
Benchmarking discrete optimization heuristics: from building
a sound experimental environment to algorithm configuration
Ye, F.

Citation
Ye, F. (2022, June 1). Benchmarking discrete optimization heuristics: from
building a sound experimental environment to algorithm configuration.
Retrieved from https://hdl.handle.net/1887/3304813

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3304813

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3304813

Chapter 2

Preliminaries

This chapter briefly introduces three topics of this thesis, covering Optimization, Evo-
lutionary Algorithms, and Algorithm Configuration. Detailed descriptions of perfor-
mance measures and benchmark problems used in the empirical study are also pro-
vided.

2.1 Optimization

Optimization aims at finding the best solution for a given problem. Optimization
problems arise in many disciplines, e.g., biology [75], engineering [33], logistics [9, 66],
physics [113], etc. Meanwhile, benchmarks have been built to unify ideas and meth-
ods for different domains such as numerical analysis [79], software engineering [81],
traveling salesperson problems [132], etc.

Optimization problems consist of three elements, i.e., objective functions, decision
variables, and constraints.

The objective function is a mapping that assesses the quality of a candidate so-
lution. The assessment returns a value (i.e., single-objective optimization) or a set of
values (i.e., multi-objective optimization). We only consider the single-objective opti-
mization that is subject to maximization in this thesis. In short, we aim at maximizing
a function:

f : S → R, x 7→ f(x), (2.1)

where we refer to S as the search space and its element x ∈ S as a search point
(or solution candidate). The decision variables of x can have different types: real

11

2.2. Evolutionary Algorithms

(i.e., continuous), integer (e.g., ordinal), and nominal (i.e., categorical). Continuous
optimization considers only real-valued variables, discrete optimization considers in-
teger and nominal variables, and mixed-integer problems consist of multiple types of
variables.

Constraints restrict the values of variables that can be taken for solutions, which
can be either hard constraints or soft constraints. Solutions must satisfy the require-
ments of hard constraints, and penalties will be assigned if soft constraints are vio-
lated [28]. Also, constraints can be distinguished by equality constraints h(x) = 0 and
inequality constraints g(x) ≤ 0.

2.1.1 Pseudo-Boolean Optimization

In this thesis, we study a subset of discrete optimization, whose variables consist of
binary variables, namely pseudo-Boolean optimization [19]:

f : {0, 1}n → R, x 7→ f(x). (2.2)

A variety of problems are related to pseudo-Boolean optimization, including spin
glass [11], maximum satisfiability [70], fault location [114], clustering [135], project
selection [130], etc. Many techniques have been applied to solve these problems specif-
ically. In this thesis, we study the performance of EAs and other IOHs on pseudo-
Boolean optimization problems.

2.2 Evolutionary Algorithms

Though exact algorithms, such as dynamic programming, have been developed for
solving optimization problems, these techniques usually require additional effort for
specific problems and can not solve hard problems. However, EAs have achieved
success in approximating solutions to problems in many fields [6, 9, 33, 64, 66, 70].

EAs were originally inspired by biological evolution. The general procedure of EAs
is producing offspring using variation operators after initializing a parent population
of solution candidates (i.e., individuals), then updating the population by selecting
from offspring (and parent) solution candidates. This procedure is iterated until the
termination criterion is reached.

Different design of operators will result in variations of EAs such as GAs, evolution
strategies (ESs), etc. For instance, mutation and crossover are two common operators
of EAs. Mutation allows exploiting promising search areas using small mutation rates,

12

Chapter 2. Preliminaries

and crossover creates offspring by recombining information of two or more parents.
GAs use both mutation and crossover as variation operators. However, the EAs for
pseudo-Boolean optimization usually concentrate on mutation only. Also, there are
different strategies to form new populations. For example, a plus-strategy will select
solution candidates from both parent and offspring populations, and a comma-strategy
will consider only the offspring population.

Apart from the combinations of different operators, we have a variety of algorithms
because most operators are parameterized, raising the question of how to configure
them properly for the given optimization task. For example, EAs require proper
settings of the population size, the mutation rate, and the selective pressure; GAs’
performance can be affected by the values of the population size and the crossover
probability. Note that we consider that the EAs for pseudo-Boolean optimization in
this thesis are mutation-only algorithms.

