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Chapter 4

Problem Specific Benchmarking:
Study on OneMax and
LeadingOnes

In this chapter, we focus on the two classic problems OneMax and LeadingOnes,
to show how benchmarking can benefit theoreticians and practitioners for discussing
new research directions. We start our investigation on the (1+ λ) EAs comparing the
theoretical results and empirical performance. A normalized standard bit mutation is
proposed based on benchmarking an existing self-adaption of mutation rate for the
(1+λ) EAs. In addition, we study the impact of the population size and the mutation
rate for the (1 + λ) EAs and the crossover probability for the (µ+ λ) GA.

4.1 Profiling (1 + λ) EA

4.1.1 Background

Two fundamental building blocks of evolutionary algorithms are global variation op-
erators and populations. Global variation operators are sampling strategies that are
characterized by the property that every possible solution candidate has a positive
probability of being sampled within a short time window, regardless of the current
state of the algorithm. Standard bit mutation is an example of a global mutation
operator. From a given input string x ∈ {0, 1}n, standard bit mutation creates an
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4.1. Profiling (1 + λ) EA

offspring by flipping each bit in x with some positive probability 0 < p < 1, with
independent decisions for each bit. For any x, y the probability to sample y from x

is thus pH(x,y)(1 − p)n−H(x,y), where H(x, y) is the number of bits in which x and y

differ (Hamming distance). This probability is positive even for search points that are
very far apart. The motivation to use global sampling strategies is to overcome local
optima by eventually performing a sufficiently large jump.

Storing information about the optimization process, maintaining a diverse set of
reasonably good solutions, and gathering a more complete picture about the structure
of the problem at hand are among the most important reasons to employ population-
based EAs. The first two objectives are served by the parent population, which is
the subset of previously evaluated search points that are kept in the memory of the
algorithm. The parent population is updated after each generation. New solution
candidates are sampled from it through the use of variation operators. These points
form the offspring population of the generation. Non-trivial offspring population sizes
address the desire to gather more information about the fitness landscape before mak-
ing any decision about which of the points from the parent and offspring population
to keep in the memory for the next iteration.

It is very well understood that both the size of the parent population as well as
the size of the offspring population can have a significant impact on the performance.
Finding suitable parameter values for these two quantities remains to be a challenging
problem in practical applications of EAs. From an analytical point of view, populations
increase the complexity of the optimization process considerably, as they introduce a
lot of dependencies that need to be taken care of in the mathematical analysis. It
is therefore not surprising that only few theoretical works on population-based EAs
exist, cf. [105] and references mentioned therein. Most existing theoretical works regard
algorithms with non-trivial offspring population sizes, while the impact of the parent
population size has received much less interest.

We present below empirical and theoretical results for the (1+λ) EA, the arguably
simplest EA that combines a global sampling technique with a non-trivial offspring
population size.

4.1.2 Algorithms

As noted in [128] there exists an important discrepancy between the algorithms clas-
sically regarded in the theory of evolutionary computation literature and their com-
mon implementations in practice. For mutation-based algorithms like (µ + λ) and
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Algorithm 1: flipℓ chooses ℓ different positions and flips the entries in these
positions.
1 Input: x = (x1 . . . xn) ∈ {0, 1}n, ℓ ∈ N;
2 y ← x;
3 Select ℓ pairwise different positions i1, . . . , iℓ ∈ [n] u.a.r.;
4 for j = 1, . . . , ℓ do yij ← 1− xij ;

(µ, λ) EAs, this discrepancy concerns the way new solution candidates are sampled
from previously evaluated ones, and how the function evaluations are counted. Both
algorithms use the above-described standard bit mutation as only variation opera-
tor. An often recommended value for the mutation rate p is 1/n, which corresponds
to flipping exactly one bit on average, an often desirable behavior when the search
converges.

When implementing standard bit mutation, it would be rather inefficient to decide
for each i ∈ [n] whether or not the i-th bit of x should be flipped. Luckily, this is not
needed, as we can simply observe that standard bit mutation can be equally expressed
as drawing a random number ℓ from the binomial distribution Bin(n, p) with n trials
and success probability p and then flipping ℓ bits that are sampled from [n] uniformly
at random (u.a.r.) and without replacement. This latter operation is formalized by
the flipℓ operator in Algorithm 1. We refer to ℓ as the mutation strength or the step
size, while we call p the mutation rate.

Analyzing standard bit mutation, we easily observe that the probability to not
flip any bit at all equals (1 − p)n, which for p = 1/n converges to 1/ exp(1). That
is, in about 36.8% of calls to this operator, a copy of the input is returned. For the
(1 + λ) EA there is no benefit of evaluating such a copy (unless facing a dynamic or
noisy optimization setting), since it applies plus selection, where both the parent as
well as the offspring can be selected to “survive” for the next generation. It is therefore
advisable to change the probability distribution from which the mutation strength ℓ is
sampled. A straightforward (and commonly used) idea is to simply re-sample ℓ from
Bin(n, p) until a non-zero value is returned. This approach corresponds to distributing
the probability mass (1− p)n of sampling a zero proportionally to all step sizes ℓ > 0.
This gives the conditional binomial distribution Bin>0(n, p), which assigns to each
ℓ ∈ N a probability of

(
n
ℓ

)
pℓ(1 − p)n−ℓ/(1 − (1 − p)n). All our empirical results use

this conditional sampling strategy. The results can therefore differ significantly from
figures previously published in the theory of EA literature [91, 128].
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4.1. Profiling (1 + λ) EA

Algorithm 2: The (1 + λ) EA>0 with mutation rate p ∈ (0, 1) for the maxi-
mization of f : {0, 1}n → R
1 Initialization: Sample x ∈ {0, 1}n u.a.r.;
2 Optimization: for t = 1, 2, 3, . . . do
3 for i = 1, . . . , λ do
4 Sample ℓ(i) from Bin>0(n, p);
5 y(i) ← flipℓ(i)(x);

6 Sample x from argmax{f(x), f(y(1)), . . . , f(y(λ))} u.a.r.;

The Basic (1+λ) EA>0 The (1+λ) EA samples λ offspring in every iteration, from
which only the best one survives (ties broken uniformly at random). Each offspring
is created by standard bit mutation. Following our discussion above, we make use
of the re-sampling strategy described above, and obtain the (1 + λ) EA>0, which we
summarize in Algorithm 2.

Adaptive (1+λ) EA>0 The (1+λ) EA>0 has two parameters: the offspring popula-
tion size λ and the mutation rate p. Common implementations of the (1+λ) EA>0 use
the same population size λ and the same mutation rate p throughout the whole opti-
mization process (static parameter choice), while the use of dynamic parameter values
is much less established. A few works exist, nevertheless, that propose to control the
parameters of the (1 + λ) EA online [92]. We focus in our empirical comparison on
algorithms that have a mathematical support. These are summarized in the following
two subsections.

Adaptive Mutation Rates One of the few works that experiments with a non-
static mutation rate for the (1 + λ) EA was presented in [46]. The there-suggested
algorithm stores a parameter r that is adjusted online. In each iteration, the (1 +

λ) EAr/2,2r creates λ/2 offspring by standard bit mutation with mutation rate r/(2n),
and it creates λ/2 offspring with mutation rate 2r/n. The value of r is updated
after each iteration. With probability 1/2 it is set to the value that the best offspring
individual of the last iteration has been created with (ties broken at random), and it is
replaced by either r/2 or 2r otherwise (unbiased random decision). Finally, the value
r is capped at 2 if smaller, and at n/4, if it exceeds this value. In our experiments, we
use r = 2 as initial value.

