗(f⃗), N⃗(f⃗) and Θ(f⃗) in the expression.

The vector K⃗(f⃗) ∈ NNc represents the PT order of a given term of

the sum. (Note that multiple functions f⃗ will have the same PT order

K⃗(f⃗).) N⃗(f⃗) ∈ NNp gives the activation of generators Ti in that term, and
therefore tells us the computational basis state that this term produces
as an operator acting on |⃗0⟩. (Terms with |N⃗(f⃗)| ≥ 2 describe the ‘back-
action’ of the ansatz which we will discuss in the next section.)

The information about the parameters θ⃗ of the ansatz is now contained in
the scalar coefficient Θ(f⃗). Its values are not independent variables: Θ(f⃗)

can be fixed entirely by its action on the functions f s.t. |N⃗(f⃗)| = 1. To see

this, let us label such functions f⃗ = dk⃗,i, where dk⃗,ij (k⃗′) = δk⃗,⃗k′δi,j . These
functions yield an activation of a single generator Ti from a single activation

pattern k⃗ of couplings Vα. For such functions, we obtain Θ(dk⃗,i) = θ
(k⃗)
i –

whose values indeed entirely determine the ansatz state. In particular, in
the terms describing back-action (f s.t. |N⃗(f⃗)| ≥ 2), Θ(f⃗) are nonlinear

monomials of θ
(k⃗)
i , and thus are fixed by the values of Θ(dk⃗,i).

5.5.3 Equating ansatz and perturbative terms

Our plan is now to solve for θ
(k⃗)
i , by comparing |ψ(θ⃗)⟩ from Eq. (5.5.25)

to the perturbative series for |Ψ(J⃗)⟩ from Eq. (5.5.10). We will equate the
contributions coming from different PT orders, and those proportional to
the same computational basis state. (The vectors K⃗(f⃗) and N⃗(f⃗) allow
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us to identify which terms need be equated.) This will result in equations

that are linear in the coefficients Ck⃗ and Θ(f⃗). Due to the structure of

Θ(f⃗) these equations will be highly nonlinear in θ
(k⃗)
i . However, under

certain conditions (Def. 21 and Def. 24), we find that these equations

for θ
(k⃗)
i may be solved iteratively, and that many coefficients will vanish

exactly. This will yield a class of ansatzes which are also size-extensive,
the technical definition of which we give in Def. 23. For such ansatzes,
we will have a guarantee that a relatively compact circuit is capable of
reproducing the perturbative series for |Ψ(J⃗)⟩ up to a given PT order k⃗.
These circuits will have a relatively small (polynomial in Nq at fixed PT

order k⃗) number of free parameters when used as a VQE, as this coincides

with the number of leading order connected diagrams up to order k⃗.
Equating the action of the Taylor-expanded U(θ⃗) (Eq. (5.5.25)) on the

starting state |⃗0⟩ to the expansion of the ground state |E0⟩ (Eq. (5.5.10))

and separating in orders of J⃗ obtains the form

Ck⃗V⃗
·⃗k |⃗0⟩ −

∑
f ;K⃗(f⃗)=k⃗

Θ(f⃗)
(
iT⃗
)·N⃗(f⃗)

|⃗0⟩ = 0. (5.5.26)

This may be further separated by taking the inner product with different
computational basis states to give the equations

Ck⃗ −
∑

f ; K⃗(f⃗)=k⃗

Θ(f⃗)⟨⃗0|V⃗ ·⃗k†
(
iT⃗
)·N⃗(f⃗)

|0⟩ = 0 (5.5.27)

∑
f ; K⃗(f⃗)=k⃗

Θ(f⃗)⟨s⃗ ̸= 0|V⃗ ·⃗k†
(
iT⃗
)·N⃗(f⃗)

|0⟩ = 0. (5.5.28)

Eqs. 5.5.28 contain what we call the back-action terms. These are unde-

sirable; if one fixes the θ
(k⃗)
i values one at a time, then any non-zero term

appearing in Eqs. 5.5.28 will need to be cancelled out by fixing some other
θj
k⃗′

at a later point. However, these terms may be avoided for a large class
of parent ansatzes:

Definition 21. A Pauli-type ansatz (
∏
i e
iTiθi , |⃗0⟩) is generating if, for

all computational basis states |s⃗⟩ ̸= |⃗0⟩, there exist generators Ts⃗,a for

a = 0, 1 such that iTs⃗,a |⃗0⟩ = ia|s⃗⟩.
Note that a generating ansatz requires at least sufficient parameters

to span the entire Hilbert space, however it remains unclear whether a
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generating ansatz does span the entire Hilbert space. Instead, we are
interested in generating ansatzes here as they avoid undesired back-action

Lemma 22. Given a generating Pauli-type ansatz (
∏
s⃗,a e

iTs⃗,aθs⃗,a , |⃗0⟩),
one may solve Eqs. 5.5.27 by fixing θ

(k⃗)
s⃗,a = 0 unless s⃗ = s⃗(k⃗) and a =

a(k⃗) := Γ(k⃗) mod 2. This solution further prevents undesired back-action
by making Eqs. 5.5.28 zero term-wise.

Proof — Eq. (5.5.27) may be rewritten as∑
a

ia−Γ(k⃗)θ
(k⃗)

s⃗(k⃗),a

= Ck⃗ −
∑

f ;K⃗(f⃗)=k⃗

|N⃗(f⃗)|>1

Θ(f⃗)⟨0|V⃗ ·⃗k†
(
iT⃗
)·N⃗(f⃗)

|0⟩. (5.5.29)

We then use this equation to fix the left-hand side, being an equation of
free Θ(f⃗) terms. If this is done in ascending order in |⃗k|, one can check

that all Θ(f⃗) terms on the right-hand side at each k⃗ will have been fixed
previously, implying that this fixing is well-defined. Then, one notes that

⟨0|V⃗ ·mk⃗†
(
iT⃗
)·N⃗(mdk⃗,i)

|0⟩ = ⟨0|V⃗ ·⃗k†
(
iT⃗
)·N⃗(dk⃗,i)

|0⟩, (5.5.30)

for any odd m, which implies that contributions from linear combinations
of the fixed components will never appear in Eq. (5.5.28).

The above implies that the (strictly real) term Ck⃗ from each perturbative

diagram contributes only to θ
(k)

s⃗(k⃗),a(k⃗)
. Then, by definition, we have

iTs⃗(k⃗),a(k⃗) |⃗0⟩ = ±V⃗ ·⃗k |⃗0⟩, (5.5.31)

and as Pauli operators are either entirely real or entirely imaginary, this
extends to any computational basis state |s⃗′⟩

iTs⃗(k⃗),a(k⃗)|s⃗′⟩ = ±V⃗ ·⃗k|s⃗′⟩. (5.5.32)

This implies that for any function f⃗ such that fs,a(k⃗) = 0, unless s⃗ =

s⃗(k⃗), a = a(k⃗) we have(
iT⃗
)·N⃗(f⃗)

|⃗0⟩ = ±
∏
k⃗

(
iTs⃗(k⃗),a(k⃗)

)f
s⃗(k⃗),a(k⃗)

(k⃗)

|⃗0⟩

= ±
∏
k⃗

V⃗ ·f
s⃗(k⃗),a(k⃗)

(k⃗)k⃗ |⃗0⟩ = ±V⃗ K⃗(f⃗) |⃗0⟩, (5.5.33)
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5 A diagrammatic approach to variational quantum ansatz construction

and so the right-hand side of Eq. (5.5.29) is real, and θ
(k⃗)

s⃗(k⃗),1−a(k⃗)
= 0, by

induction in |⃗k|.
For carefully-chosen Pauli-type ansatzes, one may further cancel con-

tributions from disconnected diagrams. This yields our formal definition
of what it means for such an ansatz to be ‘size-extensive’ (as discussed in
Sec. 5.4.3)

Definition 23. We say that a Pauli-type ansatz U(θ⃗) is size-extensive with
respect to a perturbation JV (Eq. (5.5.1)) if, in a solution to Eqs. 5.5.27,

θ
(k⃗)

s⃗(k⃗),a
= 0 if k⃗ = k⃗A + k⃗B is disconnected (Def. 18).

A Pauli-type ansatz satisfying this definition will satisfy Def. 14 whenever
the perturbative expansion above converges. To see this, note that when
the perturbative expansion converges the solution to Eqs. 5.5.27 will
provide the ground state exactly. Then, consider a Hamiltonian that does
not couple two systems Si and Sj , and a term Ts⃗,a in our ansatz that does

couple Si and Sj . One can see that whenever s⃗ = s⃗(k⃗), a = a(k⃗) for some

k⃗ that k⃗ will be disconnected, and so θs⃗,a = 0 at all orders of k by Def. 23.
We now have the machinery to present a condition for our ansatz to

be size-extensive that just relates the ansatz terms Ti to the perturbation
terms Vi.

Definition 24. A generating Pauli-type ansatz is matched to a perturba-
tion JV if

⟨0|V⃗ ·⃗k†
(
iT⃗
)·N⃗(f⃗)

|0⟩⟨0|V⃗ ·⃗k′†
(
iT⃗
)·N⃗(f⃗ ′)

|0⟩

= ⟨0|V⃗ ·(k⃗+k⃗′)†
(
iT⃗
)·N⃗(f⃗+f⃗ ′)

|0⟩, (5.5.34)

whenever (k⃗, f) and (k⃗′, f⃗ ′) act non-trivially on disconnected parts of the
system.

Example 25. Any generating variational ansatz (
∏
s⃗,a e

Ts⃗,aθs⃗,a , |⃗0⟩) for
which the generators Ts⃗,a are compact (i.e. they only act nontrivially on
qubit j if sj = 1), is matched. In particular, QCA (Example 8) is both
generating and matched.

Theorem 26. A perturbative hierarchy constructed from a Pauli-type
ansatz via Eqs. 5.5.27, that is matched to a perturbation JV , is size-
extensive.
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Proof — By Lemma 19, we have that Ck⃗ = Ck⃗ACk⃗B . Inserting Eq. (5.5.27),
we find

Ck⃗ =
∑

fA,K⃗(f⃗A)=k⃗A

∑
fB ,K⃗(f⃗B)=k⃗B

Θ(f⃗A)Θ(f⃗B)

× ⟨⃗0|V⃗ ·⃗kA†
(
iT⃗
)·N⃗(f⃗A)

|⃗0⟩⟨⃗0|V⃗ ·⃗kB†
(
iT⃗
)·N⃗(f⃗B)

|⃗0⟩. (5.5.35)

As disconnected parts of k⃗, either kA,i = 0 or kB,i = 0 for any i, implying

fA(k⃗′) = 0⃗ or fB(k⃗′) = 0⃗ for all k⃗′ in the above sum. From this we may
write

Θ(f⃗A + f⃗B) =
∏
k⃗′,i

[
θ
(k⃗)
i

]fA(k⃗′)+f⃗B(k⃗′)

(f⃗A(k⃗′) + f⃗B(k⃗′))!

= Θ(f⃗A)Θ(f⃗B). (5.5.36)

Combining this with the definition of a matched ansatz obtains

Ck⃗ =
∑

fA,K⃗(f⃗A)=k⃗A
fB ,K⃗(f⃗B)=k⃗B

Θ(f⃗A + f⃗B)⟨⃗0|V⃗ k⃗†
(
iT⃗
)N⃗(f⃗A+f⃗B)

|⃗0⟩. (5.5.37)

It remains to check that all f : NNc → NNp with K⃗(f⃗) = k⃗, |N⃗(f⃗)| > 1, and

Θ(f⃗) ̸= 0 take the form f⃗ = f⃗A+ f⃗B with K⃗(f⃗A) = k⃗A and K⃗(f⃗B) = k⃗B , in
which case the right-hand side of Eq. (5.5.29) cancels, giving the required

result. This may be seen by induction in |K⃗(f⃗)|. Clearly it is true for

|K⃗(f⃗)| = 1. Then, fix f with |K⃗(f⃗)| > 1, and define fA(k⃗′) = f(k⃗′) if

k⃗′ik⃗B,i = 0 for all i and fA(k⃗′) = 0 otherwise, and similarly for fB(k⃗′), and

define fAB = f − fA − fB. One has that Θ(f⃗) = Θ(f⃗A)Θ(f⃗B)Θ(f⃗AB),

but if fAB ̸= 0, it is a product of θ
(k⃗AB)

s⃗(k⃗AB),a
for disconnected k⃗AB with

|⃗kAB | < K, and thus Θ(f⃗AB) = 0.
This result can be seen as the digital quantum cousin of the linked-cluster

theorem [57].

5.5.4 The perturbative construction

Following the above, we can construct a hierarchy of the Ts⃗,a by estimating
the corresponding value of θs⃗,a and placing them in order. We do not

111



5 A diagrammatic approach to variational quantum ansatz construction

need to know the precise values of θs⃗,a, as these will be optimized as part
of the VQE. Instead we plan to estimate only the largest contributions
to each θs⃗,a. Under the assumption that Ji J ≪ hn for all interaction
terms i and all qubits n, we expect the largest contributions to come from
those (connected) Ck⃗ with smallest possible |⃗k|. This may be read off
immediately from the perturbative diagrams themselves

Definition 27. A connected perturbative diagram D for a vector k⃗ is a
sub-leading diagram to a diagram D′ for a vector k⃗′ if:

• D and D′ have identically coloured vertices (implying s⃗(k⃗) = s⃗(k⃗′)).

• D and D′ have the same number of red edges modulo 2 (implying

a(k⃗) = a(k⃗′)).

• D′ has fewer interaction vertices than D (implying |⃗k| < |⃗k′|).
A diagram D is leading if it is not a sub-leading diagram to any D′.

Note that multiple leading diagrams may exist for a single parameter
θa
k⃗
.
We now wish to construct a perturbative hierarchy by drawing all leading

diagrams with |⃗k| < K interaction vertices (for some sufficiently large K),
and then ordering corresponding T as⃗ by the leading-order contributions
to θs⃗,a we obtain via Eq. (5.5.29). However, this calculation requires the
normalized coefficients Ck⃗, which in turn require computing the perturba-
tive series for the normalization constant N . To avoid this cumbersome
normalization procedure and also to simplify Eq. (5.5.29), we suggest to

approximate θ
(k⃗)

s⃗(k⃗),a(k⃗)
by

θ̃s⃗,a =
∑

leading k⃗,

s⃗(k⃗)=s⃗, a(k⃗)=a

θ̃
(k⃗)

s⃗(k⃗),⃗a(k⃗)
(5.5.38)

where we define∑
a

ia−Γ(k⃗)θ̃
(k⃗)

s⃗(k⃗),a
= C̃k⃗ −

∑
f ;K⃗(f⃗)=k⃗

|N⃗(f⃗)|>1

Θ̃(f⃗), (5.5.39)

Θ̃(f⃗) =
∏
k⃗,i

[
θ̃
(k⃗)
i

]fi(k⃗)
fi(k⃗)!

. (5.5.40)
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We expect that typically θ̃s⃗,a < θ̃r⃗,b ↔ θs⃗,a < θr⃗,b, which implies that this
approximation should preserve the perturbative hierarchy.

We now have all the machinery required to define our perturbative
hierarchy.

Definition 28. Let {Ts⃗,a} be the generators for a matched, generating

variational ansatz for a Hamiltonian H = H0 + J⃗ · V⃗ . The perturbative
hierachy on {Ts⃗, a} is defined by the total order

Ts⃗,a < Tr⃗,b if θ̃s⃗,a < θ̃r⃗,b, (5.5.41)

and if θ̃s⃗,a = θ̃r⃗,b, we choose the ordering of Ts⃗,a and Tr⃗,b at random.

The explicit calculation of the θ̃s⃗,a variables is quite time consuming. As

a shortcut, we note that θ̃
(k⃗)
s⃗,a scales as J⃗ ·⃗k, which, when Ji ≪ 1 typically

dominates any combinatorial terms. To formalize this, let us define

Js⃗,a =
∑

leading k⃗,

s⃗(k⃗)=s⃗, a(k⃗)=a

J⃗ ·⃗k, (5.5.42)

and we suggest to save on calculation by assuming θs⃗,a < θr⃗,b when
Js⃗,a < Jr⃗,b.

5.6 Application: transverse-field Ising model

In this section, we demonstrate the construction of a variational hierarchy
and study the resulting VQE performance on a target system. As a simple
target example, we take the 1-dimensional transverse-field Ising model
(TFIM):

HTFIM = −
Nq∑
i

hZi +

Nq−1∑
i=1

JXiXi+1. (5.6.1)

This system is a well-known prototype for condensed matter systems,
being a non-interacting set of spins at J = 0, an Ising chain at h = 0, and
demonstrating a quantum phase transition at h = J . For our example, we
consider the h ≫ J > 0 regime, and construct a perturbative hierarchy
around J = 0, using the QCA as a parent ansatz. The noninteracting
ground state may be immediately identified as the computational basis
state |⃗0⟩ with energy −hNq, which we use as the starting state of our
ansatz. Non-interacting excited states |s⃗⟩ have energy (2|s⃗| −Nq)h.
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5 A diagrammatic approach to variational quantum ansatz construction

Figure 5.4: (top) The seven lowest-order connected diagrams for a four-site

transverse-field Ising model, labeled by the k⃗ used in the text. (bottom) Ex-
amples of diagrams that do not need to be considered when constructing the
perturbative hierarchy - (bottom left) a disconnected diagram that explicitly does
not contribute to the hierarchy, and (bottom right) a diagram which will con-

tribute to the same parameter in the hierarchy as a previous term (k⃗ = (1, 1, 0)),
but to lower order.
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5.6 Application: transverse-field Ising model

5.6.1 Example perturbative construction on four sites

To demonstrate the application of the methods developed in Sec. 5.5 in
detail, we now construct the full perturbative hierarchy on a small chain
(Nq = 4). This system has three perturbation terms, which we label

V̂i = XiXi+1 for i = 1, 2, 3. These perturbations preserve the antiunitary
complex conjugation symmetry K, and the unitary global parity symmetry
Z1Z2Z3Z4. This reduces the required variational manifold dimension
from 25 − 2 = 30 to 23 − 1 = 7 (both symmetries halve the Hilbert
space dimension, but complex conjugation makes the phase equivalence
redundant). In the QCA, this corresponds to removing all imaginary
rotations (of the form eiθX...X), and all generators with an odd number
of non-trivial terms. This removal will be automatic in the perturbative
construction, as removed terms will never appear in the hierarchy, so we
need only note the symmetries in case we ‘run out’ of terms to add to the
variational ansatz ∗. The remaining generators are then

T1 = X1Y2, T2 = X2Y3, T3 = X3Y4,

T4 = X1Y3, T5 = X2Y4, T6 = X1Y4,

T7 = X1X2X3Y4.

For convenience in this small system, we will drop the stabilizer notation
of Sec.5.3, and write the QCA as

∏7
j=1 exp(iθjTj). (For example, in the

notation of Sec. 5.3 we would have written θ6 as θ4XII,1.)
To construct the perturbative hierachy, we proceed by drawing all lowest-

order diagrams, and calculating the corresponding C̃k⃗ contributions. In
Fig. 5.4, we list the seven lowest-order connected diagrams in the system.
This gives us the following:

1. 3 contributions at order J (to T1, T2, and T3).

2. 2 contributions at order J2 (to T4 and T5).

3. 1 contribution at order J3 (to T6).

4. 1 contribution at order J4 (to T7).

This may then be used as an initial guess for the ordering in the perturbative
hierarchy. Importantly, although k⃗ = (1, 0, 1) is an order-J2 term satisfying

⟨0|V⃗ k⃗T7|0⟩ ̸= 0, the corresponding diagram is disconnected (Fig. 5.4,

∗Note that this is not always the case: if one must satisfy a symmetry by fixing
parameters, both terms will appear in the hierarchy and the fixing must be done after
the hierarchy is constructed.
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5 A diagrammatic approach to variational quantum ansatz construction

bottom-left). This implies that its contribution to θ7 will be cancelled out
by the contributions of (1, 0, 0) and (0, 0, 1) (Theorem 26), and the diagram
need not be considered in our construction, as we will confirm shortly.
We further note that higher-order diagrams exist, e.g. that corresponding
to k⃗ = (0, 1, 2) (Fig. 5.4, bottom-right). Although these have non-zero
contribution to the actual value of the variational angles (in this case θ2),
as this contribution is at a higher-order of J we expect it to not affect the
order of the hierarchy.

We now check the above ordering of the perturbative hierarchy by explicit
calculation of the lowest-order contributions to θ̃j . Applying Eq. (5.5.14)
recursively, the lowest-order connected contributions can be found to be
(noting Sk⃗,⃗k′ = 1 as all Vi commute),

C̃(1,0,0) = C̃(0,1,0) = C̃(0,0,1) =
−1

4h

C̃(1,1,0) =
−1

4h
[C̃(1,0,0) + C̃(0,1,0)] =

1

8h2

[
= C̃(0,1,1)

]
C̃(1,1,1) =

−1

4h
[C̃(1,1,0) + C̃(1,0,1) + C̃(0,1,1)] = − 5

64h3

C̃(1,2,1) =
−1

8h
[C̃(0,2,1) + C̃(1,2,0) + C̃(1,1,1)

− C̃(0,1,0)C̃(1,0,1)] =
3

256h4
.

One may then calculate in turn the lowest-order approximation for the
variational parameters via Eq. (5.5.39) (noting here that Γ(k⃗) = 1 for all

k⃗ in this system).

θ̃1 = JC̃(1,0,0) =
−J
4h

[
= θ̃2 = θ̃3

]
θ̃4 = J2C̃(1,1,0) − θ̃1θ̃2 =

J2

16h2

[
= θ̃5

]
θ̃6 = J3C̃(1,1,1) − θ̃1θ̃2θ̃3 − θ̃1θ̃5 − θ̃3θ̃4 = − J3

32h3

θ̃7 = J4C̃(1,2,1) −
1

2
θ̃1θ̃

2
2 θ̃3

− θ̃4θ̃2θ̃3 − θ̃1θ̃2θ̃5 − θ̃4θ̃5 = − J4

512h4
.

We see that ordering terms by Js⃗,a reproduces the full perturbative hierar-

chy whenever J < 2h. We also note that the order J2 contribution to θ̃7
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5.6 Application: transverse-field Ising model

from k⃗ = (1, 0, 1) is cancelled (following Theorem 26), as

J2C̃(1,0,1) =
J2

16h2
= θ̃1θ̃3. (5.6.2)

We also note that the magnitudes of θ̃i are systematically smaller than

the magnitudes of corresponding perturbative terms J⃗ ·⃗kC̃k⃗. This suggests

that the back-action terms
∑
f ;K⃗(f⃗)=k⃗;|N⃗(f⃗)|>1

Θ(f⃗)⟨0|V⃗ ·⃗k†
(
iT⃗
)·N⃗(f⃗)

|0⟩
in QCA may have a systematic positive effect on VQE convergence.

