
Benchmarking discrete optimization heuristics: from building
a sound experimental environment to algorithm configuration
Ye, F.

Citation
Ye, F. (2022, June 1). Benchmarking discrete optimization heuristics: from
building a sound experimental environment to algorithm configuration.
Retrieved from https://hdl.handle.net/1887/3304813
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3304813
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3304813


Chapter 7

Dynamic Algorithm Selection

We analyze in this chapter how well existing benchmark data can be used for the
selection of suitable algorithm combinations. Precisely, we investigate using dynamic
crossover probability for the (µ + λ) GA and study “one-shot” dynamic algorithm
selection (dynAS) policies based on the results of the benchmarking study presented
in Section 5.2. The study in this chapter highlights the research topics for the future
work of dynAS, namely automatic detection of alternating timing and “warm-start”
strategies for adjusting parameters.

7.1 Background

It is well known that different algorithms or different instantiations of the same al-
gorithm are best suited for different problems and even for different stages of the
optimization process. Automated algorithm selection [95] as well as dynamic parame-
ter selection [92] are therefore intensively studied meta-optimization problems in EC.
However, the former has a strong requirement on being able to run different algo-
rithms (or algorithm configurations) prior to making a decision which algorithm to
apply to the problem at hand. Parameter control and related concepts (including
hyper-heuristics, adaptive operator control, etc.), in contrast, assume that the selec-
tion has to be made on the fly, without leveraging existing data from previous or
related runs. With the rise of artificial intelligence methods, EC is currently facing a
paradigm shift, in that we aim to actively exploit existing performance data to select
which algorithms to apply, and how to possibly adjust them during the run. We are,
however, still far from achieving a fully automated informed online selection.

123



7.2. Dynamic Crossover Probability Selection: A Study Case on
LeadingOnes

We study in this chapter how well we can predict from existing performance data
which algorithm instances to combine for a given problem at hand. While we do allow
for switching between different algorithms, the decision when to switch has to be made
prior to the run, and depends, in our case, on the solution quality of the evaluated
solution candidates. More precisely, we use the benchmarking data in Section 5.2 as
starting point to investigate, for each of the 25 individual problems, how well we can
predict which single-switch algorithm combinations would show good performance.
For some functions we easily obtain algorithm combinations that outperform the best
static algorithms. For other functions the results are rather mixed. On three functions,
none of the 100 tested single-switch algorithm combinations was able to outperform
the best static solver. The prediction quality of the approach suggested in [153] varies
a lot between the different functions. While for LeadingOnes, for example, the
performance predictions are rather accurate, large discrepancies between predicted
and actual performance can be observed for more complex function. In particular for
multi-modal functions the approach can get trapped by a first algorithm that is very
efficient in converging to a local optimum from which the second algorithm cannot
escape easily.

7.2 Dynamic Crossover Probability Selection: A

Study Case on LeadingOnes

Based on our finding in [170] (see Section 4.3) that, on LeadingOnes, the optimal
crossover probability of Algorithm 8 is dynamic along the problem dimension and pop-
ulation size, we start in this section with an investigation of using dynamic crossover
probabilities for the (µ+ λ) GA.

To obtain the “optimal” crossover probability at different stages of the optimization
process, we test the (10 + 10) GA using standard bit mutation with p = 1/n and
uniform crossover with different pc ∈ {0.1k | k ∈ [9]}. Algorithms run at the stages
of fitness value f ∈ [s, s + 5], s ∈ {5i | i ∈ [19]} on 100-dimensional LeadingOnes.
Practically, we initialize the population of the GAs with all the individual’s fitness
values equal to s, and the algorithms terminate once a solution with f(x) ≥ s + 5 is
found.