In [46] it is shown analytically that the (1 + λ) EAr/2,2r yields an asymptotically
optimal runtime on OneMax. This performance is strictly better than what any static
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mutation rate can achieve, cf. Section 4.1.3. How well the adaptive scheme works for
other benchmark problems is left as an open question in [46].

Adaptive Population Sizes Apart from the mutation rate, one can also consider
to adjust the offspring population size λ. This is a much more prominent problem,
because λ is an explicit parameter, while the mutation rate is often not specified (and
thus by default assumed to be 1/n).

In the theory of EC literature, the following three success-based update rules have
been studied. In [87] the offspring population size λ is initialized as one. After each
iteration, we count the number s of offspring that are at least as good as the parent.
When s = 0, we double the population size, and we replace it by ⌊λ/s⌋ otherwise. For
brevity, we call this algorithm the (1 + {2λ, λ/s}) EA, and its resampling variant the
(1 + {2λ, λ/s}) EA>0.

Two similar schemes were studied in [104] where λ is doubled if no strictly better
search point has been identified and either set to one or to max{1, ⌊λ/2⌋} otherwise.
We regard here the resampling variants of these algorithms, which we call the (1 +

{2λ, 1}) EA>0 and the (1 + {2λ, λ/2}) EA>0, respectively.

4.1.3 Profiling on OneMax

We recall that the class of OneMax functions is the generalization of the function
OM that assigns to each bit string x the number |{i ∈ [n] | xi = 1}| of ones in
it. For this generalization, OM is composed with all possible XOR operations on
the hypercube. More precisely, for any bit string z ∈ {0, 1}n we define the function
OMz : {0, 1}n → [0..n], x 7→ |{i ∈ [n] | xi = zi}|, the number of bits in which x and z

agree. The OneMax problem is the collection of all functions OMz, z ∈ {0, 1}n.

Theoretical Bounds OneMax is often referred to as the drosophila of EC. It is
therefore not surprising that among all benchmark functions, OneMax is the problem
for which most runtime results are available. We summarize in this section a few
selected results.

Concerning the (1+λ) EA, the first question that one might ask is whether or not
it can be beneficial to generate more than one offspring per iteration. When using the
number of function evaluations (and not the number of generations) as performance
measure, intuitively, it should always be better to create the offspring sequentially, to
profit from intermediate fitness gains. This intuition has been formally proven in [87],
where it is shown that for all λ, k ∈ N the expected optimization time (i.e., the number
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of function evaluations until an optimal solution is queried for the first time) of the
(1 + kλ) EA cannot be better than that of the (1 + λ) EA. This result implies that
k = 1 is an optimal choice. Note, however, that the number of generations needed to
find an optimal solution can significantly decrease with increasing λ, so that it can be
beneficial even for OneMax to run the (1 + λ) EA with λ > 1 when parallel function
evaluations are possible.

For λ = 1 the runtime of the (1 + 1) EA with static mutation rate p > 0 is
quite well understood, cf. [163] for a detailed discussion. For general λ and static
mutation rate p = c/n (where here and henceforth c > 0 is assumed to be constant),
the expected optimization time is (1 ± o(1))

(
nλ ln lnλ
2 lnλ + ec

c n lnn
)

[68]. An interesting
observation made in [46] reveals that the parametrization p = c/n is suboptimal: with
p = ln(λ)/(2n) the (1 + λ) EA needs only an expected number of O(nλ/ log(λ) +√
λn log n) function evaluations to optimize OneMax [46] (the proof requires λ ≥ 45

and λ = nO(1)). We call this algorithm the (1 + λ) EAp=ln(λ)/(2n).

When using non-static mutation rates, the best expected optimization time
that a (1+λ) EA can achieve on OneMax is bounded from below by Ω(nλ/ log(λ)+

n log n) [8]. This bound is attained by a (1 + λ) EA variant with fitness-dependent
mutation rates [8]. Interestingly, it is also achieved by the self-adjusting (1+λ) EAr/2,2r

described in Section 5.1.2 (the proof requires again λ ≥ 45 and λ = nO(1)).

Concerning the algorithms using non-static offspring population sizes (see
Section 5.1.2), we do not have an explicit theoretical analysis for the (1+{2λ, λ/s}) EA,
but it is known that the expected optimization time of both the (1+ {2λ, 1}) EA and
the (1 + {2λ, λ/2}) EA is O(n log n) [104].

Disclaimer. It is important to note that all the bounds reported above (and
those mentioned in Section 4.1.4) hold, a priori, only for the classical (1 + λ) EA
variants, not the resampling versions regarded here in this thesis. For most bounds,
and in particular the ones with static parameter choices, it is, however, not difficult
to prove that the modifications do not change the asymptotic order of the expected
optimization times. What does change, however, is the leading constant. As a rule of
thumb, runtime bounds for the (1+λ) EA decrease by a multiplicative factor of about
1− (1− p)n when the mutation strengths are sampled from the conditional binomial
distribution Bin>0(n, p).

Note also that in our summary we collect only statements about the total expected
optimization time, i.e., AHT. Here again the (1+1) EA and the (1+λ) EA with static
parameters form an exception as for these two algorithms a few theoretical fixed-budget
results exist, cf. [45, 108, 122] and references therein.
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Figure 4.1: Average optimization times for 100 independent runs of the (1 + λ) EA>0

variants for OneMax, normalized by n lnn. (Initial) population size for the adaptive
variants is 50. p∗ = ln(λ)/(2n)

Empirical Evaluation We now come to the results of our empirical investigation.
All figures presented in this section are averages over 100 independent runs. This
might look like a small number, but we recall that we track the whole optimization
process, to present the fixed-target results below.

We have seen above that, for reasonable parameter settings, the average optimiza-
tion times of the (1 + λ) EA variants are all of order n log n. We therefore normalize
the empirical averages in Figure 4.1 by this factor.

We observe that the normalized averages are quite stable across the dimensions,
with an exception of the (1 + 50) EA, whose relative performance improves with
increasing problem dimension. We also see that the (1 + 50) EA>0 variant with
p∗ = ln(λ)/(2n) achieves a better optimization time than the (1 + 50) EA>0 with
p = 1/n. The variants with adaptive offspring population size perform significantly
worse than the (1+ 1) EA>0, which is not surprising given the performance hierarchy
of the (1 + λ) EAs mentioned in the beginning of Section 4.1.3.

For the tested problem dimensions, the worst-performing algorithm in our compar-
ison is the (1+λ) EAr/2,2r. This may come as a surprise since this algorithm is the one
with the best theoretical support. The advantage of this algorithm seems to require
much larger problem dimensions, different values of λ, and/or different settings of the
hyper-parameters that determined its update mechanism.
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4.1. Profiling (1 + λ) EA

(a) Average fixed-target runtimes
T (A,OM, i).

(b) Gradients G(A,OM, i) and relative
disadvantage R(i) of the (1+50) EA>0

over the (1+2) EA>0.

Figure 4.2: Fixed target data for the 3, 000-dimensional OneMax problem (averages
over 100 runs)

A general question raised by the data in Figure 4.1 concerns the sensitivity of the
adaptive (1+λ) EA variants with respect to the initialization of their parameters and
with respect to their hyper-parameters, which are the update strengths, but also the
initial parameter values of λ and r, respectively.

