
Benchmarking discrete optimization heuristics: from building
a sound experimental environment to algorithm configuration
Ye, F.

Citation
Ye, F. (2022, June 1). Benchmarking discrete optimization heuristics: from
building a sound experimental environment to algorithm configuration.
Retrieved from https://hdl.handle.net/1887/3304813

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3304813

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3304813

Chapter 6

Automatic Configuration of
Genetic Algorithms

We compare in this chapter the results from Section 5.2 with those obtained from three
different types of automated algorithm configuration methods, one based on iterated
racing (we use Irace [111]), one surrogate-assisted technique (we use the mixed-integer
parallel efficient global optimization MIP-EGO [151]), and a classic heuristic opti-
mization method (we use the mixed-integer evolutionary strategies MIES suggested
in [109]). Also, we configure the (µ+ λ) GA considering two different objectives, i.e.,
expected running time and the area under empirical cumulative distribution function
curve.

6.1 Background

It was discussed in Section 5.2 that there is a long debate about the effectiveness of
the two main variators, crossover and mutation, and their combinations [118, 140].
Several works study the synergy of mutation and crossover, both by empirical and by
theoretical means, see [34, 63, 85, 121] and [144], respectively, as well as references
mentioned therein. However, most of these results focus on specific algorithms and
problems. Widely accepted guidelines for their deployment are scarce, leading to
a situation in which users often rely on their own experience. To reduce the bias
inherent to such manual decisions, a number of automated algorithm configuration
techniques have been developed, to assist the user with data-driven suggestions. To

99

6.2. Background

deploy these techniques, one formulates the operator choice and/or their intensity as
a meta-optimization problem, widely referred to as the algorithm configuration (AC)
or the hyperparameter optimization problem.

The AC problem was classically addressed by standard search heuristics such as
mixed-integer evolution strategies [4, 71, 109]. More specific AC tools have been devel-
oped in recent years, among them surrogate-based models (e.g., SPOT [13], SMAC [82],
MIP-EGO [151]), racing-based methods (Irace [111], F-race [18]) and optimization-
based methods (ParamILS [83]).

The result in this chapter is built on Section 5.2 in which we analyzed a configurable
framework of (µ+λ) GAs that scales the relevance of mutation and crossover by means
of the crossover probability pc ∈ [0, 1]. Recall that, in Algorithm 8, the framework
creates new solution candidates by either applying mutation (with probability 1− pc)
or by applying crossover (with probability pc). This way, it can separate the influence
of these operators from each other. While we have studied several operator choices
in Section 5.2 by means of grid search, we consider here only one type of crossover
(uniform crossover) and one type of mutation (standard bit mutation) to keep the
search space manageable and to better highlight our key findings.

Note that, to distinguish it from the budget of the configurators, we denote the
budget of the GAs as cutoff time in the following.

Automated algorithm configuration for improving the anytime performance of algo-
rithms has been applied in several works, both with respect to classical CPU time (e.g.,
for the travel salesperson problem [20], for MAX-MIN ant systems, and for mixed-
integer programming [112]) and for the here-considered function evaluation budgets
(see [3] for a recent example). However, we are not aware of any works using anytime
measures with the objective to identify configurations that minimize ERT values. On
the other hand, previous work has studied the impact of the cutoff time for algorithm
configurators [73, 74]. In [74], the authors conclude that considering the best-found
fitness is more efficient than considering the expected running time. Our work consid-
ers AUC, a measure that takes both the found fitness and running time into account,
and we conclude that the cutoff time can influence AUC less, when compared to ERT.

All our data is publicly available at [169]. Section 4.3 describes the configurable
(µ+λ) GA (Algorithm 13). The benchmark problems were introduced in Section 2.5,
and the cost metrics used to evaluate the algorithms were explained in Section 2.4.

100

Chapter 6. Automatic Configuration of Genetic Algorithms

6.2 Configurators

We briefly introduce the three AC methods that are applied for configuring the
(µ + λ) GA: Irace [111], a mixed-integer parallel efficient global optimization (MIP-
EGO [155]), and the mixed-integer evolution strategy (MIES [109]), which we briefly
describe in the following paragraphs. All configurators work with a user-defined con-
figuration budget, which is the maximal number of algorithm runs that the AC method
is allowed to perform before recommending its final outcome.

Irace [111] is a so-called iterated racing method designed for hyperparameter opti-
mization. The main steps of Irace are (1) sampling values of parameters from particular
distributions, after which (2) the algorithms with the corresponding sampled parame-
ter settings are evaluated across a set of instances, then (3) elitist ones will be selected
by the racing method and (4) the sampling distributions are updated based on the
elitist configurations, to bias the sampling towards the elitist space. The sampling dis-
tributions of parameters are independent of each other unless user-defined constraints
and conditions exist. For the racing method, the sampled parameter settings are eval-
uated on instances. After several steps, parameter settings that are statistically worse
than others are discarded. At the end of the configuration process, one or several elite
configurations are returned to the user, along with their performance observed during
the configuration.

Efficient global optimization (EGO), also known as Bayesian optimization,
is designed to solve costly-to-evaluate global optimization problems. For our config-
uration problem, we use an EGO-variant called mixed-integer parallel EGO (MIP-
EGO [155]) capable of handling mixed-integer search space. EGO starts by randomly
sampling solution candidates {θ1, θ2, . . .} and evaluating their fitness {c1, c2, . . .}.
From these observations EGO learns a predictive distribution of the fitness value for
each unseen configuration using stochastic models, e.g., random forests or Gaussian
processes. Aiming at balancing the trade-off between the accuracy and uncertainty of
this predictive distribution, EGO uses a so-called acquisition function to decide which
solution candidates to sample next. Common acquisition functions are expected im-
provement and probability of improvement; see [67, 137] for an overview. For this
work, we use the moment-generating function of improvement (MGFI) [155], which
is defined as the weighted combination of all moments of the predictive distribution.
For the weights, we took a robust setting in [154], obtained by an extensive empirical
study on the BBOB problem set. To learn the predictive distribution, we choose a
random forest model as it deals with the mixed-integer/categorical search space more

101

6.3. Experimental Results

naturally than Gaussian processes.

The mixed-integer evolution strategy (MIES) uses principles from evolution
strategies for handling continuous, discrete, and nominal parameters by using self-
adaptive mutation operators for all three parameter types [109]. MIES starts with
a randomly initialized parent population of size µ, and then it generates λ offspring
candidates for each generation iteratively. Offspring are generated by recombining
two randomly selected parents and then mutating the solution resulting from the
recombination, after which (µ, λ) selection is applied to the offspring population, i.e.,
the µ best of the λ offspring form the parent population of the next iteration.