Figure 7.1 plots function evaluations used by the GAs at each stage. It shows that
the GA with pc = 0 uses the least function evaluations at the early stages s ≤ 40, but
other GAs with pc > 0 use less function evaluations as s is increasing. Therefore, we

124



Chapter 7. Dynamic Algorithm Selection

expect to improve the performance of the (µ+λ) GA by using the “optimal” crossover
probabilities at all the stages of the optimization process. Figure 7.2 plots the fixed-
target ERTs of GAs with static pc and dynamic ones. The dynamic policy selects
the corresponding best pc at each stage. Practically, when the GA finds a solution
with s1 ≤ f(x) < s2, s2 = s1 + 5, s ∈ {5i | i ∈ [19]}, the pc will be adjusted by the
corresponding best value in Figure 7.1.

Figure 7.2 shows that the GA with dynamic pc outperforms other GAs along
the entire optimization process. The dynamic policy successfully hits the optimum
f(x) = 100 using the smallest ERT 7, 194, while ERT of the best runner-up (the GA
with pc = 0.2) is 7, 661. This corresponds to a 6% improvement of the dynamic GA
over the best static one. This performance empirically proves that the GA can benefit
from dynamic crossover probability, and it displays a successful case of applying the
dynAS for the GA. However, the dynAS problem is not usually coming with the ideal
condition that candidate algorithms differ by only one parameter. Therefore, we are
working on the GAs with more combinations of parameters in the next section.

250

500

750

1000

1250

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Initial f(x)

F
un

ct
io

n 
E

va
lu

at
io

ns

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

Figure 7.1: Average number of function evaluations needed by different (10+10) GAs
to find a solution y with f(y) ≥ s+5 on the 100-dimensional LeadingOnes function
when all ten points in the initial population are uniformly chosen from the set of points
x that satisfy f(x) = s, for s ∈ {5i | i ∈ [19]}. The GAs differ only in the crossover
probability pc ∈ {0.1k | k ∈ [9]} (different lines). Results are averaged of 1, 000
independent runs. The connecting lines are only meant to help visual interpretation,
the data points are only at the values 0, 5, 10, . . . , 95.

125



7.3. Dynamic Algorithm Section for the PBO Problems

0 20 40 60 80 100

0

0.2e+4

0.4e+4

0.6e+4

0.8e+4

1e+4

1.2e+4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 dynamic
Best-so-far f(x)-value

Fu
nc

tio
n 

Ev
al

ua
tio

ns

Figure 7.2: Fixed-target ERTs of GAs on 100-dimensional LeadingOnes. The legend
presents values of pc, and the dynamic method adjusts its pc to the optimal value at
each target f(x) = s, s ∈ {5i | i ∈ [19]}, based on the result in Figure 7.1. Results are
average of 100 independent runs.

7.3 Dynamic Algorithm Section for the PBO Prob-

lems

Since the LeadingOnes case shows significant improvement by using dynamic
crossover probabilities, which is a particular case of the dynAS, we study the be-
havior of the dynAS on a broader range of problems and GAs. We take as input the
benchmarking data from Section 5.2, which comprise detailed performance records for
80 genetic algorithms on the 25 functions provided by IOHprofiler. We focus on
ERT as performance measure. Detailed data can be found in [166].

Following the approach suggested in [153] we compute a “theoretical” ERT value for
all combinations (A1, A2, ϕs), where A1 is the first algorithm, A2 the second, and ϕs

the target value at which we switch from A1 to A2. To this end, we simply compute
ERT(A1, P, ϕs) + ERT(A2, P, ϕf ) − ERT(A2, P, ϕs), where all these ERT values are
based on the performance records provided in Section 5.2. In total, we consider 42
possible switching points ϕs, which we select within the interval [ϕm, ϕf ] between
the smallest fitness value ϕm of the problem and the best found target ϕf according
to Table 5.2. We consider evenly spaced targets, for the original and for the log-scaled
interval, respectively. For each problem, we consider only algorithms that hit the
final target value with probability at least 80% according to the data from Section 5.2.
Using this approach, we select for each problem the 100 best combinations (A1, A2, ϕs)