It has been discussed that for OneMax the performance of the (1+λ) EA can only
be worse than that of the (1 + 1) EA. In fact, the data in Figure 4.1 demonstrates a
quite significant discrepancy between the performance of the (1+1) EA>0 and the (1+
λ) EA>0 variants with λ ≥ 10. The expected optimization time of the (1+ 50) EA>0,
for example, is about twice as large as that of the (1 + 1) EA>0. Intuitively, this can
be explained as follows. At the beginning of the OneMax optimization process the
probability that a random offspring created by the (1+λ) EA improves upon its parent
is constant. In this phase the (1 + λ) EA variants with small λ have an advantage
as they can (almost) instantly make use of this progress, while the (1 + λ) EAs with
large λ first need to wait for all λ offspring to be evaluated. Since the expected
fitness gain of the best of these λ offspring is not much larger than that of a random
individual, large offspring population sizes are detrimental in this first phase of the
optimization process. We note, however, that the relative disadvantage of large λ is
much smaller towards the end of the optimization process. When, say, the parent
individual x satisfies OM(x) = n−Θ(1), the probability that a random offspring has
a better function value is of order Θ(1/n) only. We therefore have to create Θ(n)

offspring, in expectation, before we see any progress. The relative disadvantage of
creating several offspring in one generation is therefore almost negligible in the later
parts of the optimization process (provided that λ = O(n)). This informal explanation
is confirmed by the plots in Figure 4.2, which display for n = 3, 000
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1. in Figure 4.2a: the empirical average fixed-target times T (A,OM, i); i.e., the
average number of function evaluations that the (1+λ) EA>0 variant A needs to
identify a solution of OM-value at least i. We cap this plot at 60, 000 evaluations.

2. in Figure 4.2b: the gradients G(A, i) := T (A,OM, i) − T (A,OM, i − 1) (three
lowermost curves), and the relative difference Ri := (avgj=i,i+1,...,i+5(G((1 +

50)EA>0, j)−avgj=i,i+1,...,i+5G((1+2)EA>0, j)/G((1+2)EA>0, j)) of the rolling
average of the gradients of the (1 + 50) and the (1 + 2) EA>0.

Note that the gradient G(A, i) measures the average time needed by algorithm A to
make a progress of one when starting in a point x of OneMax-value OM(x) = i.
Small gradients are therefore desirable. We see that, for example, the (1 + 50) EA>0

(green curve) needs, on average, about 20 fitness evaluations to generate a strictly
better search point when starting in a solution of OM-value around 1, 700. The (1 +

2) EA>0, in contrast, needs only about 2.6 function evaluations, on average. The
relative disadvantage of the (1 + 50) EA>0 over the (1 + 2) EA>0 decreases with
increasing function values from around 7 to zero, cf. the uppermost (yellow) curve
in Figure 4.2b. We use the rolling average of 5 consecutive values here to obtain a
smoother curve for R(i).

Another important insight from Figure 4.2a is that the dominance of the (1 +

1) EA>0 over all (1 + λ) EA>0 variants does not only apply to the total expected
optimization time, but also to all intermediate target values. This can be shown with
mathematical rigor by adjusting the proofs in [87, Section 3] to suboptimal target
values.

4.1.4 Profiling on LeadingOnes

We recall that LeadingOnes is the generalization of the function LO, which counts
the number of initial ones in the string, i.e., LO(x) = max{i ∈ [0..n] | ∀j ≤ i : xj = 1}.
The generalization is by composing with an XOR-shift and a permutation of the
positions. This way, we obtain for every z ∈ {0, 1}n and for every permutation (one-
to-one map) σ of the set [n] the function LOz,σ : {0, 1}n → N, which assigns to each
x the function value max{i ∈ [0..n] | ∀j ∈ [i] : xσ(j) = zσ(j)}. The LeadingOnes

problem is the collection of all these functions.

Theoretical Bounds Also for LeadingOnes it has been proven that the optimal
value of the offspring population size λ in the (1 + λ) EA is one when using func-
tion evaluations and not generations as performance indicator [87]. In contrast to
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4.1. Profiling (1 + λ) EA

Figure 4.3: Average optimization times for 100 independent runs of the (1 + λ) EA>0

variants for LeadingOnes, normalized by n2. (Initial) population size for the adaptive
variants is 50.

OneMax, however, we will observe, by empirical and mathematical means, that the
disadvantage of non-trivial population sizes is much less pronounced for this problem.

The (1 + 1) EA with fixed mutation probability p has an expected optimization
time of 1

2p2 ((1 − p)−n+1 − (1 − p)) + 1 on LeadingOnes [21], which is minimized
for p ≈ 1.59/n. This choice gives an expected runtime of about 0.77n2. A fitness-
dependent mutation rate can decrease this runtime further to around 0.68n2 [21].
For the (1+1) EA>0, it has been observed in [91] that its expected optimization time
decreases with decreasing p. More precisely, it equals 1−(1−p)n

2p2 ((1−p)−n+1−(1−p))+1,
which converges to n2/2 + 1 for p→ 0.

For λ = nO(1), the expected optimization time of the (1+λ) EA with mutation rate
p = 1/n is O(n2+nλ) [87]. With this mutation rate, the adaptive (1+{2λ, ⌊λ/2⌋}) EA
and the (1 + {2λ, 1}) EA achieve an expected optimization time of O(n2) [104]. Any
(1+λ) EA variant with fixed offspring population size λ but possibly adaptive mutation
rate p needs at least Ω( λn

ln(λ/n) + n2) function evaluations, on average, to optimize
LeadingOnes [8].

Recall that the bounds reported above are for the classic (1 + λ) EA variants, not
the resampling versions.

This section presents a refining of the bound for the (1+λ) EA, and we first present
the empirical results that have motivated this analysis.
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Empirical Results Similarly to the data plotted in Figure 4.1, we show in Fig-
ure 4.3 the normalized average optimization times of the different algorithms; the
normalization factor is n2.

For all (1 + λ) EA variants, a fairly stable performance across the three tested
dimensions n = 500, n = 1, 000, and n = 1, 500 can be observed. We also see that
the adaptive algorithms seem to perform worse than the ones with static parameter
values; we will address this point in more detail below.

Another interesting observation is that the value of λ does not seem to have a sig-
nificant impact on the expected performance. This is in sharp contrast to the situation
for OneMax, cf. our discussion in the second half of Section 4.1.3. Building on our
discussion there, we can explain this phenomenon as follows. Unlike for OneMax,
the situation for LeadingOnes is that the expected fitness gain of a random offspring
created by a (1 + λ) EA variant with static mutation rate p = c/n is very small
throughout the whole optimization process. More precisely, it decreases only mildly
from around 2c/n when LO(x) = 0 to 2c(1−c/n)n−1/n ≈ 2c/(ecn) for LO(x) = n−1.
Thus, intuitively, the whole optimization process of LeadingOnes is very similar to
the last steps of the OneMax optimization.

Figure 4.4 presents the average fixed-target runtimes for selected (1 + λ) EA>0

variants on the 1, 500-dimensional LeadingOnes problem. We add to this figure the
fixed target runtime of Randomized Local Search (RLS), the greedy (1+1)-type hill
climber that always flips one random bit per iteration. RLS has a constant expected
fitness gain of 2/n on LeadingOnes and thus a total expected optimization time of
n2/2 + 1.

We observe that the performance of the (1+1) EA>0 and that of the (1+50) EA>0

are indeed very similar throughout the optimization process. The curves for the (1 +

λ) EA>0 with λ = 2, 5, 10 were indistinguishable in this plot and are therefore not
shown in the figure. We also see that their fixed-target performance is better than
that of RLS for all LO-values up to around 1, 250 ≈ 0.42n (exact empirical values are
1, 227 for the (1 + 50) EA>0 and 1, 283 for the (1 + 1) EA>0, but we recall that such
numbers should be taken with care as they represent an average of 100 runs only. It
should not be very difficult to compute the cutting point precisely, by mathematical
means).