6.3 Experimental Results

6.3.1 Experimental Setup

Each AC method is granted a budget of 5, 000 target runs, where each target run
corresponds to ten independent runs of the (µ + λ) GA using the configuration that
the AC method wishes to evaluate. As previously mentioned, we use ERT and AUC
as performance metric, and these values are computed from the 10 independent runs.
Irace requires a set of instances for the tuning process. We imitate these instances
by the independent runs of the (stochastic) solvers. This is in line with previous
approaches, suggested, for example, in [32]. MIP-EGO starts with 10 initial candidates
by the default setting of the package [155]. We use a (4, 28) MIES, following the
parameter settings suggested in [109].

To obtain a useful baseline against which we can compare other algorithms, we
configure the (µ+λ) GA on each PBO problem separately. We consider n = 100 for all
problems and take ERT or AUC (see Section 2.4) calculated from 10 independent GA
runs as the cost metric, respectively. Also, we perform 100 independent validation runs
with the suggested parameter settings from a configurator, which is meant to mitigate
the randomness of the cost metric, thereby producing a fair empirical comparison. All
experimental data discussed later are obtained using this validation procedure.

For evaluating GA candidates during the configuration process, the ERT values
are calculated with respect to the targets listed in Table 5.2 and to the cutoff time of
50, 000 function evaluations. This is half the budget used in Section 5.2, but, according
to the results presented there, our cutoff time is still larger than the number of function
evaluations needed to hit the corresponding targets – except for F18, which is a very
challenging problem.

102

Chapter 6. Automatic Configuration of Genetic Algorithms

For the AUC, the set of targets are 100 values, equally spaced in the interval
[ϕmin, ϕmax], where ϕmax is equal to the ERT targets listed in Table 5.2 and ϕmin

is 0 except for the following functions: ϕmin = −19, 590 for function F22, ϕmin =

−3, 950, 000 for function F23, and ϕmin = −1 for function F25. We evaluate the AUC
for each point in [50, 000], i.e., in the notation of Definition 2.5 we use T = [50, 000].

The configuration space of the AC problem is Θ = {µ, λ, pc, pm}, where µ ∈ [100]

is the parent population size, λ ∈ [100] is the offspring population size, pc ∈ [0, 1]

is the crossover probability, and pm ∈ [0.005, 0.5] is the mutation rate. A positive
crossover probability pc > 0 requires µ > 1, which otherwise renders a configuration
infeasible. The results for the grid search are based on our work in Section 5.2, where
we used µ ∈ {10, 50, 100}, λ ∈ {1, µ/2, µ}, pc ∈ {0, 0.5}, and pm = 0.01. Note that
this is a considerably smaller search space, whose full enumeration requires only 18

different configurations, which is much less than the budget allocated to the automated
configuration techniques. We will nevertheless observe that for some problems none of
the automated configurators could find hyperparameter settings that are equally good
as those provided by this small grid search.

103

6.3. Experimental Results
T
ab

le
6.

1:
C

on
fig

ur
at

io
ns

of
th

e
(µ

+
λ
)

G
A

ob
ta

in
ed

by
gr

id
se

ar
ch

,
Ir

ac
e,

M
IP

-E
G

O
,
an

d
M

IE
S.

R
es

ul
ts

fo
r

m
ax

im
iz

in
g

A
U

C
ar

e
ob

ta
in

ed
in

de
pe

nd
en

tl
y

fr
om

th
os

e
ob

ta
in

ed
fo

r
m

in
im

iz
in

g
E

R
T

.

F
C

G
ri

d
S
ea

rc
h

Ir
ac

e
M

IP
-E

G
O

M
IE

S
µ

λ
p
m

p
c

µ
λ

p
m

p
c

µ
λ

p
m

p
c

µ
λ

p
m

p
c

1
E

R
T

10
1

0.
01

0.
5

15
5

0.
00

7
0.

78
2

3
4

0.
02

4
0.

77
4

2
2

0.
00

6
0.

77
8

A
U

C
10

1
0.

01
0.

5
1

1
0.

00
6

0
3

11
0.

00
6

0.
20

8
2

2
0.

00
5

0.
52

1

2
E

R
T

10
1

0.
01

0.
5

1
39

0.
00

6
0

2
9

0.
00

6
0.

00
8

2
3

0.
00

5
0.

02
6

A
U

C
10

1
0.

01
0

1
34

0.
01

3
0

22
5

0.
00

9
0.

46
1

2
1

0.
00

8
0.

00
5

3
E

R
T

10
1

0.
01

0.
5

4
32

0.
00

6
0.

86
7

3
24

0.
00

9
0.

39
1

2
3

0.
00

5
0.

35
7

A
U

C
10

1
0.

01
0.

5
4

23
0.

01
1

0.
55

0
2

3
0.

00
7

0.
51

1
2

1
0.

00
6

0.
20

3

4
E

R
T

10
1

0.
01

0.
5

1
1

0.
01

3
0

2
3

0.
02

2
0.

65
5

2
2

0.
02

4
0.

19
8

A
U

C
10

1
0.

01
0.

5
1

1
0.

01
3

0
12

9
0.

05
2

0.
66

8
2

1
0.

05
5

0.
61

4

5
E

R
T

10
5

0.
01

0.
5

3
17

0.
00

5
0.

41
5

4
2

0.
02

6
0.

29
4

2
3

0.
00

6
0.

32
1

A
U

C
10

1
0.

01
0.

5
8

8
0.

01
2

0.
88

2
11

20
0.

00
8

0.
31

8
2

2
0.

00
6

0.
35

8

6
E

R
T

10
10

0.
01

0
30

23
0.

10
4

0.
84

9
3

11
0.

03
1

0.
03

3
24

12
0.

13
5

0.
90

8
A

U
C

10
10

0.
01

0.
5

1
1

0.
03

3
0

2
1

0.
03

2
0.

42
4

2
3

0.
05

9
0.

23
6

7
E

R
T

50
50

0.
01

0
45

22
0.

46
0

0.
88

7
95

46
0.

01
8

0.
97

1
54

18
0.

26
8

0.
90

7
A

U
C

10
10

0.
01

0
1

58
0.

02
8

0
2

20
0.

01
6

0.
08

2
23

27
0.

02
5

0.
67

2

8
E

R
T

10
10

0.
01

0.
5

25
48

0.
01

4
0.

64
3

78
7

0.
08

7
0.

99
1

5
9

0.
00

9
0.

50
7

A
U

C
10

10
0.

01
0.

5
3

6
0.

01
5

0.
44

1
11

12
0.

00
7

0.
49

9
21

25
0.

01
1

0.
80

0

9
E

R
T

10
0

50
0.

01
0.

5
64

90
0.

05
6

0.
93

8
76

10
0.

48
8

0.
97

7
54

32
0.

01
3

0.
64

3
A

U
C

50
25

0.
01

0.
5

46
40

0.
02

9
0.

81
5

6
7

0.
02

0
0.

15
8

18
25

0.
02

5
0.

50
5

10
E

R
T

10
0

50
0.

01
0.

5
95

69
0.

32
5

0.
97

8
87

84
0.

47
8

0.
96

2
79

17
0.

05
6

0.
32

0
A

U
C

10
0

1
0.