2.3 Parameter Tuning Techniques

It is well known that the choice of parameters and operators influences the performance
of EAs significantly [2, 93]. There are two classes of approaches to determine algorithm
settings, namely static parameter setting and dynamic parameter control [42].

Static parameter setting identifies parameter values and operator choices of the
algorithms for a given problem. The settings are predefined for the optimization
process. Usually, the settings are based on empirical studies or theoretical works.
For the empirical study methods, the design of experiments (DOE) [26] methods can
help us understand the relationship between input parameters and decide a promising
algorithm setting. Nowadays, automatic tuning tools have also been applied to identify
algorithms’ parameters, and the obtained results have shown significant advantages
against manual settings. In the theory research domain, researchers prove bounds for
the running time of algorithms with respect to specific parameters values, such that
we can find suitable parameter settings by minimizing these bounds [163].

Dynamic parameter control adjusts parameter values and even operator choices
during the optimization process. The aim is to benefit from applying promising set-
tings at different stages of the optimization process. Both empirical [2, 61, 92] and
theoretical studies [42] have been conducted for dynamic algorithm control. Recent
work has formulated dynamic algorithm configuration as a contextual Markov deci-
sion process, and the authors compared the reinforcement learning and the classic
sequential model-based optimization for general algorithm configuration (SMAC) on

13

2.4. Algorithm Performance Measures

their test bed [17]. Also, a similar topic, dynamic algorithm selection, has attracted
attention in recent research [153]. Theoreticians also investigate the optimal param-
eters for theory-oriented problems such as OneMax and proposed theory-inspired
self-adaptation methods [40, 46].

In the following, we introduce algorithm configuration (AC), also known as hy-
perparameter optimization, which belongs to the class of static parameter tuning ap-
proaches. AC is applied to explore promising operator combinations and parameter
settings of the algorithms for a given problem. Most AC methods do not require
preliminary knowledge of the algorithm and the problem. Consequently, we can not
directly explain why (or if) the obtained configurations perform well. Benefiting from
benchmarking, we can understand the behavior of both algorithms and the AC meth-
ods.

We provide here the definition of the algorithm configuration problem [60]:

Definition 2.1 (AC: Algorithm Configuration). Given a set of problem instances
P , a parametrized algorithm A with parameter space Θ, and a cost metric c : Θ ×
P → R that is subject to minimization, the objective of the AC problem is to find a
configuration θ∗ ∈ Θ such that the cost c(θ, P) is as small as possible.

The AC problem can be seen as a meta-optimization problem, asking to optimize
performance of a specific solver on a given set of problem instances.

Many approaches, e.g., Bayesian optimization [155], local search [83], evolutionary
algorithms [109], gradient-based optimization [16], etc., can be used for the AC prob-
lem. Among the best-known tools are paramILS [83], SMAC [82], and Irace [111].
These methods have been applied to boost the performance of algorithms in many
domains such as TSP [111], software engineering [14], and machine learning [97].

2.4 Algorithm Performance Measures

We introduce here the performance measures used in this thesis to assess algorithms’
behaviour, concerning three different objectives, namely fixed-target performance,
fixed-budget performance, and anytime performance. The measures can also be used
as the cost metric in Definition 2.1.

2.4.1 Fixed-target Performance

For the fixed-target results, we consider the cost needed by each algorithm to find a
solution that is at least as good as a certain target. In this thesis, we consider the

14

Chapter 2. Preliminaries

Figure 2.1: ERT values of the two algorithms RLS and self_GA for a maximization
problem in a fixed-target perspective.

time cost measured by the expected running time (ERT) value, where time indicates
the number of function evaluations.

Definition 2.2 (ERT: Expected Running Time). Given a target ϕ for a problem P ,
the ERT of an algorithm A hitting ϕ is

ERT(A,P, ϕ) =

∑r
i=1 min{ti(A,P, ϕ), B}∑r
i=1 1{ti(A,P, ϕ) <∞}

, (2.3)

where r is the number of independent runs of A, B is the given budget (i.e., the
maximal number of function evaluations), ti(A,P, ϕ) ∈ N ∪ {∞} is the running time
(for finite values, the running time is the number of function evaluations that the i-th
run of A on the problem P uses to hit the target ϕ, and ti(A,P, ϕ) = ∞ is used if
none of the solutions is better than ϕ), and 1(E) is the indicator function returning 1
if event E happens and 0, otherwise. ti(A,P, ϕ) <∞ indicates that the algorithm hits
the target within the given budget B in the i-th run. If the algorithm hits the target
ϕ in all r runs, the ERT is equal to the average hitting time (AHT).

