
Benchmarking discrete optimization heuristics: from building
a sound experimental environment to algorithm configuration
Ye, F.

Citation
Ye, F. (2022, June 1). Benchmarking discrete optimization heuristics: from
building a sound experimental environment to algorithm configuration.
Retrieved from https://hdl.handle.net/1887/3304813
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3304813
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3304813


Chapter 3

The IOHprofiler

Benchmarking Software

This chapter introduces our IOHprofiler benchmarking software. Following the
motivations discussed in Chapter 1, we introduce in this chapter the functionalities
and the accessibilities of the tool.

3.1 Overview

Recall that we plan to create a benchmarking software to perform robust testing of
IOHs on a wide range of problems, while many tools have been created for specific
sets of problems with different programming designs. An overarching benchmarking
pipeline would be highly beneficial for this goal, as it allows for easy transition from
the implementation of algorithms to the analysis and comparison of performance data.
Therefore, we have developed IOHprofiler, which is a benchmarking software for
detailed, highly modular performance analysis of iterative optimization heuristics.

IOHprofiler consists of two main components: IOHexperimenter, a mod-
ule for processing the actual experiments and generating the performance data, and
IOHanalyzer [156], a post-processing module for compiling detailed statistical
evaluations. Figure 3.1 plots the workflow of IOHprofiler. With given benchmark
problems (IOHproblems) and algorithms (IOHalgorithms), IOHexperimenter

generates the output data that can be used for IOHanalyzer. IOHanalyzer can
perform performance analyses and visualize algorithms’ behaviour. We maintain our

33



3.1. Overview

Figure 3.1: Workflow of IOHprofiler

data for the IOHdata module. The platform can be applied for the study of au-
tomatic algorithm configuration, algorithm selection, feature extraction, statistical
analyses, and much more.

We briefly introduce the modules of IOHprofiler in the following:

• IOHproblems: a collection of benchmark problems. This component currently
comprises (1) the PBO suite of pseudo-Boolean optimization problems suggested
in [54], (2) the 24 numerical, noise-free BBOB functions from the COCO plat-
form [78], and (3) the W-model problem generator proposed in [160].

• IOHalgorithms: a collection of IOHs. For the moment, the algorithms used for
the benchmark studies presented in [3, 35, 54] are available. This subsumes text-
book algorithms for pseudo-Boolean optimization, an integration to the object-
oriented algorithm design framework ParadisEO [24], and the modular algo-
rithm framework for CMA-ES variants originally suggested in [150] and extended
in [35]. Further extensions for both combinatorial and numerical solvers are in
progress.

34



Chapter 3. The IOHprofiler Benchmarking Software

• IOHdata: a data repository for benchmark data. This repository currently
comprises the data from the experiments performed in [78], a sample data set
used in this paper, and some selected data sets from the COCO repository [77].
IOHdata also contains performance data from the Nevergrad benchmarking
environment [131], which can be fetched from their repository upon request.

• IOHexperimenter: the experimentation environment that executes IOHs
on IOHproblems or external problems and automatically takes care of logging
the experimental data. It allows for tracking the internal parameter of IOHs and
supports various customizable logging options to specify when to register a data
record.

• IOHanalyzer: the data analysis and visualization tool presented in this the-
sis.

3.2 The IOHexperimenter Module

IOHexperimenter is the module of IOHprofiler which can be considered as the
interface between algorithms and problems, where it allows consistent data collection
of both performance and algorithmic data such as the evolution of control parameters
during the optimization process.

3.2.1 Functionalities

We consider here a benchmark process consisting of three components: problems, log-
gers, and algorithms. While these components interact to perform the benchmarking,
they should be usable in a stand-alone manner, allowing any of these factors to be
modified without impacting the behaviour of the others. Within IOHexperimenter,
an interface is provided to ensure that any changes to the setup will be compatible
with the other components of the benchmarking pipeline.

At its core, IOHexperimenter provides a standard interface towards expandable
benchmark problems and several loggers to track the performance and the behaviour
(internal parameters and states) of algorithms during the optimization process. The
logger is integrated into a wide range of existing tools for benchmarking, and we have
done such integration work with IOHproblems for discrete optimization and COCO’s
BBOB [79] for the continuous case. On the algorithm side, IOHexperimenter has
been connected to several modular algorithm frameworks, such as modular GA (see

35



3.2. The IOHexperimenter Module

Figure 3.2: Workflow of IOHexperimenter

Chapter 6) and modular CMA-ES [35]. Additionally, output generated by the included
loggers is compatible with the IOHanalyzer module for interactive performance anal-
ysis.

Figure 3.2 shows the way IOHexperimenter can be placed in a typical bench-
marking workflow. The key factor here is the flexibility of design: IOHexperimenter

can be used with any user-provided solvers and problems given a minimal overhead,
and ensures output of experimental results which follow conventional standards. Be-
cause of this, the data produced by IOHexperimenter is compatible with post-
processing frameworks like IOHanalyzer, enabling an efficient path from algorithm
design to performance analysis. In addition to the built-in interfaces to existing soft-
ware, IOHexperimenter aims to provide an user-accessible way to customize the
benchmarking setup. We introduce in the following the typical usage of IOHexperi-

menter, as well as the ways in which it can be customized to fit different benchmarking
scenarios.