01
0.

5
99

13
0.

08
5

0.
98

2
76

16
0.

32
1

0.
98

6
92

32
0.

41
3

0.
98

9

11
E

R
T

10
1

0.
01

0
1

72
0.

03
1

0
4

57
0.

03
1

0.
00

4
2

2
0.

02
5

0.
00

0
A

U
C

10
1

0.
01

0
1

13
0.

03
5

0
2

1
0.

04
0

0.
00

3
2

1
0.

04
2

0.
01

6

12
E

R
T

10
1

0.
01

0
1

32
0.

00
6

0
4

1
0.

01
2

0.
01

6
2

1
0.

00
5

0.
00

0

104

Chapter 6. Automatic Configuration of Genetic Algorithms
A

U
C

10
1

0.
01

0
1

29
0.

01
0

0
2

1
0.

01
7

0.
01

6
2

1
0.

01
4

0.
00

5

13
E

R
T

10
10

0.
01

0
1

10
0.

04
4

0
10

19
0.

03
2

0.
28

2
2

5
0.

03
2

0.
00

8
A

U
C

10
10

0.
01

0
1

1
0.

04
4

0
2

4
0.

03
8

0.
02

3
3

8
0.

04
7

0.
03

6

14
E

R
T

10
0

10
0

0.
01

0.
5

1
60

0.
34

3
0

57
34

0.
07

7
0.

98
8

57
23

0.
02

8
0.

01
2

A
U

C
10

0
50

0.
01

0
48

83
0.

40
9

0.
81

2
5

80
0.

45
6

0.
28

7
54

9
0.

48
1

0.
48

0

15
E

R
T

10
10

0.
01

0
5

64
0.

01
4

0.
04

2
5

15
0.

00
8

0.
01

8
6

67
0.

01
1

0.
02

3
A

U
C

10
10

0.
01

0
21

71
0.

02
0

0.
16

5
3

9
0.

01
6

0.
07

8
2

3
0.

01
1

0.
02

4

16
E

R
T

10
10

0.
01

0
6

34
0.

01
1

0.
02

5
2

2
0.

00
6

0.
06

9
2

4
0.

00
5

0.
00

2
A

U
C

10
10

0.
01

0
1

1
0.

01
0

0.
00

0
22

66
0.

00
9

0.
13

8
2

3
0.

00
7

0.
00

1

17
E

R
T

10
10

0.
01

0.
5

60
57

0.
13

3
0.

51
2

79
62

0.
34

5
0.

43
0

2
3

0.
00

6
0.

00
3

A
U

C
10

10
0.

01
0

1
1

0.
01

9
0

2
5

0.
01

2
0.

00
7

2
4

0.
01

9
0.

03
4

18
E

R
T

10
0

50
0.

01
0

50
44

0.
00

6
0.

01
0

13
77

0.
01

9
0.

00
2

26
21

0.
00

6
0.

00
2

A
U

C
10

5
0.

01
0

20
10

0.
00

5
0.

03
1

2
22

0.
00

6
0.

01
1

23
83

0.
00

6
0.

01
0

19
E

R
T

10
10

0.
01

0.
5

98
94

0.
17

4
0.

32
4

2
5

0.
01

4
0.

28
6

2
12

0.
00

6
0.

06
1

A
U

C
50

50
0.

01
0

1
5

0.
00

5
0

7
18

0.
01

4
0.

83
4

2
7

0.
00

5
0.

13
3

20
E

R
T

50
50

0.
01

0
1

32
0.

00
8

0
6

53
0.

00
7

0.
01

2
5

66
0.

00
5

0.
03

3
A

U
C

10
10

0.
01

0
1

30
0.

01
3

0
5

7
0.

01
1

0.
48

3
6

75
0.

00
6

0.
09

5

21
E

R
T

10
5

0.
01

0
1

86
0.

01
4

0
7

52
0.

00
9

0.
14

4
5

66
0.

00
9

0.
07

7
A

U
C

10
10

0.
01

0
4

33
0.

00
6

0.
41

2
7

9
0.

00
6

0.
83

3
2

3
0.

00
5

0.
21

9

22
E

R
T

10
0

10
0

0.
01

0
16

48
0.

02
5

0.
78

3
18

12
0.

01
9

0.
82

0
2

3
0.

00
5

0.
27

0
A

U
C

10
10

0.
01

0.
5

1
1

0.
02

0
0

2
3

0.
00

7
0.

25
0

2
2

0.
01

0
0.

08
8

23
E

R
T

10
1

0.
01

0
62

39
0.

00
6

0.
25

2
10

40
0.

01
3

0.
01

0
5

1
0.

00
6

0.
00

6
A

U
C

10
5

0.
01

0
29

25
0.

00
5

0.
01

6
4

4
0.

00
6

0.
17

0
8

16
0.

00
5

0.
03

8

24
E

R
T

10
0

50
0.

01
0

53
85

0.
02

5
0.

00
4

58
45

0.
03

1
0.

07
7

21
75

0.
06

0
0.

01
4

A
U

C
10

5
0.

01
0

7
86

0.
02

6
0.

77
6

8
3

0.
03

2
0.

27
7

8
33

0.
04

5
0.

27
3

25
E

R
T

50
1

0.
01

0
13

52
0.

29
6

0.
17

0
68

91
0.

02
4

0.
80

1
98

40
0.

00
9

0.
94

1
A

U
C

10
10

0.
01

0
26

53
0.

02
8

0.
79

0
4

3
0.

02
3

0.
10

7
9

1
0.

02
1

0.
53

5

105

6.3. Experimental Results
T
ab

le
6.

2:
A

bs
ol

ut
e

E
R
T

an
d

A
U

C
va

lu
es

fo
r
th

e
(1
+
1
)
E

A
an

d
re

la
ti

ve
im

pr
ov

em
en

t
of

E
R
T

an
d

A
U

C
fo

r
th

e
co

nfi
gu

ra
ti

on
s

su
gg

es
te

d
by

th
e

fo
ur

co
nfi

gu
ra

ti
on

m
et

ho
ds

,i
n

co
m

pa
ri

so
n

ag
ai

ns
t

th
e
(1

+
1
)

E
A

va
lu

es
.

