
Benchmarking discrete optimization heuristics: from building
a sound experimental environment to algorithm configuration
Ye, F.

Citation
Ye, F. (2022, June 1). Benchmarking discrete optimization heuristics: from
building a sound experimental environment to algorithm configuration.
Retrieved from https://hdl.handle.net/1887/3304813

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3304813

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3304813

Chapter 5

Benchmarking Algorithms on
IOHprofiler Problems

IOHprofiler provides a benchmark suite of pseudo-Boolean optimization, which
allows us to investigate the performance of algorithms on a wide range of problems.
In this chapter, we compare the performance of twelve different heuristics on the
first twenty-three PBO problems to show how to apply IOHprofiler for such a
benchmarking study. Moreover, we investigate how (or whether) crossover can be
beneficial for the genetic algorithm by testing the (µ+λ) GA with different parameter
settings on the PBO problems.

5.1 Benchmarking Heuristics

5.1.1 Background

As the discussion on the design of IOHprofiler, our goal is to make the platform as
flexible as possible so that the user can easily test their algorithms on the problems
and with respect to performance criteria of their choice (see Chapter 3 for the discus-
sion). However, the original framework only provided the experimental setup, but did
not fix any benchmark problems or reference algorithms. In this chapter, we present
the results of 12 different heuristics for the original 23 PBO problems, which serves as
the first baseline for the performance evaluation of user-defined heuristics. All perfor-
mance data is available in our data repository and can be straightforwardly assessed
through the web-based version of IOHanalyzer (http://iohprofiler.liacs.nl/), which

71

http://iohprofiler.liacs.nl/

5.1. Benchmarking Heuristics

is easily accessible for future comparative studies. An important by-product of our
contribution is the identification of additional statistics, which are included within the
IOHprofiler. This section provides extensive examples of assessing algorithms’ per-
formance over a set of problems concerning different perspectives (such as fixed-target
result, fixed-budget result, and ECDF.)

5.1.2 Summary of Baseline Algorithms

High-level Description

We evaluate a total number of twelve different algorithms on the first 23 problems de-
scribed in Section 2.5. We have chosen algorithms that may serve for future references,
since they all have some known strengths and weaknesses that will become apparent in
the following discussions. The selection therefore shows a clear bias towards algorithms
for which theoretical analyses are available.

Note that most algorithms are parametrized, and we use here in this work only
standard parametrizations (e.g., we use standard bit mutation with 1/n as mutation
rates, etc.). Analyzing the effects of different parameter values as was done, for exam-
ple in [32, 133], would be very interesting, related work on parameter tuning will be
introduced in Section 6.

We also note that, except for the so-called vGA, our implementations (deliber-
ately) deviate slightly from the text-book descriptions referenced below. Following
the discussion in previous chapters, we enforce that offspring created by mutation are
different from their parent and resample without further evaluation if needed. Like-
wise, we do not evaluate recombination offspring that are identical to one of their
immediate parents.

All algorithms start with uniformly chosen initial solution candidates.
We list here the twelve implemented algorithms, and provide further details and

pseudo-codes:

1. gHC: A (1+1) greedy hill climber, which goes through the string from left to
right, flipping exactly one bit per each iteration, and accepting the offspring if
it is at least as good as its parent.

2. RLS: Randomized Local Search, the elitist (1+1) strategy flipping one uniformly
chosen bit in each iteration. That is, RLS and gHC differ only in the choice of
the bit which is flipped. While RLS is unbiased in the sense of Section 2.5.1,
gHC is not permutation-invariant and thus biased.

72

Chapter 5. Benchmarking Algorithms on IOHprofiler Problems

3. (1 + 1) EA: The (1 + 1) EA with static mutation rate p = 1/n. This algorithm
differs from RLS in that the number of uniformly chosen, pairwise different bits
to be flipped is sampled from the conditional binomial distribution Bin>0(n, p).
Details refer to Algorithm 2 in Section 4.1.

4. fGA: The “fast GA” proposed in [50] with β = 1.5. Its mutation strength (i.e.,
the number of bits flipped in each iteration) follows a power-law distribution
with exponent β. This results in a more frequent use of large mutation-strength,
while maintaining the property that small mutation strengths are still sampled
with reasonably large probability.

5. (1+10) EA: The (1+10) EA with static p = 1/n, which differs from the (1+1)

EA only in that 10 offspring are sampled (independently) per each iteration.

6. (1+10) EAr/2,2r: The two-rate EA with self-adjusting mutation rates suggested
and analyzed in [46] (see Algorithm 3 in Section 4.2).

7. (1 + 10) EAnorm.: a variant of the (1 + 10) EA sampling the mutation strength
from a normal distribution N(pn, pn(1−p)) with a self-adjusting choice of p (see
Algorithm 5 in Section 4.2).

8. (1 + 10) EAvar.: The (1 + 10) EAnorm. with an adaptive choice of the variance
in the normal distribution from which the mutation strengths are sampled (see
Algorithm 6 in Section 4.2).

9. (1+10) EAlog-n. The (1+10) EA with log-normal self-adaptation of the mutation
rate proposed in [7].

10. (1+(λ, λ)) GA: A binary (i.e., crossover-based) EA originally suggested in [43].
We use the variant with self-adjusting λ analyzed in [41].

11. vGA: A (30, 30) “vanilla” GA (following the so-called traditional GA, as de-
scribed, for example, in [69, 5]).

12. UMDA: A univariate marginal distribution algorithm from the family of es-
timation of distribution algorithms (EDAs). UMDA was originally proposed
in [120].

Detailed Description of the Algorithms

Detailed description of (1 + 1) EA, (1 + 10) EA, (1 + 10) EAr/2,2r, (1 + 10) EAnorm.,
and (1 + 10) EAvar. can be found in Section 4, and descriptions of the remaining

73

5.1. Benchmarking Heuristics

algorithms follow. An operator frequently used in these descriptions is the flipℓ(·)
mutation operator, which flips the entries of ℓ pairwise different, uniformly at random
chosen bit positions. Details can be found in Algorithm 1.

Again, to avoid useless evaluations of offspring that are identical to their parents,
we make use of the conditional binomial distribution Bin>0(n, p), which assigns prob-
ability Bin(n, p)(k)/(1− (1−p)n) to each positive integer k ∈ [n], and probability zero
to all other values. Sampling from Bin>0(n, p) is identical to sampling from Bin(n, p)

until a positive value is returned (“resampling strategy”).

Greedy Hill Climber The greedy hill climber (gHC, Algorithm 9) uses a deter-
ministic mutation strength, and flips one bit in each iteration, going through the bit
string from left to right, until being stuck in a local optimum, see Algorithm 9.

Algorithm 9: Greedy hill climber (gHC)

1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 x∗ ← x;
4 Flip in x∗ the entry in position 1 + (t mod n) and evaluate f(x∗);
5 if f(x∗) ≥ f(x) then x← x∗;

Randomized Local Search RLS uses a deterministic mutation strength, and flips
one randomly chosen bit in each iteration, see Algorithm 10.