Definition 2.3 (AHT: Average Hitting Time). Given a target ϕ for a problem P , the

15

2.4. Algorithm Performance Measures

Figure 2.2: The mean of best-found fitness values of the two algorithms RLS and
self_GA for a maximization problem in a fixed-budget perspective.

AHT of an algorithm A hitting ϕ is

AHT(A,P, ϕ) =

∑r
i=1 ti(A,P, ϕ)

r
, (2.4)

where r is the number of independent runs of A, ti(A,P, ϕ) is the running time (i.e.,
the number of function evaluations) that the i-th run of A uses to hit the target ϕ of
P .

Figure 2.1 is an example showing fixed-target curves, which plots the ERT values
(y-axis) that the two algorithms RLS and self_GA need to find a solution satisfying
f(x) ≥ ϕ, where the target value ϕ is the value on x-axis. We see that the ERT of the
RLS for the target value 80 is around 100, while the ERT of the self_GA is around
300.

2.4.2 Fixed-budget Performance

For the fixed-budget results, we consider the quality of solutions found by each al-
gorithm with a given budget. Figure 2.2 is an example showing fixed-budget curves,
which plots average of the best-found fitness values (y-axis) after using specific budget

16

Chapter 2. Preliminaries

Figure 2.3: ECDF values of the two algorithms RLS and self_GA for different budgets.

B, where the budget value B is the value on x-axis. We see that, after using 500

function evaluations, the mean of best-found fitness value of the RLS is 100, while the
mean of best-found fitness value of the self_GA is 90.

2.4.3 Anytime Performance

Another important concept in the analysis of IOHs are empirical cumulative distribu-
tion function (ECDF) curves, which allow to aggregate performance across different
targets. The definition of ECDF is given below. Figure 2.3 plots ECDF values (y-axis)
after using specific budget B, where the budget value B is the value on x-axis. We see
that, around 96% runs of the (run,target) pairs hit the corresponding target within the
given budget of 500 function evaluations for the RLS, while this number is 80% for the
self_GA. Note that ECDF can also be applied for evaluating algorithm performance
across different functions.

Definition 2.4 (ECDF: empirical cumulative distribution function of the running
time). Given a set of targets Φ = {ϕi ∈ R | i ∈ {1, 2, . . . ,m}} for a real-valued
problem P and a set of budgets T = {tj ∈ N | j ∈ {1, 2, . . . , B}} for an algorithm
A, the ECDF value of A at budget tj is the fraction of (run, target)-pairs (r, ϕi) that

17

2.5. Benchmark Problems

satisfy that the run r of the algorithm A finds a solution has fitness at least as good
as ϕi within the budget tj .

In this thesis, we evaluate anytime performance of algorithms using the area under
the ECDF curve (AUC). The domain of AUC values is [0, 1]. The definition is given
below. Note that the given definition is for a discretized version of AUC, of which
values can be affected by the given targets Φ and budgets T .

Definition 2.5 (AUC: area under the ECDF curve). Given a set of targets Φ = {ϕi ∈
R | i ∈ {1, 2, . . . ,m}} and a set of budgets T = {tj ∈ {1, 2, . . . , B} | j ∈ {1, 2, . . . , z}},
the AUC ∈ [0, 1] (normalized over B) of algorithm A on problem P is the area under
the ECDF curve of the running time over multiple targets. For maximization, it reads

AUC(A,P,Φ, T) =

r∑
h=1

m∑
i=1

z∑
j=1

1{ϕh(A,P, tj) ≥ ϕi}

rmz
,

where r is the number of independent runs of A and ϕh(A,P, t) denotes the value of
the best solution that A evaluated within its first t evaluations of the run h.

2.5 Benchmark Problems

In this thesis, we focus on pseudo-Boolean optimization problems, i.e., all the sug-
gested benchmark problems are expressed as functions f : {0, 1}n → R. We also pay
particular attention to the scalability of the problems, with the idea that the bench-
mark problems should allow to assess performances across different dimensions. All
problems have been implemented and integrated within the IOHprofiler software.

