g
4
s

i |

By
Ay

Y

M’b The Netherlands

)
J}
B
B
=

=

o

&

o
-

Benchmarking discrete optimization heuristics: from building

a sound experimental environment to algorithm configuration
Ye, F.

Citation

Ye, F. (2022, June 1). Benchmarking discrete optimization heuristics: from
building a sound experimental environment to algorithm configuration.
Retrieved from https://hdl.handle.net/1887/3304813

Version: Publisher's Version

Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3304813

License:

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3304813

Chapter 3

The IOHPROFILER

Benchmarking Software

This chapter introduces our IOHPROFILER benchmarking software. Following the
motivations discussed in Chapter 1, we introduce in this chapter the functionalities

and the accessibilities of the tool.

3.1 Overview

Recall that we plan to create a benchmarking software to perform robust testing of
IOHs on a wide range of problems, while many tools have been created for specific
sets of problems with different programming designs. An overarching benchmarking
pipeline would be highly beneficial for this goal, as it allows for easy transition from
the implementation of algorithms to the analysis and comparison of performance data.
Therefore, we have developed IOHPROFILER, which is a benchmarking software for
detailed, highly modular performance analysis of iterative optimization heuristics.
IOHPROFILER consists of two main components: IOHEXPERIMENTER, a mod-
ule for processing the actual experiments and generating the performance data, and
IOHANALYZER [156], a post-processing module for compiling detailed statistical
evaluations. Figure 3.1 plots the workflow of IOHPROFILER. With given benchmark
problems (IOHproblems) and algorithms (IOHalgorithms), IOHEXPERIMENTER
generates the output data that can be used for IOHANALYZER. IOHANALYZER can

perform performance analyses and visualize algorithms’ behaviour. We maintain our

33

3.1. Overview

Benchmark Problems

l

| Problem Generators
Hand-Picked Problems
I0OHproblems

Data Repositories

I

[

Nevergrad

[

BBOB/COCO

I0Hdata

o o o e e e e !

Algorithms

l Home-Made Heuristics

l Algorithm Frameworks

I0Halgorithms

IOHexperimenter
Easy-to-use benchmarking of
user-defined algorithms and
problems, with customizable

tracking of performance

I0Hanalyzer
Interactive visualization of =i
algorithm behavior
Robust statistical analysis of
performance measures

| Other Tools

for Benchmarking

‘ Statistical

Analyses

’ Feature Extra

ction

‘ Automated Algorithm S

election

Automated Algorithm Configuration

Figure 3.1: Workflow of IOHPROFILER

[1oHprofiler Modules

data for the IOHdata module. The platform can be applied for the study of au-

tomatic algorithm configuration, algorithm selection, feature extraction, statistical

analyses, and much more.
We briefly introduce the modules of IOHPROFILER in the following:

e IOHproblems: a collection of benchmark problems. This component currently

comprises (1) the PBO suite of pseudo-Boolean optimization problems suggested
in [54], (2) the 24 numerical, noise-free BBOB functions from the COCO plat-
form [78], and (3) the W-model problem generator proposed in [160].

e IOHalgorithms: a collection of IOHs. For the moment, the algorithms used for

the benchmark studies presented in [3, 35, 54] are available. This subsumes text-

book algorithms for pseudo-Boolean optimization, an integration to the object-

oriented algorithm design framework ParadisEO [24], and the modular algo-

rithm framework for CMA-ES variants originally suggested in [150] and extended

in [35]. Further extensions for both combinatorial and numerical solvers are in

progress.

34

Chapter 3. The IOHPROFILER Benchmarking Software

e IOHdata: a data repository for benchmark data. This repository currently
comprises the data from the experiments performed in [78], a sample data set
used in this paper, and some selected data sets from the COCO repository [77].
IOHdata also contains performance data from the Nevergrad benchmarking

environment [131], which can be fetched from their repository upon request.

¢ IOHEXPERIMENTER: the experimentation environment that executes IOHs
on IOHproblems or external problems and automatically takes care of logging
the experimental data. It allows for tracking the internal parameter of IOHs and
supports various customizable logging options to specify when to register a data

record.

e TOHANALYZER: the data analysis and visualization tool presented in this the-

sis.