Algorithm 10: Randomized local search (RLS)

1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 create x∗ ← flip1(x), and evaluate f(x∗);
4 if f(x∗) ≥ f(x) then x← x∗;

Fast Genetic Algorithm The fast Genetic Algorithm (fGA) chooses the mutation
length ℓ according to a power-law distribution Dβ

n/2, which assigns to each integer

k ∈ [n/2] a probability of Pr[Dβ
n/2 = k] = (Cβ

n/2)
−1

k−β , where Cβ
n/2 =

∑n/2
i=1 i

−β . We
use the (1+1) variant of this algorithm with β = 1.5.

74

Chapter 5. Benchmarking Algorithms on IOHprofiler Problems

Algorithm 11: Fast genetic algorithm (fGA) from [50]

1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 for i = 1, . . . , λ do
4 Sample ℓ(i) ∼ Dβ

n/2;

5 create y(i) ← flipℓ(i)(x), and evaluate f(y(i));

6 x∗ ← argmax{f(y(1)), . . . , f(y(λ))} (ties broken by favoring the largest
index);

7 if f(x∗) ≥ f(x) then x← x∗;

The EA with log-Normal self-adaptation of mutation rate The (1 +

λ) EAlog-n., Algorithm 12, uses a self-adaptive choice of the mutation rate.

Algorithm 12: The (1 + λ) EAlog-n. with log-Normal self-adaptation of the
mutation rate
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 p = 0.2;
3 Optimization: for t = 1, 2, 3, . . . do
4 for i = 1, . . . , λ do
5 p(i) =

(
1 + 1−p

p · exp(0.22 · N (0, 1))
)−1 ;

6 Sample ℓ(i) ∼ Bin>0(n, p
(i));

7 create y(i) ← flipℓ(i)(x), and evaluate f(y(i));

8 i← min
{
j | f(y(j)) = max{f(y(k)) | k ∈ [λ]}

}
;

9 p← p(i);
10 x∗ ← argmax{f(y(1)), . . . , f(y(λ))} (ties broken by favoring the smallest

index);
11 if f(x∗) ≥ f(x) then x← x∗;

The Self-Adjusting (1 + (λ, λ)) GA The self-adjusting (1 + (λ, λ)) GA, Algo-
rithm 13, was introduced in [43] and analyzed in [41]. The offspring population size λ

is updated after each iteration, depending on whether or not an improving offspring
could be generated. Since both the mutation rate and the crossover bias (see Algo-
rithm 14 for the definition of the biased crossover operator cross) depend on λ, these
two parameters also change during the run of the (1 + (λ, λ)) GA. In our implemen-
tation we use update strength F = 3/2.

75

5.1. Benchmarking Heuristics

Algorithm 13: The self-adjusting (1 + (λ, λ)) GA

1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 Mutation phase:
4 Sample ℓ ∼ Bin>0(n, λ/n);
5 for i = 1, . . . , λ do create y(i) ← flipℓ(x), and evaluate f(y(i));
6 x∗ ← argmax{f(y(1)), . . . , f(y(λ))} (ties broken by favoring the largest

index);
7 Crossover phase:
8 for i = 1, . . . , λ do create y(i) ← crossc(x, x

∗), and evaluate f(y(i));
9 y∗ ← argmax{f(y(1)), . . . , f(y(λ))} (ties broken by favoring the largest

index);
10 Selection phase:
11 if f(y∗) > f(x) then x← y∗; λ← max{λ/F, 1};
12 if f(y∗) = f(x) then x← y∗; λ← min{λF 1/4, n};
13 if f(y∗) < f(x) then λ← min{λF 1/4, n};

Algorithm 14: Crossover operation crossc(x, x
∗) with crossover bias c

1 y ← x;
2 Sample ℓ ∼ Bin>0(n, c);
3 Select ℓ different positions {i1, . . . , il} ∈ [n];
4 for j = 1, 2, . . . , ℓ do yij ← x∗

ij
;

The “Vanilla” GA The vanilla GA (vGA, Algorithm 16) constitutes a textbook
realization of the so-called Traditional GA [5, 69]. The algorithm holds a parental
population of size µ. It employs the Roulette-Wheel-Selection (RWS, that is, proba-
bilistic fitness-proportionate selection which permits an individual to appear multiple
times) as the sexual selection operator to form µ/2 pairs of individuals that generate
the offspring population. 1-point crossover (Algorithm 15) is applied to every pair
with a fixed probability of pc = 0.37. A mutation operator is then applied to every
individual, flipping every bit with a fixed probability of pm = 2/n. This completes a
single cycle.

76

Chapter 5. Benchmarking Algorithms on IOHprofiler Problems

Algorithm 15: 1-Point crossover of two parents x(1) and x(2)

1 Sample ℓ ∈ [n] uniformly at random;
2 for i = 1, 2, . . . , ℓ do Set y

(1)
i ← x

(1)
i and y

(2)
i ← x

(2)
i ;

3 for i = ℓ+ 1, . . . , n do Set y
(1)
i ← x

(2)
i and y

(2)
i ← x

(1)
i ;

Algorithm 16: The (µ, µ)-“Vanilla-GA” with mutation rate pm and crossover
probability pc

1 Initialization:
2 for i = 1, . . . , µ do sample x(i) ∈ {0, 1}n uniformly at random and

evaluate f(x(i));
3 Optimization: for t = 1, 2, 3, . . . do
4 Parent selection phase: Apply roulette-wheel selection to {x(1), . . . , xµ}

to select µ parent individuals y(1), . . . , y(µ);
5 Crossover phase:
6 for i = 1, . . . , µ/2 do with probability pc replace y(i) and y(2i) by the

two offspring that result from a 1-point crossover of these two
parents, for a randomly chosen crossover point j ∈ [n];

7 Mutation phase:
8 for i = 1, . . . , µ do Sample ℓ(i) ∼ Bin(n, pm), set y(i) ← flipℓ(i)(y

(i)),
and evaluate f(y(i));

9 Replacement:
10 for i = 1, . . . , µ do Replace x(i) by y(i);

The Univariate Marginal Distribution Algorithm The univariate marginal
distribution algorithm (UMDA, Algorithm 17) is one of the simplest representatives of
the family of so-called estimation of distribution algorithms (EDAs). The algorithm
maintains a population of size s (we use s = 50 in our experiments) and uses the
best s/2 of these to estimate the marginal distribution of each decision variable, by
simply counting the relative frequency of ones in the corresponding position. These
frequencies are capped at 1/n and 1 − 1/n, respectively. In the t-th iteration, a new
population is created by sampling from these marginal distributions. Building upon
previous work made in [119], the UMDA was introduced in [120]. Theoretical results
for this algorithm are summarized in [100].