5.6.2 Low-order construction for a large chain

Following the analysis of the four-site example, we expect little to no
deviation between parameters of the same order in a larger chain. Indeed,
all first, second and third-order leading diagrams are identical up to
translation along the chain (Fig. 5.5). As the on-site and interaction
strengths are uniform along the chain, this implies that the coefficients
for all such diagrams are likewise equal (to lowest-order). At fourth-order,

two separate types of diagrams exist. One corresponds to k⃗ = (1, 2, 1) in

the four-site model, and gives the same parameter estimate (θ̃s⃗,a = −J4

512h4 ),
to the QCA generators of the form {YiXi+1Xi+2Xi+3} The other was not
present in the four-site model (as it requires 5 qubits) - it contributes

a parameter estimate of θ̃s⃗,a = J4

128h4 to QCA generators of the form
{YiXi+4}, placing these generators earlier in the perturbative hierarchy.
The resulting ansatz thus needs only 5Nq − 13 generators to reproduce the
ground state with errors of order (J/h)5. To obtain this level of accuracy
with a classical calculation, one would in theory need to sum over all
(Nq − 1)4 combinations of individual perturbations. However, as clever
grouping of terms (e.g. via tensor network contractions or similar) should
reduce the time-cost of such a summation far below such numbers, this
argument does not lead to an immediate guarantee of a quantum speedup
for VQEs of this form.

5.6.3 Alternative hierarchies and circuit ordering

Although perturbation theory is a natural choice for developing variational
hierarchies, it is not necessarily the only starting point. In the presence
of strong interactions (where pertubation theory breaks down), other
generator properties may provide better insight into how important they
are at obtaining the ground state. In the following, we study the following
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5 A diagrammatic approach to variational quantum ansatz construction

Figure 5.5: The leading connected diagrams to fourth-order on the transverse-
field Ising model. Each diagram should be repeated across the entire Nq-qubit
chain - the total number of copies of each diagram that will appear is written in
the right-hand column. Diagrams are labelled by the generator Ts⃗,a that they
contribute to.
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5.6 Application: transverse-field Ising model

natural constructions of a priority list, all of which use QCA as a parent
ansatz:

• pertQCA: The perturbative hierarchy from Def. 28, using QCA as
the parent variational ansatz.

• revQCA: The pertQCA hierarchy in reverse.

• 2-locQCA: A low-weight variant of pertQCA, obtained by only
allowing 2-local generators (those acting non-trivially on up to 2
qubits). When more generators are desired than in the final priority
list, we loop over it repeatedly.

• locQCA: A geometrically local variant of pertQCA, obtained by only
allowing generators acting on nearest neighbour pairs of qubits (and
again looping over the priority list if required). This is equivalent
to allowing only the generators which are dictated by the first-order
perturbation theory, allowing for a generalization to an arbitrary
Hamiltonian.

We have so far not discussed the ordering of the units within the ansatz
circuit. Two natural choices present themselves: taking the order in which
the gates appear in the priority list, and taking the order in which the
gates appear in the parent ansatz. However, this is only well-defined when
the priority list is inherited from a parent ansatz without repetition. For
the above hierarchies that require looping, we only study the former choice,
and denote by an asterisk results where the latter ordering is used.

5.6.4 VQE performance

We now test the performance of our variational hierarchies in different pa-
rameter regimes of the transverse-field Ising model on Nq = 8 sites. (Code
to perform this investigation can be found at github.com/tarrlikh/QSA.)
We take as a performance metric the relative energy error

ϵ := (EVQE − E0)/E0, (5.6.3)

where EVQE is the energy of the converged VQE, and plot this as we
increase the number Np of parameters in the hierarchy. The hierarchy gives
a natural strategy to perform the optimization - at each Np, the optimized
values of the previous Np − 1 parameters are used as a starting guess
for their new values (whilst the new parameter is initialized to 0). This
approach converges much faster than re-starting each new simulation at

119



5 A diagrammatic approach to variational quantum ansatz construction

Figure 5.6: Log plot of the relative energy error ϵ (Eq. (5.6.3)) for different
variational hierarchies, in a weakly-coupled transverse-field Ising model (J/h =
0.15). Error is plotted as a function of the number of parameters used (or
equivalently the number of generators taken from the hierarchy). Description of
the different hierarchies is given in the text.

the original value, as found previously in [54]. To focus on the performance
of the ansatzes themselves, we do not include the effects of sampling noise
or any experimental noise in our simulations.

We first investigate the weak-coupling regime where perturbation theory
holds (J/h = 0.15). In Fig. 5.6, we plot the convergence of ϵ as the
first 30 terms from all studied hierarchies are added consecutively. At
each subsequent point we reoptimize all parameters using the SLSQP
algorithm, starting from the local minimum found at the previous point.
We observe that all hierarchies achieve good convergence, with the ex-
ception of revQCA, and that both variants of pertQCA achieve over an
order of magnitude improvement over other ansatzes after 30 terms are
added. We further observe that re-ordering the gates to follow the parent
ansatz (pertQCA*) is preferable, leading to another order of magnitude
improvement. We are unsure of the precise reason for this improvement,
but suggest it may be attributed to the relatively large area of the varia-
tional manifold inherited from the parent ansatz, that may be lost under
re-ordering. The discontinuities in the plot for pertQCA, pertQCA*, and
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5.6 Application: transverse-field Ising model

Figure 5.7: Similar convergence plot to Fig. 5.6, but in the strongly-coupled
regime instead (J/h = 6).

2-locQCA correspond to the points where all gates up to a certain pertur-
bation theory order have been included. This makes sense, as our theory
predicts these points should correspond to the error decreasing from O(Jn)
to O(Jn+1).

We next investigate VQE convergence in the strongly correlated regime
(J/h = 6). We observe that all hierarchies perform worse here than
previously. We attribute this to the strongly-coupled ground state being
further from the starting state than the weakly-coupled ground state. Note
however, that one can obtain one of the two degenerate ground states at
h = 0 from |⃗0⟩ as

|E0(h = 0)⟩ =
∏
i

ei
π
4XiYi+1 |⃗0⟩, (5.6.4)

which is a rotation achievable after the first Nq − 1 = 7 terms of all
considered hierarchies. This suggests that in all cases, the first order
of the hierarchy is used to prepare this state, from which later orders
perturb. Then, as perturbation theory around the strongly correlated
ground state is significantly different to the perturbation theory around the
non-interacting ground state, the generators we have chosen may not be
optimal for this perturbation. This also explains the good performance of
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5 A diagrammatic approach to variational quantum ansatz construction

Figure 5.8: Similar convergence plot to Fig. 5.6, but in the critical regime
instead (J/h = 1).

locQCA over the other hierarchies: by repeating local operators it ensures
that it will obtain the lower orders (in h/J) of the true ground state.

We finally investigate the performance of our hierarchies in the critical
regime (J/h = 1), where a transition between the strongly-correlated and
weakly-correlated phases occurs in the thermodynamic limit. We observe
that the relative error obtained by all ansatzes is the worst here, and
that locQCA and pertQCA* behave similarly, obtaining up to an order
of magnitude improvement over 2-locQCA and pertQCA. This loss of
accuracy is not surprising, as we do not have a relatively cheap way of
accessing any states perturbatively coupled to the ground state in the
same manner as Eq. (5.6.4).

5.7 Conclusion

In this chapter, we have developed a diagrammatic framework for size-
extensive variational quantum ansatzes, which avoids the use of Trotter-
Suzuki approximation methods. We have described a large class of Pauli-
generated product ansatzes demonstrably capable of spanning the entire
Hilbert space with the minimum number of parameters necessary. We
have demonstrated means by which one can compress ansatzes such as the
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above to a practical size, by a perturbative treatment of the target system,
and by taking into account any symmetries that exist. To ensure the
size-extensivity of the construction, we have stated and proven the digital
quantum version of the linked-cluster theorem. We have tested variants
of the resulting ansatzes on the transverse-field Ising model, finding that
their performance in various regimes matches our expectations based on
their means of construction. We observe that ansatzes that fully match
the perturbation theory give a benefit in the weak coupling regime as
expected. However, in the strong-coupling regime, focusing on the locality
of the ansatz at the expense of perturbation theory considerations appears
to be preferred.

As is well known in the field, the performance of any VQE ansatz is
system dependent. Ansatzes that are derived from perturbative physical
principles can be expected to perform best when perturbation theory
converges well. By contrast, those founded on adiabatic principles (e.g.
the variational Hamiltonian ansatz [56]) can be expected to perform best on
systems with a large gap. As these two conditions are often correlated (e.g.
a gap closing often corresponds to a phase transition and a breakdown
of perturbation theory), a fair comparison of ansatzes based on these
two principles (and with any other ansatzes) would require an extensive
numerical study. This is an obvious target for future research.

We have avoided in the above any discussion of a quantum speedup
for the VQEs that we have constructed in this chapter. To the best of
our knowledge this remains an open and difficult question to show for
any class of VQEs. Informally, to demonstrate a quantum speedup, one
requires to be able to obtain an estimate of the true ground state energy
E for an Nq-qubit system, within an error ϵ, in time polynomial in Nq.
This also needs to be achieved in a class of Nq-qubit systems for which no
similar estimation is possible classically. The circuit length in a variational
hierarchy grows polynomially in the number of parameters Np, so it would
be sufficient to show that the error ϵ(Np, N) scales polynomially in Np
and Nq. One also needs to consider the time cost of measuring the energy
(which grows polynomially in Nq) and the time cost of optimization (which
grows polynomially in Np). Our results appear to show this behavior; we
observe what appears to be exponential decay in Np for all three systems
studied. (Note that the measurement and optimization requirements imply
that the time cost to extract these energies from the device will still be
at best polynomial.) However, 1D spin chains such as the transverse-field
Ising model are well accessible by classical methods and polynomial-time
algorithms are known for any weakly-coupled 2-local spin system [173],
so we do not expect a quantum speedup in this case. Finding target
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5 A diagrammatic approach to variational quantum ansatz construction

systems for which a speedup may be demonstrable, and further optimizing
hierarchy construction to show this, are obvious targets for future research.
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5.A Background

Definition 29. The state of an Nq-qubit quantum register is represented

by a norm-1 vector in the Hilbert space H = C2Nq , under the association
|ψ⟩ ∈ H ≡ eiϕ|ψ⟩ for ϕ ∈ R.

Definition 30. The Pauli basis on Nq qubits is defined as PNq :=
{I,X, Y, Z}⊗Nq , where I,X, Y, Z are the 2 × 2 matrices on C2:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
,

Y =

(
0 −1i
1i 0

)
, Z =

(
1 0
0 −1

)
, (5.A.1)

and ⊗ is the Kronecker tensor product.

PNq has the following nice properties:

1. P 2 = 1 for all P ∈ PNq .

2. For P,Q ∈ PNq , either [P,Q] := PQ − QP = 0, or {P,Q} :=
PQ+QP = 0, and P commutes with precisely half of PNq .

3. P ∈ PNq ̸= 1 has only two eigenvalues, ±1, and the dimension of
the corresponding eigenspaces is precisely 2Nq−1 (i.e. each P divids

C2Nq in two).

4. This division by two may be further continued - given P,Q ̸= 1 such
that [P,Q] = 0, P and Q divide the Hilbert space into 4 eigenspaces
(labeled by combinations of their eigenvalues).

5. To generalize, one can form a [Nq, k] stabilizer group S, generated
by k Hermitian, commuting, non-generating elements of PNq (up to

a complex phase); this diagonalizes C2Nq into 2k unique eigensectors
of dimension 2Nq−k. When Nq = k, these sectors contain single
eigenstates, which we call stabilizer states [170].

6. Given such a stabilizer state |ψ⟩ and Hermitian P ∈ PNq , either
P |ψ⟩ = ±|ψ⟩ or ⟨ψ|P |ψ⟩ = 0.

The Pauli basis is a basis for the set of 2Nq × 2Nq complex-valued matrices
(hence the name); it is also a basis for the set of Hermitian matrices if
one chooses real coefficients. However, it is not a group under matrix
multiplication, as the single-qubit Pauli matrices pick up a factor of i
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5 A diagrammatic approach to variational quantum ansatz construction

on multiplication - XY = iZ /∈ P. The closure of the Pauli basis is
the Pauli group ΠNq = {±i} × PNq ; this is four times as large, and no
longer has the basis properties of PNq . The Pauli basis inherits a form
of multiplication from ΠNq - P · Q = R ∈ PNq if PQ = eiϕR ∈ ΠNq , at

which point PNq ≡ D
Nq
2 . However, under this multiplication PNq becomes

a commutative group, which sacrifices key information about its operator
structure. Based on the second point in the above list, we may make the
following useful definition:

Definition 31. The relative sign of P,Q ∈ PNq , sP,Q ∈ {−1, 1}, is
defined such that PQ + sP,QQP = 0. We further define the markers
δP,Q = (1 + sP,Q)/2, δ̄P,Q = (1 − sP,Q)/2 = 1 − δP,Q.

This allows us to write the following useful identity:

eiθPQ = QeisP,QP . (5.A.2)

Unfortunately this does not extend to the commutation of two such
exponentials; one has instead by the application of the Baker-Campbell-
Hausdorff formula

eiθP eiϕQ = eiϕe
iθP/2Qe−iθP/2eiθP , (5.A.3)

= eiϕ[δP,QQ+δ̄P,Q(cos(θ)P+sin(θ)PQ)]eiθP (5.A.4)

= eiϕQeiθ[δP,QP+δ̄P,Q(cos(θ)P+sin(θ)PQ)]. (5.A.5)

and the exponential expression cannot be simplified unless θ = nπ/2. In
this special case, eiπ/2P is a Clifford operator (being an operator that
maps Pauli operators to Pauli operators); this does not define all Clifford
operators, but the set {eiπ/2P , P ∈ PNq} does generate the Clifford group.

5.B Example of compression over
symmetries: the unitary coupled cluster
ansatz

As an example of symmetry-induced compression, let us construct the
Trotterized unitary coupled cluster ansatz [47, 159] on a fermionic system.
This can be done by taking the Pauli-type ansatz of local Majorana
operators acting on an equal number of empty and filled orbitals, removing
terms that do not respect K, and fixing the remainder to respect the
fermion parity. We now detail this procedure.

126



5.B Example of compression over symmetries: the unitary coupled cluster
ansatz

The UCC ansatz takes the form

U(θ⃗) = eT (θ⃗)−T †(θ⃗), (5.B.1)

where the operator T (θ⃗) is a sum of n-th order cluster operators T (n)(θ⃗)
between filled states i and empty states j of the non-interacting problem.

T (n)(θ⃗) =
∑

i1,...,in,j1,...,jn

θj1,...,jni1,...,in
ĉ†j1 . . . ĉ

†
jn
ĉi1 . . . ĉin . (5.B.2)

The choice of T (θ⃗)−T †(θ⃗) is made to respect K (as creation and annihilation
operators are real). One typically takes only a few T (n) (usually up to
n = 2), and Trotterizes the resulting expression in terms of individual
excitations to implement on a quantum computer, in which case it becomes
a product ansatz. ĉ†j and ĉj are the fermionic creation and annihilation
operators for the jth orbital. These are not themselves Pauli operators,
but they may be combined to make Majorana operators

γ
(0)
j = ĉ†j + ĉj , γ

(1)
j = i(ĉ†j − ĉj), (5.B.3)

which are elements of PNq (up to a possible sign). (One can show this
immediately upon choosing a mapping from fermions to qubits.) The

fermionic number operator, N =
∑
j ĉ

†
j ĉj , is equivalent to Γ =

∑
j γ

(0)
j γ

(1)
j

(for commutation purposes). To form the operator T (1) − T (1)†, one may

take the set of excitations eiθ
j,a
i,aγ

(a)
i γ

(a)
j for i ̸= j (and a = 0, 1), and enforce

the symmetry by fixing θj,ai,a = θj,1−ai,1−a . (Terms of the form γ0i γ
1
j do not

commute with K.) The second-order cluster operator is slightly more
complicated; one must take all terms of the form

exp
(
iθj1,j2,b1,b2i1,i2,a1,a2

γa1i1 γ
a2
i2
γb1j1 γ

b2
j2

)
, (5.B.4)

with i1 ̸= i2 (j1 ̸= j2) operators for empty (filled) states, and
∑
i ai+bi = 1

mod 2 (terms where
∑
i ai+bi = 0 mod 2 do not commute with K). Then,

to conserve Γ, one must fix

θj1,j2,0,1i1,i2,0,0
= θj1,j2,1,0i1,i2,0,0

= −θj1,j2,0,0i1,i2,1,0
= −θj1,j2,0,0i1,i2,0,1

= θj1,j2,1,1i1,i2,0,1
= θj1,j2,1,1i1,i2,1,0

= −θj1,j2,0,1i1,i2,1,1
= −θj1,j2,1,0i1,i2,1,1

.

(One can confirm that all operators being fixed commute here, as required.)
This procedure may be continued as needed to obtain higher-order cluster
operators.
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5 A diagrammatic approach to variational quantum ansatz construction

One might try to use the tools developed above and check if the Trot-
terized UCC ansatz tightly spans the reduced Hilbert space. On the one
hand, the number of parameters in the full UCC,

η∑
n=1

η!

(η − n)!n!

(Nq − η)!

(Nq − η − n)!n!
=

Nq!

(Nq − η)!η!
− 1, (5.B.5)

does match precisely the dimension of a real Hilbert space with η particles
in Nq orbitals. On the other hand, as the Trotterized UCC Jacobian is full-

rank at θ⃗ = 0⃗, we strongly suspect that it spans this Hilbert state. However,
we did not find a definitive proof of this. In particular, Trotterized UCC
is not a stabilizer ansatz, and we have not found an obvious construction
of a stabilizer ansatz from UCC.

5.C Multivariate Dyson series

To prove the statement of Lemma 16, we need to analyze the multi-
parameter expansion (5.5.10) of the ground state |E0⟩, as a perturbative
solution to the corresponding eigenvalue equation

(H0 + JV )|E0⟩ = E0|E0⟩. (5.C.1)

It proves to be convenient to first find an unnormalized solution |Ẽ0⟩
whose expansion states |Ψ̃k⃗⟩ (cf. (5.5.12) ) obey a special condition:

⟨Ψ̃0⃗|Ψ̃k⃗⟩ = δk⃗,⃗0. (5.C.2)

The properly normalized ground state |E0⟩ is then to be obtained as
|E0⟩ = N|Ẽ0⟩, for N = (⟨Ẽ0|Ẽ0⟩)−1/2.

To find |Ψ̃k⃗⟩, one can use the Dyson series-like approach. For this, one
rewrites (5.C.1) as:

(E
(0)
0 −H0)|Ẽ0⟩ = (JV − ∆)|Ẽ0⟩, (5.C.3)

for E
(0)
0 being the unperturbed ground state energy, and quantity ∆ defined

as follows:

∆ ≡ (E0 − E
(0)
0 ) = ⟨Ψ̃0⃗|JV |Ẽ0⟩. (5.C.4)

Eq. (5.C.3) can be rewritten as:

|Ẽ0⟩ = |Ψ̃0⃗⟩ + (E
(0)
0 −H0)−1(JV − ∆)|Ẽ0⟩, (5.C.5)
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5.C Multivariate Dyson series

where the action of the inverse operator (E
(0)
0 −H0)−1 is well-defined

since the state (JV − ∆)|Ẽ0⟩ has no overlap with |Ψ̃0⃗⟩ (cf. (5.C.4) and

(5.C.2)). Using expansion (5.5.12) and the form of perturbation JV = J⃗ ·V⃗ ,

one recovers from (5.C.5) a set of equations on |Ψ̃k⃗⟩ for all k⃗ ̸= 0⃗:

|Ψ̃k⃗⟩ = G0

∑
β

Vβ |Ψ̃k⃗−δ⃗β ⟩ −
∑

k⃗′+k⃗′′=k⃗

∆k⃗′ |Ψ̃k⃗′′⟩

 , (5.C.6)

G0 ≡ (E
(0)
0 −H0)−1,∆k⃗ ≡

∑
β

⟨Ψ̃0⃗|Vβ |Ψ̃k⃗−δ⃗β ⟩, (5.C.7)

for δ⃗β the unit vector with the β component equal to 1. Note, that the
action of G0 here is again well-defined, since it acts on a state which has
a zero overlap with |Ψ̃0⃗⟩ (cf. (5.C.7) and (5.C.2)). Now, with (5.C.6), we

expressed each state |Ψ̃k⃗⟩ in terms of states |Ψ̃k⃗′⟩ which belong to lower

PT orders: |⃗k′| < |⃗k|. Using (5.C.6) and the unperturbed ground state
|Ψ̃0⃗⟩ = |⃗0⟩, one can obtain all the states |Ψ̃k⃗⟩ up to any desired order.

Given the states |Ψ̃k⃗⟩, one can also find the expression for the normal-
ization N , as a multi-parameter series:

N =
∑
k⃗

Nk⃗J⃗
·⃗k (5.C.8)

The expansion states |Ψk⃗⟩ of the normalised ground state |E0⟩ are then
given by:

|Ψk⃗⟩ =
∑

k⃗′+k⃗′′=k⃗

Nk⃗′′ |Ψ̃k⃗′⟩ (5.C.9)

With this scheme for finding the expansion states |Ψk⃗⟩, we’re ready
to prove Lemma 16. To do so, first we will use (5.C.6) and prove the
validity of the expression (5.5.13), together with the recursive relation
(5.5.14). Then, using (5.C.9), we will extend our proof also to the states
|Ψk⃗⟩, recovering the statement of Lemma 16.
Proof — We start with a proof of the relation (5.5.13) for the states

|Ψ̃k⃗⟩, by induction in PT order |⃗k|. We first note that for |⃗k| = 0, we have

a single state |Ψ̃k⃗=0⃗⟩ = |⃗0⟩ that clearly satisfies (5.5.13) - this will be the

base of our induction. Next, we have to prove (5.5.13) for |Ψ̃k⃗⟩ with an

arbitrary k⃗, assuming the validity of (5.5.13) for all |Ψ̃k⃗′⟩ s.t. |⃗k′| < |⃗k|.
To do so, let us express |Ψ̃k⃗⟩ using (5.C.6) and show that the different
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5 A diagrammatic approach to variational quantum ansatz construction

terms that are present on the r.h.s. are proportional to the state V⃗ ·⃗k |⃗0⟩
with a real coefficient. The terms of the type G0Vβ |Ψ̃k⃗−δ⃗β ⟩, assuming

expression (5.5.13) for |Ψ̃k⃗−δ⃗β ⟩, can be rewritten as:

G0Vβ |Ψ̃k⃗−δ⃗β ⟩ = G0C̃k⃗−δ⃗βVβV⃗
·(k⃗−δ⃗β) |⃗0⟩ (5.C.10)

=
Sδ⃗β ,⃗k−δβ C̃k⃗−δ⃗β

E
(0)

0⃗
− E

(0)

s⃗(k⃗)

V⃗ ·⃗k |⃗0⟩. (5.C.11)

The other contributions to the r.h.s. of (5.C.6) are of the formG0∆(k⃗′)|Ψ̃k⃗′′⟩,
such that k⃗′ + k⃗′′ = k⃗. The factor ∆(k⃗′) here can be rewritten using the
assumption of induction:

∆k⃗′ =
∑
β

⟨⃗0|C̃(k⃗′−δ⃗β)VβV⃗
·(k⃗′−δ⃗β) |⃗0⟩ (5.C.12)

=

∑
β

Sδ⃗β ,⃗k−δβ C̃k⃗′−δ⃗β

 ⟨⃗0|V⃗ ·⃗k′ |⃗0⟩ (5.C.13)

= ∆Re
k⃗′
⟨⃗0|V⃗ ·⃗k′ |⃗0⟩, (5.C.14)

where we introduced the shorthand notation ∆Re
k⃗′

for the real coefficient(∑
β Sδ⃗β ,⃗k−δβ C̃

(k⃗′−δ⃗β)
)

. With this observation about ∆k⃗′ and the assump-

tion of induction at hand, the following manipulation can be performed:

G0∆k⃗′ |Ψ̃k⃗′′⟩ = ∆Re
k⃗′
C̃k⃗′′G0V⃗

·⃗k′′ |⃗0⟩⟨⃗0|V⃗ ·⃗k′ |⃗0⟩ (5.C.15)

=
∆Re
k⃗′
C̃k⃗′′Sk⃗′′ ,⃗k′

E
(0)

0⃗
− E

(0)

s⃗(k⃗)

δs⃗(k⃗′),⃗0V⃗
·⃗k |⃗0⟩, (5.C.16)

where we used the condition k⃗′+ k⃗′′ = k⃗. Combining (5.C.11) and (5.C.16),
we see that the expression (5.C.6) indeed implies the form (5.5.13) of |Ψ̃k⃗⟩,
with a real coefficient C̃k⃗ which is given by the formula (5.5.14).