3.2 The IOHEXPERIMENTER Module

IOHEXPERIMENTER is the module of IOHPROFILER which can be considered as the
interface between algorithms and problems, where it allows consistent data collection
of both performance and algorithmic data such as the evolution of control parameters

during the optimization process.

3.2.1 Functionalities

We consider here a benchmark process consisting of three components: problems, log-
gers, and algorithms. While these components interact to perform the benchmarking,
they should be usable in a stand-alone manner, allowing any of these factors to be
modified without impacting the behaviour of the others. Within [OHEXPERIMENTER,
an interface is provided to ensure that any changes to the setup will be compatible
with the other components of the benchmarking pipeline.

At its core, IOHEXPERIMENTER provides a standard interface towards expandable
benchmark problems and several loggers to track the performance and the behaviour
(internal parameters and states) of algorithms during the optimization process. The
logger is integrated into a wide range of existing tools for benchmarking, and we have
done such integration work with IOHproblems for discrete optimization and COCQ’s
BBOB [79] for the continuous case. On the algorithm side, IOHEXPERIMENTER has

been connected to several modular algorithm frameworks, such as modular GA (see

35

3.2. The IOHEXPERIMENTER Module

Solvers

C++ interface

Python interface

|0OHexperimenter

Problems

Built-in suites:
PBO, BBOB, W-model

Users’ problems

Loggers

Built-in methods:
Csv-logger, ECDF

Function definition
Parameterization
« Transformation

States of tracking

Post-Processing

IOHanalyzer

Users’ analyses

Output format
Measuring

Users’ loggers

Figure 3.2: Workflow of IOHEXPERIMENTER

Chapter 6) and modular CMA-ES [35]. Additionally, output generated by the included
loggers is compatible with the IOHanalyzer module for interactive performance anal-
ysis.

Figure 3.2 shows the way I[OHEXPERIMENTER can be placed in a typical bench-
marking workflow. The key factor here is the flexibility of design: IOHEXPERIMENTER
can be used with any user-provided solvers and problems given a minimal overhead,
and ensures output of experimental results which follow conventional standards. Be-
cause of this, the data produced by IOHEXPERIMENTER is compatible with post-
processing frameworks like IOHanalyzer, enabling an efficient path from algorithm
design to performance analysis. In addition to the built-in interfaces to existing soft-
ware, IOHEXPERIMENTER aims to provide an user-accessible way to customize the
benchmarking setup. We introduce in the following the typical usage of IOHEXPERI-
MENTER, as well as the ways in which it can be customized to fit different benchmarking

scenarios.

3.2.2 Problems

In IOHEXPERIMENTER, a problem instance is defined as P = T} o f o T}, in which
f:x — R is a benchmark problem (e.g., for ONEMAX z = {0, 1}" and for the sphere
function = R™) and T, and T} are automorphisms supported on = and R, respec-
tively, representing transformations in the problem’s domain and range (e.g., transla-
tions and rotations for © = R™). To generate a problem instance, one needs to specify

a tuple of a problem f, an instance identifier i € N5, and the dimension n of the

36

Chapter 3. The IOHPROFILER Benchmarking Software

problem. Note that both transformations are applied to generalize the benchmark
problem, where the instance id serves as the random seed for instantiating 7, and 7.

Any problem instance that reconciles with this definition of P, can easily be inte-
grated into IOHEXPERIMENTER, using the C++ core or the Python interface.

The transformation methods are particularly important for robust benchmarking,
as they allow for the creation of multiple problem instances from the same base-
function, which enables checking of invariance properties of algorithms, such as scaling
invariance. Built-in transformations for pseudo-Boolean functions are available, as well
as transformation methods for continuous optimization used by [79].

When combining several problems together, a problem suite can be created. This
suite can then be used for more convenient benchmarking by providing access to built-
in iterators which allow a solver to easily run on all selected problem instances within
the suite. Additionally, an interface to two classes of the W-model extensions (based on

the OneMax and LeadingOnes respectively) [160] for generating problems is available.

3.2.3 Data Logging

IOHEXPERIMENTER provides loggers to track the performance of algorithms during
the optimization process. The loggers determine which data is recorded and the format
to record data. These loggers can be tightly coupled with the problems: when evalu-
ating a problem, the attached loggers will be triggered with the relevant information
to store. This information will be performance-oriented by default, with customiz-
able levels of granularity, but can also include any algorithm parameters. This can
be especially useful for tracking the evolution of self-adaptive parameters in iterative
optimization algorithms.