126



Chapter 7. Dynamic Algorithm Selection

−0.50

−0.25

0.00

0.25

0.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Problem ID

R
el

at
iv

e 
E

R
T

Figure 7.3: Relative ERT values of 100 1-switch combinations (A1, A2, ϕs) (dERT ) for
23 out of 25 IOHprofiler problems in dimension d = 100, compared to the ERT of the
best static GAs according to the results in Section 5.2 (sERT ). Each black dot repre-
sents one ERT value. The relative deviation is calculated by (dERT − sERT )/sERT
so that negative values (below the red line) correspond to an advantage of the dynamic
combination over the best static algorithm. We only display values between −0.5 and
0.5 so that the results of F24-F25 are missing here with values larger than 1. All ERT
values are based on 100 independent runs.

and we then run the combination 100 independent times on the problem that they
have been selected for.

In Figure 7.3 we compare the so-obtained ERT values with the best ERT value
reported in Section 5.2, which we refer to as the best static algorithm (BSA). For
combinations (A1, A2, ϕs) for which the parent population sizes µ1 of A1 is larger than
the parent population size µ2 of A2 we selected the best µ2 points to initialize the
parent population of A2. Where µ1 < µ2, the new parent population comprises all
µ1 points, as additional ⌊µ2/2⌋ − µ1 copies of the best points, and ⌈µ2/2⌉ randomly
added individuals.

For some of the problems (e.g., F1, F2, F7, F11-14, F16-23)), the ERT of several
combinations (A1, A2, ϕs) outperform that of the BSA. For other functions, and in
particular for F10, F24, and F25, none of the combinations (A1, A2, ϕs) is able to
outperform the BSA.

127



7.4. Summary

4 6 8 10 12 14 16 18

1

10

100

1e+3

1e+4

1e+5

1e+6

1e+7 (10+10)-two-point-fGA
(100+100)-two-point-fGA
dynGA

Best-so-far f(x)-value

Fu
nc

tio
n 

Ev
al

ua
tio

ns

Figure 7.4: Fixed-target ERTs of GAs on F24 in dimension d = 100. The dynGA
switches from the (10 + 10)-two-point-fGA to the (100 + 100)-two-point-fGA at the
target f(x) = 15.81. Results are from 100 independent runs.

Local Optima are Deceptive An intuitive explanation for the cases where dynAS
fails is that this is caused by local optima. Recall that in the computation of the
predicted ERT, the contribution of A1 to the predicted ERT is decided by its ERT
hitting the target f(x) = ϕs. However, using the ERT as the cost metric, we can not
obtain information to estimate whether the algorithm is trapped or around a local
optimum.

Figure 7.4 plots the fixed-target result of the best tested dynamic genetic algorithm
(dynGA) on F24, which uses a (10 + 10)-two-point-fGA at first and the switches to a
(100 + 100)-two-point-fGA. By using a small population size 10 initially, the dynGA
converges to the switching point (f(x) = 15.81) fast, but it is trapped there and could
not follow the original trend of the (100+100) GA later. We do not solve this problem
here, but it is interesting to spot this issue for future work.

7.4 Summary

We have investigated in this chapter possibilities to leverage existing benchmark data
to derive switch-once dynamic algorithm selection policies. While for some cases the
“theoretical” approach suggested in [153] could indeed predict combinations that out-
performed the best static solver, the results are less positive for others. One obstacle
that hinders an accurate performance prediction are local optima: when the first al-

128



Chapter 7. Dynamic Algorithm Selection

gorithm is very good at converging to a local optimum, it is likely to be chosen as A1.
It is then important, however, to continue the search with an algorithm that has a
good enough exploration power to escape the local optimum. This ability, however,
seems hard to infer from the pure performance profiles, and may require a “human in
the loop”.

Going forward, our long-term goal is the automated detection of situations in
which switching from one algorithm to another can be beneficial. To this end, we
will further investigate efficient strategies to warm-start the algorithms by actively
using the information accumulated thus far. In the here-presented study, we have
used ERT values as performance measure and as indicator to select which algorithm
combinations to execute. In future work we will consider other performance measures,
and in particular those that measure the anytime performance of the algorithms.

129



7.4. Summary

130