C
om

pa
re

d
to

th
e

E
R
T

an
d

A
U

C
va

lu
es

of
th

e
(1

+
1)

E
A

on
ea

ch
pr

ob
le

m
(i

nd
ic

at
ed

by
“E

A
”)

,
th

e
re

la
ti

ve
im

pr
ov

em
en

t
ob

ta
in

ed
fr

om
th

e
au

to
m

at
ed

co
nfi

gu
ra

ti
on

th
e

ar
e

sh
ow

n
fo

r
ea

ch
A

C
m

et
ho

d,
w

he
re

bo
th

m
ea

su
re

s
ar

e
ca

lc
ul

at
ed

fr
om

hi
tt

in
g

ti
m

es
of

1
0
0

va
lid

at
io

n
ru

ns
fo

r
(1

+
1)

E
A

an
d

A
C

m
et

ho
ds

.
W

e
al

so
in

di
ca

te
th

e
st

at
is

ti
ca

ls
ig

ni
fic

an
ce

in
th

e
em

pi
ri

ca
ld

is
tr

ib
ut

io
ns

of
th

e
hi

tt
in

g
ti

m
e

(∗
∗∗

∗
fo

r
p
<

0.
00
1
,
∗∗

∗
fo

r
p
<

0.
0
1
,
∗∗

fo
r
<

0
.0
1
,
an

d
∗

fo
r
p
<

0
.0
5
)

fo
r

ea
ch

pa
ir

of
th

e
A

C
re

su
lt

an
d

th
at

of
th

e
(1

+
1)

E
A

.T
he

M
an

n–
W

hi
tn

ey
U

te
st

is
ap

pl
ie

d
w

it
h

th
e

B
en

ja
m

in
ia

nd
H

oc
hb

er
g

m
et

ho
d

fo
r

al
l1

20
pa

ir
w

is
e

co
m

pa
ri

so
ns

to
co

nt
ro

l
th

e
fa

ls
e

di
sc

ov
er

y
ra

te
.

R
un

s
ar

e
cu

t
off

at
5
0
0
0
0

ev
al

ua
ti

on
s

if
it

do
es

no
t

hi
t

th
e

fin
al

ta
rg

et
.

T
he

si
gn

ifi
ca

nt
co

m
pa

ri
so

ns
ar

e
co

lo
ur

-c
od

ed
w

it
h

re
sp

ec
t

to
th

e
re

la
ti

ve
im

pr
ov

em
en

t,
w

he
re

a
da

rk
er

co
lo

ur
si

gn
ifi

es
a

m
or

e
co

ns
id

er
ab

le
im

pr
ov

em
en

t.

F
E
R
T

A
U

C
E
A

G
S

Ir
ac

e
M

IP
-E

G
O

M
IE

S
E
A

G
S

Ir
ac

e
M

IP
-E

G
O

M
IE

S
1

66
5

-0
.5

4∗
∗∗

∗
-0

.4
7∗

∗∗
∗

-0
.3

4∗
∗∗

∗
0.

01
0.

99
87

-0
.1

1∗
∗∗

∗
-0

.4
9∗

∗
-1

.2
1∗

∗∗
∗

-0
.7

0
2

5
,5
7
4

-0
.6

4∗
∗∗

∗
-0

.1
2∗

∗∗
∗

-0
.0

3
0.

05
0.

95
14

-1
.3

7∗
∗∗

∗
-0

.5
1∗

∗∗
∗

-4
.6

4∗
∗∗

∗
0.

25
3

69
4

-0
.6

2∗
∗∗

∗
-0

.5
3∗

∗∗
∗

-0
.7

8∗
∗∗

∗
0.

03
0.

99
89

-0
.1

1∗
∗∗

∗
-1

.1
2∗

∗∗
∗

-0
.5

7
-0

.5
0

4
34

4
-0

.8
7∗

∗∗
∗

-0
.0

4
-0

.3
0∗

∗∗
∗

-0
.1

1∗
0.

99
9

-0
.0

6∗
∗∗

∗
-0

.6
6

-1
.2

0∗
∗∗

∗
-0

.7
3∗

∗∗
∗

5
59

8
-0

.5
0∗

∗∗
∗

-0
.4

1∗
∗∗

∗
-0

.5
5∗

∗∗
∗

0.
04

0.
99

87
-0

.1
1∗

∗∗
∗

-1
.1

7∗
∗∗

∗
-1

.9
0∗

∗∗
∗

-0
.6

8∗
∗

6
27

1
-1

.9
6∗

∗∗
∗

-0
.9

1∗
∗∗

∗
-0

.5
8∗

∗∗
∗

-7
.6

6∗
∗∗

∗
0.

99
93

-0
.1

1∗
∗∗

∗
-0

.4
3

-1
.3

2∗
∗∗

∗
-0

.5
4∗

∗∗

7
In

f
—

—
—

In
f

0.
89

95
-0

.3
3

1.
69

0.
70

0.
24

8
7
,9
2
6

0.
78

∗∗
∗∗

0.
77

∗∗
∗∗

-0
.0

1∗
∗∗

∗
0.

86
∗∗

∗∗
0.

99
38

0.
25

∗∗
∗∗

-0
.3

7∗
∗∗

∗
-0

.6
5∗

∗∗
∗

-0
.7

5∗
∗∗

∗

9
2
2
,6
7
0

0.
85

∗∗
∗∗

0.
85

∗∗
∗∗

0.
15

∗∗
∗∗

0.
77

∗∗
∗∗

0.
98

77
0.

60
∗∗

∗∗
0.

42
∗∗

∗∗
0.

50
∗∗

∗∗
0.

41
∗∗

∗∗

10
In

f
In

f∗
∗∗

∗
In

f∗
∗∗

∗
In

f∗
∗∗

∗
In

f∗
∗∗

∗
0.

63
62

54
.8

6∗
∗∗

∗
55

.6
0∗

∗∗
∗

55
.5

0∗
∗∗

∗
55

.7
3∗

∗∗
∗

11
2
,0
7
1

-0
.2

9∗
∗∗

∗
-0

.3
5∗

∗∗
∗

-0
.4

5∗
∗∗

∗
0.

12
∗∗

0.
98

07
-0

.3
6∗

∗∗
∗

-1
.0

5
-0

.8
9

-0
.9

3
12

4
,6
9
1

-0
.4

5∗
∗∗

∗
-0

.1
1∗

∗∗
-0

.1
2∗

∗∗
0.

06
∗

0.
96

01
-1

.5
1∗

∗∗
∗

-0
.6

4∗
∗∗

-0
.1

5∗
0.

13
13

99
7

-0
.8

3∗
∗∗

∗
-0

.1
4∗

-0
.7

0∗
∗∗

∗
-0

.0
5

0.
99

02
-0

.5
7∗

∗∗
∗

-0
.8

-0
.9

9
-1

.2
6∗

∗∗
∗

14
8
,1
7
1

0.
98

∗∗
∗∗

0.
99

∗∗
∗∗

0.
98

∗∗
∗∗

0.
96

∗∗
∗∗

0.
59

6
47

.6
9∗

∗∗
∗

47
.2

9∗
∗∗

∗
36

.7
5∗

∗∗
∗

41
.0

5∗
∗∗

∗

15
6
,6
6
8

-1
.4

6∗
∗∗

∗
-1

.1
7∗

∗∗
∗

-0
.5

0∗
∗∗

∗
-1

.2
3∗

∗∗
∗

0.
94

04
-7

.0
4∗

∗∗
∗

-8
.9

8∗
∗∗

∗
-2

.0
5∗

∗∗
∗

-0
.8

8∗
∗∗

∗

106

Chapter 6. Automatic Configuration of Genetic Algorithms
16

9
,5
2
0

-2
.0

5∗
∗∗

∗
-0

.9
7∗

∗∗
∗

-0
.4

3∗
∗∗

∗
-0

.2
3∗

∗∗
∗

0.
91

74
-1

7.
54

∗∗
∗∗

0.
41

-1
2.