77

5.1. Benchmarking Heuristics

Algorithm 17: The Univariate Marginal Distribution Algorithm (UMDA),
representing the family of EDAs
1 Initialization:
2 for i = 1, . . . , s do sample x(0,i) ∈ {0, 1}n uniformly at random and

evaluate f(x(0,i));
3 Let P0 be the collection of the best s/2 of these search points, ties broken

uniformly at random (u.a.r.);
4 Optimization:
5 for t = 1, 2, 3, . . . do
6 for j = 1, . . . , n do
7 pj ← 2|{x ∈ Pt−1 | xj = 1}|/s;
8 if pj < 1/n then pj = 1/n;
9 if pj > 1− 1/n then pj = 1− 1/n;

10 for i = 1, . . . , s do sample x(t,i) ∈ {0, 1}n by setting, independently
for all j ∈ [n], x(t,i)

j = 1 with probability pj and setting x
(t,i)
j = 0

otherwise. Evaluate f(x(t,i));
11 Let Pt be the collection of the best s/2 of the points

x(t,1), x(t,2), ..., x(t,s), ties broken u.a.r.;

5.1.3 Experimental Results

Experimental Setup

Our experimental setup can be summarized as follows:

• 23 test-functions F1-F23, described in Section 2.5

• Each function is assessed over the four problem dimensions n ∈ {16, 64, 100, 625}

• Each algorithm is run on 11 different instances of each of these 92 (F, n) pairs,
yielding a total number of 1, 012 different runs per each algorithm. Each run is
granted a budget of 100n2 function evaluations for dimensions n ∈ {16, 64, 100}
and a budget of 5n2 function evaluations for n = 625. More precisely, each
algorithm performs one run on each of the instances 1− 6 and 51− 55 described
in Section 2.5.1.

Most of the tested algorithms are unbiased and comparison-based. For these
algorithms all 11 instances look the same, i.e., performing one run each is equiv-
alent to 11 independent runs on instance 1, which is the “pure” problem instance
without fitness scaling nor any other transformation applied to it. However, in
order to understand how the transformations impact the behavior of vGA and

78

Chapter 5. Benchmarking Algorithms on IOHprofiler Problems

0 5 10 15 20

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8

1e+9

1e+10

(1+(λ,λ)) GA (1+1) EA_>0 (1+1) fGA (1+10) EA_{r/2,2r} (1+10) EA_>0
(1+10) EA_logNormal (1+10) EA_normalized (1+10) EA_var_ctrl (30,30) vGA gHC RLS
UMDA

FuncId

ER
T

Figure 5.1: ERT values of the twelve baseline algorithms for the 625-dimensional test
suite, with respect to the best solution quality found by any of the algorithms in any
of the eleven runs. These target values can be found in Table 5.2.

gHC, we also performed 11 independent runs of each algorithm on instance 1 of
each (F, n) pair, yielding another 1, 012 runs per each algorithm.

• For each run we store the current and the best-so-far function value at each
evaluation. This setup allows very detailed analyses, since we can zoom into each
range of fixed budgets and/or fixed-targets of choice, and obtain our anytime
performance statistics in terms of quantiles, averages, probabilities of success,
ECDF curves, etc.

For some of the algorithms we also store information about the self-adjusting
parameters, for example the value of λ in the (1 + (λ, λ)) GA and the mutation
rates for the (1+10) EAr/2,2r, the (1+10) EAvar., and the (1+10) EAnorm.. From
this data we can derive how the parameters evolve with respect to the time
elapsed and with respect to the quality of the best-so-far solutions.

Concerning the number of repetitions, we note that with 11 runs we already get
a good understanding of the key differences between the algorithms. 11 runs can be
enough to get statistical significance, if the differences in performance are substan-
tial. We refer the interested reader to the tutorial [76], which argues that for a first
experiment a small number of experiments can suffice.

Function-wise Raw Observations Across Dimensions Figures 5.1 and 5.2 de-
pict the ERT of the baseline algorithms on the 625-dimensional and the 64-dimensional

79

5.1. Benchmarking Heuristics

0 5 10 15 20

100

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8

1e+9

(1+(λ,λ)) GA (1+1) EA_>0 (1+1) fGA (1+10) EA_{r/2,2r} (1+10) EA_>0
(1+10) EA_logNormal (1+10) EA_normalized (1+10) EA_var_ctrl (30,30) vGA gHC RLS
UMDA

FuncId

ER
T

Figure 5.2: ERT values of the twelve baseline algorithms for the 64-dimensional test
suite, with respect to the best solution quality found by any of the algorithms in any
of the eleven runs. These target values can be found in Table 5.1.

funcId F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
n = 64 64 64 2, 080 32 57 21 64 33 64 63.2 32 57

n = 625 625 625 195, 625 312 562 208 576.4 314 625 625 312 562
funcId F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23
n = 64 21 43.8 33 64 64 3.981492 64 128 192 28 8

n = 625 208 36.6 314 625 625 4.2655266 621 1, 200 1, 775 268.4 24

Table 5.1: Target values for which the ERT curves in Figures 5.1 and 5.2 are computed.

functions, respectively, when considering the best function value found by any of the
algorithms in any of the runs. These target values are summarized in Table 5.1.

We summarize a few basic observations for each function.

F1: This baseline OneMax problem is easily solved, having the gHC winning (it solves
each n-dimensional OneMax instance in at most n+ 1 queries), the majority of
the algorithms clustered with a practically-equivalent performance, the (1+10)-
EAr/2,2r lagging behind, and the vGA outperformed by far. All algorithms locate
the global optimum eventually. Figure 5.3 presents the average fixed-target per-
formance of the algorithms on F1 at n = 625, in terms of ERT. Evidently, the
vGA and the UMDA obtain a clear advantage in the beginning of the optimization
process, although the vGA eventually uses the largest number of evaluations, by
far, to locate the optimum. We also see here that, as expected, the performances
of the unbiased algorithms (i.e., all algorithms except the vGA) are identical for
the 11 runs on instance 1 and the 1 run on 11 different instances. For the vGA
this is clearly not the case, the fixed-target performances of these two settings

80

Chapter 5. Benchmarking Algorithms on IOHprofiler Problems

300 350 400 450 500 550 600

1

10

100

1e+3

1e+4

1e+5

1e+6

(1+(λ,λ)) GA
(1+(λ,λ)) GA

(1+1) EA_>0
(1+1) EA_>0

(1+1) fGA
(1+1) fGA

(1+10) EA_>0
(1+10) EA_>0

(1+10) EA_logNormal
(1+10) EA_logNormal

(1+10) EA_normalized
(1+10) EA_normalized

(1+10) EA_var_ctrl
(1+10) EA_var_ctrl

(1+10) EA_{r/2,2r}
(1+10) EA_{r/2,2r}

(30,30) vGA
(30,30) vGA

RLS
RLS

UMDA
UMDA

gHC
gHC

Bestsofar f(x)value

Fu
nc
tio
n 
ev
al
ua
tio
ns

Figure 5.3: ERT values for F1 (OneMax) at dimension n = 625 in a fixed-target
perspective. The dashed lines are the average running times of 11 independent runs
on instance 1, while the solid lines are average running times for one run on each of
the eleven different instances 1-6 and 51-55. Note that this figure is not generated by
IOHanalyzer.

differ substantially.