Since the only difference between the (1 + 1) EA>0 and RLS is the distribution
from which new offspring are sampled, we see that the (1+λ) EA variants profit from
iterations in which more than one bit are flipped in the beginning of the optimization
process, while they suffer from this same effect in the later parts. This situation is
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4.1. Profiling (1 + λ) EA

Figure 4.4: Fixed-target runtimes of the (1 + λ) EA>0 variants on the 1, 500-
dimensional LeadingOnes problem

even more pronounced in the (1 + λ) EAr/2,2r, which outperforms all other tested
algorithms for target values up to 709. Its performance then suffers from creating
at least half of its offspring with a too large mutation rate. Recall that even if the
algorithm has correctly identified the optimal mutation rate p(LO(x)), it still creates
half of its offspring with mutation rate 2p(LO(x)). This results in a mediocre overall
performance. This observation certainly raises the question of how to adjust the
structure of the (1 + λ) EAr/2,2r to benefit from its good initial performance. From
the viewpoint of hyper-heuristics, or algorithm selection, an adaptive selection between
the (1 + λ) EAr/2,2r and the (1 + λ) EA>0 would be desirable.

If we had looked only at the total optimization times, we would have classified the
(1 + λ) EAr/2,2r as being inefficient. The fixed-target results, however, nicely demon-
strate that despite the poor overall performance, there is something to be learned
from this algorithm. This emphasizes the need for a fine-grained benchmarking envi-
ronment, similar to what is done in continuous black-box optimization (where fixed-
target and fixed-budget considerations are a necessary standard since the algorithms
cannot identify an optimal solution but only get arbitrarily close to it).

Precise Bounds for LeadingOnes We have observed that, for LeadingOnes,
the runtimes of the (1 + λ) EA>0 variants with static parameter choices are very
close to that of the (1 + 1) EA>0. Theorem 1 shows that for every constant λ, the
expected optimization time of the (1 + λ) EA>0 converges from above against that of
the (1+1) EA>0 (and the same holds for the (1+λ) EA and (1+1) EA, respectively).
Theorem 1 can be proven by adjusting the proofs in [21] to the (1+λ) EA. An important
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ingredient in this analysis is the observation that the probability of making progress
in one generation with parent individual x equals 1−(1−p(1−p)LO(x))λ, i.e., 1 minus
the probability that none of the λ offspring is better. Recall that in order to create a
better offspring, none of the first LO(x) bits should flip, while the (LO(x) + 1)-st bit
does need to be flipped. The results for the (1 + λ) EA>0 can be obtained from that
for the (1 + λ) EA by taking into account that the re-sampling strategy increases the
expected fitness gain by a multiplicative factor of 1/(1− (1− p)n). Therefore, we can
derive the following:

Theorem 1. For all n, λ ∈ N the expected optimization time of the (1 + λ) EA with
static mutation rate 0 < p < 1 on the n-dimensional LeadingOnes function is at
most

1 +
λ

2

n−1∑
j=0

1

1− (1− p(1− p)j)λ
(4.1)

and the expected optimization time of the (1 + λ) EA>0 is at most

1 +
(1− (1− p)n)λ

2

n−1∑
j=0

1

1− (1− p(1− p)j)λ
. (4.2)

To judge the precision of the bound stated in Theorem 1, we first note that for
λ = 1 expression (4.1) is tight by the result presented in [21] (note though that the
additive +1 term is suppressed there as they regard the number of iterations, not
function evaluations). Similarly, for the (1 + 1) EA>0 expression (4.2) is tight by the
bound proven in [91].

Apart from this case with trivial offspring population size λ = 1, it might be
tedious to compute the expected optimization time of the (1+λ) EA on LeadingOnes

exactly, since in our proof for Theorem 1 we would have to take into account that in
one generation more than one search point that improves upon the current best search
point can be generated. Since the (1 + λ) EA chooses the best one of these, the
distribution of this offspring would have to be computed. Note, however, that this
effect can only have a very mild impact on the bounds stated above, as it occurs
relatively rarely and does, in general, not result in a much larger fitness gain. Put
differently, the bounds in Theorem 1 are close to tight for reasonable (i.e., not too
large) values of λ.

As the expressions in Theorem 1 are not easy to interpret, we provide in Table 4.1
a numerical evaluation of the upper bound (4.2) for different values of λ and n. We
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add to this table (second row) the empirically observed averages, which show a good
match to the theoretical bound.

500 1,000 1,500 10,000 100,000 500,000
(1+1) 54.317% 54.313% 54.311% 54.309% 54.308% 54.308%
emp. 54.0% 54.1% 54.2% - - -
(1+2) 54.349% 54.328% 54.322% 54.310% 54.308% 54.308%
emp. 54.8% 54.4% 54.2% - - -
(1+5) 54.444% 54.376% 54.353% 54.315% 54.309% 54.308%
emp. 54.5% 54.8% 54.6% - - -

(1+50) 55.883% 55.091% 54.829% 54.386% 54.316% 54.310%
emp. 57.6% 55.3% 55.2% - - -

Table 4.1: Theoretical upper bounds from Theorem 1 and empirical optimization times
for the (1 + λ) EA>0

4.1.5 Summary

The work profiling (1+ λ) EA provids an example of how benchmarking studies asso-
ciate theoretical analysis and empirical studies. In practice, the results shows that the
value of λ significantly affects the performance of (1+1) EA for OneMax. However, we
did not observe such effect for LeadingOnes. Moreover, the result inspired a refined
analysis of the expected optimization time of the (1 + λ) EA on LeadingOnes [56].

4.2 Interpolating Local and Global Search by Con-

trolling the Variance of Standard Bit Mutation

Recall that the probability of using the standard bit mutation to sample a specific
offspring y at distance 0 ≤ d ≤ n from x thus equals pH(x,y)(1 − p)H(x,y), where
H(x, y) = |{1 ≤ i ≤ n | xi ̸= yi}| denotes the Hamming distance of x and y. This
probability is strictly positive for all y, thus showing that the probability that an EA
using standard bit mutation will have sampled a global optimum of f converges to one
as the number of iterations increases. In contrast to pure random search, however, the
distance at which the offspring y is sampled follows a binomial distribution, Bin(n, p),
and is thus concentrated around its mean np.

The ability to escape local optima comes at the price of frequent uses of non-
optimal search radii even in those regimes in which the latter are stable for a long
time. The incapability of standard bit mutation to adjust to such situations results in
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important performance losses on almost all classical benchmark functions, which often
exhibit large parts of the optimization process in which flipping a certain number of
bits is required. A convenient way to control the degree of randomness in the choice
of the search radius would therefore be highly desirable.

In this section we introduce such an interpolation. It allows to calibrate between
deterministic and pure random search, while encompassing standard bit mutation as
one specification. More precisely, we investigate normalized standard bit mutation,
in which the mutation strength (i.e., the search radius) is sampled from a normal
distribution N(µ, σ2). By choosing σ = 0 one obtains a deterministic choice, and the
“degree of randomness” increases with increasing σ. By the central limit theorem, we
recover a distribution that is very similar to that of standard bit mutation by setting
µ = np and σ2 = np(1− p).

Apart from conceptual advantages, normalized standard bit mutation offers the ad-
vantage of separating the variance from the mean, which makes it easy to control both
parameters independently during the optimization process. While multi-dimensional
parameter control for discrete EAs is still in its infancy, cf. comments in [92, 42], we
demonstrate in this work a simple, yet efficient way to control mean and variance of
normalized standard bit mutation.