Before extending this result to the coefficient states |Ψk⃗⟩ of the normal-

ized ground state |E0⟩ = N|Ẽ0⟩, we will need to make an aside and prove
the following property of the coefficients Nk⃗:

Nk⃗ = NRe
k⃗

⟨⃗0|V⃗ ·⃗k |⃗0⟩, (5.C.17)
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5.C Multivariate Dyson series

for a real coefficient NRe
k⃗

. First, one can observe that an analogous property

holds for the coefficients Zk⃗ of Z ≡ ⟨Ẽ0|Ẽ0⟩ = N−2:

Z =
∑
k⃗

J⃗ ·⃗kZk⃗, (5.C.18)

Zk⃗ =
∑

k⃗′+k⃗′′=k⃗

C̃k⃗′C̃k⃗′′ ⟨⃗0|
(
V⃗ ·⃗k′′

)†
V⃗ ·⃗k′ |⃗0⟩ (5.C.19)

=
∑

k⃗′+k⃗′′=k⃗

i2Γk⃗′′Sk⃗′′ ,⃗k′C̃k⃗′C̃k⃗′′ ⟨⃗0|V⃗ ·⃗k |⃗0⟩ (5.C.20)

= ZRe
k⃗

⟨⃗0|V⃗ ·⃗k|0⟩, (5.C.21)

with a real coefficient ZRe
k⃗

defined as
∑
k⃗′+k⃗′′=k⃗ i

2Γ
k⃗′′Sk⃗′′ ,⃗k′C̃k⃗′C̃k⃗′′ ; in this

derivation, we used (5.5.11) for states |Ψ̃k⃗⟩. Now, observe that Z0⃗ = 1,

which means that the norm N = Z−1/2 = (1 + ϵ)
−1/2

can be expressed

as a Taylor series in ϵ =
∑
k⃗ ̸=0 J⃗

·⃗kZk⃗, which is a quantity of order O(J).
Expanding the terms of such Taylor series, one observes that the coefficients
Nk⃗ are given in terms of products of coefficients Zk⃗ such that the combined

perturbation theory order k⃗ is conserved - for example, a product Zk⃗1Zk⃗2
will contribute to Nk⃗1+k⃗2

. This allows to obtain the property (5.C.17)
from (5.C.21) term by term. For instance, Zk⃗1Zk⃗2 is proportional to

⟨⃗0|V⃗ ·(k⃗1+k⃗2) |⃗0⟩ with a real coefficient:

Zk⃗1Zk⃗2 = ZRe
k⃗1
ZRe
k⃗2

⟨⃗0|V⃗ ·⃗k1 |⃗0⟩⟨⃗0|V⃗ ·⃗k2 |⃗0⟩ (5.C.22)

= δs⃗(k⃗1),⃗0δs⃗(k⃗2),⃗0Sk⃗1,k⃗2Z
Re
k⃗1
ZRe
k⃗2

⟨⃗0|V⃗ ·(k⃗1+k⃗2) |⃗0⟩. (5.C.23)

This statement can be directly extended to any product of multiple Zk⃗’s,
recovering (5.C.17), as desired.

To prove expression (5.5.11), we simply use the property (5.C.17) and
(5.5.13) for |Ψ̃k⃗⟩, in the formula (5.C.9):
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|Ψk⃗⟩ =
∑

k⃗′+k⃗′′=k⃗

N (k⃗′′)|Ψ̃k⃗′⟩ (5.C.24)

=
∑

k⃗′+k⃗′′=k⃗

NRe
k⃗′′
C̃k⃗′ V⃗

·⃗k′ |⃗0⟩⟨⃗0|V⃗ ·⃗k′′ |⃗0⟩ (5.C.25)

=
∑

k⃗′+k⃗′′=k⃗

δs⃗(k⃗′′),⃗0Sk⃗′ ,⃗k′′NRe
k⃗′′
C̃k⃗′ V⃗

·⃗k |⃗0⟩ (5.C.26)

= Ck⃗V⃗
·⃗k |⃗0⟩, (5.C.27)

Ck⃗ ≡
∑

k⃗′+k⃗′′=k⃗

δs⃗(k⃗′′),⃗0Sk⃗′ ,⃗k′′NRe
k⃗′′
C̃k⃗′ . (5.C.28)

This concludes our proof of Lemma 16.

5.D Separability of disconnected
contributions

In what follows, we prove Lemma 19.

Proof — Consider a disconnected contribution |Ψk⃗⟩ = Ck⃗V⃗
·⃗k |⃗0⟩ to

the ground state |E0⟩ of the Hamiltonian H = H0 + J⃗ · V⃗ , with a cor-

responding splitting k⃗ = k⃗A + k⃗B. The two sets of couplings that are
activated, respectively, in k⃗A and k⃗B, we will denote A and B. We also
introduce two non-intersecting sets of qubits, QA and QB , such that they
include, respectively, the supports of k⃗A and k⃗B , and their union QA ∪QB
constitutes the whole set of qubits.

Let us consider an auxilliary Hamiltonian H ′, which is equal to H with
a constraint Ji = 0 for all couplings Vi which are not in A ∪B. In the PT
series for the ground state |E0⟩′ of such an auxilliary Hamiltonian,

|E0⟩′ =
∑
k⃗′

J⃗ ·⃗k′C ′
k⃗′
V⃗ ·⃗k′ |⃗0⟩, (5.D.1)

the terms C ′
k⃗′

are equal to the corresponding terms Ck⃗′ in the full series

(5.5.10) – namely those, where no couplings Vi are activated besides those
in A∪B. In particular, (5.D.1) still contains the disconnected contribution
of interest, C ′

k⃗′=k⃗
= Ck⃗.
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On the other hand, H ′ is a sum of two independent Hamiltonians,
defined on subsystems QA and QB :

H ′ = H ′
A ⊗ IQB + IQA ⊗H ′

B , (5.D.2)

H ′
A ≡ −

∑
i∈QA

hiZi +
∑
i∈A

JiVi, (5.D.3)

H ′
B ≡ −

∑
i∈QB

hiZi +
∑
i∈B

JiVi. (5.D.4)

This implies that the ground state |E0⟩′, will be a tensor product of the
ground states of H ′

A and H ′
B ,

|E0⟩′ = |E0⟩′A|E0⟩′B . (5.D.5)

In turn, the subsystem ground states |E0⟩′A and |E0⟩′B can themselves
be written as PT series in couplings restricted on A and B, separately:

|E0⟩′A =
∑
k⃗′A

J⃗ ·⃗k′AC ′
k⃗′A
V⃗ ·⃗k′A |⃗0⟩QA , (5.D.6)

|E0⟩′B =
∑
k⃗′B

J⃗ ·⃗k′BC ′
k⃗′B
V⃗ ·⃗k′B |⃗0⟩QB , (5.D.7)

whose terms, again, are identical to those in the full series (5.5.10), with
only couplings from A (B) activated: C ′

k⃗′A
= Ck⃗′A

(C ′
k⃗′B

= Ck⃗′B
). Combining

(5.D.1), (5.D.5), (5.D.6) and (5.D.7), for our term of interest Ck⃗ we obtain
the desired relation:

Ck⃗ = Ck⃗ACk⃗B . (5.D.8)
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Figure 5.9: Plot of the optimization convergence speed (Eq. (5.6.3)) for dif-
ferent variational hierarchies in a weakly-coupled transverse-field Ising model
(J/h = 0.15). Convergence is represented by a total number of energy function
evaluations nev and plotted as a function of the number of parameters used.
Note that the optimization of Np ansatz parameters always uses the optimized
value of Np − 1 parameters for initialization (see Sec. 5.6.4). Because of this, in
nev(Np) we always include nev(Np − 1) and the resulting plots are by definition
monotonic.

5.E Convergence speed of classical
optimization of QCA

In this appendix we show the convergence rate of our classical optimization
of QCA in terms of the number of function evaluations for Fig. 5.6, Fig. 5.7
and Fig. 5.8 (Fig. 5.9, Fig. 5.10 and Fig. 5.11 respectively). We have not
performed any metaparameter tuning for this optimization, which would
likely improve these numbers significantly. The optimization here was
performed in the absence of realistic conditions on quantum hardware (in
particular in the absence of sampling noise); any further optimization of
convergence times would need to take this into account in order to make a
realistic comparison to other ansatzes.
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Figure 5.10: Plot of convergence speed similar to Fig. 5.9, but in the strongly-
coupled regime instead (J/h = 6).
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Figure 5.11: Plot of convergence speed similar to Fig. 5.9, but in the critical
regime instead (J/h = 1).
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6.1 Introduction

Ground state preparation is an essential algorithm in the quantum com-
puting toolbox. Any polynomial-time quantum algorithm can be mapped
to the problem of estimating the ground state energy of an artificial
Hamiltonian given an approximation to its ground state [44], and without
such additional input this problem is known to be QMA-hard for even
2-local Hamiltonians [43]. Digital quantum simulation of problems in
materials science and chemistry, one of the ‘killer apps’ of a quantum
computer, is most often concerned with properties of ground states of the
simulated systems [12, 174], and many problems in optimization may be
mapped to ground state finding problems [45, 162]. This has led to a wide
range of schemes for digital ground state approximation, via adiabatic
evolution [45], variational methods [47, 159, 162], phase estimation [175],
and approximate imaginary time evolution [176–178]. However, these
algorithms suffer from large computational costs or approximation errors,
making designing better schemes an active area of interest.

In nature, ground states are achieved by coupling to a large cold reservoir,
which takes energy from the system in keeping with the second law of
thermodynamics. Simulating an entire bath would require an impractically
large quantum register, however it has long been suggested that this may
be mimicked by coupling to a single qubit which may be reset to its ground
state with sufficient frequency [12]. This idea has been since studied in
digital quantum computing for the initialization of quantum devices [62,
63], and in analogue settings for the preparation of physical [64] and
artificial [65, 66] ground states. However, cooling an artificial system in the
digital quantum setting provides a set of unique challenges — the system
being studied may be completely different from the physical quantum
hardware, and the digitized Hamiltonian may be only an approximation
to the target of interest. Furthermore, the periodic non-unitary reset
may break the unitary evolution in short time-scale chunks which do
not conserve energy, implying that one may artificially reheat the system
without clever protocol design. This is of critical importance in near-term
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devices, where limited coherence times compete against the desire for
slower cooling cycles.

In this chapter, we detail how one may prepare ground states of an
artificial Hamiltonian on a digital quantum computer via quantum digital
cooling (QDC). We first present an analytic study of the cooling of a
two-level system, from which two different approaches may be outlined to
de-excite to the ground state whilst preventing reheating. We investigate
the behaviour of both methods in the digitized setting, and find they
continue to be robust. The protocols deriving from these two principles are
tested in the one-qubit black-box Hamiltonian setting, where the energy
gap and matrix elements are unknown. We extend these protocols to N -
qubit systems, and investigate their ability to cool small-scale simulations
of the transverse-field Ising model numerically. Our LogSweep protocol,
based on the weak-coupling approach, is demonstrated to converge to the
ground state of all three phases of the transverse-field Ising model. It
further shows a relative energy error constant in the system size at a fixed
protocol length for the weakly-coupled and critical phases of this model,
which corresponds to a requirement to simulate time evolution for O(N2)
and O(N3) Trotter steps respectively. By contrast, the stong-coupling
BangBang protocol shows the ability to prepare low-cost ground-state
approximations of the same model in the paramagnetic and ferromagnetic
regime, but seems to perform much worse close to the critical point, where
the system spectrum shows a less-ordered structure. The small number
of calls to the system evolution operator needed to realize this protocol
makes it attractive for near term application.

6.2 Cooling a system with a single fridge
qubit

In nature, gapped physical systems cool down to a state with high overlap
to the ground state when interacting with a bath that is cold and large,
under the condition of ergodicity. By cold, we mean that temperature TB of
the bath is small compared to the ground state gap ∆S of the system to be
cooled: kBTB ≪ ∆S (with kB Boltzmann’s constant). By large, we mean
that the bath has a sufficiently large Hilbert space that the above condition
is unchanged by the addition of the energy from the system. By ergodic,
we mean the system must not have symmetries that prevent excitations to
be transferred from the system to the bath, or that reduce the effective
size of the accessible bath Hilbert space. Given a system with Hamiltonian

138



6.2 Cooling a system with a single fridge qubit

HS and eigenstates HS|Ej⟩ = Ej |Ej⟩, energy conservation implies that
the bath must have states at energies Ej − E0 to allow de-excitation
of the eigenstates Ej . This is typically achieved by considering a bath
with a continuous or near-continuous low-energy spectrum [Fig. 6.1(a)].
However, the bath need not cool all states immediately to the ground state.
Instead, a bath typically absorbs single quanta of energy ϵ = Ei −Ef that
correspond to local excitations of the system |Ei⟩ → |Ef ⟩, at a rate given
by Fermi’s golden rule:

dPi→f

dt
=

2

ℏ

∫ ∞

0

dϵ |⟨Ef , ϵ|HC|Ei, 0⟩|2 ρB(ϵ)

× lim
t→∞

sin[(Ei − Ef − ϵ) t]

Ei − Ef − ϵ
(6.2.1)

=
2π

ℏ
|⟨Ef , ϵ|HC|Ei, 0⟩|2 ρB(Ei − Ef ), (6.2.2)

where HC is the coupling between the system and the bath, and ρB is the
density of states of the bath ∗. This requires the bath to be large enough
to prevent reexcitation of these states as the system continues cooling. In
other words, the bath must have a large Hilbert space compared to the
one of the system. This ensures that, at equilibrium, most of the entropy
is distributed in the bath.

To represent such a large bath with an ancillary register on a quantum
device in order to cool a system register would be impractically costly. In
this work, we approximate the presence of a much larger bath B with a
single ancilla qubit F [Fig. 6.1(b)], with bath Hamiltonian HB → HF =
ϵ ZF/2. This can be considered a simplified form of a collisional model [179]
that does not allow for non-Markovian effects (that would be in our case
unwanted). The coupling between the bath and the system takes the
form HC = γXF ⊗ VS/2, where γ is the coupling strength, and VS a
coupling term that acts on the system alone. A key advantage of the
digital approach is that we are free to choose VS as desired to optimize the
cooling protocols. The Hamiltonian of the entire system and bath then
takes the form

H = HS +HF +HC. (6.2.3)

This has an immediate problem, as the bath can only absorb a single
quantum of energy ϵ, but we may circumvent this by periodically resetting
the ancilla qubit to |0⟩. The non-unitary reset in effect extracts energy and
entropy from the ancilla to a much larger external bath (the experimenter’s

∗In the rest of the chapter we assume ℏ = 1
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Figure 6.1: The de-excitation of the system transition |E1⟩S → |E0⟩S mediated
by: (a) a continuous-spectrum natural bath B, where an excitation |ϵ⟩B at energy
ϵ is produced, and (b) a single-qubit digital fridge F, which can be excited if
ϵ = ∆.

environment). For this reason we call the ancilla qubit a ‘fridge’ qubit
(hence F). The non-unitarity introduced in the process is necessary to
dissipate entropy, allowing to prepare the ground state from an arbitrary
starting state. As the time between resets is finite, the t → ∞ limit in
Eq. (6.2.1) is no longer justified and energy is no longer conserved. This
is both a blessing and a curse — we need not precisely guess the energy
gap ∆ = Ei − Ef of the transition that we need to de-excite, but we
run the risk of reheating the system at each cooling round. Minimizing
re-heating while maximizing the range of targeted de-excitations is key to
the successful design of QDC protocols. In a realistic experiment, qubit
re-heating would be effectively increased by reset infidelity on the ancilla
qubit, making the protocol less effective.

6.3 De-exciting a single transition: the 1+1
model

In order to design some basic protocols for QDC, we turn to a toy ‘1+1’
model. We take a single-qubit system with Hamiltonian HS = ∆ZS/2, and
couple it to a single fridge qubit with coupling term VS = XS. Although
this model is simple, it can for instance represent a pair of levels being
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targetted for cooling in a much larger quantum system. We will make use
of this interpretation when extending these cooling protocols in section 6.4.

6.3.1 Elementary approaches to digital cooling: strong
and weak-coupling

Let us first assume ∆ is known, in which case resonant cooling (ϵ = ∆) can
be seen to be the most effective choice of ϵ. With this fixed, the transition
probabilities after time t may be calculated exactly to be

P1→0 = sin2
(γ

2
t
)
, P0→1 =

γ2 sin2(tΩ)

4Ω2
, (6.3.1)

where Ω =
√
γ2/4 + ϵ2. We wish to maximise the cooling probability

P1→0 while minimizing the reheating probability P0→1 by optimizing the
remaining free parameters: the coupling strength γ and the cooling time t.
To maximize the cooling rate P1→0 = 1, we must set

t = πγ−1. (6.3.2)

We assume this constraint throughout this chapter. This goes beyond the
perturbative regime γt≪ 1 in which Eq. (6.2.1) is formulated. However,
we can take two very different approaches to minimize reheating, based
on strong or weak coupling. The weak-coupling approach is based on the
observation that the off-resonant transition P0→1 is bounded by γ2/4Ω2.
As such, we may suppress reheating to an arbitrary level by choosing
sufficiently small γ. The time-cost for Hamiltonian simulation of eiHt

scales at best linearly in t [180], so this implies one may obtain the ground
state with failure probability p in time O(p−1), regardless of the initial
state of the qubit. The strong-coupling approach consists of tuning γ so
that Ωt = π, which is achieved when

γ =
2√
3
ϵ. (6.3.3)

This fixes the reheating exactly to 0, guaranteeing the qubit to be in the
ground state in the shortest possible time, but at the cost of requiring
fine-tuning.

Unlike in analog quantum simulation, digital devices cannot exactly
implement the dynamics of the Hamiltonian in Eq. (6.2.3), and must
approximate it digitally instead. A common approach to such digitization
is that of the Suzuki-Trotter expansion [58, 181], which we now explore
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for the two cooling paradigms. We apply the (second-order) expansion of
the coupled system-bath evolution with Trotter number M ,

e−i(HS+HF+HC) t ∼
[
e−iHC

t
2M e−i(HS+HF)

t
M e−iHC

t
2M

]M
. (6.3.4)

Note that, when we later approach larger systems, we will practically realize
e−iHSt/M as a single second-order Trotter step, effectively implementing a
second-order Trotter simulation of the coupled Hamiltonian HS +HF +HC

with trotter number M . If we restrict to the subspace containing the states
involved in the cooling transition |10⟩SF → |01⟩SF, at resonant cooling we
have HS +HF ∝ 1 (specifically, in this model |01⟩ and |10⟩ generate a zero-
eigenvalue subspace of HS +HF). Thus, the Trotterized evolution behaves
exactly like the continuous one with regards to the cooling transition. We
study reheating probabilities as a function of t for different values of M
in the weak-coupling regime. We observe (Fig. 6.2) that the digitized
evolution approximates well the behavior of the continuum limit whenever
tΩ/π ≲M (i.e. for the first M Rabi oscillations with pulse Ω). For longer
times tΩπ ≳M , the second-order Trotter approximation fails, leading to
reheating rates far larger than in the continuum limit. This allows us to
define a practical choice of M to avoid reheating due to digitization — we
require

M ≫
√

1 + ϵ2/γ2, (6.3.5)

which sets the working point t = πγ−1 before the M/2 Rabi oscillation.
However, in the strong-coupling case tΩ/π =

√
3, which implies that a

single step is sufficient. Indeed, digitized cooling with probability 1 and
no reheating can be realized by a bang-bang approach (inspired by similar
approach in variational methods [182, 183]). This consists in defining the
evolution as in Eq. (6.3.4) with M = 1, as long as the coupling strength is
adjusted to γ = 2ϵ. With this choice, the digitized evolution implements
resonant Ramsey interference on the cooling transition |10⟩SF → |01⟩SF and
anti-resonant Ramsey interference on the reheating transition |00⟩SF →
|11⟩SF.

A key difference between the two approaches to digital cooling is in
their behavior off-resonance, i.e. when the energy gap is mistargetted
or not precisely known. For the bang-bang approach, detuning reduces
the cooling efficiency while symmetrically boosting reheating [Fig. 6.3(a)].
The wide resonance peak around zero detuning makes this approach
ideal to quickly cool transitions which energy is known up to a small
error. In the weak-coupling approach the resonance peak becomes sharper
and the reheating gets more suppressed as the coupling is made smaller
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Figure 6.2: Effects of Trotterization on cooling and reheating probabilities as
a function of the coupling time t, for different numbers of Trotter steps M per
cooling cycle. Vertical dotted lines indicate the M -th reheating oscillation, at
which point the Trotter approximation fails.

[Fig. 6.3(b)], approaching the energy conservation limit. Detuning makes
cooling inefficient, but thanks to the low reheating probability this weak-
coupling cooling can be iterated while changing ϵ to try to match the
transition energy, without destroying the cooling effect.

6.3.2 Common symmetries and the coupling
alternation method

In large systems of interest, we do not know the Hamiltonian’s eigenstates,
making it more challenging to couple between them. This is required for
cooling, as can be seen by the direct dependence of the cooling rate

dPi→f

dt
on the overlap |⟨Ef , ϵ|HC|Ei, 0⟩|2 (Eq.6.2.2). This overlap dependence will
prohibit cooling if the system Hamiltonian HS and the coupling operator
VS share a common symmetry S (i.e., [S,HS] = [S, VS] = 0). When this
is the case, the Hamiltonian may be simultaneously diagonalized with
HS, and a state with some overlap to any eigenspace of S that does not
contain the ground state cannot be cooled to the ground state by coupling
with VS. Note that this is a strictly stronger condition than just requiring
[HS, VS] ̸= 0. A simple solution is to alternate over a set of couplings
{V iS} as we cool. Then, any symmetry S of H need commute with each
V iS in order to guarantee that a state starting with overlap in a high-
energy eigenspace will remain there. Sets of coupling terms {V iS} on N
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Figure 6.3: Effect of fridge-system detuning δ = ∆− ϵ on the cooling (dashed
lines) and reheating (solid lines) probabilities for (a) the bang-bang cooling
approach, and (b) the weak-coupling cooling approach, where colors indicate
different couping strengths.

qubits need only be size O(N) to break commutation with all non-trivial
operators (for example, the set of all single-qubit Pauli operators), so
although symmetries need to be taken into account, they will not destroy
the feasibility of QDC protocols.