97
∗∗

∗∗
-1

.7
8∗

∗∗
∗

17
4
5
,9
6
4

-I
nf

∗∗
∗∗

-I
nf

∗∗
∗∗

-I
nf

∗∗
∗∗

-0
.9

6∗
∗∗

∗
0.

66
98

-4
8.

43
∗∗

∗∗
2.

45
∗∗

∗
-1

4.
40

∗∗
∗∗

-7
.9

3∗
∗∗

∗

18
1
3
0
,8
6
3

0.
85

∗∗
∗∗

0.
80

∗∗
∗∗

0.
69

∗∗
∗∗

0.
85

∗∗
∗∗

0.
94

32
1.

86
∗∗

∗
1.

32
0.

06
1.

26
∗∗

∗∗

19
9
,4
6
7

-5
25

.0
5∗

∗∗
∗

-I
nf

∗∗
∗∗

-1
.7

2∗
∗∗

∗
-0

.7
2∗

∗∗
∗

0.
98

99
-6

.1
9∗

∗∗
∗

0.
00

-4
.9

6∗
∗∗

∗
-0

.3
7∗

∗

20
1
,4
6
0

-9
.7

7∗
∗∗

∗
-0

.8
3∗

∗∗
∗

-2
.1

6∗
∗∗

∗
-2

.4
7∗

∗∗
∗

0.
99

56
-1

.2
6∗

∗∗
∗

-0
.2

0∗
∗∗

∗
-0

.2
5∗

∗∗
∗

-0
.6

8∗
∗∗

∗

21
94

8
-1

2.
75

∗∗
∗∗

-3
.3

7∗
∗∗

∗
-3

.6
6∗

∗∗
∗

-3
.9

5∗
∗∗

∗
0.

99
65

-0
.4

0∗
∗∗

∗
-0

.5
6∗

∗∗
∗

-0
.4

2∗
∗∗

∗
-0

.0
4∗

∗∗
∗

22
3
,3
6
6

-2
.6

0∗
∗∗

∗
-0

.1
1∗

∗∗
∗

-0
.5

7∗
∗∗

∗
-0

.1
5

0.
99

93
-0

.0
2∗

∗∗
∗

-0
.0

5∗
∗∗

∗
-0

.0
6

-0
.0

2∗
∗∗

∗

23
3
,0
6
6

0.
08

∗∗
∗

-1
.0

0∗
∗∗

∗
-0

.6
8∗

∗∗
∗

-1
.0

3∗
0.

99
93

0.
01

∗∗
-0

.1
2∗

∗∗
∗

-0
.4

0∗
∗∗

-0
.2

3∗
∗∗

∗

24
In

f
In

f∗
∗∗

∗
In

f∗
∗∗

∗
In

f∗
∗∗

∗
In

f∗
∗∗

∗
0.

95
45

1.
11

∗∗
1.

42
∗∗

∗∗
0.

90
1.

71
∗∗

∗∗

25
4
8
,9
4
6

0.
22

∗
-I

nf
∗∗

∗∗
0.

66
∗∗

∗∗
0.

56
∗∗

∗∗
0.

69
53

0.
07

∗∗
-0

.0
0∗

∗∗
∗

0.
04

-0
.0

3∗
∗

#
im

pr
ov

em
en

ts
8

6
6

13
-

8
9

7
8

107

6.3. Experimental Results

6.3.2 Results Obtained by Automated Configuration

The (1 + 1) EA with pm = 1/n has shown competitive results in [55] for the PBO
problems, so we use it as the baseline against which we compare the GAs obtained
by the configurators. Although it is part of the GA framework in Algorithm 8 and
could therefore be identified by the configuration methods, we still manually add it
as a baseline and we compare the results obtained by the three configurators to it.
Table 6.1 lists the configurations of the (µ+λ) GA obtained by the grid search and by
the three AC methods. Table 6.2 compares the performance of these configurations,
by listing the ERT and AUC values of the (1 + 1) EA and the corresponding relative
deviations of the configured GAs. More precisely, the ERT and AUC values of the AC
methods result from using ERT and AUC as the cost metric, respectively. The relative
improvement of ERT is computed as (ERT(1+1)−EA - ERT) / ERT(1+1)−EA, and the
relative improvement of AUC is computed as (AUC - AUC(1+1)−EA) / AUC(1+1)−EA.
Grey tiles indicate that the result is better than the corresponding result of the (1 +

1) EA, and the degree of gray represents the degree of improvement. We use in this
table the Mann-Whitney U test to compare the average running times of the (1+1) EA
and the GAs suggested by the configuration methods (pairwise comparisons). Runs
that did not hit the final target within the cutoff time of 50, 000 evaluations are capped
at this value. Asterisks in Table 6.2 indicate that the average hitting time of the GAs
suggested by the corresponding configuration methods is significantly different from
the average hitting time of the (1 + 1) EA.

ERT Results

For the OneMax-based problems F1 and F4-F6, configurations of the (µ+λ) GA using
crossover outperform the mutation-only GA with µ ≥ 10 [170]. However, according to
the values in Table 6.2, the (1 + 1) EA outperforms the configurations with pc > 0,
relatively large µ, and also relatively large λ. This observation matches our expectation
because our previous study has shown that the (1 + 1) EA is efficient on OneMax.
Meanwhile, we observe an interesting configuration with pm < 0.01, µ = λ = 2, and
pc > 0 that achieves competitive ERT values against the (1 + 1) EA for F1. This
configuration ties well with the results on different (µ + 1) GAs that were shown to
outperform the (1 + 1) EA (and any mutation-based algorithm, in fact) in a series of
recent works [25, 29, 143].

On F4, F6, F7, F13, F15-F17, and F19-22, none of the configurations returned by
the AC methods was able to outperform the (1 + 1) EA, whereas on F9-10, F14, F18,

108

Chapter 6. Automatic Configuration of Genetic Algorithms

−1.0

−0.5

0.0

0.5

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Problem ID

R
el

at
iv

e
E

R
T

Irace MIES MIP−EGO

Figure 6.1: Relative ERT values of the GAs obtained by Irace, MIES, and MIP-EGO
using ERT as the cost metric compared to the ERT of the GAs obtained by the same
method when using AUC as the cost metric during the configuration process. Plotted
values are (ERTusing ERT-ERTusing AUC)/ERTusing AUC, capped at −1 and 1. Positive
values therefore indicate that configurator obtains better results when configuring
AUC.

F24, all AC methods find configurations that perform much better than the (1+1) EA.