4.2.1 Background

In Section 4.1, we observed that the EA with success-based self-adjusting mutation rate
proposed in [46] outperforms the (1+λ) EA for a large range of sub-optimal targets. It
then drastically looses performance in the later parts of the optimization process, which
results in an overall poor optimization time on OneMax and LeadingOnes functions
of moderate problem dimensions n ≤ 10, 000. The proven optimal asymptotic behavior
on OneMax in [46] can thus not be observed for these dimensions.

The algorithm from [46], which we named (1 + λ) EAr/2,2r, has been mentioned
in Section 4.1.2. The details are presented in Algorithm 3. It is a (1 + λ) EA which
applies in each iteration two different mutation rates. Half of the offspring popula-
tion is generated with mutation rate r/(2n), the other half with mutation rate 2r/n.
The parameter r is the current best mutation strength, which is updated after each
iteration, with a bias towards the rate by which the best of the λ offspring has been
sampled.

Recall that we apply the standard bit mutation by first sampling a radius ℓ from
the binomial distribution Bin(n, p) and then applying the flipℓ operator, which flips
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Algorithm 3: The 2-rate (1 + λ) EAr/2,2r with adaptive mutation rates
proposed in [46]
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Initialize r ← rinit; // Following [46] we use rinit = 2;
3 Optimization: for t = 1, 2, 3, . . . do
4 for i = 1, . . . , λ/2 do
5 Sample ℓ(i) ∼ Bin>0(n, r/(2n)), create y(i) ← flipℓ(i)(x), and evaluate

f(y(i));

6 for i = λ/2 + 1, . . . , λ do
7 Sample ℓ(i) ∼ Bin>0(n, 2r/n), create y(i) ← flipℓ(i)(x), and evaluate

f(y(i));

8 x∗ ← argmax{f(y(1)), . . . , f(y(λ))} (ties broken u.a.r.);
9 if f(x∗) ≥ f(x) then x← x∗;

10 if x∗ has been created with mutation rate r/2 then s← 3/4 else s← 1/4;
11 Sample q ∈ [0, 1] u.a.r.;
12 if q ≤ s then r ← max{r/2, 2} else r ← min{2r, n/4};

ℓ pairwise different bits that are chosen from the index set [n] uniformly at random.
Note that we still apply the re-sampling strategy enforcing that all offspring differ from
their parents by at least one bit, which is achieved by sampling ℓ from the conditional
binomial distribution Bin>0(n, p).

In Section 4.1.2, we compared the fixed-target performance of the (1 + 50) EA>0

(i.e., the (1 + λ) EA using the conditional sampling rule introduced above) and the
(1 + 50) EAr/2,2r on OneMax and LeadingOnes. In Figure 4.5 we report similar
empirical results for n = 10, 000 (OneMax) and n = 2, 000 (LeadingOnes) (the other
results in the two figures will be addressed below). We also observed in Section 4.1 that
for both functions the (1+50) EAr/2,2r from [46] performs well for small target values,
but drastically looses performance in the later stages of the optimization process.

Properties of OneMax and LeadingOnes

Both OneMax and LeadingOnes have a long period during the optimization run in
which flipping one bit is optimal.

For OneMax flipping one bit is widely assumed to be optimal as soon as f(x) ≥
2n/3. Quite interestingly, however, this conjecture has not not been rigorously proven
to date. It is only known that drift-maximizing (i.e., maximizing the expected fitness
gain over the best-so-far individual) mutation strengths are almost optimal [45], in
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Figure 4.5: Average fixed-target running times for variants of the 2-rate (1 + 50) EA
for 10, 000-dimensional OneMax and 2, 000-dimensional LeadingOnes.

Figure 4.6: Drift maximizing and optimal mutation strength for 1, 000-dimensional
OneMax and LeadingOnes functions, respectively. Note the logarithmic scale for
kdrift for OneMax. For OneMax, RLS spends around 94% of the total optimization
time in the regime in which kdrift = 1, for LeadingOnes this fraction is still 50%.
For the drift-maximizing/optimal RLS-variants flipping in each iteration kdrift and
kopt bits, respectively, these fractions are around 96% for OneMax and 64% for
LeadingOnes.

the sense that the overall expected optimization time of the elitist (1+1) algorithm
using these rates in each step cannot be worse than the best-possible unary unbiased
algorithm for OneMax by more than an additive o(n) lower order term [45]. But even
for the drift maximizer the statement that flipping one bit is optimal when f(x) ≥ 2n/3

has only be shown for an approximation, not the actual drift maximizer. Numerical
evaluations for problem dimensions up to 10, 000 nevertheless confirm that 1-bit flips
are optimal when the OneMax-value exceeds 2n/3.

For LeadingOnes, on the other hand, it is well known that flipping one bit is
optimal as soon as f(x) ≥ n/2 [38].

We display in Figure 4.6, which is adjusted from [53], the optimal and drift-
maximizing mutation strength for LeadingOnes and OneMax, respectively. We
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also display in the same figure the expected time needed by RLSopt and RLSdrift, the
elitist (1+1) algorithm using in each step these mutation rates. We see that these
algorithms spend around 96% (for OneMax) and 64% (for LeadingOnes), respec-
tively, of their time in the regime where flipping one bit is (almost) optimal. These
numbers are based on an exact computation for LeadingOnes and on an empirical
evaluation of 500 independent runs for OneMax.

Implications for the (1 + 50) EAr/2,2r

Assume that in the regime of optimal one-bit flips the (1 + 50) EAr/2,2r has correctly
identified that flipping one bit is optimal. It will hence use the smallest possible value
for r, which is 2. In this case, half the offspring are sampled with the (for this algorithm
optimal) mutation rate 1/n, while the other half of the offspring population is sampled
with mutation rate 4/n, thus flipping on average more than four times the optimal
number of bits. It is therefore non-surprising that in this regime (and already before)
the gradient of the average fixed-target running time curves in Figures 4.5 are much
worse for the (1 + 50) EAr/2,2r than for the (1 + 50) EA>0.

4.2.2 Creating Half the Offspring with Optimal Mutation Rate

The observations made in the last section inspire the design of the (1+λ) EAr,U(0,σr/n)

defined in Algorithm 4. This algorithm samples half the offspring using as deterministic
mutation strength the best mutation strength of the last iteration. The other offspring
are sampled with a mutation rate that is sampled uniformly at random from the
interval (0, σr/n).

As we can see in Figure 4.5 this algorithm significantly improves the performance
in those later parts of the optimization process. Normalized total optimization times
for various problem dimensions are provided in Figures 4.7 and 4.8, respectively. We
display data for σ = 2 only, and call this (1 + λ) EAr,U(0,σr/n) variant (1 + λ) EAhalf.
We note that smaller values of σ, e.g., σ = 1.5 would give better results. The same
effect would be observable when replacing the factor two in the (1 + λ) EAr/(2n),2r,
i.e., when using a (1 + λ) EAr/(σn),σr rule with σ ̸= 2.