This issue may be demonstrated on the protoype 1 + 1 qubit model
by considering the system Hamiltonian HS = h n⃗ · σ⃗, where n⃗ is a 3-
dimensional unit vector (so HS points in a random direction on the Bloch
sphere), 2h is a fixed energy splitting, and σ is the vector of Pauli-matrices.
For a fixed coupling operator VS, there is a risk that [HS, VS] ≈ 0. When
this is the case, the off-diagonal elements of VS in the system eigenbasis
are zero, preventing cooling. We may prevent this by alternating between
different coupling terms during the cooling protocol, such that no non-
trivial Hamiltonian can commute with all such coupling terms. This may
be achieved for the 1 + 1 model by iterating over V iS ∈ {XS, YS, ZS}, or
alternatively over V iS ∈ {XS, ZS}. The effectiveness of this scheme is
studied in Fig. 6.4 for resonant coupling. We see the probability P1→0 of
successful cooling of the weak coupling approach (t ϵ = 10) increased to
min(P1→0) = 97% for all choices of n⃗ when iterating over V iS = XS, YS, ZS,
and above 95% when iterating V iS = XS, ZS, XS, compared to the possibility
for complete cooling failure [min(P1→0) = 0] when V iS is held constant.
Similar results are seen for off-resonant coupling.
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Figure 6.4: Probabilities P1→0 of transitioning from |1⟩ to |0⟩ after three
iterations of the weak-coupling (t ϵ = 10) cooling procedure, with coupling
potentials V i

S = X,X,X (left), V i
S = X,Y,X (center), V i

S = X,Y, Z (right), on
a system qubit with Hamiltonian HS = h n⃗ · σ⃗ and known energy splitting h.
The orientation of the unit vector n⃗ is represented on spherical surfaces. The
average, standard deviation and minimum of P1→0 are shown above each panel.

6.4 Scalable QDC protocols

We now look to use the insight obtained for cooling in the 1+1 toy
model to develop QDC schemes for larger systems. The sub-additivity
of entropy places a rough lower bound on the number of cooling steps
required to cool an N -qubit system. This limits the entropy ∆SS that
the system can transfer to the fridge qubit before the non-unitary reset
to ∆SS ≥ −∆SB ≥ −1 bit. If we demand the ability to cool an arbitrary
state, a QDC protocol must also be able to cool the maximally-mixed
state, which has entropy SS = N . We then require N repetitions of an
optimal coupling-and-reset step to reach the pure ground state (which
has entropy SS = 0). This can be obtained in the simple example of
cooling N non-interacting qubits with known energies, by simply repeating
the protocols of the 1 + 1 model. However, this cannot be generalised to
arbitrary strongly-correlated systems, as cooling is complicated by irregular
and unknown energy gaps and coupling terms between eigenstates. This
is to be expected, as preparing ground states of arbitrary Hamiltonians
is a known QMA-hard problem [43]. However, as cooling is a physically-
motivated process, we hope QDC to be able to achieve polynomial scalings
for systems of physical interest, i.e. models of systems that are found in
low-temperature equilibrium states in nature.

In the rest of this chapter, we introduce two scalable QDC protocols for
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N -qubit systems: the strong-coupling-based BangBang protocol and the
weak-coupling-based LogSweep protocol. These extend and generalize the
two approaches we established for the 1+1 toy model of section 6.3.1. Each
protocol iterates over a sequence of cooling steps, each of which consists of
coupling the fridge qubit to part of the system for a short time evolution,
and then resetting the fridge qubit to its ground state. The protocols
differ in the choice of coupling strengths γi, coupling terms V iS and fridge
energies ϵi at each i-th cooling step. [The coupling time for each cooling
step is fixed by Eq. (6.3.2)].

6.4.1 The BangBang protocol

We now develop a protocol to extend the strong-coupling approach (Eq. 6.3.3)
to a larger system. This motiviation is in line with recently proposed
bang-bang approaches to adiabatic state preparation [182, 183], which
are known to outperform initial theoretical expectations stemming from a
naive Trotter error estimate. We are thus optimistic that this ’BangBang’
protocol may provide a low-cost, near-term method for QDC. However,
such a protocol needs to associate each fridge-system coupling with a single
fridge energy, that should match the transitions that this coupling triggers.
An appropriate choice of fridge energy can be estimated via a perturbation
theory approximation. To derive this approximation, we note that the rate
of a transition between eigenstates |Ei⟩ → |Ej⟩ depends on the matrix
element of the coupling VS :

V(ij) := ⟨Ei|VS |Ej⟩ =
⟨Ei|[HS, VS ]|Ej⟩

Ei − Ej
. (6.4.1)

If VS is local and bounded, [HS, VS ] is as well, so the matrix element V(ij)
will be bounded proportionally to (Ei − Ej)

−1. The matrix element is
additionally bounded by ∥V ∥; this second bound becomes dominant when
Ei −Ej/∥V ∥ falls below the maximum off-diagonal element of [H,V ] in
any basis, which we define with the notation ∥[H,V ]∥⊥:

∥O∥⊥ = max
⟨ϕ|ψ⟩=0

|⟨ϕ|O|ψ⟩| = max
|Φ⟩,|Ψ⟩

⟨Φ|O|Φ⟩ − ⟨Ψ|O|Ψ⟩
2

, (6.4.2)

where O is Hermitian and the maxima are taken over all possible states
|ψ⟩, |ϕ⟩ and |Ψ⟩, |Φ⟩. A simple proof is given in Appendix 6.A. We use this
energy scale to set the fridge energy:

ϵi = ∥[V iS , HS]∥⊥ (6.4.3)

146



6.4 Scalable QDC protocols

0.0 0.5 1.0 1.5 2.0
/ [Hs, Vs]

1

0

en
er

gy
 c

ha
ng

e
E/

J2
+

B
2

J / B = 0.2
J / B = 1
J / B = 5

Figure 6.5: Change in energy expectation value for the application of a single
cooling step to the maximally mixed state of a N = 8 qubit transverse field Ising
chain Eq. (6.4.5), depending on the fridge energy ϵ. The coupling potential is
VS = Y3, the Pauli Y on the third qubit. The relation B2 + J2 = 1 fixes the
energy scale.

for any coupling potential V iS . This way, the maximum-energy transitions
accessible by VS are on resonance, while smaller energy ones (which are
less important for cooling) still have a higher probability of cooling than of
reheating [see Fig. 6.3(a)]. This defines the BangBang protocol: we iterate
over coupling to each qubit, with ϵi fixed by Eq. (6.4.3). As this protocol
does not attempt to suppress reheating, we choose a single coupling
VS = Yn for the n-th qubit, instead of iterating over VS = Xn, Yn, Zn (as
was suggested in Sec.6.3.2). In general, the best choice of VS will depend
on the system that we want to cool, and the couplings should be picked to
enable as many transitions as possible. We repeat the coupling to each
qubit R times, resulting in a total of RN cooling steps. Each cooling step

contains two first-order Trotter steps simulating e−iHCt/2 (of depth d
(1)
HC

),

a single second-order Trotter step for e−iHSt (of depth d
(2)
HS

), and a reset
gate, resulting in a total circuit depth

dBangBang = RN(2d
(1)
HC

+ d
(2)
HS

+ 1). (6.4.4)

To test the BangBang protocol, we study the cooling of a N -qubit
transverse-field Ising chain

HS =

N∑
i=0

BXi +

N−1∑
i=0

JZiZi+1, (6.4.5)
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where B represents the transverse magnetic field Zeeman splitting and J
is the Ising coupling strength. The relative coupling strength J/B dictates
whether the system is in the paramagnetic (J/B ≪ 1), ferromagnetic
(J/B ≫ 1), or critical (J/B ∼ 1) phases. This ability to simply tune
between three phases of matter with significantly different physical prop-
erties make the TFIM a good benchmark model to investigate the ability
of different QDC schemes in various scenarios.

We first demonstrate that our choice for the fridge energy Eq. (6.4.3)
is appropriate. In Fig. 6.5, we plot the effect of a single cooling step on
the maximally-mixed state. We observe that cooling is maximized for
fridge energies around the point defined by Eq. (6.4.3), for all phases of
the TFIM. We find this behaviour to hold for all other (local) choices of
coupling potential VS used in this chapter, as predicted.

We next turn to the ability of the BangBang protocol to prepare an
approximation ρ of the ground state, starting from a maximally-mixed
(i.e. infinite temperature) initial state. We benchmark by the final state
with two figures of merit: the ground state fidelity

F = Tr
[
|E0⟩⟨E0| ρ

]
, (6.4.6)

and the energy relative to the ground state energy Tr[HSρ]/|EGS|. This
last property is local in local system, and represents an energy density in
TFIM. To verify convergence, we compare cooling results to a reheating
limit, obtained by running the protocol with the ground state as initial
state. We observe that all TFIM phases converge after R ≈ N repetitions
(with the weakly-coupled phase system converging already at the first
repetition). In Fig. 6.6 we plot the energy density of the cooled state, as
well as the reheating limit, as a function of the number of sites in the system.
This shows that convergence is indeed achieved for R = N independently
on the system phase and size, and that the final energy density stays
approximately constant, without showing any other trend. The BangBang
protocol achieves a final energy density close to 90% and 95% of ∥HS∥⊥ for
the ferromagnetic and paramagnetic regime respectively, while performing
significantly worse in the critical regime. This is to be expected, as in this
regime the spectrum is no longer banded, and excitation energies are not
as uniform as in the paramagnetic or ferromagnetic regimes. Following
Eq. (6.4.4), the protocol’s circuit depth is 7NR for a gate-set containing
single- and double-qubit rotations (and the reset gate). Given the low cost
of the protocol, we suggest that this is of particular interest for near-term
experiments, and may be further refined by other cooling protocols, or
methods such as quantum phase estimation, in the long term.

148



6.4 Scalable QDC protocols

2 5 8 11 14 17 20
system size N

−1.0

−0.9

−0.8

−0.7

−0.6
E

ne
rg

y
T

r
[ ρ
H

]/
|E

G
S
|

target

J/B = 0.2

J/B = 1

J/B = 5

reheating
limit

Figure 6.6: Performance of the BangBang protocol as a function of the system
size N for the three different phases of the transverse-field Ising model (detailed
in legend). The coupling potentials are V i

S = Yi. Dots correspond to result when
the protocol is applied to the maximally-mixed state, shaded regions corresponds
to result when protocol is applied to the true ground state (which gives a bound
on protocol re-heating). Data generated by Trotterized wave-function simulations
of the protocol, and random sampling of the initial mixed state and of nonunitary
operations. All points are run with 200 samples, and average results are plotted
with the sampling error.

6.4.2 The LogSweep protocol

Refrigeration at weak-coupling suppresses reheating, but only allows for the
cooling of transitions within a narrow energy band [as shown in Fig. 6.3(a)].
We may take advantage of this in a larger system, where a wide range of
energy gaps are present, by sweeping the fridge energy ϵk from high to
low as we iterate over cooling steps. (As low-energy transitions are more
susceptible to re-heating than high-energy transitions, this will in general
be more efficient than sweeping from low to high.)

To construct a full protocol, we further need to fix the set of fridge
energies ϵk and linewidths δk = t−1

k = π γk that we plan to use for each
cooling step. We will be guided by two principles. First, the target band of
fridge energies (Emin, Emax) should be tightly covered by the cooling lines
ϵk ± δk. Second, the reheating should be suppressed to a certain degree
throughout the protocol. As by Eq. (6.3.1) the reheating suppression
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depends on γk/ϵk, we fix this value to a small constant throughout the
protocol (i.e. we choose γk ∝ ϵk). Thus we define the LogSweep protocol,
where the fridge energy ϵk is sweeped over (Emin, Emax) in a logarithmic
gradation. Specifically, given the gradation number K, we index each
cooling step k = 1, . . . ,K, and we define

ϵk = E
k−1
K−1

min E
1− k−1

K−1
max , (6.4.7)

and choose δk to fix ϵk+1+δk+1/ζ = ϵk−δk/ζ, with ζ a constant (potentially
dependent on K). In App. 6.B, we prove that such a scheme will cool a
single transition in the range (Emin, Emax) with probability 1 as K → ∞,
and in App. 6.C we demonstrate that the logarithmic gradation is optimal
for such a scheme for a choice of ζ(K) ∼ log(K). To make sure all
system excitations have a chance of being dissipated, we further iterate the
couplings VS over a set of local couplings {V iS} throughout the system: for
the considered spin systems we choose {V iS} ≡ {Xn, Yn, Zn} for each qubit
n (see Sec.6.3.2), for a total of 3NK cooling steps. The number of Trotter
steps Mk for each cooling step k is chosen to prevent re-heating. This
follows Eq. 6.3.5, but as transition energies between system eigenstates
may be as large as the Hamiltonian spread 2∥HS∥⊥, we set

Mk = 2

√
1 +

2∥HS∥2⊥
γ2k

. (6.4.8)

The choice of the fridge energy range [Emin, Emax] will generally depend
on heuristics on the system. Emax should be greater or equal than the
largest energy of the transitions that we are able to de-excite with the
chosen couplings VS (for local Hamiltonians we can estimate this with the
techniques described in 6.4.1). For ground state cooling, Emin should be
close to the system ground state gap ∆GS, as no transition with an energy
lower than ∆GS can lead from an excited state to the ground state.

We first test the LogSweep protocol as applied to the 1+1 model defined
in Sec. 6.3.1, with the system gap ∆ now taking an unknown value between
Emin and Emax (Fig. 6.7). At each step k = 1, . . . ,K we want to maximise
cooling of transitions ∆ ∼ ϵk, while minimizing reheating of previously-
cooled transitions ∆ ∼ ϵk′ , k

′ < k. As demonstrated by the black dashed
curve in Fig. 6.7, when Emax/Emin = 5 this can be achieved well with
only K ≈ Emax/Emin steps. Note that, to maintain a constant relative
linewidth (and thus constant maximum reheating per step), we should
scale K ∼ Emax/Emin. This implies K → ∞ as Emin → 0, in line with
the third law of thermodynamics.
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Figure 6.7: Choices of energies ϵk and linewidths δk (bars at the top of the
graph showing ϵk ± δk) for a K = 5 LogSweep protocol applied to the model
introduced in section 6.3.1 with an unknown ∆ ∈ (Emin = 1, Emax = 5). Colored
lines show cooling (dashed) and reheating (solid lines) probabilities for each j-th
step alone, the dashed black line shows the cooling probability after sequential
application of the 5 steps.

In a larger system, the situation is more complex than in the model
above. Instead of a single transition from the excited state |E1⟩ → |E0⟩
which occurs with unit probability when ϵ = ∆ = E1 − E0, our system
may transition to one of many eigenstates |Ej⟩, to each with a transition
probability Ai,j (assuming a initial state |Ei⟩). As there are many possible
target states, the maximum transition probability might be very small
(maxj Ai,j ≪ 1). If we restrict to a single transition |Ei⟩ → |Ej⟩ with the
above reduced cooling rate, one may show that the LogSweep protocol
still cools that transition with unit probability as K → ∞, albeit at a rate
that scales exponentially in Ai,j . Luckily, we do not need to ensure any
specific transition occurs, instead we may cool sequentially

|Ei⟩ → |Ej0⟩ → |Ej1⟩ → . . .→ |E0⟩, (6.4.9)

with a growing number of possible cooling paths as the system grows and
the transition probabilities spread over more eigenstates. A good choice of
the fridge energy interval [Emin, Emax] and of the coupling potentials {V iS}
allows all eigenstates to be connected to the ground state by sequences
of transitions |Ejl⟩ → |Ejl+1

⟩ that have unit probability of being de-
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excited for K → ∞. However, a single transition probability approaches
1 only over the entire LogSweep protocol. In particular, if the transition
|Ejl⟩ → |Ejl+1

⟩ during step k∗ of the protocol corresponds to an energy
loss Ejl −Ejl+1

≫ ϵk∗ , this transition will be off-resonance for the entire
remaining duration of the protocol (as ϵk < ϵk∗ for k > k∗), making it
unlikely to occur. This can cause convergence issues especially when cooling
systems with banded spectra. For such systems , as we set Emin ≈ ∆GS

as detailed above, there may be a point k∗ in the protocol after which ϵk
will become smaller than the average interband gap, but never as small as
the spread of a single band. After this point, states at the bottom of a
band might transition to states in the lower band, but states at the top
of each band never have any resonant transitions to lower energy states,
thus becoming absorbing states. This effect is clearly shown in Fig. 6.8,
representing the LogSweep-cooled states of the transverse-field Ising model
in different regimes. We start with the maximally-mixed state, and plot
the resultant distribution over the eigenstate energies. In the banded
regimes (side panels), we observe that the distribution of energies in any
given band is tilted towards the higher-energy states in that band (i.e.
the aforementioned absorbing states), by some orders of magnitude. This
dead-ends ultimately hinder sequential cooling, and prevent the LogSweep
cooling from converging to the same state independently on the initial state.
The effect worsens as K is increased, as transition linewidths δk become
smaller making off-resonant transitions less and less probable. This issue
can be fixed in practice by using an initial state with fewer high-energy
excitation (e.g. a classical approximation of a low-energy state). We solve
the issue in principle, by constructing an iterative LogSweep protocols,
where the LogSweep cooling is repeated with growing K. The early, lower-
cost iterations cool the highest energy excitations, while the larger K
iterations grant vanishing reheating, and probabilities approaching unity
for the cooling transitions allowed by symmetries. Thus, adding iterations
with larger and larger K, will make the whole protocol converge to the
system ground state (unless symmetries forbid all paths from some states
to the ground state). Note that this adjustment is not required for systems
with a continuous spectra (i.e. critical systems), as in such a system there
will be on-resonance transitions for any state with an energy Emin or more
above the ground state.

We now investigate the performance of the (iterative) LogSweep protocol
on different phases of the transverse-field Ising model. In Fig. 6.9, we
plot the ground state infidelity of the prepared state ρ [1 − F with F
as in Eq. (6.4.6)], as a function of K. The protocol consists in K − 1
sweeps of a LogSweep QDC protocol, each sweep having gradation number
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Figure 6.8: Effect of banding on single LogSweep iterations. A maximally
mixed state in the three different phases of the 7-qubit TFIM spin chain is
evolved by the LogSweep protocol for three different values of K. We plot the
distribution of the result here over the system’s eigenstates (indexed by energy),
at three different values of K. We see that while the critical system demonstrates
an approximate thermal or exponential distribution, the weak and strongly-
coupled systems demonstrate an inversion in the population of the system within
each band, which increases with K. Data generated by continuous-evolution
density-matrix simulation.

gl = 2, . . . ,K. The Hamiltonian simulation is performed by second-
order Trotter approximation. We investigate the protocol effect on two
initial states ρ0: the maximally-mixed state ρ0 = 1/2n to check for
cooling capabilities (dots), and the ground state ρ0 = |E0⟩⟨E0| (crosses)
to show the lower bound originated by reheating. We observe polynomial
convergence to the ground state in all three phases of the model, attaining
an infidelity of ε = 1−F in approximately K ∼ O(ε−1/β) energy gradation
steps for β ≈ 0.4 - 0.8. Additionally, we verify that the protocol converges
to the reheating limit for the critical and strongly-coupled regimes. In the
weakly-coupled regime instead, although the cooling is far more efficient
because of the local nature of the system excitations, the reheating bound
is not saturated. We attribute this to the very small linewidths {δk},
consequence of the well-defined transition energies, together with the
strong banding of the system spectrum.

The number of Trotter steps for a single iteration of the LogSweep proto-
col with gradation number gl on a system of N spins with Hamiltonian HS

scales as O
(
∥HS∥⊥∆−1

GSNg
2
l log(gl)

−1
)
. Thus, the iterative implementation

required to deal with the banded cases needs a total number of Trotter
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Figure 6.9: Convergence of the LogSweep protocol to the ground state as a
function of the gradation number K, starting from the maximally mixed state
(dots) and the ground state (crosses), for three phases of the transverse-field
Ising model (detailed in legend). Data was generated by deterministic density-
matrix simulations of the iterative LogSweep protocol, with second-order Trotter
Hamiltonian simulation.

steps

Mtot ∼ O
(
∥HS∥⊥∆−1

GSNK
3 log(K)−1

)
(6.4.10)

The gate complexity required to attain an error (infidelity) ε for the models
studied scales thus as O(ε−3) - O(ε−8).

We next investigate the scaling of the LogSweep protocol as a function of
the system size. In Fig. 6.10 we plot the relative error in the ground state
energy as a function of the system size for a single (not iterated) LogSweep
with gradation number K = 5. We see a constant error in the ground
state energy as a function of the system size for the weakly-coupled and
critical systems. Thus, here we expect no need to scale K with N for the
protocol to be accurate. Let us also note that the gap in these two cases
shrinks as ∆GS/∥H∥ ∼ N−1 and ∆GS/∥H∥ ∼ N−2 respectively. Using the
above arguments and the estimate (6.4.10), one can find how the circuit

154



6.4 Scalable QDC protocols

2 4 6 8 10 12 14
system size N

−1.00

−0.98

−0.96

−0.94

−0.92

−0.90
E

ne
rg

y
T

r
[ ρ
H

]/
|E

G
S
|

target

J/B = 0.2

J/B = 1

J/B = 5

reheating
limit

Figure 6.10: Performance of the LogSweep protocol as a function of the system
size for the three different phases of the transverse-field Ising model (detailed
in legend), with fixed K = 5. Dots correspond to result when protocol is
applied to the maximally-mixed state, shaded region corresponds to result when
protocol is applied to the true ground state (which gives a bound on protocol
re-heating). Data generated by Trotterized wave-function simulations of the
protocol, and random sampling of the initial mixed state and of nonunitary
operations. All points are run with 100 samples, and average results are plotted
with the sampling error.

length (in terms of time evolution steps), required to obtain a constant
energy error, scales with N . We obtain O(N2) for the weakly-coupled
and O(N3) for the critical case. From this analysis, we expect that the
QDC protocol may be asymptotically competitive with methods such as
adiabatic state preparation, whose runtime naively scales as O(1/∆2

GS)
[45, 174]. In the strongly-correlated phase, we do not see such positive
results; the energy error increases with the system size, though the relative
error remains beneath 10% for up to 14 spins. This may be explained
by the relative growth of the extension of excitations within the strongly
correlated phase, while cooling is performed with local couplings. Due to
the error in the simulation, we are unable to reliably extract an estimate
of the computational cost in the same way as for the critical and weakly-
coupled systems. Future work may explore whether this error may be
improved on by adjusting the form of the coupling terms {V iS} based on
heuristics on the considered system.
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6.5 Conclusion

In this chapter, we investigated how cooling can be simulated on a digital
quantum computer, and demonstrated that this can be exploited for
the design of scalable algorithms for preparing ground states of N -qubit
systems. We identified how one can meet many of the fundamental
challenges that the digital approach to cooling raises and use the leverage
offered exclusively by digital quantum hardware, namely the freedom of
choice in the coupling strength and fridge energy. We laid out a general
approach of simulating a cold bath with a single ancilla qubit, which is
iteratively coupled to various locations in the system and reset periodically
to extract entropy and energy. We studied how to digitize the system-
fridge coupling simulation without causing additional reheating, and how
to avoid symmetries which produce non-ergodic behavior that hinders
cooling. By tuning coupling parameters beyond the perturbative regime
described by Fermi’s golden rule, efficient cooling of targeted transitions
can be realized. Following these principles we proposed two protocols for
preparing approximate ground states of N -qubit systems — the BangBang
protocol and the LogSweep protocol. We studied numerically how these
protocols perform on the three phases of the 1D transverse-field Ising
model. We found that the BangBang protocol quickly cools the system
near to the ground state in the paramagnetic and in the ferromagnetic
regime, but has difficulty in the critical regime. The LogSweep protocol is
observed to cool all three phases to the ground state at a polynomial cost in
the overlap error. In the weakly-coupled and critical phases, the LogSweep
protocol further demonstrates a constant energy error as a function of the
system size (for fixed gradation number), making it a competitive state
preparation method.