On LeadingOnes, a slightly better result compared to the ERT value 5 574 of the
(1+1) EA is found by MIES. This result is quite sensitive with respect to the mutation
rate. When changing it from the MIES-suggestion of pm = 0.005 to pm = 0.01 we
obtain an ERT value of 5 829. MIES also obtains an improvement on F11, which
corresponds to a (2 + 2) GA with pm = 0.0245. On F14, we already observed in [170]
that mutation-only GAs with pm = 1/n are inferior to other GA configurations with
a larger offspring population size and higher mutation rate. As expected, all three
methods easily suggest configurations that outperform the (1 + 1) EA by a great
margin.

On F18 and F24, all configurators unanimously suggest fairly small values for the
crossover probabilities. For F25, however, GAs with pc > 0.8 show the (by far) best
performance.

AUC Results

Since we evaluate the AUC at each budget [50, 000], the AUC values tend to be very
close to 1, especially for the GAs that require much fewer than 50, 000 evaluations to
find an optimal solution.

109

6.3. Experimental Results

40 50 60 70 80 90 100

1

10

100

1e+3

1e+4

1e+5

1e+6

(1+1)-EA Grid search Irace-AUC Irace-ERT
Best-so-far f(x)-value

Fu
nc

tio
n

Ev
al

ua
tio

ns

Figure 6.2: Fixed-target ERT values of the configurations suggested for F10. The
suffix “-ERT/AUC” indicates which cost metric is used

On 13 out of the 25 problems, none of the configuration methods is able to identify
a hyperparameter setting that yields better AUC values than that of the (1+1) EA. In
some, but clearly not all of these cases, the achieved AUC values are not much worse
than that of the (1 + 1) EA. The largest improvements are obtained on functions F7,
F10, F14, F17, F18, and F24. In most of these cases all four configuration techniques
found improvements over the (1+1) EA except for F17, where Irace is the only method
finding an improvement and except for F7, where all three automated configuration
techniques find an improvement but not the grid search (the inverse is true on F23
but the advantage of the grid search is fairly small, not statistically significant, and
the obtained algorithm is a mutation-only (10+1) GA with pm = 1/n, which is very
close to the (1 + 1) EA).

We next discuss the results for the functions for which large improvement over the
(1 + 1) EA were obtained.

On F7, the configuration obtained by Irace (which achieves the best improvement)
is a (1 + λ) EA with pm ≈ 3/n, the one obtained by MIP-EGO is a (2 + 20) GA with
small crossover probability pc = 0.082, and the one obtained by MIES is a (23+27) GA
with large crossover probability pc = 0.672. These results indicate that the fraction of
configurations achieving better AUC value than the (1 + 1) EA may be fairly large.

On F10, large crossover probabilities seem beneficial; all three automated configu-
ration techniques return settings with pc > 0.98. The mutation rate seems to have less
impact on the results, and the suggested settings vary from 8.5/n (Irace) to 41.3/n

110

Chapter 6. Automatic Configuration of Genetic Algorithms

(MIES, the best AUC value). Interestingly, also two of the three configurations tuned
for minimizing ERT have large crossover probabilities, with the exception of the one
returned by MIES (pc = 0.32). The performances of all these configurations are very
similar, as we can see in Figure 6.2.

On F14, the best improvement is obtained by a mutation-only (100+50) GA using
pm = 1/n, closely followed by the Irace result, which is a (48+83) GA using crossover
probability pc = 0.812 and pm ≈ 41/n. We cannot observe any clear pattern in the
results, and the four suggested configurations all differ quite a bit.

For F17, as mentioned, only Irace finds a better configuration, which is also a
(1+1) EA, but using a slightly larger mutation rate of pm = 1.9/n instead of 1/n.

For F18, all configurators return settings with small crossover probability pc <

0.031 and small mutation rate pm < 0.01, which indicates that local search methods
may be more suitable for this problem. Interestingly, the performance of randomized
local search is not very good (see [55] for details), which suggests that a positive prob-
ability for escaping local optima via small jumps in the search space or via crossover
are needed to be efficient on this problem.

For F24, no clear pattern can be observed in the suggested configurations, and
also the crossover probabilities differ widely, from 0 for the grid search, values around
0.27 for MIP-EGO and MIES, to 0.7 for Irace.

On the LeadingOnes problem F2, the (2 + 1) GA with pm = 0.008 and pc =

0.005, found by MIES, yields a (small) improvement over the (1+ 1) EA, whereas the
configurations found by the other methods perform worse.

All in all, we find that on several problems the suggested configurations differ
widely, far more than we would have expected and this across all four parameters.
Analyzing the landscape of the AC problem suggests itself as an interesting follow-up
study, which would require an effort that goes beyond the scope of this work. However,
we have seen related work being conducted in [129, 146]

6.3.3 Discussions on the Configurators’ Performance

We now compare the performance of the three automated AC methods. The last
row of Table 6.2 summarizes for how many settings each method was able to find
configurations that outperform the (1 + 1) EA. These numbers are rather balanced
between the different methods, with the notable exception of the minimizing ERT
objective, for which MIES suggested 13 improvements, compared to 6-8 improvements
found by the other methods. MIES also suggested the best configurations in most

111

6.3. Experimental Results

of the cases, but the improvements over the (1 + 1) EA are, however, rather minor
in several of these cases, so that barely counting them does not give justice to the
complex behavior observed in Table 6.2, from which we cannot derive a clear winning
configurator. We can nevertheless make a few observations.

Handling Conditional Parameter Spaces

We easily see from Table 6.1 that Irace is the only method that obtains mutation-
only GAs, and in all of these cases it returns a (1 + λ) EA. We recall that setting
µ = 1 requires to set pc = 0; the configuration is infeasible otherwise. This advantage
of Irace lies in its handling of conditional parameters: Irace samples non-conditional
parameters first, and samples conditional parameters only if the condition is satisfied.
In contrast, the two other AC methods, MIP-EGO and MIES, sample parameter
values from independent distributions and give penalties to infeasible settings. With
this strategy, the two methods can avoid infeasible candidates, but the probability of
sampling feasible conditional candidates may be too small. For example, MIP-EGO
can find a configuration with µ = 2 and pc = 0.0065 on F16 in Table 6.1, but it
cannot obtain the competitive configuration of (1+ λ) mutation-only GA because the
probability of sampling µ = 1 and pc = 0 simultaneously is too small. We observe a
similar performance of MIES on F17.