It is remarkable that on LeadingOnes the (1 + λ) EAhalf performs better than
RLS, the elitist (1+1) algorithm flipping in each iteration exactly one uniformly chosen
bit. The slightly worse gradients for target values v > n/2 (which are a consequence
of randomly sampling the mutation rate instead of using mutation strength one de-
terministically) are compensated for by the gains made in the initial phase of the
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Algorithm 4: The (1 + λ) EAr,U(0,σr/n). In line 6 we denote by U(a, b) the
uniform distribution in the interval (a, b). For σ = 2 we call this algorithm
the (1 + λ) EAhalf.
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Initialize r ← rinit; // we use rinit = 2;
3 Optimization: for t = 1, 2, 3, . . . do
4 for i = 1, . . . , λ/2 do
5 Set ℓ(i) ← r, create y(i) ← flipℓ(i)(x), and evaluate f(y(i));

6 for i = λ/2 + 1, . . . , λ do
7 Sample p(i) ∼ min{U(0, σr/n), 1}, ℓ(i) ∼ Bin>0(n, p

(i)), create
y(i) ← flipℓ(i)(x), and evaluate f(y(i));

8 i← min
{
j | f(y(j)) = max{f(y(k)) | k ∈ [n]}

}
;

9 r ← ℓ(i);
10 if f(y(i)) ≥ f(x) then x← y(i);

optimization process, where the EA variants benefit from larger mutation rates.
On OneMax the performance of the (1+λ) EAhalf is better than that of the plain

(1 + λ) EA>0 for both tested values λ = 50 and λ = 2.
We recall that it is well known that, both for OneMax and LeadingOnes, the

optimal offspring population size in the regular (1+λ) EA is λ = 1 [87]. A monotonic
dependence of the average optimization time on λ is conjectured (and empirically
observed) but not formally proven. While for OneMax the impact of λ is significant,
the dependency on λ is much less pronounced for LeadingOnes. Empirical results
for both functions and a theoretical running time analysis for LeadingOnes can be
found in [56]. For OneMax [68] offers a precise running time analysis of the (1+λ) EA
for broad ranges of offspring population sizes λ and mutation rates p = c/n. In light of
the fact that the theoretical considerations in [46] required λ = ω(1), it is worthwhile
to note that for all tested problem dimensions the (1+2) EAr/2,2r performs better on
OneMax than the (1 + 50) EAr/2,2r.

4.2.3 Normalized Standard Bit Mutation

In light of the results presented in the previous section, one may wonder if splitting the
population into two halves is needed after all. We investigate this question by introduc-
ing the (1+λ) EAnorm. which in each iteration and for each i ∈ [λ] samples the mutation
strength ℓ(i) from the normal distribution N(r, r(1− r/n)) around the best mutation
strength r of the previous iteration and rounding the sampled value to the closest in-
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teger. The reasons to replace the uniform distribution U(r/n−σ, r/n+σ) will be ad-
dressed below. As before we enforce ℓ(i) ≥ 1 by re-sampling if needed, thus effectively
sampling the mutation strength from the conditional distribution N>0(r, r(1− r/n)).
Algorithm 5 summarizes this algorithm.

Algorithm 5: The (1 + λ) EAnorm. with normalized standard bit mutation
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Initialize r ← rinit; // we use rinit = 2;
3 Optimization: for t = 1, 2, 3, . . . do
4 for i = 1, . . . , λ do
5 Sample ℓ(i) ∼ min{N>0(r, r(1− r/n)), n}, create y(i) ← flipℓ(i)(x), and

evaluate f(y(i));

6 i← min
{
j | f(y(j)) = max{f(y(k)) | k ∈ [n]}

}
;

7 r ← ℓ(i);
8 if f(y(i)) ≥ f(x) then x← y(i);

Note that the variance r(1 − r/n) of the unconditional normal distribution
N(r, r(1 − r/n)) is identical to that of the unconditional binomial distribution
Bin(n, r/n). We use the normal distribution here for reasons that will be explained
in the next section. Note, however, that very similar results would be obtained when
replacing in line 4 of Algorithm 5 the normal distribution N>0(r, r(1 − r/n)) by the
binomial one Bin>0(n, r/n). We briefly recall that, by the central limit theorem, the
(unconditional) binomial distribution converges to the (unconditional) normal distri-
bution.

The empirical performance of the (1 + 50) EAnorm. is comparable to that of the
(1 + 50) EAhalf for both problems and all tested problem dimensions, cf. Figures 4.7
and 4.8. Note, however, that for λ = 2 the (1 + 2) EAnorm. performs worse than the
(1 + 2) EAhalf.

4.2.4 Interpolating Local and Global Search

As discussed above, all EA variants mentioned so far suffer from the variance of the
random selection of the mutation rate, in particular in the long final part of the
optimization process in which the optimal mutation strength is one. We therefore
analyze a simple way to reduce this variance on the fly. To this end, we build upon
the (1 + λ) EAnorm. and introduce a counter c, which is initialized at zero. In each
iteration, we check if the value of r changes. If so, the counter is re-set to zero. It
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Figure 4.7: By n ln(n) normalized average optimization times for OneMax, for n
between 500 and 10, 000. Displayed numbers are for n = 10, 000.

Figure 4.8: By n2 normalized average optimization times for LeadingOnes, for n
between 500 and 3, 000. Displayed numbers are for n = 2, 000.

is increased by one otherwise, i.e., if the value of r remains the same. We use this
counter to self-adjust the variance of the normal distribution. To this end, we replace
in line 4 of Algorithm 5 the conditional normal distribution N>0(r, r(1 − r/n)) by
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the conditional normal distribution N>0(r, F
cr(1 − r/n)), where F < 1 is a constant

discount factor. Algorithm 6 summarizes this (1 + λ) EA variant with normalized
standard bit mutation and a self-adjusting choice of mean and variance.

Algorithm 6: The (1+λ) EAvar. with normalized standard bit mutation and
a self-adjusting choice of mean and variance
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Initialize r ← rinit; // we use rinit = 2;
3 Initialize c← 0;
4 Optimization: for t = 1, 2, 3, . . . do
5 for i = 1, . . . , λ do
6 Sample ℓ(i) ∼ min{N>0(r, F

cr(1− r/n)), n}, create y(i) ← flipℓ(i)(x),
and evaluate f(y(i));

7 i← min
{
j | f(y(j)) = max{f(y(k)) | k ∈ [n]}

}
;

8 if r = ℓ(i) then c← c+ 1; else c← 0;
9 r ← ℓ(i);

10 if f(y(i)) ≥ f(x) then x← y(i);

Choice of F : We use F = 0.98 in all reported experiments. Preliminary tests
suggest that values F < 0.95 are not advisable, since the algorithm may get stuck with
sub-optimal mutation rates. This could be avoided by introducing a lower bound for
the variance and/or by mechanisms taking into account whether or not an iteration
has been successful, i.e., whether it has produced a strictly better offspring.

The empirical comparison suggests that the self-adjusting choice of the variance in
the (1 + λ) EAvar. improves the performance on OneMax further, cf. also Figure 4.7
for average fixed-target results for n = 10, 000. For λ = 2 the average performance
is comparable to, but slightly worse than that of RLS. For LeadingOnes, the (1 +

50) EAvar. is comparable in performance to the (1+ 50) EAnorm., but we observe that
for λ = 2 the (1 + λ) EAvar. performs better. It is the only one among all tested EAs
for which decreasing λ from 50 to 2 does not result in a significantly increased running
time.