The introduction of quantum digital cooling opens future research direc-
tions related to the characterization of proposed protocols, their optimiza-
tion, and their extension beyond ground state preparation. A study of the
effect of noise on currently proposed QDC protocols, and the optimization
of such protocols for noise resilience, are in order to establish their appli-
cability on near-term devices. Applying QDC to more complex physical
systems, in areas such as quantum spin liquids, many-body localization
and quantum chemistry, would bring new challenges to the protocol con-
struction. A thorough study of the role in the cooling process played by
the symmetries and locality of coupling could lead to the design of more
optimized protocols. Furthermore, various extensions to the QDC proto-
cols proposed in this chapter can be suggested. In a parallelized version
of QDC, the use of multiple fridge qubits coupled to various locations in
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the system might allow to trade space complexity for time complexity.
A variationally-optimized QDC protocol might be devised, that can effi-
ciently prepare a state in the ground state manifold of some Hamiltonian
starting from an arbitrary initial state — differently from the variational
quantum eigensolver [159] which requires the preparation of a fiducial state
at every iteration. The principles of QDC might inspire a new class of
efficient non-unitary quantum algorithms, where non-unitary operations
are mediated by a single ancillary qubit, with possible application e.g. in
the simulation of open quantum system dynamics.

One application of particular future interest for QDC protocols is in the
preparation of Gibbs thermal states, which are useful e.g. for semi-definite
programming [184]. This seems especially promising given the near-thermal
distribution in Fig. 6.8 of the critical system under the evolution of the
LogSweep scheme. However, it is as of yet unclear how to overcome the
finite width of the distribution, and how well these protocols behave in the
banded case (or for more general systems). Adjustment of the LogSweep
protocol to produce robust thermal state preparation schemes is an obvious
target for future research.
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6.A Proof of Eq. (6.4.2)

To prove Eq. (6.4.2) we first show that

|⟨ϕ|O|ψ⟩| ≤ max
|Φ⟩,|Ψ⟩

⟨Φ|O|Φ⟩ − ⟨Ψ|O|Ψ⟩
2

, (6.A.1)

for all |ψ⟩, |ϕ⟩ : ⟨ψ|ϕ⟩ = 0. We can assume without loss of generality
⟨ϕ|O|ψ⟩ is real and nonnegative (if it’s not, we can multiply one state by
an irrelevant global phase), and drop the absolute value. As ⟨ψ|ϕ⟩ = 0 we

can define the states |±⟩ = |ϕ⟩±|ψ⟩√
2

we can then write

⟨ϕ|O|ψ⟩ =
1

2
(⟨ϕ|O|ψ⟩ + ⟨ψ|O|ϕ⟩)

=
⟨+|O|+⟩ − ⟨−|O|−⟩

2

immediately proving Eq. (6.A.1). The opposite inequality is proven by
noticing that the |Ψ⟩ and |Φ⟩ that maximize the right of Eq. (6.4.2) have to
be eigenvalues (by the variational principle). With these, we can redefine

the states |±⟩ = |Φ⟩±|Ψ⟩√
2

which are also granted to be orthogonal, thus

⟨Φ|O|Φ⟩ − ⟨Ψ|O|Ψ⟩
2

=ℜ[⟨+|O|−⟩]
≤|⟨+|O|−⟩|
≤ max

⟨ϕ|ψ⟩=0
|⟨ϕ|O|ψ⟩|

which combined with Eq. (6.A.1) proves Eq. (6.4.2).

6.B Asymptotic reheating and cooling
probabilities for QDC protocols

Let us consider a two-state subsystem of a larger Hilbert space with a gap
energy E, evolving under a QDC protocol on the kth step via a coupling
term that does not mix the {|01⟩, |10⟩} and {|00⟩, |11⟩} subspaces (where
the second index denotes the fridge). Under this assumption, the evolution
of the system within this space is a Markov process. Following the main
text, let the fridge energy on the kth step be ϵk, the coupling strength be
γk, and the time evolved for in the cooling protocol tk. Additionally, let
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the spacing of the fridge energies to be

(ϵk − ϵk+1) = ζ(δk + δk+1) =
α

2
(γk + γk+1),

for some K-dependent α = α(K) = 2
πζ(K) . We may calculate the transition

matrix for the Markov process, p(k)(E) (defined by p
(k)
a,b(E) = P (|a⟩ → |b⟩)

in a single cooling step) as

p(k)(E) =

 1 − sin2(Ωktk/2)
γ2
k

Ω2
k

sin2(ωktk/2)
γ2
k

ω2
k

sin2(Ωktk/2)
γ2
k

Ω2
k

1 − sin2(ωktk/2)
γ2
k

ω2
k

 , (6.B.1)

where

ωk =
√

(E − ϵk)2 + γ2k (6.B.2)

Ωk =
√

(E + ϵk)2 + γ2k. (6.B.3)

Assuming no additional cooling or heating to the rest of the system during
the protocol, the transition matrix for the k0 → k1 block takes the form

Pk0,k1(E) =

k1∏
k=k0

p(k)(E), (6.B.4)

and the transition matrix for the entire process may be written P (E) =
P1,K(E).

Exact analytic evaluation of this expression in the large K limit is quite
difficult. Instead, we aim for a conservative estimate, bounding the final
cooling probability pc = [P (E)]01 from below. For this, given the energy
E, we first lower bound the ‘initial’ cooling around the resonant step kc,
i.e. such kc that |ϵkc − E| is minimal. Then we give an upper bound
on reheating during the following protocol steps k = kc, ..K. Given the

estimated cooling probability p
(kc)
c and reheating probability p

(kc;K)
rh , we

can obtain a lower bound for pc:

pc > (1 − p
(kc;K)
rh )p(kc)c (6.B.5)

The value of p
(kc)
c can be conservatively estimated from the formula:

1 − p(kc)c <

K∏
k=1

(1 − sin2(ωktk/2)
γ2k
ω2
k

) (6.B.6)

<
∏

k,
|E−ϵk|
γk

<1

((E − ϵk)2/γ2k), (6.B.7)
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where the second line follows from the inequality sin(π
√
1+x2

2 )/(1 + x2) ≥
min(0, 1−x2) applied to each term in the product. In the perfect resonance
scenario, |E − ϵkc | = 0 and the cooling probability is exactly 1. The worst
case scenario is when E is right between the two neighbouring ϵk’s, thus
|E − ϵkc | = α

2 γk. In this case, we can calculate the logarithm of (6.B.7) in
the leading order of K−1, α:

2

k(+)
c∑

k=k
(−)
c

log

∣∣∣∣ϵk − E

γk

∣∣∣∣ = 2

∫ ϵ(+)

ϵ(−)

log

∣∣∣∣ϵ− E

γ(ϵ)

∣∣∣∣ dϵdkdϵ (6.B.8)

=
2

α

∫ ϵ(+)

ϵ(−)

log

∣∣∣∣ϵ− E

γ(ϵ)

∣∣∣∣ dϵ

γ(ϵ)
. (6.B.9)

Here, we used the fact that γα defines energy spacing (and so dϵ
dk =

αγ(ϵ)), and introduced summation limits k
(±)
c , ϵ(±) as the points where

ϵ−E
γ = ±1. As this implies scaling ϵ(±) = E +O(γ), (6.B.9) should scale

as O(1/α). The calculation can be completed for the LogSweep gradation
ϵk, γk, which implies ϵ′k ∝ γ(ϵ) ∝ ϵ. In particular, if x = ϵ−E

γ then

dx = Edϵ
ϵγ = dϵ

γ (1 +O(1/K)), and we have:

2

α

∫ ϵ(+)

ϵ(−)

log

∣∣∣∣ϵ− E

γ(ϵ)

∣∣∣∣ dϵ

γ(ϵ)
=

4

α

∫ 1

0

log x dx = − 4

α
. (6.B.10)

Substituting into Eq. 6.B.7, we find the initial cooling probability bounded
by

p(kc)c ≳ 1 − exp(−4/α(K)). (6.B.11)

The reheating accumulated between steps kc and K, p
(kc;K)
rh , can be

upper bounded as:

p
(kc;K)
rh ≤ 1 −

K∏
k=kc

(
1 − sin2(Ωktk/2)

γ2k
Ω2
k

)
(6.B.12)
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The product in Eq. (6.B.12) can be further estimated as:

K∏
k=kc

(
1 − sin2(Ωktk/2)

γ2k
Ω2
k

)
≥

K∏
k=kc

(
1 − γ2k

Ω2
k

)
(6.B.13)

≥
K∏

k=kc

(
1 − γ2k

(E + ϵk)2

)
(6.B.14)

≃ exp

(
−

K∑
k=kc

γ2k
(E + ϵk)2

)
, (6.B.15)

where in the last line we assumed that γk ≪ E + ϵk for all k. As we
are most concerned about the large K asymptotics of the total cooling
probability, let us now analyze how the expression (6.B.15) behaves in this
limit. Since γ2k scales as O(1/K2) and we have K terms in the sum, we
generally expect O(1/K) scaling for the sum. Such scaling would imply a
rapidly vanishing reheating for a large-K protocol. In the specific case of
the LogSweep protocol, to the leading order in 1/K one indeed obtains:

p
(kc;K)
rh ≲

K∑
k=kc

γ2k
(E + ϵk)2

≈ 1

α(K)

∫ E

Emin

γ(ϵ)

(E + ϵ)2
dϵ (6.B.16)

≈
log Emax

Emin

α2(K)K
(
1

2
− E

E + Emin
+ log(

2E

E + Emin
)) (6.B.17)

≡ R(Emin, Emax, E)

α2(K)K
. (6.B.18)

Here, we used Eq. (6.4.7) and the fact that α(K)γk defines energy spacing
|ϵk+1 − ϵk|. Finally, combining Eqq. (6.B.5) - (6.B.18), we obtain an
asymptotic lower bound to the final cooling probability:

pc =

(
1 − exp

(
− 4

α(K)

))
·
(

1 − R(Emin, Emax, E)

α2(K)K

)
. (6.B.19)

This estimate implies pc → 1 for large K, provided that both e−4α−1(K) →
0 and 1

Kα2(K) → 0.

To ensure that the infidelity is minimized and thus α(K) is optimal,

we solve the extremum condition ∂α(e−4α−1

+ R
α2K ) = 0 for α. The

solution can be expressed in terms of the product logarithm function W ,
α(K) = 4 W−1 (8K/R). For large K, at the leading order we obtain simply:
α(K) = 4 log−1 (8K/R). The infidelity then scales down almost linearly
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with K: 1 − pc = log2(8K/R)
16K . This asymptotically optimal α(K) yields the

choice ζ(K) = 1
2π log(8K/R), which we use in all our simulations.

6.C Optimizing energy spacing in LogSweep
protocol

In Sec. 6.4.2, we argued that the energy spacing of the LogSweep protocol
is optimal for the protocol precision for a K-step protocol. This was based
on the reheating estimate taken from the cooling step kc only. One may
ask, if this persists when one includes the total reheating into account. In
the large K limit, we can use the estimate (6.B.15) for this check. Fixing

the constraint γk = |ϵk+1−ϵk|
α , we proceed by means of variational calculus:

δ

δϵk

K∑
k=kc

γ2k
(E + ϵk)2

= 0 (6.C.1)

⇒ δ

δϵ(k)

∫ K

kc

(ϵ′(k))2

(E + ϵ(k))2
dk = 0 (6.C.2)

⇒ ϵ′′(k) · (E + ϵ(k)) = (ϵ′(k))2. (6.C.3)

The solution to Eq. (6.C.3) that satisfies boundary conditions ϵ(kc) = E,
ϵ(K) = Emin, is as follows:

ϵk = (2E)
K−k
K−kc (E + Emin)

k−K
K−kc+1 − E. (6.C.4)

This shows that the logarithmic character of the optimal spacing persists
when we consider total reheating (cf. Eq. (6.4.7)). However, we cannot
directly use the embelished result (6.C.4) for our cooling protocol. That
is because this formula uses the targeted energy E as a reference, whereas
we are targetting a continuum of energies. Therefore, we keep using the
simpler and more practical formula Eq. (6.4.7) for the LogSweep protocol.

6.D Cooling rate for LogSweep protocol in a
large system

In a large system, the above analysis is complicated by the presence of
multiple transitions from every energy level. We now give a simplified
analysis that focuses on a pair of states |Ei⟩, |Ej⟩, in a spirit similar
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to Appendix 6.B. This means we formulate the protocol as a Markov
process equivalent to (Eq. 6.B.1), where the transitions to levels other
than i and j are ignored. Note that in the perturbative limit, this is
a good approximation of the actual Markov process as restricted onto
the subspace |Ei⟩, |Ej⟩. Specifically, even though we ignore the indirect
transitions between i and j via other levels, this is justified at the first
order of pertubation theory. Unlike in the 1 + 1 model however, the
transitions here are imperfect. If our total coupling has strength γ (i.e.
∥HC∥ = 2Nγ), following the analysis in Sec. 6.4.1 the coupling between
states |Ei⟩ and |Ej⟩ will take the form γ

√
Ai,j with

√
Ai,j scaling down

as O((Ei − Ej)
−2). This has the effect of scaling both the cooling and

re-heating rates by Ai,j , recasting the Markov process (Eq. 6.B.1) as

p
(k)
i,j =

 1 −Ai,j sin2(Ωktk
2 )

γ2
k

Ω2
k

Ai,j sin2(ωktk2 )
γ2
k

ω2
k

Ai,j sin2(Ωktk
2 )

γ2
k

Ω2
k

1 −Ai,j sin2(ωktk2 )
γ2
k

ω2
k

 .

As this only reduces both the heating and cooling rates, our claim that
reheating in the LogSweep protocol tends to 0 as K → ∞ still holds.
However, we need to repeat the analysis of App. 6.B to bound the cooling

rate p
(kc)
c below and check that it continues to tend to 1. For the sake

of generality, we drop the i, j indices, and consider a cooling probability
restricted by a k-independent factor A.

With this adjustment, we may recast Eq.6.B.7 when A << 1 as

1 − pkcc <
∏

k,
|E−ϵk|
γk

<1

[(
1 − Aπ2

4

)
+
Aπ4

48

(E − ϵk)2

γ2k

]
. (6.D.1)

Then, taking the log and converting again to an integral, we obtain

log(1 − pkcc ) <
1

α

∫ ϵ+

ϵ−
log

[
B +A′ (E − ϵ)2

γ(E)2

]
dϵ

γ(ϵ)
, (6.D.2)

where A′ = Aπ4

48 ∼ 2A, and B = 1 − Aπ2

4 < 1. Next, setting x = E−ϵ
γ(ϵ) , and

using the fact that for the LogSweep protocol γ(ϵ) ∼ ϵ, we find

log(1 − pkcc ) <
2

α

∫ +1

−1

log
(
B +A′x2

)
dx. (6.D.3)
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This may be evaluated by integrating by parts, giving

log(1 − pkcc ) < − 2

α

∫ +1

−1

x2

BA′−1 + x2
(6.D.4)

=
−4

α

[
1 −BA′−1 tan−1

(
A′B−1

)]
(6.D.5)

∼ − 4

3α
A′2B−2 +O(A4). (6.D.6)

Using the optimal scaling α(K) = 4 log−1(K) we identified in Appendix 6.B,
this adjusts our bound in the cooling rate to

pkcc ≳ 1 −K− 1
3A

′2B−2

, (6.D.7)

which continues to tend to 1 as K → ∞, albiet at a rate reduced propor-
tional to A.

This result requires some consideration in a large system — if our
coupling Γ from a state |Ei⟩ is spread over transitions to J states |Ej⟩, we
have Ai,j ∼ J−1, and the probability of any transition being cooled can
be found to be∏

j

(1 − pkcc,j) ∼ e−
∑J
j=1

1
3αA

2
j (1−A

2
j ) ∼ e−

1
3αJ . (6.D.8)

This implies that we require α ∼ J−1 in order to maintain a constant cool-
ing rate, which in turn may require adjustments to the optimal scaling iden-
tified in Appendix 6.B. As such adjustments are highly system-dependent,
we do not investigate them further here.

6.E Effect of banding on QDC protocols

In this appendix we demonstrate the effect of banding on single sweeps
of the LogSweep protocol. In Fig. 6.11, we plot the infidelity of a single
shot of the LogSweep protocol with gradation number K acting on the
maximally-mixed state, as a function of K (triangular markers). We see
that in the critical case, the system continues to tend to the ground state
polynomially in K. However, for the TFIM chain in the weakly- and
strongly-coupled phases, we find that the protocol fails to converge as a
function of K, due to the banding issue described above. This lack of
convergence is rectified in the series marked by dots (same data as in
Fig. 6.9) by repeating the LogSweep protocol as a function of K. We note
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Figure 6.11: Difference between cooling by applying the a single LogSweep
protocol with gradation number K (round markers), and iterating LogSweep for
all gl = 2, ...,K (triangular markers). The iterative and reheating data are the
same as in Fig. 6.9, the same context and simulation techniques apply.

that the failure in the strong-coupling case is not of the same degree as
in the weak-coupling case, which we ascribe to the fact that the banding
is not as strongly pronounced in Fig. 6.8, and so the result has not yet
presented itself.
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7 Measurement-driven
navigation in many-body
Hilbert space

7.1 Introduction

Quantum state preparation is a prominent routine in quantum information
processing toolbox [185–199]. Such procedure often implies steering a
quantum system from a “simple” towards a more complex, pre-designated
resourceful state, e.g. a many-body entangled state. A steering protocol
is characterized by an as short as possible runtime and high resulting
overlap with the target state. Constructing such protocols can be done in
multiple distinct ways. One is to design the Hamiltonian of the system,
such that its unitary evolution leads to a designated state. This paradigm
is represented by methods like digital computation or analog simulation
[187, 189–192]. Such protocols require exact knowledge of the starting
state, as well as the precise timing of the unitary evolution, to be accurate.
Another strategy is to make use of the environment, adding a dissipative
element to the evolution. Combined with the Hamiltonian evolution, this
results in methods such as drive-and-dissipation [195, 196]. Finally, one can
design a sequence of generalized measurements, which brings the system
towards the target state via measurement back-action alone [200–202].
The relevant part of the evolution is then completely governed by the
system-detector coupling (see also Ref. [203]). Unlike protocols involving
pre-defined unitary evolution, such measurement-driven state preparation
may not require knowledge of the starting state and fine-tuning of the
system Hamiltonian [202].

The above types of state-preparation strategies can be referred to as
passive, meaning that these protocols are pre-determined and pursued
regardless of how the system evolves. Given this perspective, it appears
beneficial to go beyond the forms of control described above, and introduce
the concept of active decision making. This type of steering exploits
information extracted during the system’s evolution to decide on the
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operations that follow. This is also referred to as closed-loop quantum
control and is typically used to improve the Hamiltonian-based state
preparation [69–73, 205]. In that case, extracting the necessary information
requires the introduction of measurements into the protocol, which may
result in an undesired back-action. Nevertheless, in certain cases, closed-
loop control of Hamiltonian evolution does yield an improvement to the
speed and the fidelity of the protocol.

Another possibility, which is a subject of increasing interest, is to employ
active decision in measurement-driven protocols (implying no Hamiltonian
drive) [74, 75, 206]. In such protocols, the necessary information about
the system is naturally available from the employed measurements. The
active decision is then being made about possible changes in the subse-
quent generalized measurements, such that the target state is prepared
as rapidly and accurately as possible [74, 75, 201, 206]. Some general
theorems have been stated concerning such active measurement-driven
state preparation [206], along with some specific protocols designed to
reach single-qubit target states [74, 75]. However, it remains unclear how
an active measurement-driven protocol can be effectively harnessed to
engineer resourceful many-body states. In this case, the large size of the
Hilbert space makes it challenging to actively steer the system evolution
in the desired direction.

In this chapter, we establish a general framework for measurement-driven
active navigation in Hilbert space and construct active-decision protocols
for measurement-only steering of many-body states. In particular, we
focus on states manifesting genuine multipartite entanglement. When
attempting to address the problem, one is naturally constrained by a few
factors. One is that only reasonably local system-detector couplings are to
be used in the protocol. Moreover, we require that the number of distinct
system-detectors couplings available for steering does not scale up faster
than the system’s size (this number should not be super extensive). This
natural requirement restricts the capabilities of the protocol and results
in the need of correlating different system-detector couplings. Another
prerequisite is that applying one type of coupling generally leads to an
update in the expected benefits from other couplings. This phenomenon,
which we refer to as “coupling frustration”, calls for nontrivial coordination
between different coupling applications. Finally, there is a problem of
orienteering: it is relatively easy to “get lost” in the many-body Hilbert
space when exploring it with the set of tools limited by locality and
extensivity (cf. Ref. [205]).

We note that upon the availability of indefinite computational power, one
can always find an optimum sequence of measurements through dynamic
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programming techniques (cf. Ref. [206]). Roughly speaking, this can be
done by considering all possible future quantum trajectories of the system.
However, in a large Hilbert space, it is practically impossible to realize
the theoretically optimal feedback policy. This is because the extensive
consideration of outcome scenarios is too complex for a many-body Hilbert
space of an already not very large system (it increases at least exponentially
with the system’s size and the duration of the protocol). Instead, we aim at
designing heuristic strategies for active decision-making, which would allow
for a significant – but not necessarily optimal – speedup of the protocol.

To meet these challenges, we introduce Hilbert-space navigation tech-
niques. The first technique, which we term greedy orienteering policy, is
based on the notion of a cost function. A simple example of such a cost
function could be the target state infidelity. Minimizing it in a greedy
protocol may already yield a reasonable advantage compared to the pas-
sive policy. To test this approach, we study numerically the preparation
of a ground state of Affleck-Lieb-Kennedy-Tasaki (AKLT) spin-1 model
[207]. The numerical study shows the speedup factor that increases with
system size, reaching factor 9.5 for N = 6. Looking ahead, we discuss the
fundamental challenge of landscape flatness that may arise for some target
states when using simple infidelity as the cost function. Although this
issue did not arise in the example we considered, we propose a possible
modification to the cost function which should remedy this problem if it
occurs.

The second technique is to map the Hilbert space onto a colored multi-
graph, referred to as the Quantum State Machine. The vertices of such a
graph correspond to the basis states, and the edges represent the actions
of generalized measurements. Upon an appropriate choice of basis states,
such Quantum State Machine representations allow for improved naviga-
tion in Hilbert space. This can be done by heuristically representing it
as quantum wayfinding on the graph. To substantiate this heuristic, we
introduce the notion of semiclassical coarse-graining of a Quantum State
Machine graph. Optimizing the exploration of these graphs by choosing the
most appropriate system-detector couplings results in advantageous active-
decision protocols. To exemplify this navigation paradigm we consider the
preparation of the 3-qubit W-state, with a numerical study demonstrating
a 12.5-fold improvement in protocol runtime.