F2: The LeadingOnes problem introduces more difficulty when compared to F1,
with the ERT consistently shifting upward, but it is still easily solved. The gHC
wins, the vGA loses, and the majority of the algorithms are again clustered, but
now the (1+(λ, λ))-GA lags behind. The UMDA fails to find the optimum within
the given time budget, for all tested dimensions except for n = 16. An example of
the evolution of the parameter λ in the (1+(λ, λ)) GA is visualized in Figure 5.4.
We observe – as expected – that larger function values are evidently correlated
with larger population sizes (and, thus, larger mutation rates).

F3: The behavior on this problem, the linear function with harmonic weights, is similar
to F1 for most algorithms. Exceptions are the vGA, for which it is slightly easier,
and the UMDA, which shows worse performance on F3 than on F1.

F4: This problem, OneMax with 50% dummy variables, is the most easily-solved

81

5.1. Benchmarking Heuristics

0 100 200 300 400 500 600

0

100

200

300

400

500

600

(1+(λ,λ)) GA

la
m
bd
a

Target valueTarget valueTarget value

Figure 5.4: Evolution of the population size λ of the (1 + (λ, λ)) GA on the Leadin-
gOnes problem F2 at dimension n = 625, correlated to the best-so-far objective
function values (horizontal axis). The line shows the average value of λ for iterations
starting with a best-so-far solution of the value indicated by the x-axis. The shade
represents the standard deviation.

problem in the suite, with an even simpler performance classification – the gHC
performs at the top, the vGA at the bottom, and the rest are tightly clustered.
Given the consistent correlation with the F1 performance profiles, across all twelve
algorithms, it seems debatable whether or not to keep this function in a benchmark
suite, since it seems to offer only limited additional insights, which could be of
a rather specialized interest, e.g., for theoretical investigations addressing precise
running times of the algorithms.

F5: Solving this problem, OneMax with 10% dummy variables, exhibits equivalent
behavior to F1. Similarly to F4, we suggest to ignore this setup for future bench-
marking activities. Note, however, that the exclusion of F4 and F5 does not imply
that the dummy variables do not play an interesting role – in an ongoing evalua-
tion of the W-model, we are currently investigating their impact when combined
with other W-model transformations.

F6: The neutrality (“majority vote”) transformation apparently introduces difficulty
to the (1 + (λ, λ)) GA, which exhibits deteriorated performance compared to F1.
The vGA, despite a slightly better performance compared to F1, is the worst
among the twelve algorithms. At the same time, the (1+10)-EAlog-n. lags behind

82

Chapter 5. Benchmarking Algorithms on IOHprofiler Problems

its competitors in the beginning, but it eventually shows a competitive result in
the later optimization process, ending up with an overall fine ERT value. The
gHC outperforms all other algorithms also on this function.

F7: The introduction of local permutations to OneMax, within the current problem,
introduced difficulties to all the algorithms. The ability to locate the global op-
timum within the designated budget deteriorated for all of them, except for the
(1+10)-EAr/2,2r on “low-dimensional” scales (n ∈ {16, 64, 100}). Figure 5.5 de-
picts the ERT values of the algorithms on F7 at n = 625, where it is evident that
they all failed to locate the global optimum. Note that this figure encompasses
results for both instantiations (a single instance or 11 instances). The twelve al-
gorithms’ performances are clustered in two groups that are associated with two
fitness regions (and likely two basins of attraction) - the first around an objective
function value of 500 (including the UMDA, with the gHC being the fastest to
approach it and get stuck), and the other below 600. It seems that the latter
cluster could use additional budget to further improve the results.

F8: Being OneMax with the small fitness plateaus induced by the ruggedness function
r1, the UMDA performs best on this problem, with the (1 + (λ, λ)) GA following
very closely. It seems to introduce medium difficulty to all the algorithms, except
for the gHC, whose performance is dramatically hampered and becomes worse
than the vGA. Interestingly, the ERT values are distributed sparsely compared
to other OneMax variants.

F9: The UMDA also performs best for this problem, with the (1+10) EAvar. being the
runner-up. Generally, the behavior on this problem, OneMax with small fitness
perturbations, is close to F8, but with certain differences. F9 is evidently harder,
as the algorithms meet larger ERT values. Importantly, unlike F8, RLS always
fails on F9 (since it gets stuck in local optima), and “joins” the gHC and vGA
at the bottom of the performance table. The (1 + (λ, λ)) GA also shows worse
performance on F9 than on F8.

F10: This problem, OneMax with fitness perturbations of block size five, presents a
dramatic difficulty to all the algorithms, including the UMDA, which, however,
clearly outperforms all other algorithms. It is evidently the hardest OneMax

variant for all the tested algorithms, among the eight variants studied in this
work. For n = 625 the UMDA finds the optimum after an average of 141, 243

evaluations, while none of the other algorithms finds a solution better than 575.

83

5.1. Benchmarking Heuristics

300 350 400 450 500 550 600

1

10

100

1e+3

1e+4

1e+5

1e+6

1e+7

(1+(λ,λ)) GA (1+1) EA_>0 (1+1) fGA

(1+10) EA_{r/2,2r} (1+10) EA_>0

(1+10) EA_logNormal (1+10) EA_normalized

(1+10) EA_var_ctrl (30,30) vGA gHC RLS

UMDA

Best-so-far f(x)-value

Fu
nc

tio
n

Ev
al

ua
tio

ns

Figure 5.5: ERT values for F7 at dimension n = 625 in a fixed-target perspective.

F11: The gHC performs strongly on this problem, namely the LeadingOnes with 50%
dummy variables, consistently with its winning behavior on F2. The vGA per-
forms poorly, and the UMDA is also at the bottom of the table. Notably, the
problem should become easier compared to F2, since the effective number of vari-
ables is reduced. RLS, however, which generally performs well on LeadingOnes,
only ranks third from the bottom on ERT values when solving this problem.

F12: The behavior of the algorithms on this problem, LeadingOnes with 10% dummy
variables, is very similar to F11, with excellent performance of the gHC. However,
one major difference is the dramatic deterioration of UMDA and vGA, which
fail to find the optimum with given time budget for n = 625 (see Figure 5.1).
UMDA performs better than vGA for n = 64, but still obtains clear disadvantage
comparing to other algorithms (see Figure 5.2).

84

Chapter 5. Benchmarking Algorithms on IOHprofiler Problems

F13: The introduction of neutrality on LeadingOnes makes this problem easier in
practice (that is, by observing ERT decrease compared to F2). The gHC wins,
while the vGA, (1 + (λ, λ)) GA as well as the UMDA lag behind the other meth-
ods. The poor performance of these three algorithms is consistent with their
performance on LeadingOnes.