Conventions Throughout this thesis, the variable n denotes the dimension of the
problem that the algorithm operates upon. We assume that n is known to the algo-
rithm; this is a natural assumption, since every algorithm needs to know the decision
space that it is requested to search. Note though, that the effective dimension of a
problem can be smaller than n, e.g., due to the usage of dummy variables that do not
contribute to the function values, or due to other reductions of the search space di-
mensionality (see Section 2.5.6 for examples). In practice, we thus only require that n
is an upper bound for the effective number of decision variables.

For constrained problems, such as the N-Queens problem (see Section 2.5.10), we
follow common practice in the evolutionary computation community and use penalty

18

Chapter 2. Preliminaries

terms to discount infeasible solutions by the number and magnitude of constraint
violations.

We formulate all problems as maximization problems.

Notation A search point x ∈ {0, 1}n is written as (x1, . . . , xn). By [k] we abbreviate
the set {1, 2, . . . , k} and by [0..k] the set [k] ∪ {0}. All logarithms are to the base 10
and are denoted by log. An exception is the natural logarithm, which we denote by
ln. Finally, we denote by id the identity function, regardless of the domain.

2.5.1 Problems vs. Instances

We define a problem in this thesis as a collection of functions sharing some common
properties. For example, the NK landscape problem refers to problems with different
gene interactions [94]. While we are interested in covering different types of fitness
landscapes, we care much less about their actual embedding, and mainly seek to under-
stand algorithms that are invariant under the problem representation. In the context
of pseudo-Boolean optimization, a well-recognized approach to request representation
invariance to demand that an algorithm shows the same or similar performance on any
instance mapping each bit string x ∈ {0, 1}n to the function value f(σ(x⊕z)), where z

is an arbitrary bit string of length n, ⊕ denotes the bit-wise XOR function, and σ(y) is
to be read as the string (yσ(1), . . . , yσ(n)) in which the entries are swapped according to
the permutation σ : [n]→ [n]. Using these transformations, we obtain from one partic-
ular problem f a whole set of instances {f(σ(·⊕z)) | z ∈ {0, 1}n, σ permutation of [n]},
all of which have fitness landscapes that are pairwise isomorphic. Further discussions
of these unbiasedness transformations can be found in [54, 106].

Apart from unbiasedness, we also focus in this work on ranking-based heuristics,
i.e., algorithms which only make use of relative, and not of absolute function values. To
allow future comparisons with non-ranking-based algorithms, we test the algorithms
on instances that are shifted by a multiplicative and an additive offset. That is, instead
of receiving the values f(σ(x⊕ z)), only the transformed values af(σ(x⊕ z)) + b are
made available to the algorithms.

2.5.2 Overview of Selected Benchmark Problems

We summarize here the benchmark problems that we repeatedly use in this thesis
to compare algorithms’ performance, which are from the suite of IOHprofiler for

19

2.5. Benchmark Problems

pseudo-Boolean optimization (PBO). The PBO suite originally consisted of twenty
three problem [55], and two problems were added afterwards in [170].

• F1 and F4-F10: OneMax and its W-model extensions; details in Sections 2.5.3
and 2.5.6

• F2 and F11-F17: LeadingOnes and its W-model extensions; details in Sec-
tions 2.5.4 and 2.5.6

• F3: Harmonic; see Section 2.5.5

• F18: LABS: Low Autocorrelation Binary Sequences; see Section 2.5.7

• F19-21: Ising Models; see Section 2.5.8

• F22: MIVS: Maximum Independent Vertex Set; see Section 2.5.9

• F23: NQP: N-Queens; see Section 2.5.10

• F24: CT: Concatenated Trap; see Section 2.5.11

• F25: NKL: Random NK landscapes; see Section 2.5.12

2.5.3 F1: OneMax

The OneMax function is the best-studied benchmark problem in the context of dis-
crete EC, often referred to as the “drosophila of EC”. It asks to optimize the function

F1 : OM : {0, 1}n → [0..n], x 7→
n∑

i=1

xi.

The problem has a very smooth and non-deceptive fitness landscape. Due to the well-
known coupon collector effect (see, for example, [57] for a detailed explanation of this
effect), it is relatively easy to make progress when the function values are small, and
the probability to obtain an improving move decreases considerably with increasing
function value.

With the ‘⊕z’ transformations introduced in Section 2.5.1, the OneMax problem
becomes the problem of minimizing the Hamming distance to an unknown target string
z ∈ {0, 1}n.