Throughout the chapter, we assume that we know the initial state of the
system. This can be a “cheap” (say, product) and robust quantum state
that does not require many resources for its preparation. However, one
can directly generalize the above approaches to the case where the initial
state is unknown and is therefore represented by a density matrix. In the
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more intricate case of a Quantum State Machine-based policy, one would
then need to take a weighted combination of graph navigation protocols
with different initial states.

The remainder of the chapter is organized as follows. In Sec. 7.2, we
introduce the basics of measurement-induced steering. Specifically, in
Sec. 7.2.1, we define the steering protocols and their elements, as well as
the quantitative measure of the protocol’s success. Then, in Sec. 7.2.2,
we illustrate these definitions as applied to passive steering of a single
qubit. The general selection criteria, including locality and extensivity,
for the system-detector couplings, which are to be used for the active
steering, are addressed in Sec. 7.2.3. In Sec. 7.3, we introduce the notion
of frustration of steering and discuss the possibilities of protocols’ speed-
up for mutually commuting (Sec. 7.3.1) and non-commuting (Sec. 7.3.2)
couplings. In the latter case, we develop a “parent-Hamiltonian” approach.
A “quantum-compass” approach to active-decision steering, based on the
greedy cost-function accumulation policy, is developed in Sec. 7.4, where we
also employ this scheme to the preparation of the AKLT state. In Sec. 7.5,
we develop an alternative active-steering framework – a “Quantum State
Machine.” In Sec. 7.5.1, we introduce the generalities of this approach
based on the underlying representation of the steering protocol in terms
of a quantum graph. Next, we discuss the quantum parts of this graph
(Sec. 7.5.2), as well as the coarse-graining procedure, with the resulting
coarse-grained graph being semiclassical (Sec. 7.5.3). This type of Hilbert-
space orienteering is illustrated in Sec. 7.5.4, where an active-decision
steering protocol for preparation of a three-qubit W-state is presented.
Our findings are summarized and discussed in Sec. 7.6.

7.2 Measurement-driven state preparation

7.2.1 Generalities

Measurement-driven state steering is a specific class of state-preparation
protocols. Its basic building blocks are coupling the quantum system (s)
to quantum detectors (ancillary systems) utilizing engineered interactions,
followed by strong measurement on the detectors (d). The goal of design-
ing a measurement-based steering protocol is to generate a process that
prepares the desired system state by utilizing a sequence of measurement
back-actions.

Here, we will additionally assume that the internal evolution of the
system and the detector are trivial (their Hamiltonians are kept null:
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Figure 7.1: Basic design of the measurement-driven state preparation. The
procedure starts with a given initial state ρ

(in)
s and proceeds with a protocol, as

described in Def. 32, until a good accuracy of the target state |ψ0⟩ is achieved.
The control unit decides on the system-detector interaction unitary Us,d based
on the stored record of detector readouts. We focus on constructing an optimized
policy for decision-making, such that the target state is simulated as efficiently
as possible.

Hs = 0, Hd = 0), as in Refs. [74, 75, 206], so that the unitary dynamics in
the problem is governed solely by the coupling between the system and
detectors determined by Hamiltonian Hs,d. For concreteness of analysis,
we also constrain the detector to be a qubit initialized in a trivial state |0⟩,
and the system to be represented by N spins. Although a general spin S
can be considered, we focus on the cases S = 1/2 and S = 1. We assume
certain knowledge about the initial state of the system, which is described

by the initial density matrix ρ
(in)
s . For the sake of simplicity, we further

address the target state which is a pure state |ψ0⟩.
Although the ensuing protocol can be further generalized (see Section

7.6), we now formally fix its structure as given below:
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Definition 32. A measurement-driven state steering is a protocol that is

performed to prepare a state |ψ0⟩, starting from the state ρ
(in)
s . It runs by

repeating iterative cycles of the following form (see Fig. 7.1):

1. Prepare the detector qubit in the state |0⟩.

2. Based on the available information, select the system-detector cou-
pling Hamiltonian Hs,d to be used in the next step.

3. Perform a system-detector evolution governed by a Hamiltonian Hs,d

for a short time interval δt: Us,d = e−iHs,dδt.

4. Once the system-detector evolution is over, projectively measure
the detector qubit in the Z-basis. Store the readout r for further
processing.

5. Decide whether the protocol is to be continued or terminated. In the
former case, return to step 1.

Now, in the vast space of protocols that have such structure, we would
like to emphasize the distinction between two classes of protocols: passive
and active.

In a passive protocol, the stored readouts {r(t)} from step 4 may
influence the decision for protocol termination or continuation at step 5,
but not the choice for the interaction Hamiltonian Hs,d made at step 2 in
the next protocol cycles. Hamiltonians Hs,d can still be chosen differently
for different iterations: e.g. for a large system, the detector qubit can be
coupled to different subsystems thereof. However, Hs,d used at each cycle
in the passive protocol has to be pre-determined from the outset. If a
passive protocol also has a pre-determined duration (and thus doesn’t use
readouts {r(t)} at the termination step), we land in a subclass of passive
protocols where the readouts don’t have any influence on the protocol. We
would refer to such protocols as “blind steering”. For blind steering, the
readouts of the detector at any given step can be averaged, i.e., following
the measurement, the detector’s density matrix is traced out. In this
chapter, however, we will focus on the non-blind version of passive steering,
where readouts are indeed employed for an informed protocol termination.

In contrast to passive protocols, in an active protocol one uses the
readouts {r(t)} to make an informed decision for the interaction Hamilto-
nians Hs,d as well as for termination/continuation of the protocol. Active
decision-making has to follow a certain policy, which becomes the crucial
part of the protocol. For a good active policy, its adoption should result in
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a significant speedup of the protocol compared to its passive counterpart.
Alternatively, one can also fix the protocol runtime and aim to improve
the precision of the state preparation. We focus on the former target: min-
imizing protocol runtime for a fixed target precision. The major challenge
in this chapter is to construct such advantageous active decision-making
policies. By comparing active steering with the (non-blind) passive steering
as defined above, we investigate the advantage offered specifically by the
directed evolution, i.e. active decision-making for Hs,d.

Before we move on to the issue of active policy constructions, let us
discuss the criteria for termination of a running protocol. In general, one
cannot guarantee “perfect steering,” i.e., obtaining the desired target state
with the fidelity of 1 in a finite number of protocol cycles. Instead, one
may consider preparing the target state with infidelity R:

R
(
ρ(fin)s , |ψ0⟩

)
≡ 1 − ⟨ψ0|ρ(fin)s |ψ0⟩, (7.2.1)

where the state ρ
(fin)
s is the final state of the system once the protocol is

terminated. It is worth emphasizing that the system evolution during the
protocol is probabilistic and depends on the stochastic readouts {r(t)}. It

follows that different runs of the same protocol may yield different ρ
(fin)
s

and, thus, the infidelity R. Therefore, to characterize the protocol as a
whole, we introduce the following accuracy measure:

Definition 33. We refer to a measurement-driven state-preparation pro-
tocol as ϵ-precise, if the infidelity between the final state and the target
state is bounded by ϵ for any run of the protocol:

R
(
ρ(fin)s , |ψ0⟩

)
< ϵ. (7.2.2)

Given the knowledge of the readout sequence, we may simulate the
quantum system state (the quantum trajectory) on a computer in parallel
to the measurement run. Thus one can infer the running system state
exactly (referred to as filtering in the literature [69]), and test inequality
(7.2.2). This sets a trivial criterion for protocol termination, which we
will apply by default to all passive and active protocols considered in this
chapter. Namely, a protocol can be terminated right after the cycle when
the target state infidelity becomes smaller than ϵ, thus making it an ϵ-
precise protocol. Apart from controlling the precision, we are interested in
the number of cycles Nc, after which the protocol has been terminated. As
Nc may also differ greatly, depending on a specific run, we will characterize
the protocol by ⟨Nc⟩run, where the averaging is performed over many runs.
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Note that here averaging is taken over stochastic readout sequences. In
reality, steering errors as well as external noise may be further contributing
factors to the stochasticity. For the given target state and target precision
ϵ (cf. Definition 33), our goal is to find an ϵ-precise protocol such that
⟨Nc⟩run is as small as possible. We will be considering this minimization
as the key goal of our constructions.

7.2.2 Passive steering: Single qubit

As a simple example of a measurement-driven protocol, we consider single-
qubit steering (for a more general consideration, the reader is referred to
Sec. 7.2.3). For simplicity, we will assume the target state to be |0⟩, and
the starting state to be a perfectly mixed state: ρstart = diag(1/2, 1/2). A
single coupling suffices to guarantee the preparation of the target state (in
fact, from an arbitrary starting state) with an arbitrary precision [202]:

Hs,d = γσ−
s σ

+
d + H.c. (7.2.3)

Here, σs and σd are Pauli matrices acting in the system and detector
spaces, respectively. By construction, a protocol that operates with only a
single coupling Hamiltonian Hs,d, i.e., without a readout-based option of
choosing different couplings, is considered passive. Nevertheless, even for
passive protocols, one can introduce a policy based on the measurement
outcomes, which would accelerate quantum-state steering.

Let us first address a protocol that runs for N
(pass)
c cycles using the

coupling (7.2.3), regardless of the measurement outcomes. Under the
definition given in Sec. 7.2, this would be an example of blind steering.
In this case, the probability of obtaining a readout r = 0 decreases
exponentially with the total number of cycles Nc. Tracing out detector
outcomes (since we are blind to measurement outcomes), this results in a
density matrix:

ρ(Nc) =

(
1 − e−Ncγ

2δt2/2 0

0 e−Ncγ
2δt2/2

)
. (7.2.4)

Given the threshold infidelity ϵ, we need to run the protocol for N
(pass)
c (ϵ)

cycles:

N (pass)
c (ϵ) =

1

γ2δt2
log

(
1

2ϵ

)
(7.2.5)

This characterizes the efficiency of the completely blind passive protocol
[202] for the single-qubit setup.
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Next, we consider passive protocols where the sequence of readouts
is recorded. One then needs to interpret the measurement outcomes,
which for this setup is straightforward. We note that when the readout is
r = 1 (click event), the target state is instantly prepared [cf. Eq. (7.2.9)].
Therefore, one can terminate the protocol directly after the detector clicks
for the first time: in this case, all further steps are simply redundant
and do not result in any evolution of the system. This will constitute a
termination-policy improvement of the passive blind protocol for this single-
qubit case. If r = 0, i.e. no click is measured (such a null-measurement
[208] event still gives the system a nudge towards the target state by
measurement back-action), the protocol simply continues until a certain

maximal number of cycles, N
(max)
c . The target infidelity ϵ would be directly

related to N
(max)
c in a way equivalent to the blind protocol runtime (7.2.5).

The average runtime of the non-blind passive protocol, Ñ
(pass)
c ≡ ⟨Nc⟩run,

is then given by

Ñ (pass)
c =

1

2γ2δt2

(
1 − e−γ

2δt2Nmax
c

)
+
Nmax
c

2
. (7.2.6)

This runtime is strictly smaller than the runtime for the passive blind
protocol, Eq. (7.2.5), and yields a twofold speedup in the ϵ→ 0 limit. It is
worth emphasizing, however, that the termination policy can realistically
be applied only to the case of few-body quantum states. For such a policy
to be useful, a single detector click should signify that the system is in
the target state. This can only be realized when the detector is coupled
to all elements of the system. For a many-body system (many qubits),
a natural assumption of locality rules out such a coupling: a click of the
detector coupled to a subsystem of the system does not guarantee that
the whole system is steered to the desired state. Nevertheless, the above
simple example shows that detector readouts can be used for accelerating
the state preparation. In what follows, we will focus on active feedback
strategies. There, instead of protocol termination, the local-measurement
outcomes are employed for choosing the most efficient sequence of further
measurement cycles.

7.2.3 Selection criteria for system-detector couplings

Families of system-detector couplings

Both for the active and passive protocols, a key feature is the choice of
coupling Hamiltonians Hs,d. Given the target state |ψ0⟩, it is natural to
constrain this choice to a certain family {Hs,d(p)}, for a set of (discrete or
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7 Measurement-driven navigation in many-body Hilbert space

continuous) parameters p. Deciding on the choice of Hs,d in each protocol
cycle translates into selecting the value of p. Before discussing the policies
for doing so, we address a different question: How to effectively preselect
this family {Hs,d(p)}? To answer this question, it is useful to consider the
following general decomposition of Hs,d:

Hs,d = Vsσ
+
d + V †

s σ
−
d + Ṽsσ

z
d, (7.2.7)

where Vs and Ṽs are arbitrary system operators and matrices σ±
d = 1

2 (σxd ±
iσyd) act on the detector. In Eq. (7.2.7), we discard any terms of the form
∼ Id, as those represent the internal system evolution. Furthermore, for our
purposes, it is also sufficient to consider a special case of the decomposition,
where Ṽs = 0.

With Eq. (7.2.7) in mind, let us consider the transformation of the
system state ρs under a single cycle of the steering protocol. First, let
us consider the system state transformation that is performed when the
measurement outcomes are averaged over (blind measurement). In the
weak measurement limit, δt→ 0, this is represented by the map:

ρs → ΛVs(ρs)

≡
(

1 − δt2

2
V †
s Vs

)
ρs

(
1 − δt2

2
V †
s Vs

)
+ VsρsV

†
s δt

2. (7.2.8)

We note that the terms of order O(δt2) in this expression represent the
standard Lindbladian jump operator. Based on the map (7.2.8) by tracing
out the detector readouts after each step, one derives a Lindblad equation
describing the system evolution for the blind steering [202].

Let us now turn back to our protocol, where the different measurement
outcomes are discriminated. During step 4 of the protocol cycle (cf.
Definition 32), there is a probability

p(cl) (ρs, Vs) = δt2 tr(VsρsV
†
s )

that a qubit flip is measured in the detector (click probability). The
resulting state in the limit of small δt is then:

ρs → Λ
(cl)
Vs

(ρs) ≡
VsρsV

†
s

tr(VsρsV
†
s )
. (7.2.9)

A “no-click” scenario occurs with probability

p(ncl) (ρs, Vs) = 1 − p(cl) (ρs, Vs) ,
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7.2 Measurement-driven state preparation

and results in a state:

ρs → Λ
(ncl)
Vs

(ρs) ≡

(
1 − δt2

2 V
†
s Vs

)
ρs

(
1 − δt2

2 V
†
s Vs

)
1 − δt2tr(V †

s Vsρs)
. (7.2.10)

Note that for the weak-measurement limit considered here (||Vsδt|| ≪ 1),
the click probability is parametrically smaller than that for the no-click
event: a qubit flip can be recorded in the detector only rarely.

Extensivity and locality

We are now in a position to expound our considerations for the family
{Hs,d(p)} in terms of the operators {Vs(p)}. For a meaningful comparison
between active and passive protocols, we first require that there exists
a passive protocol that employs Hamiltonians {Hs,d(p)} to reach the
target state |ψ0⟩. For concreteness, we assume that the passive protocol
involving all the family members is a cyclic one: each of the couplings
{Hs,d(p)} is employed one after another in a predefined manner, and the
cycle is repeated once all the couplings are employed. The size of the
family is restricted by the number of available system-detector couplings,
which is assumed to scale up with increasing systems’ size not faster than
extensively.

It is then natural to demand that none of {Hs,d(p)} can move the system
state away from the target state. Given Eqs. (7.2.9) and (7.2.10), this
yields a dark-state condition Vs(p)|ψ0⟩ = 0 for every p. This is equivalent
to every operator Vs(p) taking the following form:

Vs =

D−1∑
α=1

vα|ψ0⟩⟨ψα| +

D−1∑
α,β=1

wαβ |ψβ⟩⟨ψα|, (7.2.11)

where D is the Hilbert-space dimensionality of the system, and {|ψα⟩}
is any (many-body) basis for the system that includes |ψ0⟩ as a basis
state. This general form of the system-detector coupling is, however, not
realistic for many-body systems, as D = 2N grows exponentially with the
number of qubits for an N -qubit system. Thus, having in mind steering
of many-body states, we should further restrict the family of available
steering operators.

The second condition for {Vs(p)} is that these couplings can realistically
be engineered in an experimental realization of the system. In this chapter,
we focus on the most basic aspect of this condition: locality. One may
consider two types of locality: geometric and operator (k-locality [16]).
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7 Measurement-driven navigation in many-body Hilbert space

Geometric locality of the operator Vs implies that such interaction only
requires coupling the system spins that are in geometrical proximity during
the experiment. A k-local operator Vs implies that only k system spins are
coupled at a time. It is natural to impose the locality constraint not on
the full operator Vs, but its individual terms. For example, if Vs involves
all system spins, but its individual terms only couple 2 spins at a time, we
will consider Vs a 2-local coupling (in line with [16]). Note that a k-local
operator Vs implies an interaction Hamiltonian Hs,d that is (k + 1)-local.

Sufficient conditions for the coupling operators.
Room for active decision-making

It is worth stressing at this point that Vs(p) following the form given
by Eq. (7.2.11) for all p is necessary but not sufficient for |ψ0⟩ to be the
only dark state of the passive protocol. For some choices of such a family
{Vs(p)}, a spurious final state |ψ′

0⟩ ≠ |ψ0⟩ might be reached. However,
this would imply a dark-state condition Vs(p)|ψ′

0⟩ = 0 (for every p), and
this should not hold for a generic (say, random-matrix-type) operator Vs,
which satisfies Vs|ψ0⟩ = 0. For generic coefficients vα and ωαβ in (7.2.11),
one does not expect an existence of a spurious final state (for that, an extra
constraint is needed, such as vanishing of certain vα, ωαβ , or a specific
relation between the coefficients).

One concludes that a family consisting of a single Eq. (7.2.11)-type
coupling Vs is sufficient to prepare |ψ0⟩ in a passive protocol without
generating a dark space. Notably, reducing the family to a single member
would leave no room for active decision-making in a protocol defined by
this family (an active protocol necessitates at least two operators to choose
from). On the other hand, such an ultimate Vs would not generically
satisfy the crucial locality conditions and, thus, would be unrealistic to
implement. Natural counterexample couplings V ′

s that have multiple dark
states arise in the important case when V ′

s acts only on a part of the
system.

To construct such a counterexample, one may start from an arbitrary
operator Vs that satisfies the dark-state condition Vs|ψ0⟩ = 0 for a single
state |ψ0⟩ in a given system. Now, consider a larger system embedding
the original one and construct a different target state which is a tensor
product of |ψ0⟩ and a certain auxiliary state: |Ψ0⟩ ≡ |ψ0⟩ ⊗ |ψ̃0⟩. In this
case, one may take Vs → V ′

s , where V ′
s = Vs ⊗ Is̃ still satisfies condition

V ′
s |Ψ0⟩ = 0 relative to this new target state in the extended Hilbert space.

Yet for a general starting state of the total system, the operator V ′
s is

obviously not sufficient to prepare the extended target state |Ψ0⟩ – also
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implying the existence of spurious dark states (in fact, all states of the
form |ψ0⟩ ⊗ |ψ̃0⟩ turn out to be dark, for arbitrary |ψ̃0⟩).

We see that in this “self-evident” fashion of selecting a steering operator,
the condition of |Ψ0⟩ being a dark state for a single operator V ′

s was not
sufficient for V ′

s to be able to guarantee preparation |Ψ0⟩. As discussed
above, an operator Vs capable of steering a unique dark state is typically
highly nonlocal, in contrast to the limited capacity of a localized operator
Vs ⊗ Is̃. We conclude that a family of multiple operators {Vs(p)} is
needed to realistically prepare a target state, once that state is sufficiently
complicated. This, in turn, opens the door for gaining advantage through
active decision-making.

7.3 Types of system-detector couplings

The preselected family of coupling operators {Vs(p)} determines both the
performance of the ensuing passive protocols and the possibilities for active
policy construction. In the present section, we identify the crucial role of
the commutation properties of {Vs(p)}. We first consider N -qubit steering
protocols which employ coupling operators {Vs(p)} that are mutually
commuting. As a shorthand, we denote this as non-frustrated steering.
We show that a realistic passive protocol of this type can be designed
for product states and certain graph states. Commuting couplings also
allow for a simple feedback strategy, which results in a significant speedup
of the respective passive protocol. Next, we move on to passive steering
protocols that are frustrated. Such frustration of local couplings naturally
arises for many-body target states related to local parent Hamiltonians.
We propose an explicit method of constructing a family of non-commuting
operators {Vs(p)} that allows to prepare such a many-body target state
in a passive protocol. This forms the basis for Secs. 7.4 and 7.5, where we
move on to the active versions of frustrated steering protocols.

7.3.1 Mutually commuting couplings

Here we focus on N -qubit steering protocols implemented with mutually
commuting couplings {Vs(p)}. As will be demonstrated, a passive protocol
of this type can be constructed for an arbitrary target state, yielding an
asymptotically precise passive preparation. However, we find that this
construction would, in general, require non-local system-detector couplings
Hs,d, deeming the implementation of the protocol for many-body states
impractical. We then identify an exception to this rule – a subclass of
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7 Measurement-driven navigation in many-body Hilbert space

graph states that can be obtained using local commuting couplings. For
this, we discuss the constraints coming from both geometric locality, as
well as k-locality. Finally, we extend the discussion from such passive
protocols to their active counterparts. To achieve this, we propose a simple
feedback strategy that speeds up non-frustrated steering in a substantial
way.

As a trivial example of non-frustrated steering, consider an N -qubit
product state as a target state, e.g., |00..0⟩. The starting state will be
assumed to be the perfectly mixed state. To prepare it with a steering
protocol, one can use a set of couplings parameterized by the qubit number
i = 1, ..N :

V (prod)
s (i) = γσ−

i . (7.3.1)

Passively alternating between the steering cycles employing V
(prod)
s (i)

with different i guarantees preparation of the target state with any given
accuracy. This directly follows from the analysis of Secs. 7.2.2 and 7.2.3.
For an active version of the protocol, partial protocol termination can be
applied: if a click is registered when measuring any qubit i, the coupling

V
(prod)
s (i) is dropped out from the sequence of couplings that will be

applied in further cycles. In other words, the steering with this “fired”
coupling is terminated at this point, whereas other couplings remain active
– hence the term “partial termination”. Since this implies a readout-based
decision on the set of steering couplings that are used at a given step, we
classify this as an active steering protocol. In the ϵ→ 0 limit, this strategy
results in the following relation between active and passive runtimes:

N (act)
c (ϵ) =

N
(pass)
c (ϵ)

2
+

N

2γ2δt2
, (7.3.2)

which leads to up to a substantial 2-fold speedup for the active version,
similarly to Eq. (7.2.6).