F14: Being LeadingOnes with epistasis, this problem introduces high difficulty. For
high dimensions, n ∈ {64, 100, 625}, none of the algorithms was capable of locating
an optimal solution within the allocated budget. The vGA tops the ERT values on
this problem, followed by the (1+1)-fGA, the (1+10)-EAr/2,2r, and the (1+10)-
EAnorm.. On the other hand, three algorithms, namely the gHC, the UMDA, and
the RLS, seem to get trapped with low objective function values.

F15: The introduction of fitness perturbations to LeadingOnes makes this problem
difficult. The UMDA exhibits the worst performance among the competing meth-
ods. The remainder of the algorithms, except for the vGA and the (1+(λ, λ)) GA,
are still able to hit the optimum of this problem, but with significantly larger ERT
values. The gHC performs best, and the first runner-up is the RLS.

F16: The obtained ranks of algorithms, with respect to the ERT values, are similar to
those of F15, but generally exhibit higher ERT values. Notably, the UMDA is
still the worst performer.

F17: As expected, the rugged LeadingOnes function is the second-hardest among
the LeadingOnes variants, following F14. Only the RLS and the (1+1)-EA
are able to hit the optimum in dimension 625, while the gHC has a diminished
performance on this problem. This can be explained by the fact that the gHC has
a very high probability of getting stuck in a local traps, while the RLS is capable
of performing random walks about local optima, until eventually escaping them
(e.g., by flipping the right bit when all the consecutive four bits are also identical
to the target string). This is of course a rare event, and the ERT values are
therefore significantly worse than all other LeadingOnes variants, except F14.
As on the previous two functions, the UMDA performs poorly, with similar ERT
values as the gHC.

Comparing to F10, the effect of the fitness permutation r3 on LeadingOnes is
not as significant as on OneMax, which can be explained by the ability of most of
the algorithms to perform random walks to deal with local traps, through which
the four first bits of the tail are eventually set correctly, at which point flipping

85

5.1. Benchmarking Heuristics

the significant bit (i.e., the bit in position LO(x) + 1) results in a LeadingOnes

fitness increase of at least five, and consequently a fitness increase of at least one
for the problem r3 ◦ LeadingOnes. This candidate solution is thus accepted by
all of our algorithms, and the next phase of optimizing the following consecutive
five bits begins.

F18: The LABS problem is the most complex problem in our assessment. For the higher
dimensions, n ∈ {64, 100, 625}, none of the algorithms obtained the maximally
attainable values, or got fitness values close to those of the best-known sequences
(see, e.g., [125]). Additionally, a couple of algorithms (e.g., the gHC and the
RLS) did not succeed to escape low-quality “local traps” on most dimensions.
Surprisingly, the vGA was superior to the other algorithms at n = 16 but, as
expected, over the higher dimensions presented weaker performance. Notably,
the UMDA outperforms the other methods at n = 625.

F19: The simplest problem among the Ising instances. Most of the algorithms exhibited
similar performance, except for the vGA, the UMDA and the gHC, which obtained
weak results. The latter preformed worst among all algorithms, and obtained
the lowest objective function values across all the dimensions for the given time
budget. As a demonstration of the performance statistics that IOHprofiler

provides, average fixed-target and fixed-budget running times are provided in
Figure 5.6. This figure illustrates that ERT values tell only one side of the story:
the performance of UMDA is comparable to that of the other algorithms for all
targets up to around 85; only then it starts to perform considerably worse.

F20: In contrast to its poor performance on the 1D-Ising (F19), the gHC outper-
formed the other algorithms on the 2D-Ising for target values up to around 1, 136

(d = 625), after which its performance becomes worse than most of the other
algorithms, except for the vGA, which is consistently the worst except for a few
initial target values.For d = 625, however, the (1+10) EAlog-n. achieves the best
ERT value for the target recorded in Table 5.2, followed by the (1+1) EA and
RLS.

F21: As expected, the most complex among the Ising model instances. The observed
performances resemble the observations on F20. For d = 625, the best ERT is
obtained by the (1+10)-EAvar..

F22: None of the algorithms succeeded in locating the global optimum across all dimen-
sions of this problem. This is explained by the existence of a local optimum with a

86

Chapter 5. Benchmarking Algorithms on IOHprofiler Problems

strong basin of attraction. The gHC and the vGA exhibited inferior performance
compared to the other algorithms.

F23: Some algorithms failed to locate the global optimum of the N-Queens problem in
high dimensions, yet the vGA, the gHC and the UMDA constantly possessed the
worst ERT values. Fine performance was observed for the (1+10)-EA>0 and the
(1+10) EAlog-n..

Grouping of Functions and Algorithms In the following we are aiming to rec-
ognize patterns and identify classes within (i) the set of all functions, and (ii) the set
of all algorithms.

Functions’ Empirical Grouping: It is evident that problems F1-F6, F11-F13
and F15-F16 are treated relatively easily by the majority of the algorithms, with those
functions based on LeadingOnes (i.e., F2, F11-13, F15, F16) being more challenging
within this group. On the other extreme, F7, F9-F10, F14, F18-F19 and F22 evidently
constitute a class of hard problems, on which all algorithms consistently exhibit diffi-
culties (except for n = 16); the LABS function (F18) seems the most difficult among
them. F8, the instances of the Ising model (F19-F21), as well as the NQP (F23),
constitute a class of moderate level of difficulty.

Algorithms’ Observed Trends: The gHC and the vGA usually exhibited ex-
treme performance with respect to the other algorithms. The vGA consistently suffers
from poor performance over all functions, while the gHC either leads the performance
on certain functions or performs very poorly on others. The gHC’s behavior is to
be expected, since it is correlated with the existence of local traps (by construction)
– for instance, it consistently performs very well on F1-F6, while having difficulties
on F7-F10. Clearly, RLS also gets trapped by the deceptive functions, while at the
same time it shows fine performance on most of the non-deceptive problems. The
UMDA’s performance stands out. Evidently, it performs well on the OneMax-based
problems, but fails to optimize the LeadingOnes function F2 and its derivatives
F11-F17, with the exception of F11 and F13 – a behavior that might be interesting to
analyze further in future work. Otherwise, we observe one primary class of algorithms
exhibiting equivalent performance over all problems in all dimensions: The seven
algorithms (1 + (λ, λ))-GA, (1+1)-EA, (1+10)-EAvar., (1+10)-EA, (1+10)-EAnorm.,
(1+10)-EAr/2,2r, and (1+1)-fGA behave consistently, typically exhibiting fine perfor-
mance. In terms of ERT values, the (1+10)-EAlog-n. could also be grouped into this
class of seven algorithms, but it behaves quite differently during the optimization pro-
cess, often showing an opposite trend of convergence speed at the early stages of the

87

5.1. Benchmarking Heuristics

Figure 5.6: Demonstration of the basic performance plots for F19 at dimension
n = 100: Left: best obtained values as a function of evaluations calls (“fixed-target
perspective”), versus Right: evaluations calls as a function of best obtained values
(”fixed-budget perspective”). For F19, these patterns of relative behavior are observed
across all dimensions.

optimization procedure.