3.2.2 Problems

In IOHexperimenter, a problem instance is defined as P = Ty ◦ f ◦ Tx, in which
f : x→ R is a benchmark problem (e.g., for OneMax x = {0, 1}n and for the sphere
function x = Rn) and Tx and Ty are automorphisms supported on x and R, respec-
tively, representing transformations in the problem’s domain and range (e.g., transla-
tions and rotations for x = Rn). To generate a problem instance, one needs to specify
a tuple of a problem f , an instance identifier i ∈ N>0, and the dimension n of the

36



Chapter 3. The IOHprofiler Benchmarking Software

problem. Note that both transformations are applied to generalize the benchmark
problem, where the instance id serves as the random seed for instantiating Tx and Ty.

Any problem instance that reconciles with this definition of P , can easily be inte-
grated into IOHexperimenter, using the C++ core or the Python interface.1

The transformation methods are particularly important for robust benchmarking,
as they allow for the creation of multiple problem instances from the same base-
function, which enables checking of invariance properties of algorithms, such as scaling
invariance. Built-in transformations for pseudo-Boolean functions are available, as well
as transformation methods for continuous optimization used by [79].

When combining several problems together, a problem suite can be created. This
suite can then be used for more convenient benchmarking by providing access to built-
in iterators which allow a solver to easily run on all selected problem instances within
the suite. Additionally, an interface to two classes of the W-model extensions (based on
the OneMax and LeadingOnes respectively) [160] for generating problems is available.

3.2.3 Data Logging

IOHexperimenter provides loggers to track the performance of algorithms during
the optimization process. The loggers determine which data is recorded and the format
to record data. These loggers can be tightly coupled with the problems: when evalu-
ating a problem, the attached loggers will be triggered with the relevant information
to store. This information will be performance-oriented by default, with customiz-
able levels of granularity, but can also include any algorithm parameters. This can
be especially useful for tracking the evolution of self-adaptive parameters in iterative
optimization algorithms.

The default logger makes use of a two-part data format: meta-information, such
as function id, instance, dimension, etc., that gets written to .info-files, while the
performance data itself gets written to space-separated .dat-files. A full specification
of this format can be found in [156]. Data in this format can be used directly with the
IOHanalyzer for interactive analysis of the recorded performance metrics.

In addition to the built-in loggers, customized logging functionality can be created
within IOHexperimenter as well. This can be used to reduce the footprint of the
data when doing massive experiments such as algorithm configuration, where only the
final performance measure is relevant [3].

1Note that multi-objective problems do not follow this structure, and are not yet supported within
IOHexperimenter. Integration of both noisy and mixed-variable type objective functions is in
development.

37



3.3. The IOHanalyzer Module

Figure 3.3: The screenshot of the first page of IOHanalyzer.

3.2.4 Accessibility

Note that IOHexperimenter is build in C++, with a direct interface to Python. A
more low-level technical documentation of these procedures in both C++ and Python
can be found on the IOHprofiler wiki at https://iohprofiler.github.io/. This wiki also
provides access to getting-started information about installation and basic usage of
IOHexperimenter and its place in the benchmarking pipeline.

3.3 The IOHanalyzer Module

As the post-processing module of iterative optimization heuristic, IOHanalyzer pro-
vides detailed statistics about fixed-target running times and fixed-budget performance
of the benchmarked algorithms on real-valued, single-objective optimization tasks.
Moreover, performance aggregation over several benchmark problems is possible, for
example, in the form of ECDFs. Key advantages of IOHanalyzer over other perfor-
mance analysis packages are its highly interactive design, which allows users to specify
the performance measures, ranges, and granularity that are most useful for their ex-
periments, and the possibility to analyze not only performance traces but also the
evolution of dynamic state parameters.

Figure 3.3 shows the first page of IOHanalyzer, where presents the general infor-
mation of IOHanalyzer. Users can upload data in the box frame on the left or/and

38

https://iohprofiler.github.io/


Chapter 3. The IOHprofiler Benchmarking Software

Figure 3.4: The screenshot of the data summary of fixed-target results for the RLS
and the self_GA. The table in the figure lists the runtime of the algorithms for each
target chosen on the left box.

load IOHdata from the box frame on the right for analyzing. Figure 2.1, Figure 2.2,
and Figure 2.3 in Chapter 2 present the plots of fixed-targets results, fixed-budget
results, and ECDF curves generated using IOHanalyzer. Apart from these plots,
IOHanalyzer also provides detailed data in tables. For example, Figure 3.4 shows a
screenshot of a table summarizing runtime for each algorithm and each chosen target.

Moreover, IOHanalyzer supports analyzing the values of parameters of algo-
rithms for the chosen moments (e.g., when a required target is found or the predefined
budget is used). An example is plotted in Figure 3.5.

Note that the data tables and the figures on the IOHanalyzer website can be
downloaded.

3.3.1 Accessibility

In addition to the web-based application at https://iohanalyzer.liacs.nl, IOHan-

alyzer is available on GitHub https://github.com/IOHprofiler/IOHanalyzer and
CRAN. It is implemented by R and C++. IOHanalyzer can directly process perfor-
mance data from the main benchmarking platforms, including the COCO platform,
Nevergrad, and our own IOHexperimenter. An R programming interface is provided
for users preferring to have a finer control over the implemented functionalities. More

39

https://iohanalyzer.liacs.nl
https://github.com/IOHprofiler/IOHanalyzer


3.3. The IOHanalyzer Module

Figure 3.5: The screenshot of the plots of the mean of parameters values for the ten
algorithms. The figures plot the mean of internal parameters ‘lambda’, ‘mutation
rate’, and ‘l’ of the algorithms for each required target.

details of IOHanalyzer can be found in [156].

40