Non-frustrated steering towards any target state |ψ0⟩ can in principle
be designed if we allow for an arbitrary coupling set. Indeed, given a
many-body unitary transformation to |ψ0⟩ from a product state |00..0⟩,
i.e., |ψ0⟩ = Uψ|00..0⟩, one may formally construct a family of couplings:

V
(Uψ)
s (i) = γUψσ

−
i U

†
ψ. (7.3.3)

Clearly, any protocol for |ψ0⟩ preparation using couplings of the form of
Eq. (7.3.3) would be a unitary equivalent of the same protocol which uses
couplings of Eq. (7.3.1) to prepare |00..0⟩. Therefore, a passive protocol

iterating over V
(Uψ)
s (i) for different i would successfully prepare the target
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state |ψ0⟩. We also conclude that a partial-termination strategy can be
applied to this coupling set with the same effect as for the product state

target. Note, however, that in most cases employing V
(Uψ)
s (i) would not

be practically feasible. Indeed, since Uψ is a general many-body operation,

the couplings V
(Uψ)
s (i) would involve arbitrarily non-local terms. For

most N -spin states |ψ0⟩ with large N , one thus expects that the resulting

V
(Uψ)
s (i) would break any requirement of geometric or k-locality.
This locality-violation rule can be circumvented for Uψ which is given by

a shallow circuit and thus |ψ0⟩ which is weakly entangled. As a resourceful
example of such |ψ0⟩, consider a graph state defined on a generic graph G
[209]:

|ψG⟩ =

 ∏
(j,k)∈

edges(G)

U
(gr)
(j,k)

( |0⟩ + |1⟩√
2

)⊗N

, (7.3.4)

U
(gr)
(a,b) = exp (iπ|00⟩⟨00|a,b) , (7.3.5)

in which case

Uψ =

 ∏
(j,k)∈

edges(G)

U
(gr)
(j,k)


 ∏
j∈qubits

exp
(

i
π

4
σyj

) .

Since two-qubit rotations U
(gr)
(j,k) all mutually commute, the coupling

V
(Uψ)
s (i) acts only on spin i and on the spins j whose vertices share

an edge with i in the graph G. Therefore, this coupling is (k + 1)-local

if there are k edges coming out of vertex i. Moreover, V
(Uψ)
s (i) is also

geometrically local, if the graph G only connects the qubits which are in
geometric proximity. We conclude that for the graphs satisfying the above
conditions, a realistic preparation of graph states with local non-frustrated
steering is possible. Such a protocol can be sped up in the same way
it was possible for the product states – using active feedback via the
partial-termination strategy.

For the perfectly mixed starting state, the partial-termination policy
gives an optimal speed-up of a protocol driven by non-frustrated couplings

V
(Uψ)
s (i). Indeed, the protocols in question are then equivalent to an

independent set of N 1-qubit steering protocols (under the unitary trans-
formation Uψ). This picture, however, breaks down for a more general
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starting state. Let us first consider the trivial target Uψ = I, |ψ0⟩ = |00..0⟩,
while the starting state is itself entangled (e.g. 1√

2
(|00..0⟩ + |11..1⟩)). In

this case, the click received from a single coupling Vs(i) may imply that
multiple couplings can be dropped from the applied sequence, and not
just Vs(i) itself. This would be more optimal than the partial termination
strategy outlined above. The same picture extends to the more interesting
case when the target state |ψ0⟩ is entangled itself, e.g. a graph state, while
the starting state is a product state. Indeed, under the unitary mapping
Uψ which takes an entangled state |ψ0⟩ to |00..0⟩, the product starting
state in turn becomes entangled. Hence, the previous reasoning applies
and partial-termination would generally not be an optimal active policy
in this situation. Instead, one may accelerate it further by applying one of
the frustrated-coupling strategies outlined in the following sections.

7.3.2 Frustrated system-detector couplings

From now on, let us focus on accelerating steering protocols which employ
couplings constrained by at least one of the two notions of locality. Under
this premise, for target states other than the product states and states
prepared by a shallow circuit, we would generally need to go beyond the
non-frustrated protocols outlined above. The first question to tackle is how
to design the local couplings Vs that are suitable for a passive protocol.
In principle, this can be addressed on a case-by-case basis, tailoring some
coupling set with a specific target state in mind. (This approach will be
demonstrated for the W -state preparation in Sec. 7.5.4.) However, this
is not always a straightforward task. Therefore, it is interesting to know
whether one can devise a general scheme to this end. For this, we propose
an approach based on a parent-Hamiltonian construction.

The parent Hamiltonian Hψ of |ψ0⟩ has |ψ0⟩ as a non-degenerate ground
state, and is constructed from |ψ0⟩ in the form:

Hψ =
∑
j

H
(j)
ψ . (7.3.6)

Here, all the terms H
(j)
ψ , while defined as acting on the entire Hilbert space,

are local in the real space given that the state |ψ0⟩ hosts a limited amount of
entanglement [210] (implying an area-law dependence of the entanglement
entropy accommodated in |ψ0⟩). Note that, by the construction of the

parent Hamiltonian, terms H
(j)
ψ have |ψ0⟩ as their common ground state,

although they generally do not commute with each other: this is possible
because of their respective ground state degeneracy. These degenerate
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ground spaces of H
(j)
ψ will be the central element of our construction of

the coupling family. For the term H
(j)
ψ , which nontrivially acts on some

m qubits, let us denote its m-qubit ground states as |ϕ(j)a ⟩ and the excited

states |θ(j)a ⟩. Given these, we can construct the coupling operators of the
following form:

V js (w,v,u) =
∑
ab

wab|ϕ(j)a ⟩⟨θ(j)b |

+
∑
ab

vab|θ(j)a ⟩⟨θ(j)b | +
∑
ab

uab|ϕ(j)a ⟩⟨ϕ(j)b |. (7.3.7)

A particular example of this construction will be addressed in detail in the
context of the AKLT model in Sec. 7.4 (see also Refs. [195, 202]).

For a generic (fixed) value of the parameters involved, running a passive
protocol with the coupling given by Eq. (7.3.7) allows one to steer the

system into the ground state of H
(j)
ψ . Alternating the coupling operators

by selecting terms with different j at different measurement steps allows

for steering the system into the joint ground space of all couplings H
(j)
ψ .

This space is given by the target state |ψ0⟩ only, as it is the non-degenerate
ground state of Hψ. Thereby, as long as the parent Hamiltonian Hψ is
local, we have managed to construct an appropriate coupling set for a
passive protocol (also see [195] for a related statement proven in more
detail).

Now, let us consider an active-protocol construction. First, we note
that unlike in the “non-frustrated” protocol construction, the operators
V js for different choices of parameter sets are, in general, not mutually
commuting. This also applies to the couplings with different values of j,

as H
(j)
ψ generally do not commute. Therefore, the measurement outcome

of steering by V js (where, because of the locality of H
(j)
ψ , j corresponds

to a certain region in real space) impacts the outcomes of steering at
other locations. As a result, the partial-termination strategy cannot be
applied to this coupling set, as it assumes that the respective cycles of the
protocol can be considered separately. Instead, the feedback strategy for
the frustrated steering should continuously coordinate the application of
different couplings in the protocol. In a many-body context, this becomes
a complicated navigation-type problem (cf. Ref. [205]). We devote the
following two sections to the study of such possible coordination policies.
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7 Measurement-driven navigation in many-body Hilbert space

7.4 Quantum compass: Cost-function policies

One way to enable the Hilbert-space navigation is to introduce a cost
function C(ρs), which is to be minimized in the protocol. The basic
example would be the infidelity C(ρs) = R(ρs, |ψ0⟩) of the system state
ρs to the target state |ψ0⟩, defined in Eq. (7.2.1). Achieving the global
minimum R(ρs, |ψ0⟩) = 0 of this cost function would be equivalent to
preparing the target state. In general, to calculate R(ρs, |ψ0⟩), one needs
to know the state of the system ρs. This is, in principle, feasible, as we
control the system evolution given all measurements outcomes and therefore
can numerically simulate it in parallel to the experiment. However, the
requirement of such a simulation being done in parallel to the experiment
puts a restriction on the size of the system that one can work with. For
now, we will accept this limitation; finding ways to mitigate it is among
the worthwhile potential extensions of the work presented in this chapter.

With a given cost function C(ρs) at hand, we can use it to form the
active decision for the coupling operator Vs(p). The ultimate strategy
is to pick Vs(p) which brings the system to the global minimum |ψ0⟩ in
the fastest expected time. For C(ρs) = R(ρs, |ψ0⟩) this is equivalent to
the ultimate strategy defined by dynamic programming [206], requiring
unrealistic computation power. Therefore, the notion of the global cost
function does not give any additional advantage in constructing such a
strategy. Instead, one can use its cheaper version – the “greedy strategy.”
Specifically, one can use Vs(p) that yields the fastest expected reduction
of the cost function in a single step of the evolution:

V (greed)
s (p) = argminVs(p)R[ΛVs(p)(ρs)], (7.4.1)

where ΛVs(p)(ρs) is defined in Eq. (7.2.8) If there are multiple minima, we
will assume that argmin returns a random representative among those.
With only a small amount of computations needed to decide for the optimal

next coupling V
(greed)
s (p), this greedy procedure allows us to avoid the

complex long-term analysis of the protocol.

As one can see from a direct implementation, the greedy minimization
of the cost function can accelerate the state preparation by a large factor.
To demonstrate this, we consider the example of the ground state in an
AKLT spin chain as the target state. This is an entangled state of N
spin-1 particles governed by the Hamiltonian HAKLT:
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Figure 7.2: (a) Infidelity as a function of the protocol cycle for active and
passive protocol runs towards a 5-spin AKLT state. These example runs are
characterized by the duration similar to the mean protocol durations of respective
protocols (≈ 199±4 for passive and ≈ 28±0.5 for active protocol) (b) Histograms
of protocol durations t for the preparation of the five-spin AKLT, with accuracy
given by infidelity R < ϵ = 0.01. An exponential decaying profile, characteristic
of a Poissonian process, can be clearly observed (note the log scale). Note that
all recorded runs for an active protocol lasted far less than the mean duration of
a passive protocol (200 cycles). Each histogram was compiled from 104 simulated
runs; the figure is truncated at 600 cycles for better presentation. (c) Scaling of
the active protocol’s advantage with system size N . A speedup factor tends to
increase significantly as the system scales, with factor 9.5 being the estimated
speedup at 6 spins. The error bars represent 95% confidence intervals due to
sampling error in numerical simulation. 104 samples were collected to simulate
both protocols N = 3, 4, 5, and 103 at N = 6. Similarly to the above, the
infidelity threshold is ϵ = 0.01.

HAKLT =
∑
i

Hi,i+1 =
∑
i

[
S⃗i · S⃗i+1 +

1

3

(
S⃗i · S⃗i+1

)2]
, (7.4.2)

Here, we assume periodic boundary conditions, implying a single ground
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7 Measurement-driven navigation in many-body Hilbert space

state [207]. The Hamiltonian (7.4.2) is a parent Hamiltonian (as defined
in Sec. 7.3.2), where each term Hi,i+1 has four degenerate ground states
|ϕia⟩ with eigenvalue −2/3, and 5 excited states |θib⟩ with energy 4/3.

Hereafter, we consider the all-down product state as our starting state.
We first design a passive steering protocol for AKLT state preparation,
following the parent Hamiltonian construction from Sec. 7.3.2. For sim-
plicity, we restrict ourselves to a less general version of Eq. (7.3.7), and
use the following family of coupling operators (cf. Refs. [195, 202]):

V (c, i) = |ϕi4⟩⟨θi5| +
∑

α,β=1,..4

cαβ |ϕiα⟩⟨θiβ |, (7.4.3)

with cαβ constrained to be an orthogonal matrix, to make sure that the
interaction is of constant strength and thus no bias is introduced in the
construction. In a passive steering protocol, we will alternate between
different values of i, while drawing instances of orthogonal matrices c at
random. For an active feedback strategy to be used on top of this, we
propose a greedy policy relative to C(ρs) = R(ρs, |ψ0⟩) to select c. In both
passive and active protocol, we assume each coupling to be applied multiple
times until one either receives a click, or no-click for an asymptotically
long time. Such a repeated application of a single coupling is then counted
as a single protocol cycle. We take this approach for a practical purpose
because simulating such protocols is more accessible numerically.

Thus simulated, the relative performance of the passive and the active
policies (Fig. 7.2) shows a strong advantage of the active policy. In
particular, the speedup factor is steadily increasing with system size
(Fig. 7.2c), reaching the value of 9.5 for N = 6.

7.4.1 Discussion: orthogonality catastrophe and
alternative cost functions

The approach defined above harbors a potential challenge. For the greedy
procedure to be effective, it should always yield a nonzero bias in favor

of a specific V
(greed)
s (p) (or a small subset thereof). In other words, the

landscape of the cost function C(ρs) should not be flat — and some cost
functions may yield better landscapes than others. In particular, applying
the infidelity measure R(ρs, |ψ0⟩) is, in general, fundamentally flawed.
Indeed, a (2N − 1)-dimensional subspace of states in the N -body Hilbert
space is orthogonal to the target state. Let us consider the case when the
starting state belongs to that subspace. This situation would in general
not change after a single steering cycle with a local coupling Vs(p). For our
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purposes, it implies that the infidelity measure R is equal to 1 for a large
manifold of states, and there might be no direction of increase that would
allow us to choose an appropriate coupling. The most direct example of
this can be observed when applying the greedy policy to non-frustrated
steering (see Sec. 7.3.1). For simplicity, let us again take the product state
of N qubits |00..0⟩ as the target state, the state |11..1⟩ as the starting
state, and the couplings V (i) = σ−

i for steering. Only after such steering
protocol results in N successful click events, R(ρs, |ψ0⟩) gains a nonzero
value. Thus before N − 1 clicks, the greedy policy for R(inf) will not be
capable of providing a meaningful decision for the next coupling. Strongly
enhanced by the system size, this phenomenon is reminiscent of Anderson’s
orthogonality catastrophe [211].

As a remedy to this deficiency, a “subsystem infidelity” measure can be
introduced:

RS(ρs, |ψ0⟩) =
∑
σ∈S

[
1 − tr

(√√
ρ0,σρs,σ

√
ρ0,σ

)2]
, (7.4.4)

where ρ0,σ (ρs,σ) is the reduced density matrix of the target state (current
state) with respect to subsystem σ. S is the family of subsystems from
which σ are drawn; the choice of S depends per target state. In the case of
the |11..1⟩ → |00..0⟩ protocol described above, the appropriate S would be
the set of individual spins. Unlike R, such quantity RS changes every time
when a click occurs in this protocol. As a result, the greedy policy with
respect to the local RS would yield the partial-termination protocol of
Sec. 7.3.1, significantly boosting the preparation of such a product state.

By continuity with the case of the product state target, such preference
for RS should extend to the weakly-entangled target states, and maybe to
some highly-entangled targets. However, we did not see a manifestation of
this in the case of our AKLT simulation, where using RS as a cost function
did not yield any improvement compared to R. As a likely explanation
for this, the orthogonality catastrophe should become manifest only at
large system sizes, where the classical simulation of the protocol is also
hindered. However, we expect that some practical target states may still
develop a noticeable performance difference between RS and R, similarly
to the case of the product state target. A further study of this question
constitutes a promising direction for future work.
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7 Measurement-driven navigation in many-body Hilbert space

7.5 Hilbert-space orienteering map:
Quantum State Machine

In this section, we present an orienteering tool that is an alternative to
cost-function minimization: mapping out the steering transformations
with a Quantum State Machine (QSM) construction. We then illustrate
navigation in many-body Hilbert space, employing this machinery to the
preparation of the highly entangled W-state of three qubits.

7.5.1 QSM generalities

Every transformation of the system’s state, Λ
(cl)
Vs(p)

and Λ
(nc)
Vs(p)

, associated

to steering with a specific coupling Vs(p) in a given readout scenario [click
or no-click, respectively, see Eqs. (7.2.9) and (7.2.10)], can be represented
with a directed graph with complex weights. For this, we notice that every
such steering transformation conserves the purity of the state. Therefore, it

is convenient to encode transformations Λ
(cl, ncl)
Vs

in their action on Hilbert
space basis states |ϕα⟩:

Λ
(cl,ncl)
Vs

(|ϕα⟩) =
1√

p(cl,ncl)

∑
β

L
(cl,ncl)
αβ |ϕβ⟩ (7.5.1)

L
(cl)
αβ = ⟨ϕβ |δtVs|ϕα⟩, (7.5.2)

L
(ncl)
αβ = ⟨ϕβ |1 − δt2V †

s Vs/2|ϕα⟩, (7.5.3)

where p(cl) (p(ncl)) is the probability of a click (non-click) readout upon
this steering action. Note that in Eq. (7.5.1), we extended the action of
ΛVs to pure states by a slight abuse of notation compared to Eq. (7.2.9).

The graph representation for steering action Λ
(cl,ncl)
Vs(p)

, or a steering graph,

is then directly obtained from the amplitudes L
(cl,ncl)
αβ . The vertices in

such a graph correspond to the Hilbert space basis states, and the edges
describe the steering transformations. The edges are directed and weighted
with complex amplitudes, the edge α→ β being weighted with amplitude

L
(cl, ncl)
αβ (edges weighted with zero amplitudes are excluded from the

graph). Implying this definition, we will use the notation L(cl, ncl) for the
steering graphs themselves. For basic examples of steering graphs, please
refer to Fig. 7.3.

Since the weights L
(cl)
αβ are proportional to the matrix elements of cou-

pling operator Vs while L
(ncl)
αβ can be expressed via Vs as well, the graph
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0 0

2 1

1

Figure 7.3: Examples of steering graphs (see definition in Sec. 7.5.1): (a)
Steering graphs on a 3-level system, corresponding to the coupling Vs = γ(|1⟩⟨0|+
|1⟩⟨2|). Graph L(cl) for click action is denoted with solid arrows and the graph
L(ncl) for no-click action by dashed arrows (a particular representation of graph
coloring). Note that due to the identity operator in Eq. (7.5.3), every vertex is
decorated with a self-loop from the L(ncl) graph. To see how the rest of L(ncl)

can be deduced from L(cl) (cf. discussion in Sec. 7.5.1), consider the example of

e
(ncl)
02 (dashed arrow from state 0 to 2). According to the graphical approach

from Sec. 7.5.1, one is to follow edge e
(cl)
01 (solid arrow from 0 to 1) forward and

then e
(cl)
21 (solid arrow from 2 to 1) backward - and thus manages to travel from

state 0 to 2, in correspondence to e
(ncl)
02 . (b) Steering graphs on a 2-level system,

as defined by the coupling Vs = γ(|1⟩⟨1|+ |1⟩⟨0|). Following the same rule as
above, inter-vertex edges of L(ncl) can be deduced from L(cl). For example, by
following the edge e

(cl)
11 forward and then the edge e

(cl)
01 backward, one performs

a transition from state 1 to state 0, thus reproducing the edge e
(ncl)
10 from L(ncl).

L(ncl) for the no-click action can be inferred entirely from the graph L(cl)

for the click action. In particular, due to the term ∝ V †
s Vs, graph L(ncl)

contains an edge e
(ncl)
ij from vertex vi to vj , if a graph L(cl) contains edges

e
(cl)
ik and e

(cl)
jk (see Fig. 7.3). Heuristically, to yield a L(ncl)-edge, one has

to first follow a L(cl)-edge forward, and then another L(cl)-edge backward.
Furthermore, due to the additional identity operator term in Eq. (7.5.3),
any graph for the no-click steering action will also include self-loops on
each vertex.

The steering graphs introduced above can now be used to create a
Quantum State Machine. For nV couplings Vs(p) in the steering kit, there

exist 2nV graphs corresponding to steering maps Λ
(cl, ncl)
Vs(p)

, because of the

two possible measurement outcomes for each of the couplings. The QSM
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0 1 2

Figure 7.4: A basic example of the QSM multigraph, describing the steering
kit for a three-state system. The steering options are represented by the coupling
operators V1 = γ1|1⟩⟨0| and V2 = γ2|2⟩⟨1|. The starting state is 0, marked in
blue, and the target state is 2, marked in green. The optimal coordination policy
of the two steering operations is straightforward: one needs to first repeatedly
apply the V1-steering until a click is obtained, and then the V2-steering until a
click is obtained. Compared to the passive steering which iterates between V1

and V2 regardless of measurement outcomes, this directly yields a 2-fold speedup
in the average performance.

for the steering protocol is then obtained as a collection of these graphs. It
can be represented as a colored multigraph, where each steering graph is
represented as a single-color subgraph (Fig. 7.4). Consequently, in a QSM
multigraph there may be multiple edges going from any vertex α into any
other vertex β (making it a multigraph rather than a simple graph), but
at most one such edge for each color.

Let us now consider our original task of finding the accelerated navigation
protocol. To make use of the QSM construction in this context, we will
restrict our consideration to bases {|ϕβ⟩} where one of the basis states
is the target state |ψ0⟩ itself. In such a case, state |ψ0⟩ corresponds to a
marked vertex in the graph, and the goal of the steering protocol becomes
to drive the system state to that vertex. The goal of optimizing this
protocol may then look similar to a known problem of finding the shortest
path to the marked vertex on a weighted graph. This problem is standard
in graph theory and can be solved as such. Can such a solution be used to
design the navigation protocol?

As we will see in Sec. 7.5.2, this analogy is not complete, since the
quantum evolution on the graph goes beyond the simple path-on-the-graph
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picture. This aspect creates an obstacle to directly applying the graph
exploration algorithms to facilitate our protocol speed-up. Fortunately,
in some cases, this difficulty can be properly accounted for, as we will
see in Sec. 7.5.3. In those cases, the “semi-classical heuristics” of graph
exploration may indeed be applied. Finally, in Sec. 7.5.4, we will apply this
approach to the preparation of the W -state, with a factor 12.5 improvement
compared to the passive protocol using the active navigation protocol.

7.5.2 Quantum subgraphs in a QSM

Let us now compare our QSM navigation task to the standard problem
of graph exploration. Our goal is to identify the differences between the
two, which prevent us from applying the graph exploration techniques
directly to QSM navigation. First of all, the state of the system in graph
exploration is at all times represented by a single vertex. The system in a
QSM, on the other hand, is generally represented by a superposition over
multiple vertices. Furthermore, in graph exploration, the state is modified
by following one of the edges. A steering action in a QSM, in contrast,
corresponds to a whole collection of edges – i.e., a single steering graph in
the QSM multigraph.

Some steering graphs may induce quantum effects, such as superposition
and interference. For instance, the steering action whose graph contains

two outgoing edges from a given vertex (e.g., vertex 0 for graph L
(cl)
1 in

Fig. 7.5a), can create a nontrivial quantum superposition. If a state is
given by a superposition of multiple vertex states, it may further undergo
quantum interference. In particular, this can be facilitated by a steering
action whose graph contains a vertex with two incoming edges (e.g., vertex

4 for graph L
(cl)
2 in Fig. 7.5a). In general, a notion of “superposition

subgraphs” and “interference subgraphs” of a steering graph can be defined:

1. Superposition subgraph is a subgraph of a steering graph span by
multiple (more than one) edges outgoing from a single vertex.

2. Interference subgraph is a subgraph of a steering graph span by
multiple edges incoming to a single vertex.

Collectively, we will refer to such interference and superposition subgraphs
of a single steering graph as its quantum subgraphs. If the quantum
subgraphs are absent in the QSM, we will refer to it as a classical QSM.
In other words, in a classical QSM, each vertex has at most one outgoing
and at most one incoming edge of any given color.
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7 Measurement-driven navigation in many-body Hilbert space

If a QSM is classical, optimization of the navigation protocol can essen-
tially be reduced to classical graph exploration. For a simple example of a
classical QSM and the way to optimize the respective state preparation,
consider the 3-level steering actions described in Fig. 7.4. Note that opti-
mization of the classical QSM also applies to the case when the starting
state is a superposition of multiple vertex states. If the steering operations
contain no quantum subgraphs, the quantum superposition is equivalent
to a probabilistic mixture for the sake of the protocol optimization, and
the optimal navigation pattern can be extracted accordingly.