Ranking: We also examined the overall number of runs per test-function in which
an algorithm successfully located the best recorded value – the so-called hitting num-
ber. We then grouped those hitting numbers by dimension, and ranked the algorithms
per each dimension. The (1+10)-EAr/2,2r consistently leads the grouped hitting num-
bers on the “low-dimensional” functions (n ∈ {16, 64}), with (1+1)-fGA and (1+10)-
EAnorm. being together the first runner-up. The (1+10)-EA also exhibits high ranking
across all dimensions. (1+10)-EAnorm. leads the grouped hitting numbers on n = 100,
whereas the (1+1)-EA leads the hitting numbers on the “high-dimensional” functions
at n = 625, with (1+10)-EA being the runner-up. Across all dimensions, UMDA, gHC
and vGA are with the lowest rankings.

Visual Analytics: As a demonstration of the performance statistics offered by
IOHprofiler, we provide snapshots of visual analytics that supported our examina-
tion. Figure 5.6 depicts basic performance plots for F19 at dimension n = 100, in

88

Chapter 5. Benchmarking Algorithms on IOHprofiler Problems

Figure 5.7: ECDF curve for the class of “easily-solved” functions in dimension n = 625:
F1-F6, F11-F13, and F15-F16 [LEFT] and of all 23 functions [RIGHT], with respect
to equally spaced target values.

so-called fixed-target and fixed-budget perspectives. For clarity of the plots we only
show the ERT values and the average function values achieved per each budget, re-
spectively. Standard deviations as well as the 2, 5, 10, 15, 50, 75, 90, 95, 98% quantiles
are available on http://iohprofiler.liacs.nl/.

In Figure 5.7 we provide two plots obtained from our new module which computes
ECDF curves for user-specified target values. The plot on the left depicts an ECDF
curve for the “easily-solved” functions identified above (i.e., F1-F6, F11-F13, and F15-
F16) in dimension n = 625. The one on the right shows the ECDF curves across all
23 benchmark functions. For both figures we have chosen ten equally spaced target
values per each function, with the largest value being again the best function value
identified by any of the algorithms in any of the runs. Since the number of “easy”
problems dominates our overall assessment the curves on the right are to a large
extent dominated by the performances depicted on the left. This indicates once again
the need for a thorough revision of our benchmark selection.

Unbiasedness: Following our experimental planning to test the hypothesized

89

http://iohprofiler.liacs.nl/

5.1. Benchmarking Heuristics

(30,30) vGA  1 instance (30,30) vGA  11 instances

35

40

45

50

55

60

65

70

75 (30,30) vGA  1 instance
(30,30) vGA  11 instances

Algorithms

Ta
rg
et
 v
al
ue

(30,30) vGA  1 instance (30,30) vGA  11 instances
−20

0

20

40

60

80

(30,30) vGA  1 instance
(30,30) vGA  11 instances

Algorithms

Ta
rg
et
 v
al
ue

Figure 5.8: Statistical box-plots for vGA’s attained function values on instance one
alone versus on the eleven different instances 1-6 and 51-55, after exploiting the entire
budget (namely, 409, 600 function evaluations): F1 [LEFT] and F2 [RIGHT]. Both
plots are for n = 64.

“biasedness” effect for the vGA, we compared its averaged performance on instance
1 versus on all the other instances (1-6 and 51-55) altogether. Figure 5.8 depicts a
comparison of attained objective function values, by means of box-plots, on F1 and
on F2 for n = 64. Performance deterioration is indeed evident on the permuted
instances; that is, instances 51-55, for which the base functions are composed with a
σ-transformation of the bit strings, as described in Section 2.5.1. The box-plots in
Figure 5.8 show very clearly that the vGA treats the plain F1 and F2 much better,
in terms of attained target values, than their transformed variants. The plots are for
n = 64 and after exhausting the full budget of 100n2 function evaluations.

5.1.4 Summary

This section presented results of the 12 heuristics on the first 23 PBO problems, which
contributes a baseline for future comparative studies. This work has inspired many
directions for IOHprofiler, and some of them are already under development.

Additional Performance Measures: While this section presents a very de-
tailed assessment of algorithms’ performance, we are continuously strengthening the
statistical repertoire of IOHanalyzer by introducing new performance measures
and by devising better procedures. Currently, IOHanalyzer also supports pairwise
Kolmogorov-Smirnov test, Glicko2-based ranking, the Deep Statistical Comparison
(DSC) analysis [59], and Contribution to portfolio (Shapley-values).

Combinations of W-model Transformations: As discussed in Section 2.5.6,

90

Chapter 5. Benchmarking Algorithms on IOHprofiler Problems

the transformations of the W-model can be combined with each other. To analyze the
individual effects of each transformation, and in order to keep the size of the experi-
mental setup reasonable, we have not considered such combinations in this work. A
critical consideration of adding such combinations, and of extending the base trans-
formations (e.g., with respect to the fitness transformation, but also the size of the
neutrality transformation, etc.) forms another research line that we are currently
addressing in a parallel work stream.

Integration of Algorithm Design Software: IOHs are to a large extent modu-
lar algorithms, whose components can be exchanged and executed in various different
ways. This has letted the community to develop software which enables an easier algo-
rithmic design. Examples for such software are ParadisEO [24] for single-objective and
multi-objective optimization and jMetal [58] for multi-objective algorithms. Building
or integrating such software could allow much more comprehensive algorithm bench-
marking, and could eventually automate the detection of promising algorithmic vari-
ants. We are glad to see that IOHprofiler has contributed to this domain, for
example, by being integrated with other frameworks for the work of large scale auto-
mated algorithm design [3, 153, 168, 170].

5.2 Benchmarking a (µ + λ) Genetic Algorithm with

Configurable Crossover Probability

5.2.1 Background

Classic evolutionary computation methods build on two main variation operators:
mutation and crossover. While the former can be mathematically defined as unary
operators (i.e., families of probability distributions that depend on a single argument),
crossover operators sample from distributions of higher arity, with the goal to “recom-
bine” information from two or more arguments.

There is a long debate in evolutionary computation about the (dis-)advantages of
these operators, and about how they interplay with each other [118, 140]. In lack of
generally accepted recommendations, the use of these operators still remains a rather
subjective decision, which in practice is mostly driven by users’ experience. Little
guidance is available on which operator(s) to use for which situation, and how to most
efficiently interleave them. The question how crossover can be useful can therefore be
seen as far from being solved.