4.2.5 A Meta-Algorithm with Normalized Standard Bit Muta-
tion

In the (1 + λ) EAvar. we make use of the fact that a small variance in line 6 of
Algorithm 6 results in a more concentrated distribution. The variance adjustment is
thus an efficient way to steer the degree of randomness in the selection of the mutation
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Algorithm 7: The (1+λ) Meta-Algorithm with (static) normalized standard
bit mutation. The RLS variant with deterministic search radius r and (1 +
λ) EA using standard bit mutation with mutation rate r/n are identical to
this algorithm with σ2 = 0 and σ2 = r(1− r/n), respectively.
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 for i = 1, . . . , λ do
4 Sample ℓ(i) ∼ min{N>0(r, σ

2), n}, create y(i) ← flipℓ(i)(x), and evaluate
f(y(i)); // r and σ are two parameters;

5 y ← argmax{f(y(k)) | k ∈ [n]};
6 if f(y) ≥ f(x) then x← y;

rate. It allows to interpolate between deterministic and random mutation rates. In our
experimentation we do not go beyond the variance of the binomial distribution, but in
principle there is no reason to not regard larger variance as well. The question of how
to best determine the degree of randomness in the choice of the mutation rate has, to
the best of our knowledge, not previously been addressed in the EC literature. We
believe that this idea carries good potential, since it demonstrates that local search
with its deterministic search radius and evolutionary algorithms with their global
search radii are merely two different configurations of the same meta-algorithm, and
not two different algorithms as the general perception might indicate. To make this
point very explicit, we introduce with Algorithm 7 a general meta-algorithm, of which
local search with deterministic mutation strengths and EAs are special instantiations.

Note that in this meta-model we use static parameter values, variants with adaptive
mutation rates can be obtained by applying the usual parameter control techniques,
as demonstrated above. Of course, the same normalization can be done for similar
EAs, the technique is not restricted to elitist (1 + λ)-type algorithms. Likewise, the
condition to flip at least one bit can be omitted, i.e., one can replace the conditional
normal distribution N>0(r, σ

2) in line 3 by the unconditional N(r, σ2).

4.2.6 Summary

In this section, we introduced the normalized standard bit mutation, which replaces
the binomial choice of the mutation strength in standard bit mutation by a normal
distribution [165]. This normalization allows a straightforward way to control the
variance of the distribution, which can now be adjusted independently of the mean.
We have demonstrated that such an approach can be beneficial when optimizing classic
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benchmark problems such as OneMax and LeadingOnes.

We also note that the parameter control technique which we applied to adjust the
mean of the sampling distribution for the mutation strength has an extremely short
learning period, since we simply use the best mutation strength of the last iteration
as mean for the sampling distribution of the next iteration. For more rugged fitness
landscapes a proper learning, which takes into account several iterations, should be
preferable. We recall that multi-dimensional parameter control has not received much
attention inthe EC literature for discrete optimization problems [42, 92]. Our work falls
into this category, and we have demonstrated a simple way to separate the control of
the mean from that of the variance of the mutation strength distribution. In Chapter 6,
we will introduce more work on hyperparameter optimization.

Finally, the meta-algorithm presented in Section 4.2.5 demonstrates that Random-
ized Local Search and evolutionary algorithms can be seen as two configurations of the
meta-algorithm. Parameter control, or, in this context possibly more suitably referred
to as online algorithm configuration, offers the possibility to interpolate between these
algorithms (and even more drastically, randomized heuristics). Given the significant
advances in the context of algorithm configuration witnessed by the EC and machine
learning communities, we believe that such meta-models carry significant potential to
exploit and profit from advantages of different heuristics. Note here that the config-
uration of meta-algorithms offers much more flexibility than the algorithm selection
approach classically taken in EC, e.g., in most works on hyper-heuristics. Related
work algorithm selection will also be discussed in Chapter 7.

4.3 The Impact of Crossover Probability for GA

4.3.1 Background

In this section, we look closely into the performance of a (µ + λ) GA on Leadin-

gOnes. The work of this section is motivated by the investigation of the effectiveness
of mutation and crossover, more details will be introduced in Section 5.2.

We observe some very interesting effects, that we believe may motivate the theory
community to look at the question of usefulness of crossover from a different angle.
More precisely, we find that, against our intuition that uniform crossover cannot be
beneficial on LeadingOnes, the performance of the (µ + λ) GA on LeadingOnes

improves when pc takes values greater than 0 (and smaller than 1), see Figure 4.9.
The performances are quite consistent, and we can observe clear patterns, such as a
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tendency for the optimal value of pc (displayed in Table 4.2) to increase with increasing
µ, and to decrease with increasing problem dimension. The latter effect may explain
why it is so difficult to observe benefits of crossover in theoretical work: they disappear
with the asymptotic view that is generally adopted in runtime analysis.

We have also performed similar experiments on OneMax (see our data [171]), but
the good performance of the (µ+λ) GA configurations using crossover is less surprising
for this problem, since this benefit has previously been observed for genetic algorithms
that are very similar to the (µ+ λ) GA; see [25, 29, 30, 143] for examples and further
references. In contrast to a large body of literature on the benefit of crossover for
solving OneMax, we are not aware of the existence of such results for LeadingOnes,
apart from the highly problem-specific algorithms that were developed and analyzed
in [1, 52].

4.3.2 A Family of (µ+ λ) Genetic Algorithms

We investigate a meta-model, which allows us to easily transition from a mutation-
only to a crossover-only algorithm. Algorithm 8 presents this framework, which, for
ease of notation, we refer to as the family of the (µ+ λ) GA in the following.

The (µ + λ) GA initializes its population uniformly at random (u.a.r., lines 1-
2). In each iteration, it creates λ offspring (lines 6–16). For each offspring, we first
decide whether to apply crossover (with probability pc, lines 8–11) or whether to
apply mutation (otherwise, lines 12–15). Offspring that differ from their parents are
evaluated, whereas offspring identical to one of their parents inherit this fitness value
without function evaluation (see [25] for a discussion). The best µ of parent and
offspring individuals form the new parent population of the next generation (line 17).

Note the unconventional use of either crossover or mutation. As mentioned, we
consider this variant to allow for a better attribution of the effects to each of the
operators. Moreover, note that in Algorithm 8 we decide for each offspring individually
which operator to apply. We call this scheme the (µ+λ) GA with offspring-based
variator choice. We also study the performance of the (µ+λ) GA with population-
based variator choice, which is the algorithm that we obtain from Algorithm 8 by
swapping lines 7 and 6.

4.3.3 Experimental Results

Before we go into the details of the experimental setup and our results, we recall that
for the optimization of LeadingOnes, the fitness values only depend on the first bits,
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Algorithm 8: A Family of (µ+ λ) Genetic Algorithms
1 Input: Population sizes µ, λ, crossover probability pc, mutation rate p;
2 Initialization: for i = 1, . . . , µ do sample x(i) ∈ {0, 1}n uniformly at random

(u.a.r.), and evaluate f(x(i));
3 Set P = {x(1), x(2), . . . , x(µ)};
4 Optimization: for t = 1, 2, 3, . . . do
5 P ′ ← ∅;
6 for i = 1, . . . , λ do
7 Sample r ∈ [0, 1] u.a.r.;
8 if r ≤ pc then
9 select two individuals x, y from P u.a.r. (w/ replacement);

10 z(i) ← Crossover(x, y);
11 if z(i) /∈ {x, y} then evaluate f(z(i)) else infer f(z(i)) from parent;
12 else
13 select an individual x from P u.a.r.;
14 z(i) ← Mutation(x);
15 if z(i) ̸= x then evaluate f(z(i)) else infer f(z(i)) from parent;

16 P ′ ← P ′ ∪ {z(i)};
17 P is updated by the best µ points in P ∪ P ′ (ties broken u.a.r.);

whereas the tail is randomly distributed and has no influence on the selection. More
precisely, a search point x with LeadingOnes-value f(x) has the following structure:
the first f(x) bits are all 1, the f(x)+ 1st bit equals 0, and the entries in the tail (i.e.,
in positions [f(x)+2..n]) did not have any influence on the optimization process so far.
For many algorithms, it can be shown that these tail bits are uniformly distributed,
see [39] for an extended discussion.