As the form of the steering graph depends on the choice of basis, it is
conceivable that the number of quantum subgraphs in such a graph in
some cases can be reduced by changing the basis (compare Fig. 7.5a and
b). However, using a change of basis to remove all the quantum subgraphs
in an arbitrary QSM is generally impossible (see Fig. 7.5).

7.5.3 Coarse-grained QSM. Semiclassical heuristic for
navigation

We now focus on the steering protocols whose QSM cannot be made
classical via a basis transformation. In such a case, it may still be possible
to optimize it via a classical graph exploration heuristic. For that, we
propose to coarse-grain the QSM by grouping subsets of its vertices into
single block-vertices. The coarse-grained QSM would consist of graphs
drawn between such block-vertices. The block-vertex containing the target
vertex can be considered as the target block-vertex.

An inter-block edge between two block-vertices is drawn, if the original
QSM has at least one edge connecting the vertices inside the respective
block-vertices. For the coarse-graining to be useful for our purposes, it
should be done in such a way that all of the resulting QSM graphs have
a classical structure. Namely, the coarse-grained graph should not have
quantum subgraphs, e.g. realizing superposition or interference between
the block-vertices (in analogy to Sec. 7.5.2). To satisfy this requirement,
the following rule for vertex grouping can be employed (cf. Fig. 7.6):
if two edges of the same color are simultaneously coming in or out of
a given vertex, the two vertices at the other ends of these edges should
be grouped within one effective block-vertex. This rule manifestly yields
basis-dependent groupings, since the very presence of quantum subgraphs
in a QSM is basis-dependent. Thus, a smart choice of the basis may allow
for an efficient and simpler coarse-grained graph. Designing a general
explicit algorithm for finding the optimum basis for an arbitrary QSM is a
highly non-trivial task. Heuristically speaking, a convenient choice of the
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Figure 7.5: Possible configurations of quantum subgraphs in a QSM, exempli-
fied by the 5-vertex subgraph of an example QSM. (a) The click-action graphs
for the three coupling operators V1,2,3 that form the steering kit. The operators
have the form V1 = γ1(|1⟩ − |2⟩)⟨0|, V2 = γ2|4⟩(⟨1| − ⟨2|), V3 = γ3|3⟩⟨1|. The
graphs for the no-click actions are not shown, as their form can be deduced from
the graphs for click actions. In the present basis, the V1-click is manifest as a
superposition, the V2-click – as an interference, and the V3-click corresponds to
a semiclassical evolution. (b) Quantum State Machine for the steering kit from
the previous panel, depicted in a different basis. The basis transformation is
|±⟩ = (|1⟩±|2⟩)/

√
2. In this case, the basis transformation removes the quantum

elements in the L
(cl)
1,2 graphs, however, it turns L

(cl)
3 into an interference element.

Note that there is no basis transformation that would turn such a QSM into a
classical one. This statement follows from the uniqueness of the Jordan canonical
form for operators V2 and V3.

basis should be the one that results in the minimum number of quantum
subgraphs in a QSM before coarse-graining.

For the coarse-grained graph to be effectively classical, we desire to
ignore details of the system evolution inside the subspace of a given block-
vertex. Specifically, we aim to view every block-vertex as an effective
single state of the system and assume that every edge allows transporting
the system between such block-vertex states with no obstacles. If this
was directly possible, and since the coarse-grained QSM by definition
contains no quantum subgraphs, optimization of its exploration would
have become a classical task. However, such an approximation scheme
needs more careful justification. Every block fundamentally corresponds to
a Hilbert subspace, and an inter-block edge is given by a N1 ×N2 matrix
of coefficients (where N1 and N2 are the internal dimensionalities of the
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Figure 7.6: Semiclassical coarse-graining applied to a QSM. (a) A 5-state
part of a QSM with two quantum subgraphs: interference subgraph realized
by L

(cl)
2 and a superposition subgraph realized by L

(cl)
1 . Since pairs of states

{|0⟩, |1⟩} and {|3⟩, |4⟩} fall under conditions described in Sec. 7.5.3, these are
to be grouped together in a coarse-grained QSM. (b) Simplified depiction of a
coarse-grained QSM, obtained from (a).

linked blocks). Characterizing these effectively with single amplitudes may
lead to erroneous navigation policies. In particular, one state internal to
a block-vertex might be untouched by an inter-block edge, i.e., it only
yields zero matrix elements in a matrix characterizing the edge. If the
edge is outgoing, a system initialized in the said state would not be able
to escape the block-vertex using that edge alone (see Fig. 7.7). This is in
direct conflict with characterizing blocks and inter-block edges with single
amplitudes. For an incoming edge, a similar problem may arise: some
states inside a block-vertex might not get populated when that edge is
activated. This may become detrimental for the navigation protocol based
on a coarse-grained QSM, especially if the unavailable state in question is
the final target of the protocol.

Such difficulties may be overcome, if some of the couplings given in
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0

3

12

Figure 7.7: Illustration of ancillary couplings in the context of QSM coarse-
graining (a) A 4-state part of a QSM that is subject to coarse-graining, featuring
non-trivial actions by couplings denoted as V1 and V2. States |1⟩ and |2⟩ are to
be grouped together since they are both targets in a superposition subgraph span
by edges e02 and e01 of a steering graph L

(cl)
1 . (b) The coarse-grained version

of the QSM from (a). The block {|1⟩, |2⟩} is connected to state |3⟩ through an

outgoing edge of L
(cl)
1 . However, from microscopic point of view exemplified

in (a), no population can be transferred from state |2⟩ to |3⟩ unless the click

action Λ
(cl)
2 is realized first. Therefore, including and applying V2 as an ancillary

coupling is required for a valid semiclassical coarse-graining of this QSM.

a QSM allow for an internal mixing of the subspace (represented by a
self-loop on the block-vertex in the respective L(cl)-graph). Applying
such a coupling in the protocol would allow one to make the block-vertex
accessible to all the edges that are connected to it (see Fig. 7.7), via
a sufficient number of clicks. In the scenarios described above, where
additional couplings are needed to turn a block-vertex into an effective
single vertex, we will refer to such couplings as ancillary couplings. Note
that given a steering kit, there is no guarantee that the ancillary couplings
needed for exploration of every block-vertex, are available. For simplicity,
in this chapter, we restrict our further consideration to the coarse-grained
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QSMs, where the ancillary couplings happen to be present wherever needed.
Every block-vertex can then be made accessible to the outgoing edges,
and the target state is ensured to be reachable once the target block is
reached. In this case, we consider the coarse-grained QSM as effectively
semiclassical.

To design an active steering policy within the coarse-grained approach,
we note that the navigation protocol has the following structure. The
system state can be transported between block-vertices, and eventually
steered to the target block-vertex. After that, either the target state is
reached already (one can obtain this information from the simulated copy
of the system), or it can be reached after applying ancillary couplings
on the target block-vertex. The cost of the protocol can now be broken
into two parts. The first is the cost of exploring the coarse-grained graph
using the inter-vertex edges. The second is the dwell time inside the block-
vertices, which is spent applying the ancillary couplings. If we could find
the route through the graph that minimizes the combination of these two
components, it would solve our optimization problem exactly. However,
because of the presence of the degrees of freedom that are internal to the
block-vertices, the coarse-grained geometrical information does not allow
for such a precise solution. In other words, both the inter-vertex travel
time and the block-vertex dwell time depend on the microscopic details of
the evolution.

Instead of studying such quantum-mechanical microscopics, we propose
a semiclassical approximation to this calculation. Specifically, we assign
every inter-block edge a characteristic traversal time, and every block-
vertex a characteristic dwell time. For this, we use the matrices for click
transitions between blocks i and j (the case of ancillary couplings given

by i = j). Let us loosely denote these as L
(cl)
i,α;j,β , implying that only

matrix elements with states from blocks i and j are included. In that case,
the effective transition amplitude between blocks i and j can be defined

as operator norm L
(cl)
i,j = ∥L(cl)

i,α;j,β∥, and characteristic traversal (dwell if

i = j) time τi,j = (L
(cl)
i,j )−2. Note that this reduces to the average traversal

time for the case of a genuinely classical graph, with an amplitude γδt
connecting two states implying duration of τ = 1

γ2δt2 for traversal (cf.

Sec. 7.2.2).

With characteristic times τi,j assigned, the time-cost of following a spe-
cific path through this graph can be estimated as a combined characteristic
time of all the edges and vertices crossed along the way. The desired path
will be the one that optimizes this expected time. On the one hand, this
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Figure 7.8: Measurement-driven navigation towards the 3-qubit W -state:
QSM representation. (a) Steering with couplings Eqs. (7.5.5)-(7.5.8). The
vertices in the single-excitation subspace are given by states |W ⟩, |ϕ−⟩ ≡
1√
2
(|100⟩ − |001⟩), and |ϕ+−⟩ ≡ 1√

6
(|100⟩ − 2|010⟩ + |001⟩). (b) The coarse-

grained version of the above QSM. The vertices are labeled by the excitation
number. From perspective of Sec. 7.5.3, couplings 2 and 3 play the ancillary
role. Indeed, those couplings mix the internal structure of the block-vertices,
allowing one to eventually steer the state to the target |W ⟩.

may result in a different navigation protocol compared to what is optimal
from the complete quantum-mechanical analysis. On the other hand, such
a first-principles analysis is prohibitively hard, and we expect that our
semiclassically derived protocol will still be considerably quicker than its
completely passive version. One example of such an improved protocol is
given below.

7.5.4 W-state preparation

To illustrate the principles of the QSM framework, we consider the coarse-
graining approach to the navigation of a 3-qubit state from a trivial |000⟩

197



7 Measurement-driven navigation in many-body Hilbert space

state to a so-called W-state [212] that has the following form:

W =
1√
3

(|100⟩ + |010⟩ + |001⟩). (7.5.4)

For the steering kit, we choose the following family of couplings (assuming
labels A, B, and C for the qubits):

V1 = σ+
A − σ+

C , (7.5.5)

V2 = σ−
Aσ

−
C , (7.5.6)

V3 = σ−
Aσ

+
B − P 0

AP
1
B , (7.5.7)

V4 = σ+
Bσ

−
C − P 1

BP
0
C . (7.5.8)

Here, σ± = 1
2 (σx ± iσy) and P a = |a⟩⟨a|, a = 0, 1. A passive version of

the protocol would amount to blindly alternating between the steering
actions with different Vi, which does yield the target state, given that the
steering is applied a sufficient number of times (see Fig. 7.8.b).

To design a feedback policy, we now consider a QSM representation of
the steering kit. It is shown in Fig. 7.8a. Note that this QSM has multiple
quantum subgraphs. Therefore, to employ a feedback policy, it should be
subjected to the subspace-clustering coarse-graining technique, as outlined
in Sec. 7.5.3. It proves useful to cluster the Hilbert space by the total
excitation number, which results in a semiclassical QSM, as desired (Fig.
7.8b). Given the starting state of the evolution, it is then straightforward
to design the policy that leads to the target state:

1. Repeat V1-steering until a click is obtained;

2. Repeat V3-steering until the target state is reached (with fidelity
error below ϵ).

This protocol moves the state of the system from the zero excitation
state to the single-excitation subspace (part 1) and then takes the system
to the W-state in that subspace (part 2). Note that this employs only two
couplings out of four, a simplification that is only possible with an active
steering protocol. In a passive protocol, as all couplings are employed
cyclically, multiple V1-clicks may accidentally occur before the target state
is reached (Fig. 7.9a), and, therefore, other couplings are needed to reduce
the excitation number back to 1. In Fig. 7.9b, the performance histogram
is given for a large number of numerical trials for the active and passive
protocols. Both are run with δt = 0.1 for the target fidelity error ϵ = 0.01.
We are primarily interested in the average runtimes of the active and the
passive protocol. These are Nact ≃ 365 ± 3 and Npas ≃ 4600 ± 100 cycles
of the protocol, respectively, yielding a speedup factor of around 12.5.
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Figure 7.9: Performance of the active navigation protocol based on the QSM
representation of steering towards the W -state, as described in the text. (a)
Typical trajectories of the passive and active protocols, in terms of the excitation
number sector that is occupied by the system state. Displayed are trajectories
that yield the runtimes approximately equal to average runtimes of 365 (active)
and 4600 (passive). The first V1-click in the displayed run of the active protocol
occurs as early as the 14th cycle, which is not legible from the plot. (b) The
histogram over the protocol runtimes, required for a passive and an active
protocol to achieve r=0.01 infidelity to the target state. Similarly to the Fig. 7.2
for AKLT target state, note the clear advantage for each recorded run of the
active protocol compared to the mean duration ≃ 4.6 ·103 of the passive protocol.
Each histogram was obtained from 104 numerical simulations, and truncated at
15000 cycles for better presentation.

7.6 Discussion and conclusions

In this work, we have put forward the concept of measurement-driven
active-decision steering of quantum states. We have developed steering
protocols in which the measurement readouts are used to adjust the
measurement protocol on-the-go, yielding significant acceleration of state
preparation, with improved fidelity, compared with passive steering. The
possibility of exploiting the readouts explored here is the great advantage of
measurement-based steering over drive-and-dissipation (largely equivalent
to “blind” steering) state preparation. While our approach has sweeping
applicability, here we have chosen to focus on active measurement-driven
steering as applied to the most challenging case of many-body quantum
systems with entangled target states.

To satisfy physical (locality) constraints on system-detector couplings,
we have proposed a scheme, based on parent Hamiltonian construction, for
identifying feasible couplings. Employing such couplings, we have devel-
oped and analyzed Hilbert-space-orientation techniques for measurement-
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driven steering. A central ingredient here has been to develop feedback
policies based on detector readouts. One such Hilbert-space path-finding
technique is based on a cost function, evaluating the running fidelity to
the target state. We have shown a substantial (up to 9.5-fold) speedup of
steering, employing this approach for preparation of the ground state of
the AKLT model. A second protocol comprises mapping out the available
measurement actions onto a Quantum State Machine (QSM), using a
coarse-grained version of the corresponding graphs in Hilbert space. We
have given an example of an entangled state preparation which shows
acceleration by a factor of 12.5 compared to passive steering.

While we have limited ourselves here to a few examples, our schemes
are of general applicability. They open the door to the design of efficient
and high-quality state engineering, adiabatic state manipulation, and,
possibly, quantum information processing. Moreover, steering protocols
are subject to errors, both “static” (choice of steering parameters) and
“dynamics” (noise). Active decision-making steering may be designed to
reduce the effect of such errors. One may envision a host of directions to
generalize and develop these ideas. For example, the greedy minimization
of our cost function may be further improved by finding other metrics
of local “steepest decent.” Further, one may systematically investigate
less local (less greedy) optimization of the cost function, e.g., looking
n steps ahead. Another potential advantage of our protocols relies on
the following observation: in the context of passive steering, one imposes
constraints concerning locality (e.g., how many spins can be coupled to a
local detector), and certain types of coupling terms. Given such constraints,
not all target states are reachable. The introduction of active steering may
overcome this handicap of target-state accessibility.

One may combine the dynamics incorporated here with the inherent
unitary evolution of the system at hand (due to a system-only Hamil-
tonian). Consider the context of passive (blind) measurement-induced
steering, which, in the continuum time limit, leads to Lindbladian dynam-
ics. Then, the addition of Hamiltonian dynamics enriches the variability
of steering, allowing, for example, to obtain mixed states by design [213].
It is intriguing to investigate how the addition of Hamiltonian dynamics
extends or improves active steering, thus marrying the frameworks of
closed-loop quantum control for Hamiltonian-based state preparation and
active-decision measurement-based steering.

Further extensions of our approach include applications of QSM protocols
to larger and more complex systems, going beyond a three-qubit setup.
Optimizing such protocols may involve automatization of the creation
and analysis of QSMs, e.g., for finding an optimal basis automatically, in
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7.6 Discussion and conclusions

similarity with quantum annealing, but now at the level of measurement
operators. Finally, one may envision using machine learning to find
more optimized navigation protocols (see [214, 215] for related work in
the context of Hamiltonian feedback and open-loop control). Given the
delayed-reward setting at hand, a reinforcement learning strategy such as
Q-learning [216] or SARSA [217] might be the most appropriate choice.
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Samenvatting

Dit proefschrift behandelt fundamentele aspecten van de bouw en toepas-
sing van digitale quantum computers. Door de wetten van de quantum
mechanica te benutten, kunnen deze apparaten op een efficiënte wijze
sommige problemen oplossen die te moeilijk zijn voor gewone computers.
Hoewel ze veelbelovend zijn, bevinden digitale quantum computers zich
nog in het beginstadium van hun ontwikkeling.

Één manier om deze apparaten te realiseren is om materialen te gebruiken
die deeltjes bevatten die anyonen worden genoemd. Hoewel de theorie
voorspelt dat er met deze deeltjes op een heel robuuste manier gerekend kan
worden (door gebruik te maken van hun niet-Abelse uitwisselingsstatistiek),
is de praktische uitwerking tot nu toe niet mogelijk gebleken. Deze prob-
lematiek is de motivatie voor hoofdstukken 2 en 3, waarin we een nieuwe
strategie ontwikkelen om anyonen te detecteren. De methode maakt ge-
bruik van zogenaamde topologische supergeleiders, die de mogelijkheid
bieden om anyonen langs de rand van het materiaal te laten lopen in
zogenaamde Majorana kanalen. De niet-Abelse uitwisselingsstatistiek kan
gedetecteerd worden door de anyonen te laten passeren langs een mag-
netische vortex in het binnenste van de supergeleider (zie hoofdstuk 2).
Het is ook mogelijk om het ene anyon langs het andere te laten passeren
(zie hoofdstuk 3). Een voordeel van onze implementatie is dat detectie
volledig elektrisch kan plaatsvinden.

Hoofdstuk 4 behandelt hetzelfde thema van de anyonen van een andere
soort, zogenaamde parafermionen. De theorie voorspelt dat deze verschij-
nen aan de randen van een halfgeleider in een sterk magneetveld, als het
fractionele quantum Hall effect optreedt. We beschrijven een methode om
de correlaties (verstrengeling) tussen de parafermionen te meten. Verst-
rengeling is een intrinsiek quantum mechanisch effect, zonder analogon in
de klassieke fysica.

De volgende hoofdstukken betreffen toepassingen van quantum compu-
ters. Hiervoor onderzoeken we de klasse van algoritmes die berusten op
een variatieprincipe. Zo’n principe stelt ons in staat om de grondtoestand
(laagste energie-toestand) van een quantum mechanisch systeem te vinden.
In hoofdstuk 5 onderzoeken we het cruciale onderdeel van het variatie
algoritme, namelijk het vinden van een circuit van qubits dat als eerste
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benadering (“Ansatz”) voor de grondtoestand kan dienen. We ontwikkelen
een methode om het gewenste circuit zo efficiënt mogelijk te realiseren.
Onze nieuwe methode is getest op het Ising model en is aantoonbaar meer
efficiënt dan de bestaande methode. Een andere manier om de grond-
toestand te bereiken is door het natuurlijke proces van afkoelen op de
quantum computer na te bootsen. In hoofdstuk 6 laten we zien dat een
enkele qubit de koelende werking van een warmtebad kan nabootsen. We
ontwikkelen twee verschillende algoritmes voor het koelproces: één die
geschikt is voor de huidige generatie van quantumcomputers, maar een
beperkte nauwkeurigheid heeft, en een andere die nauwkeuriger is maar
hogere eisen stelt aan de quantumcomputer. In hoofdstuk 7 beschrijven
we een techniek om een willekeurige toestand (niet noodzakelijk de grond-
toestand) op een quantumcomputer te realiseren, door gebruik te maken
van een serie van metingen die het systeem maar heel weinig verstoren
(een zogenaamde “zwakke” meting). Dit is een bekende techniek, ons
doel in dit hoofdstuk is om sneller tot de gewenste toestand te geraken.
Hiervoor vergelijken we twee methodes, die beiden de bestaande methodes
een factor tien versnellen.
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This thesis deals with fundamental aspects of the construction and appli-
cation of digital quantum computers. By harnessing the laws of quantum
mechanics, these devices could solve some problems that are too difficult
for ordinary computers. Although promising, digital quantum computers
are still in the early stages of their development.

One way to realize such hardware is to use materials with special
energy excitations called anyons. Theory predicts that these excitations
can encode and process quantum information robustly via their mutual
interchange, also referred to as braiding. However, existing proposals
for anyon braiding prove challenging to realize in an experiment. This
issue motivates chapters 2-4, in which we develop new strategies to detect
anyons.

The first strategy uses a so-called topological superconductor, which
offers the possibility to run anyons (magnetic vortices) along its edge. The
effect of the braiding statistics can be detected by passing these anyons by
an immobile vortex in the interior of the superconductor (see chapter 2).
It is also possible to pass one itinerant anyon by the other (see chapter 3).
An advantage of our implementation is that the detection can be realized
using only electrical fields.

The second strategy concerns parafermions — a different kind of anyon,
which can be realized at the edges of a semiconductor in a strong magnetic
field (so-called fractional Quantum Hall regime). To detect parafermions,
we introduced several quantities that characterize their quantum correla-
tions, or entanglement. One can perform a weak-measurement protocol to
probe these quantities in an experiment.

In addition to the physics of digital quantum hardware, we investigated
the potential strategies for its utilization. One promising application of
quantum computers is simulating a quantum system’s ground state (its
lowest-energy state). Such a simulation is a computational problem that is
highly relevant to material science and quantum chemistry. Chapters 5-7
introduce several new approaches to preparing ground states using digital
quantum computers.

Chapter 5 is concerned with so-called variational quantum algorithms.
These algorithms employ a tunable quantum circuit as a ground state
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template (“ansatz”), approximating the ground state of a simulated system
by optimizing the output energy of the circuit. We focus on constructing
efficient ansatz circuits. The first step is designing an ansatz that provably
spans the space of all quantum states via a minimal number of digital
quantum operations. This ansatz allows a reduction to more practical
ansatzes, in agreement with the linked-cluster theorem, which certifies
the efficiency of the reduced ansatz. We confirm the efficiency of our
method compared to existing alternatives by a numerical study of the
weakly coupled quantum Ising model.

Another approach to preparing a ground state on a quantum computer is
to simulate the natural process of cooling. Chapter 6 outlines a cooling-like
algorithm that simulates a cold bath with a single qubit. We pin down the
critical challenges of this approach, which come from the limited simulation
time and the digital nature of quantum hardware. We propose two variants
of Quantum Digital Cooling algorithms. The first – BangBang approach
– is suitable for near-term applications but it is inaccurate. The second
approach – LogSweep – aims to be asymptotically accurate but is only
suitable for applications in the fault-tolerant regime. Numerically, applying
Quantum Digital Cooling to the quantum Ising model shows a scalable
performance of LogSweep within a broad interval of model parameters.

Quantum hardware also allows one to prepare the desired quantum state
by employing weak measurements. In chapter 7, we propose accelerating
such a method of state preparation by deciding the subsequently applied
measurements on the go. Because of the vastness of the space of quantum
states, optimizing this decision proves challenging. We offer two heuristic
approaches to this “navigation” problem. A “compass” method uses the
geometrical distance to the target state and aims to reduce it in a greedy
fashion. The second method uses a graph, representing measurement
operations with edges and quantum states with vertices. Using a numerical
test, we identify the potential to accelerate the state preparation at least
10-fold by each of these two heuristics.
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