Of course, significant research efforts are spent to shed light on this question,

91

5.2. Benchmarking a (µ+ λ) Genetic Algorithm with Configurable
Crossover Probability

which is one of the most fundamental ones that evolutionary computation has to offer.
While in the early years of evolutionary computation (see, for example, the classic
works [5, 34, 69]) crossover seems to have been widely accepted as an integral part
of an evolutionary algorithm, we observe today two diverging trends. Local search
algorithms such as GSAT [136] for solving Boolean satisfiability problems, or such
as the general-purpose Simulated Annealing [96] heuristic, are clearly very popular
optimization methods in practice – both in academic and in industrial applications.
These purely mutation-based heuristics are nowadays more commonly studied under
the term stochastic local search, which forms a very active area of research. Opposed to
this is a trend to reduce the use of mutation operators, and to fully base the iterative
optimization procedure on recombination operators; see [152] and references therein.
However, despite the different recommendations, these opposing positions find their
roots in the same problem: we hardly know how to successfully dovetail mutation and
crossover.

In addition to large bodies of empirical works aiming to identify useful combinations
of crossover and mutation [34, 63, 85, 121], the question how (or whether) crossover
can be beneficial has also always been one of the most prominent problems in runtime
analysis, the research stream aiming at studying evolutionary algorithms by mathe-
matical means [25, 29, 30, 31, 43, 47, 48, 88, 89, 98, 107, 123, 141, 143, 157, 162],
most of these results focus on very particular algorithms or problems, and are not (or
at least not easily) generalizable to more complex optimization tasks.

In this section, we study a simple variant of the (µ+λ) GA mentioned in Section 4.3,
which allows us to conveniently scale the relevance of crossover and mutation, respec-
tively, via a single parameter. More precisely, our algorithm is parameterized by a
crossover probability pc, which is the probability that we generate in the reproduction
step an offspring by means of crossover. The offspring is generated by mutation other-
wise, so that pc = 0 corresponds to the mutation-only (µ+ λ) EA, whereas for pc = 1

the algorithm is entirely based on crossover. Note here that we either use crossover
or mutation, so as to better separate the influence of the two operators.

We study the performance of different configurations of the (µ + λ) GA on 25
IOHprofiler problems. We observe that the algorithms using crossover perform signif-
icantly better on some simple functions as OneMax (F1) and LeadingOnes (F2),
but also on some problems that are considered hard, e.g., the 1-D Ising model (F19).

92

Chapter 5. Benchmarking Algorithms on IOHprofiler Problems

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

100 100 5, 050 50 90 33 100 51 100 100 50 90 33 7
F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25

51 100 100 4.215852 98 180 260 42 9 17.196 -0.2965711

Table 5.2: Target values used for computing the ERT value in Figure 5.9.

5.2.2 Experimental Results

Experiment setup In order to probe into the empirical performance of the
(µ + λ) GA, we test it on the 25 problems mentioned in Section 2.5, with a total
budget of 100n2 function evaluations. We perform 100 independent runs of each algo-
rithm on each problem. For the (µ+λ) GA (see Algorithm 8 in Section 4.3), we study
three different crossover operators, one-point crossover, two-point crossover, and uni-
form crossover, and two different mutation operators, standard bit mutation and the
fast mutation scheme suggested in [50]. These variation operators are briefly described
as follows.
- One-point crossover : a crossover point is chosen from [1..n] u.a.r. and an offspring is
created by copying the bits from one parent until the crossover point and then copying
from the other parent for the remaining positions.
- Two-point crossover : similarly, two different crossover points are chosen u.a.r. and
the copy process alternates between two parents at each crossover point.
- Uniform crossover creates an offspring by copying for each position from the first or
from the second parent, chosen independently and u.a.r.
- Standard bit mutation: a mutation strength ℓ is sampled from the conditional bi-
nomial distribution Bin>0

(n, p), which assigns to each k a probability of
(
n
k

)
pk(1 −

p)n−k/(1 − (1 − p)n) [25]. Thereafter, ℓ distinct positions are chosen u.a.r. and the
offspring is created by first copying the parent and then flipping the bits in these ℓ

positions. Still, we restrict our experiments to the standard mutation rate p = 1/n.
- Fast mutation [50]: operates similarly to standard bit mutation except that the mu-
tation strength ℓ is drawn from a power-law distribution: Pr[L = ℓ] = (Cβ

n/2)
−1ℓ−β

with β = 1.5 and Cβ
n/2 =

∑n/2
i=1 i

−β .
Moreover, we test the algorithm with µ ∈ {10, 50, 100} and λ ∈ {1, ⌈µ/2⌉, µ}.

Detailed results for the different configurations of the (µ+ λ) GA are available in our
data repository at [171].

Results on IOHprofiler problems In Figure 5.9, we highlight a few basic results
of this experimentation for n = 100, where the mutation operator is fixed to the

93

5.2. Benchmarking a (µ+ λ) Genetic Algorithm with Configurable
Crossover Probability

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

µ=10 µ=50 µ=100

offspring−
based

population−
based

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

F
11

F
12

F
13

F
14

F
15

F
16

F
17

F
18

F
19

F
20

F
21

F
22

F
23

F
24

F
25

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

F
11

F
12

F
13

F
14

F
15

F
16

F
17

F
18

F
19

F
20

F
21

F
22

F
23

F
24

F
25

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

F
11

F
12

F
13

F
14

F
15

F
16

F
17

F
18

F
19

F
20

F
21

F
22

F
23

F
24

F
25

(mu+mu)−mutation_only

(mu+mu)−uniform

(mu+mu)−two−point

(mu+mu)−one−point

(mu+mu/2)−mutation_only

(mu+mu/2)−uniform

(mu+mu/2)−two−point

(mu+mu/2)−one−point

(mu+1)−mutation_only

(mu+1)−uniform

(mu+1)−two−point

(mu+1)−one−point

(mu+mu)−mutation_only

(mu+mu)−uniform

(mu+mu)−two−point

(mu+mu)−one−point

(mu+mu/2)−mutation_only

(mu+mu/2)−uniform

(mu+mu/2)−two−point

(mu+mu/2)−one−point

0.0 0.4 0.8 1.2 1.6
log(normalized ERT)

Figure 5.9: Heat map of normalized ERT values of the (µ+λ) GA with offspring-based
(top part) and population-based (bottom part) variator choice for the 100-dimensional
benchmark problems, computed based on the target values specified in Table 5.2. The
crossover probability pc is set to 0.5 for all algorithms except the mutation-only ones
(which use pc = 0). The displayed values are the quotient of the ERT and ERTbest,
the ERT achieved by the best of all displayed algorithms. These quotients are capped
at 40 to increase interpretability of the color gradient in the most interesting region.
The three algorithm groups – the (µ+1), the (µ+ ⌈µ/2⌉), and the (µ+ µ) GAs – are
separated by dashed lines. A dot indicates the best algorithm of each group of four.
A grey tile indicates that the (µ+ λ) GA configuration failed, in all runs, to find the
target value within the given budget.

standard bit mutation. More precisely, we plot in this figure the normalized expected
running time (ERT), where the normalization is with respect to the best ERT achieved
by any of the algorithms for the same problem. Table 5.2 provides the target values
for which we computed the ERT values. For each problem and each algorithm, we
first calculated the 2% percentile of the best function values. We then selected the
largest of these percentiles (over all algorithms) as target value.