Impact of the Cost Metric

We have already observed that MIES obtains better configurations for more problems
when using ERT as the cost metric. For AUC, in contrast, Irace finds more configura-
tions that improve over the (1+1) EA, which can be explained as follows. In the first
few iterations, AUC is able to differentiate the performance of two poor configurations
if both fail to find the final target, whereas the ERT value will be infinite and thereby
incomparable in this case. Hence, using AUC as the cost metric, Irace could learn to
avoid evaluating those poor configurations in the following iterations. It is worth not-
ing that such an observation is also supported by a case study of Irace [127], in which
the authors discovered that Irace would spend too much time on poor configurations if
the mean running time is taken as the cost metric. As a solution, the adaptive capping
strategy [83] is introduced to Irace in this work. Interestingly, this discussion connotes
that the AUC metric realizes a similar effect as with adaptive capping for minimizing
the running time of an optimization algorithm. This behaviour also indicates that
the choice of the cost metric might be a factor to consider when choosing which AC

112

Chapter 6. Automatic Configuration of Genetic Algorithms

13 16 19 22 23 28 30 323334363738
Instances evaluated

1

12
42

17
35

23
93

34
51

40
20

43
49

45
79

47
40

48
18

48
54

49
37

49
54

49
63

Candidate evaluations

10 2

100

102

104
Re

la
tiv

e
de

vi
at

io
n

regular config.
elite config.

final elite config.
best found config.

iteration
iteration (restart)

median iteration
median elites

Figure 6.3: The relative deviation from the best-known ERT value of the GAs obtained
during the configuration process of Irace for tuning the (µ + λ) GA for OneMax
in dimension n = 100, with the objective to minimize the ERT for the optimum
f(x) = 100. The maximal number of configurations that can be tested by Irace is set
to 5,000. The figure is produced by the acviz tool [36].

technique to apply.

For an algorithm that cannot hit the target in all runs, the variance of its ERT
values can be high due to the uncertain success rate. Besides, ERT can not distinguish
algorithms that can not hit the target in any runs, even though their performance may
differ in terms of results for other targets. This shortcoming is mitigated when tuning
for large AUC, since this performance metric also takes into account the hitting times
for easier targets.

Figure 6.3 plots the relative deviations from the best-known ERT value of the
configurations obtained during one run of Irace when using ERT as the cost metric. We
observe that many configurations show large relative deviation values, which stem from
GAs that cannot hit the optimum within the given budget. These configurations do not
provide much useful information, since they all look equally bad for the configurator.

6.3.4 The Choice of the Cost Metric

We now evaluate how well configurations that are obtained by tuning for the AUC
cost metric perform in terms of ERT. Figure 6.1 summarizes these result, by plot-
ting the relative advantage of the configurations tuned for AUC, compared to

113

6.3. Experimental Results

those that were explicitly tuned for ERT. More precisely, we plot (ERTusing ERT-
ERTusing AUC)/ERTusing AUC, so that positive values indicate that tuning for AUC
give better ERT values than the configurations obtained when tuning for ERT. We
see that this is the case for 13, 12, and 9 out of the 25 problems when using Irace,
MIP-EGO, and MIES, respectively.

We now zoom into the results obtained by Irace. We abbreviates “Irace-ERT”
(“Irace-AUC”) the configurations obtained when using ERT (AUC) as cost metric.
For the problems on which the ERT of Irace-AUC was worse than that of Irace-ERT,
we plot in Figure 6.6 violin plots for the running times of the 100 validation runs. We
observe that F15 is the only problem where Irace-ERT significantly outperforms Irace-
AUC. On F2-3, F5, and F20, we observe that the result of most runs of Irace-AUC and
Irace-ERT are close, but the variances of the results of Irace-AUC are higher than for
Irace-ERT. On the remaining problems, we observe high variances for the result of both
Irace-ERT and Irace-AUC. Irace-ERT finds the configurations with fewer unsuccessful
runs, which makes sense because the number of unsuccessful runs significantly affects
the ERT value. However, AUC does not only consider the evaluations needed to hit
the final target, so we observe more unsuccessful runs and competitive partial runs for
Irace-AUC, i.e., in cases of F21 and F24.

Although Irace-AUC does not obtain better ERT values than Irace-ERT, it can
still provide valuable insights concerning the resulting configurations and performance
profiles. Figure 6.4 plots the fixed-target ERT values of the GAs obtained by Irace-
ERT and Irace-AUC for F21. We observe that the result of Irace-ERT outperforms the
result of Irace-AUC for the final target f(x) = 260. However, for the long period when
f(x) < 258, Irace-AUC performs better. This observation indicates that configuring
AUC can provide novel instances to investigate how the GA performs during the
optimization process.

We plot in Figure 6.7 the violin plots of the running times for the problems where
Irace-AUC obtains better ERT values than Irace-ERT. The advantage of Irace-AUC is
significant on several problems, i.e., F1, F6, F11, F16, and F22. Moreover, Irace-ERT
can not find the final targets of F7, F17, F19, and F25 within the cutoff time, whereas
Irace-AUC hits the targets in some (F7, F17, and F25) or all (F19) of the runs.

Figure 6.5 plots the fixed-target result of different GAs on F8. Compared to Irace-
ERT, we observe that Irace-AUC outperforms the other algorithm at the final target
and also exhibits advantages over other algorithms in most of the optimization process.
Figure 6.8 plots the fixed-target result of different GAs on F7. The figure shows that
Irace-AUC is the only one that hits the optimum f(x) = 100, and the best-found

114

Chapter 6. Automatic Configuration of Genetic Algorithms

fitness of Irace-ERT is less than 90. We observe that none of the GAs shown in the
figure hits the optimum in all runs (because the ERT values are larger than the cutoff
time of 50, 000 function evaluations).

The results of Irace-AUC and Irace-ERT on the PBO problems reveal the questions
of how the cost metric affects the performance of Irace for different configuration tasks
for future study. We study in the following the impact of the cutoff time concerning
the behavior of Irace on OneMax and LeadingOnes.

120 140 160 180 200 220 240 260

1
2

5

10
2

5

100
2

5

1e+3
2

5

1e+4
2

(1+1)-EA Grid Search-AUC Grid Search-ERT Irace-AUC Irace-ERT

Best-so-far f(x)-value

Fu
nc

tio
n

Ev
al

ua
tio

ns

Figure 6.4: Fixed-target ERT values of the GAs listed in Table 6.1 for F21.

20 25 30 35 40 45 50

1
2

5

10
2

5

100
2

5

1e+3
2

5

1e+4

(1+1)-EA Grid Search-AUC Grid Search-ERT Irace-AUC Irace-ERT

Best-so-far f(x)-value

Fu
nc

tio
n

Ev
al

ua
tio

ns

Figure 6.5: Fixed-target ERT values of the GAs listed in Table 6.1 for F8.

115

6.3. Experimental Results

Figure 6.6: Violin plots of first runtimes hitting the targets for the configurations
found by Irace when tuning for ERT and AUC, respectively. Only showing results
for problems on which Irace-ERT outperforms Irace-AUC. Results are from the 100
independent validation runs. Targets are listed in Table 5.2, and the configurations
of the GAs can be found in Table 6.1. For each run, values are capped at the budget
50, 000 if the algorithm can not find the target.

116

Chapter 6. Automatic Configuration of Genetic Algorithms

Figure 6.7: Violin plots of first runtimes hitting the targets for the configurations
found by Irace when tuning for ERT and AUC, respectively, for problems on which
Irace-AUC outperforms Irace-ERT. Results are from the 100 independent validation
runs. Targets are listed in Table 5.2, and the configurations of the GAs can be found
in Table 6.1. For each run, values are capped at the budget 50, 000 if the algorithm
can not find the target.