The default logger makes use of a two-part data format: meta-information, such
as function id, instance, dimension, etc., that gets written to .info-files, while the
performance data itself gets written to space-separated .dat-files. A full specification
of this format can be found in [156]. Data in this format can be used directly with the
IOHanalyzer for interactive analysis of the recorded performance metrics.

In addition to the built-in loggers, customized logging functionality can be created
within IOHEXPERIMENTER as well. This can be used to reduce the footprint of the
data when doing massive experiments such as algorithm configuration, where only the

final performance measure is relevant [3].

1 Note that multi-objective problems do not follow this structure, and are not yet supported within
IOHEXPERIMENTER. Integration of both noisy and mixed-variable type objective functions is in
development.

37

3.3. The IOHANALYZER Module

IOHanalyzer

® UploadData In details, the following functionalities are provided:

@ " Data Summary Expected Values Function)

B Fix ul; < Fixed-Target running time | Summary of running times | Expected Running Time (ERT) | Probabilty Mass Functon of running time | ECDF of running times

Fixed-Budget results | Summary of funciion values | Expacied Target Valus Probabilty Denslty Funclion of target values | ECDF of targels times.

For more information on the features of I0Hanalyzer and how to use them, as well as a full specification of the accepted data formats, please visit our wiki

1OHANALVZER VERSION: WIKIPAGE ‘CONTACT US BY EMAL:
v0.1.6.1 \ X 7 Forfull documentation of IOHprofiler NP iohprofiler@liacs.leidenuniv.nl
ub]

Upload Data Load Data from Repository
! N I P

o et d, and BBOB/COC d. i
files, please convert them to the format described here. .
Please choose the format of your datasets i « Alldata generated by the nevergrad benchmarking framewiork
AuTOMATIC -
Select the dataset source
Maximization or minimization? PBO v
AuTomaTIC -
Select the dataset
When the dataset is huge, the alignment can take a very long time. In this case, you could toggle: 2019gecco-insL-1irun
the efficient mode to subsample the dataset. However, the precision of data will be
compromised. Please choose the function

Efficient mode 1234567891011 115
wuwBBARAD

Please choose the dimension

Browse... | Nofile selecte
16 64 100 625

Figure 3.3: The screenshot of the first page of IOHANALYZER.

3.2.4 Accessibility

Note that I[OHEXPERIMENTER is build in C++, with a direct interface to Python. A
more low-level technical documentation of these procedures in both C++ and Python
can be found on the IOHprofiler wiki at https://iohprofiler.github.io/. This wiki also
provides access to getting-started information about installation and basic usage of

IOHEXPERIMENTER and its place in the benchmarking pipeline.

3.3 The IOHANALYZER Module

As the post-processing module of iterative optimization heuristic, [OHANALYZER pro-
vides detailed statistics about fixed-target running times and fixed-budget performance
of the benchmarked algorithms on real-valued, single-objective optimization tasks.
Moreover, performance aggregation over several benchmark problems is possible, for
example, in the form of ECDFs. Key advantages of IOHANALYZER over other perfor-
mance analysis packages are its highly interactive design, which allows users to specify
the performance measures, ranges, and granularity that are most useful for their ex-
periments, and the possibility to analyze not only performance traces but also the
evolution of dynamic state parameters.

Figure 3.3 shows the first page of IOHANALYZER, where presents the general infor-
mation of IOHANALYZER. Users can upload data in the box frame on the left or/and

38

https://iohprofiler.github.io/

Chapter 3. The IOHPROFILER Benchmarking Software

Runtime Statistics at Chosen Target Values =

This table summarizes for each algorithm and each target value chosen on the left:

Set the range and the granularty of the results. The
e R e g e et e o runs: the number of runs that have found at least one solution of the required target quality f(z),

targetalues. « mean: the average number of function evaluations needed to find a solution of function value at least £(z)

P lert s ety nite o median, 2%,5%,...., 98% : the quantiles of these first-hitting times

When not all runs managed to find the target value, the statistics hold only for those runs that did. That is, the mean value is the mean of the successful runs. Same
3 o for the quantiles. An alternative version with simulated restarts is currently in preparation.