On the OneMax-based problems F1, F4, and F5, the (µ+λ) GA outperforms the
mutation-only GA, regardless of the variator choice scheme, the crossover operator,
and the setting of λ. When looking at problem F6, we find that when µ = 10 the
mutation-only GA surpasses most of (µ+λ) GA variants except the population-based
(µ+µ) GA with one-point crossover. On F8-10, the (µ+λ) GA takes the lead in general,

94

Chapter 5. Benchmarking Algorithms on IOHprofiler Problems

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

µ=10 µ=50 µ=100

offspring−
based

population−
based

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

F
11

F
12

F
13

F
14

F
15

F
16

F
17

F
18

F
19

F
20

F
21

F
22

F
23

F
24

F
25

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

F
11

F
12

F
13

F
14

F
15

F
16

F
17

F
18

F
19

F
20

F
21

F
22

F
23

F
24

F
25

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

F
11

F
12

F
13

F
14

F
15

F
16

F
17

F
18

F
19

F
20

F
21

F
22

F
23

F
24

F
25

(mu+mu)−mutation_only

(mu+mu)−uniform

(mu+mu)−two−point

(mu+mu)−one−point

(mu+mu/2)−mutation_only

(mu+mu/2)−uniform

(mu+mu/2)−two−point

(mu+mu/2)−one−point

(mu+1)−mutation_only

(mu+1)−uniform

(mu+1)−two−point

(mu+1)−one−point

(mu+mu)−mutation_only

(mu+mu)−uniform

(mu+mu)−two−point

(mu+mu)−one−point

(mu+mu/2)−mutation_only

(mu+mu/2)−uniform

(mu+mu/2)−two−point

(mu+mu/2)−one−point

−1.0 −0.5 0.0 0.5 1.0ERT relative difference:

Figure 5.10: Heat map comparing the (µ + λ) GAs using the standard bit mutation
(sbm) with the (µ+ λ) GAs using the fast mutation on the 25 problems from Sec. 2.5
in dimensions n = 100. Plotted values are (ERTfast − ERTsbm)/ERTsbm, for ERTs
computed wrt the target values specified in Table 5.2. pc is set to 0.5 for all crossover-
based algorithms. Values are bounded in [−1, 1] to increase visibility of the color
gradient in the most interesting region. A black dot indicates that the (µ + λ) GA
with fast mutation failed in all runs to find the target with the given budget; the black
triangle signals failure of standard bit mutation, and a gray tile is chosen for settings
in which the (µ+ λ) GA failed for both mutation operators.

whereas it cannot rival the mutation-only GA on F7. Also, only the configuration with
uniform crossover can hit the optimum of F10 within the given budget.

On the linear function F3 we observe a similar behavior as on OneMax. On
LeadingOnes (F2), the (µ + λ) GA outperforms the mutation-only GA again for
µ ∈ {50, 100} while for µ = 10 the mutation-only GA becomes superior with one-point
and uniform crossovers. On F11-13 and F15-16 (the W-model extensions of Leadin-

gOnes), the mutation-only GA shows a better performance than the (µ+λ) GA with
one-point and uniform crossovers and this advantage becomes more significant when
µ = 10. On problem F14, that is created from LeadingOnes using the same trans-
formation as in F7, the mutation-only GA is inferior to the (µ+ λ) GA with uniform
crossover.

On problems F18 and F23, the mutation-only GA outperforms the (µ+λ) GA for

95

5.2. Benchmarking a (µ+ λ) Genetic Algorithm with Configurable
Crossover Probability

most parameter settings. On F21, the (µ + λ) GA with two-point crossover yields a
better result when the population size is larger (i.e., µ = 100) while the mutation-only
GA takes the lead for µ = 10. On problems F19 and F20, the (µ + µ) GA with
the population-based variator choice significantly outperforms all other algorithms,
whereas it is substantially worse for the other parameter settings. On problem F24,
the (µ+µ/2) GA with two-point crossover achieves the best ERT value when µ = 100.
None of the tested algorithms manages to solve F24 with the given budget. The target
value used in Figure 5.9 is 17.196, which is below the optimum 20. On problem F25,
the mutation-only GA and the (µ + λ) GA are fairly comparable when µ ∈ {10, 50}.
Also, we observe that the population-based (µ+µ) GA outperforms the mutation-only
GA when µ = 100.

In general, we have made the following observations: (1) on problems F1-6, F8-9,
and F11-13, all algorithms obtain better ERT values with µ = 10. On problems F7,
F14, and F21-25, the (µ+ λ) GA benefits from larger population sizes, i.e., µ = 100;
(2) The (µ + µ) GA with uniform crossover and the mutation-only GA outperform
the (µ + ⌈µ/2⌉) GA across all three settings of µ on most of the problems, except
F10, F14, F18, and F22. For the population-based variator choice scheme, increasing
λ from one to µ improves the performance remarkably on problems F17-24. Such an
improvement becomes negligible for the offspring-based scheme; (3) Among all three
crossover operators, the uniform crossover often surpasses the other two on OneMax,
LeadingOnes, and the W-model extensions thereof.

To investigate the impact of mutation operators on GA, we plot in Figure 5.10 the
relative ERT difference between the (µ+λ) GA configurations using fast and standard
bit mutation, respectively. As expected, fast mutation performs slightly worse on F1-
6, F8, and F11-13. On problems F7, F9, and F15-17, however, fast mutation becomes
detrimental to the ERT value for most parameter settings. On problems F10, F14, F18,
and F21-25, fast mutation outperforms standard bit mutation, suggesting a potential
benefit of pairing the fast mutation with crossover operators to solve more difficult
problems. Interestingly, with an increasing µ, the relative ERT of the (µ + λ) GA
quickly shrinks to zero, most notably on F1-6, F8, F9, F11-13.

Interestingly, in [117], an empirical study has shown that on a randomly generated
maximum flow test generation problem, fast mutation is significantly outperformed by
standard bit mutation when combined with uniform crossover. Such an observation
seems contrary to our findings on F10, F14, F18, and F21-25. However, it is made on
a standard (100 + 70) GA in which both crossover and mutation are applied to the
parent in order to generate offspring.

96

Chapter 5. Benchmarking Algorithms on IOHprofiler Problems

5.2.3 Summary

In this section, we have analyzed the performance of a family of (µ + λ) GAs, in
which offspring are either generated by crossover (with probability pc) or by mutation
(probability 1 − pc). On the PBO problem set, it has been shown that this random
choice mechanism reduces the expecting running time on OneMax, LeadingOnes,
and many W-model extensions of those two problems.

It would certainly also be interesting to extend the study to a (µ+ λ) GA variant
using (dynamic) tuned values for the relevant parameters µ, λ, crossover probability pc,
and mutation rate p. Therefore, based on the results in this section, we will introduce
our work on algorithm configuration in Chapter 6 and dynamic algorithm selection in
Chapter 7.

97

5.2. Benchmarking a (µ+ λ) Genetic Algorithm with Configurable
Crossover Probability

98