Experimental Setup. We fix in this section the variator choice to the offspring-
based setting. We test (µ + λ) GA with following parameter combinations on 100-
dimensional LeadingOnes: µ ∈ {2, 3, 5, 8, 10, 20, 30, . . . , 100} (14 values), λ ∈ {1, µ}
(3 values), pc ∈ {0.1k | k ∈ [0..9]} ∪ {0.95} (11 values), and mutation and crossover
operators are fixed standard bit mutation with pm = 1/n and uniform crossover. For
each of the settings listed there, we perform 100 independent runs, with a maximal
budget of 5n2 each.

Overall Running Time. We first investigate the impact of the crossover proba-
bility on the average running time, i.e., on the average number of function evaluations
that the algorithm performs until it evaluates the optimal solution for the first time.
The results for the (µ+ 1) and the (µ+ µ) GA using uniform crossover and standard
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Figure 4.9: By n2 normalized ERT values for the (µ + λ) GA using standard bit
mutation and uniform crossover on LeadingOnes, for different values of µ and for
λ = 1 (top) and for λ = µ (bottom). Results are grouped by the value of µ (main
columns), by the crossover probability pc (minor columns), and by the dimension
(rows). The ERTs are computed from 100 independent runs for each setting, with a
maximal budget of 5n2 fitness evaluations. ERTs for algorithms which successfully find
the optimum in all 100 runs are depicted as black bars, whereas ERTs for algorithms
with success rates in (0, 1) are depicted as red bars. All bars are capped at 5.

bit mutation are summarized in Figure 4.9. Since not all algorithms managed to find
the optimum within the given time budget, we plot as red bars the ERT values for
such algorithms with success ratio strictly smaller than 1, whereas the black bars are
reserved for algorithms with 100 successful runs. All values are normalized by n2, to
allow for a better comparison.

As a first observation, we note that the pattern of the results are quite regular. As
can be expected, the dispersion of the running times is rather small. To give an impres-
sion for the concentration of the running times, we report that the standard deviation
of the (50 + 1) GA on the 100-dimensional LeadingOnes function is approximately
14% of the average running time across all values of pc. As can be expected for a ge-
netic algorithm on LeadingOnes, the average running time increases with increasing
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population size µ, see [142] for a proof of this statement when pc = 0.

Next, we compare the sub-plots in each row, i.e., fixing the dimension. We see that
the (µ + λ) GA suffers drastically from large pc values when µ is smaller, suggesting
that the crossover operator hinders performance. But as µ gets larger, the average
running time at moderate crossover probabilities (pc around 0.5) is significantly smaller
than that in two extreme cases, pc = 0 (mutation-only GAs), and pc = 0.95. This
observation holds for all dimensions and for both algorithm families, the (µ+ 1) and
the (µ+ µ) GA.

Looking at the sub-plots in each column (i.e., fixing the population size), we identify
another trend: for those values of µ for which an advantage of pc > 0 is visible for the
smallest tested dimension, n = 64, the relative advantage of this rate decreases and
eventually disappears as the dimension increases.

Finally, we compare the results of the (µ + 1) GA with those of the (µ + µ) GA.
Following [87], it is not surprising that for pc = 0, the results of the (µ + 1) GA are
better than those of the (µ+µ) GA (very few exceptions to this rule exist in our data,
but in all these cases the differences in average runtime are negligibly small), and fol-
lowing the theoretical analysis [56, Theorem 1], it is not surprising that the differences
between these two algorithmic families are rather small: the typical disadvantage of
the (µ + ⌈µ/2⌉) GA over the (µ + 1) GA is around 5% and it is around 10% for the
(µ + µ) GA, but these relative values differ between the different configurations and
dimensions.

Optimal Crossover Probabilities. To make our observations on the crossover
probability clearer, we present in Table 4.2 a heatmap of the values p∗c for which we
observed the best average running time (with respect to all tested pc values). We see
the same trends here as mentioned above: as µ increases, the value of p∗c increases,
while, for fixed µ its value decreases with increasing problem dimension n. Here again
we omit details for the (µ + ⌈µ/2⌉) GA and for the fast mutation scheme, but the
patterns are identical, with very similar absolute values.

Fixed-Target Running Times. We now study where the advantage of the
crossover-based algorithms stems from. We demonstrate this using the example of the
(50 + 50) GA in 200 dimensions. We recall from Table 4.2 that the optimal crossover
probability for this setting is p∗c = 0.3. The left plot in Fig. 4.10 is a fixed-target
plot, in which we display for each tested crossover probability pc (different lines) and
each fitness value i ∈ [0..200] (x-axis) the average time needed until the respective
algorithm evaluates for the first time a search point of fitness at least i. The mutation-
only configuration (pc = 0) performs on par with the best configurations for the first
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n
µ 2 3 5 8 10 20 30 40 50 60 70 80 90 100

(µ
+

1
)

64 0.0 0.1 0.1 0.1 0.2 0.3 0.5 0.4 0.5 0.5 0.6 0.7 0.6 0.7
100 0.0 0.1 0.1 0.1 0.1 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.4 0.6
150 0.0 0.1 0.1 0.1 0.1 0.2 0.3 0.3 0.4 0.4 0.5 0.4 0.4 0.5
200 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4
250 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.3 0.4
500 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3

(µ
+

µ
)

64 0.0 0.2 0.1 0.1 0.2 0.2 0.4 0.4 0.6 0.5 0.5 0.7 0.5 0.7
100 0.0 0.0 0.1 0.1 0.2 0.3 0.3 0.3 0.5 0.4 0.5 0.5 0.6 0.5
150 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.5 0.4 0.5 0.5 0.5 0.5
200 0.0 0.0 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.4 0.5 0.4 0.5
250 0.0 0.0 0.1 0.1 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4
500 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3

Table 4.2: On LeadingOnes, the optimal value of pc for the (µ + 1) and the (µ +
µ) GA with uniform crossover and standard bit mutation, for various combinations of
dimension n (rows) and µ (columns). Values are approximated from 100 independent
runs each, probing pc ∈ {0.1k | k ∈ [0..9]} ∪ {0.95}.
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Figure 4.10: Left: Average fixed-target running times of the (50 + 50) GA with uni-
form crossover and standard bit mutation on LeadingOnes in 200 dimensions, for different
crossover probabilities pc. Results are averages of 100 independent runs. Right: Gradient of
selected fixed-target curves.

part of the optimization process, but then loses in performance as the optimization
progresses. The plot on the right shows the gradients of the fixed-target curves. The
gradient can be used to analyze which configuration performs best at a given target
value. We observe an interesting behavior here, namely that the gradient of the
configuration pc = 0.8, which has a very bad fixed-target performance on all targets
(left plot), is among the best in the final parts of the optimization. Inspired by the
plot on the right therefore, we investigate the (µ+ λ) GA using adaptive an choice of
pc in Section 7.2.

69



4.3. The Impact of Crossover Probability for GA

4.3.4 Summary

In this section, by varying the value of the crossover probability pc of the (µ+λ) GA,
we discovered on LeadingOnes that its optimal value pc (with respect to the average
running time) increases with the population size µ, whereas for fixed µ it decreases
with increasing dimension n.

Our results raise the interesting question of whether a non-asymptotic runtime
analysis (i.e., bounds that hold for a fixed dimension rather than in big-Oh notation)
could shed new light on our understanding of evolutionary algorithms. We note that a
few examples of such analyses can already be found in the literature, e.g., in [23, 27].
The regular patterns observed in Figure 4.9 suggest the presence of trends that could
be turned into formal knowledge. In addition, the result in this section inspires the
work on dynamic pc for the the (µ+ λ) GA in Section 7.2.
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