Jfuax : Largest target value Show 10 @ entries

PR
100) target © mean median s PR 2w sw 0% 2% So% . Ts% . S0% 9% 9% ERT rums

Af : Granularity (step size) R

2

1S 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 s
Fain = fuwx? ONCe toggled, only fusa is used
to generate the table on the right. P s 1636 7 e 1636 1 1 1 s w2 ®m % W 1.k 5
selact which IDs toinclude: 3RS w o % w3 sos 49 49 s e 6 & %9 14 14 o 25
RLS self_GA 4 owms %8 30028 290 7663 028 w0 w0 1% 241 2 37 3% 30 30 3028 25
5 RS 0 496 4% 20440 49L6 23 23 .6 38 4 56 65 s w4l 25
Format
6 self_GA 38 1 1 0 1 1 1 1 1 1 1 1 1 1 1 25
v -
7 selfcA s soe o ne s 1 1 E S T R O Y S
&, Save this table
8 selfoh w 2em 25 159 mer 14 4 1 W2 a1 25 28 36 36 e s
9 s GA %8 11359 140 248147 173896 59 S09 SS9l 89 1055 122 1908 338 35 k% 25
10 self GA 100 604175 32995 925555 9800.12 898 898 909 1575 3264 4679 14176 19671 44042 10208.46 24
Showing 1t0 10 of 10 enries previous | 1| Nex

Figure 3.4: The screenshot of the data summary of fixed-target results for the RLS
and the self GA. The table in the figure lists the runtime of the algorithms for each
target chosen on the left box.

load IOHdata from the box frame on the right for analyzing. Figure 2.1, Figure 2.2,
and Figure 2.3 in Chapter 2 present the plots of fixed-targets results, fixed-budget
results, and ECDF curves generated using IOHANALYZER. Apart from these plots,
TOHANALYZER also provides detailed data in tables. For example, Figure 3.4 shows a
screenshot of a table summarizing runtime for each algorithm and each chosen target.

Moreover, IOHANALYZER supports analyzing the values of parameters of algo-
rithms for the chosen moments (e.g., when a required target is found or the predefined
budget is used). An example is plotted in Figure 3.5.

Note that the data tables and the figures on the IOHANALYZER website can be

downloaded.

3.3.1 Accessibility

In addition to the web-based application at https://iohanalyzer.liacs.nl, IOHAN-
ALYZER is available on GitHub https://github.com/IOHprofiler/IOHanalyzer and
CRAN. It is implemented by R and C++. IOHANALYZER can directly process perfor-
mance data from the main benchmarking platforms, including the COCO platform,
Nevergrad, and our own IOHexperimenter. An R programming interface is provided

for users preferring to have a finer control over the implemented functionalities. More

39

https://iohanalyzer.liacs.nl
https://github.com/IOHprofiler/IOHanalyzer

3.3. The IOHANALYZER Module

Expected Parameter Value (per function) =

The mean or median of internal parameters of the algorithm found with a fixed-budget of evaluations are depicted against the budget. The displayed elements
Range of the function values (= axis) can be switched on and off by clicking on the legend on the right. A tooltip and toolbar appears when hovering over the figure.

Juin : Smallest target value

/

m
fuax : Largest target value

625

mean

Parameters N

lambda mutation_rate |

Select which IDs to include: o 0 30 w00 a0 s0 s 6w
(L+AX) GA (141) EA >0 gHC (1+10) EA {1221

(14AN) GA (1+1)EA >0 GHC (1410 EA_{r/2,21} . 1 target
(1410) EA >0 (1+10) EA_logNormal el

(1+10) EA_normalized (1+10) EA_var_ctrl UMDA
(1+1)f6A (3030)vGA RLS

Mean/median

mean

mean -

Show standard deviations or quantiles ©

None -

Scale x axis logy,

target

Scaley axis logy a
= (14 GA =*= (I+)EA>0 — (1+]) fGA (1+10) EA_{r2.2r} (1+10)EA_>0 ~~*=* (1+10) EA_logNormal (1+10) EA_normalized
(410)EA varcal =< gHC === RLS
Select the figure format

pdf -

& Download the figure

Figure 3.5: The screenshot of the plots of the mean of parameters values for the ten
algorithms. The figures plot the mean of internal parameters ‘lambda’, ‘mutation
rate’, and ‘1’ of the algorithms for each required target.

details of IOHANALYZER can be found in [156].

40