117

6.3. Experimental Results

40 50 60 70 80 90 100

1

10

100

1e+3

1e+4

1e+5

1e+6

1e+7

(1+1)-EA Grid Search-AUC Grid Search-ERT Irace-AUC Irace-ERT

Best-so-far f(x)-value

Fu
nc

tio
n

Ev
al

ua
tio

ns

Figure 6.8: Fixed-target ERT values of the GAs listed in Table 6.1 for F7.

Sensitivity with respect to the cutoff time

Inspired by the result in Figure 6.8, we study the sensitivity of ERT and AUC with
respect to the cutoff time of the GAs. To this end, we consider the set {(0.5+ 0.1t)×
ERT(1 + 1) EA | t ∈ [0..15]} of 16 different cutoff times. For each of these cutoff times,
for each of the two cost metrics (AUC and ERT), and for each of F1 and F2, we run
Irace 20 independent times with the same configuration budget of 5,000 target runs
(where each target run corresponds again to ten independent runs of the respective
(µ + λ) GA configuration). Figure 6.9 plots ERT values of the GAs obtained this
way (as before, each ERT value is based on 100 independent validation runs). For
comparison, the red line indicates the performance of the (1 + 1) EA.

On OneMax, we observe that Irace-ERT can not find promising configurations
when the cutoff time of the GAs is too small to hit the optimum. This is the case for
cutoff time of the budgets smaller than 665. However, Irace-AUC can work with small
budgets that are not sufficient to hit the optimum. Even with the cutoff time of the
budgets larger than 665, Irace-AUC still obtains better ERT values than Irace-ERT.
Similarly, the result for LeadingOnes shows that Irace-ERT cannot find promising
configurations with insufficient cutoff time of GAs. Still, Irace-AUC performs well
across all given cutoff time.

Overall, we thus see that tuning with respect to AUC is much less sensitive with
respect to the cutoff time.

118

Chapter 6. Automatic Configuration of Genetic Algorithms

600

800

1000

1200

33
2

39
9

46
5

53
2

59
8

66
5

73
1

79
8

86
4

93
0

99
7

10
64

11
30

11
97

12
63

13
30

Budget of GAs for OneMax

E
R

T

Irace−AUC Irace−ERT

6000

8000

10000

27
87

33
44

39
01

44
59

50
16

55
74

61
31

66
88

72
46

78
03

83
61

89
18

94
75

10
03

3

10
59

0

11
14

8

Budget of GAs for LeadingOnes

E
R

T

Irace−AUC Irace−ERT

Figure 6.9: ERT values (y-axis) of the GAs obtained by Irace for OneMax and
LeadingOnes in dimension n = 100, for different budgets B that the GAs can spend
to find the optimum (x-axis). Showing results for B ∈ {(0.5 + 0.1t)ERT(1+1) EA | t ∈
[15]}. For comparison, the ERT values of the (1+1) EA are plotted by horizontal red
lines. Results are for the best found configurations obtained from 20 independent runs
of Irace, and each of the ERT values is with respect to 100 independent validation
runs.

Sensitivity with respect to the configuration budget of Irace

We also analyze the sensitivity of the results with respect to the configuration budget,
i.e., the number of target runs that the configurator can perform before it suggests
a configuration. We use Irace for this purpose. Figure 6.10 plots the ERT values of
the configurations suggested by Irace, for 8 selected problems from the PBO suite.
Interestingly, the ERT values are not monotonically decreasing, as one might have
expected, at least for the configurations that are explicitly tuned for small ERT. Tuning
for AUC gave the best ERT values for F1, 8, 19, 20, and 21.

6.4 Summary

In this chapter, we extended the analysis on the performance of a family of (µ +

λ) GAs, based on the work of Section 5.2. Four different configuration methods have

119

6.4. Summary

been applied for finding promising configurations of GAs: the grid search and three
automated techniques.

The experimental results showed that mutation-only GAs usually benefit from
small parent population size. On the contrary, crossover-based GAs require sufficient
population sizes. On the PBO problem set, the (1+1) EA outperforms the other tested
GAs on OneMax, LeadingOnes, and some of their W-model extensions. However,
crossover can be beneficial for the W-model extensions with epistasis and ruggedness,
concatenated trap, and NK-landscapes.

We have also investigated the performance of AC methods: Irace, MIP-EGO,
and MIES. Irace is the only method that has found conditional configurations of (1 +
λ) mutation-only GAs. It handles the non-conditional parameters first and samples the
conditional parameters when the condition is satisfied, but the other two automated
methods sample all parameters independently, leading to worse results in cases where
mutation-only is beneficial.

We also observed that the cost metric used as tuning objective has a major impact
on the performance of AC methods. When using ERT, the AC methods cannot obtain
useful information from configurations that cannot hit the optimum. But not only
for these cases we observed that tuning for AUC gave better ERT values than when
directly tuning for ERT.

Our results have also demonstrated that none of the configuration methods clearly
outperforms all others, suggesting to either combine them or to develop guidelines
that can help users select a most suitable configuration technique for their concrete
problem at hand. Finally, we also observe that in several cases none of the techniques
could find configurations that outperform or perform on par with the (1+1) EA, which
may indicate improvement potential for these configuration methods.

120

Chapter 6. Automatic Configuration of Genetic Algorithms

0

300

600

900

1200

25
00

37
50

50
00

62
50

75
00

E
R

T

Irace−AUC Irace−ERT

0

2500

5000

7500

25
00

37
50

50
00

62
50

75
00

E
R

T

Irace−AUC Irace−ERT

0

500

1000

1500

25
00

37
50

50
00

62
50

75
00

E
R

T

Irace−AUC Irace−ERT

0

2000

4000

6000

25
00

37
50

50
00

62
50

75
00

E
R

T

Irace−AUC Irace−ERT

0

5000

10000

15000

20000

25
00

37
50

50
00

62
50

75
00

E
R

T

Irace−AUC Irace−ERT

1e+01

1e+03

1e+05

25
00

37
50

50
00

62
50

75
00

E
va

lu
at

io
ns

Irace−AUC Irace−ERT

0

1000

2000

3000

4000

25
00

37
50

50
00

62
50

75
00

E
R

T

Irace−AUC Irace−ERT

0

3000

6000

9000

25
00

37
50

50
00

62
50

75
00

E
R

T

Irace−AUC Irace−ERT

Figure 6.10: ERT values (y-axis) of the GAs obtained by Irace with different configu-
ration budgets BT (the number of configurations that Irace can test, x-axis). Results
are for BT ∈ {(0.5 + 0.25t)5, 000 | t ∈ [4]}. Each ERT value is for the 100 validation
runs of the configuration suggested by Irace after a single run, i.e., one for each budget.

121

6.4. Summary

122