That OneMax is interesting beyond the study of theoretical aspects of evolution-
ary computation has been argued in [147]. We believe that OneMax plays a similar

20

Chapter 2. Preliminaries

role as the sphere function in continuous domains, and should be added to each bench-
mark set: it is not very time-consuming to evaluate, and can provide a first basic stress
test for new algorithm designs.

2.5.4 F2: LeadingOnes

Among the non-separable functions, the LeadingOnes function is certainly the one
receiving most attention in the theory of EC community. The LeadingOnes problem
asks to maximize the function

F2 : LO : {0, 1}n → [0..n], x 7→ max{i ∈ [0..n] | ∀j ≤ i : xj = 1} =
n∑

i=1

i∏
j=1

xj , (2.5)

which counts the number of initial ones.
Similar to OneMax, we argue that LeadingOnes should form a default bench-

mark problem: it is fast to evaluate and can point at fundamental issues of algorithmic
designs, see also the discussions in Section 4.1.

2.5.5 F3: A Linear Function with Harmonic Weights

Two extreme linear functions are OneMax with its constant weights and binary value
BV(x) =

∑n
i=1 2

n−ixi with its exponentially decreasing weights. An intermediate
linear function is

F3 : {0, 1}n → R, x 7→
∑
i

ixi

with harmonic weights, which was suggested to be considered in [139].

2.5.6 F4-F17: The W-model

In [160], a collection of different ways to “perturb” existing benchmark problems in
order to obtain new functions of scalable difficulties and landscape features has been
suggested, the so-called W-model. These W-model transformations can be combined
arbitrarily, resulting in a huge set of possible benchmark problems. In addition, these
transformations can, in principle, be superposed to any base problems, giving yet
another degree of freedom. Note here that the original work [160] and the existing
empirical evaluations [159] only consider OneMax as underlying problem, but there
is no reason to restrict the model to this function. We expect that in the longer
term, the W-model, similarly to the well-known NK-landscapes [94] may constitute

21

2.5. Benchmark Problems

an important building block for a scalable set of discrete benchmark problems. More
research, however, is needed to understand how the different combinations influence
the behavior of state-of-the-art heuristic solvers. In this thesis, we therefore restrict
our attention to instances in which the different components of the W-model are used
in an isolated way, see Section 2.5.6. The assessment of combined transformations
clearly forms a promising line for future work.

The Basic Transformations

The W-model comprises four basic transformations, and each of these transformations
is parametrized, hence offering a huge set of different problems already. We provide
a brief overview of the W-model transformations that are relevant for the study in
this thesis. A more detailed description can be found in the original work [160]. For
some of the descriptions below we deviate from the exposition in [160], because in
contrast to there, we consider maximization as objective, not minimization. Note
also that we write x = (x1, . . . , xn), whereas in [160] the strings are denoted as
(xn−1, xn−2, . . . , x1, x0). Note also that the reduction of dummy variables is our own
extension of the W-model, not originally proposed in [160].

1. Reduction of dummy variables W (m, ∗, ∗, ∗): a reduction mapping each
string (x1, . . . , xn) to a substring (xi1 , . . . , xim) for randomly chosen, pairwise
different i1, . . . , im ∈ [n]. This modification models a situation in which some
decision variables do not have any or have only negligible impact on the fitness
values. Thus, effectively, the strings (x1, . . . , xn) that the algorithm operates
upon are reduced to substrings (xi1 , . . . , xim) with 1 ≤ i1 < i2 < . . . < im ≤ n.

We note that such scenarios have been analyzed theoretically, and different ways
to deal with this unknown solution length have been proposed. Efficient EAs can
obtain almost the same performance (in asymptotic terms) than EAs “knowing”
the problem dimension [44, 62].

Dummy variables are also among the characteristics of the benchmark functions
contained in the Nevergrad platform [131], which might be seen as evidence for
practical relevance.

Example: With n = 10, m = 5, i1 = 1, i2 = 2, i3 = 4, i4 = 7, i5 = 10, the bit
string (1010101010) is reduced to (10010).

2. Neutrality W (∗, u, ∗, ∗): The bit string (x1, . . . , xn) is reduced to a string
(y1, . . . , ym) with m = n/u, where u is a parameter of the transformation. For

22

Chapter 2. Preliminaries

each i ∈ [m] the value of yi is the majority of the bit values in a size-u substring
of x. More precisely, yi = 1 if and only if there are at least u/2 ones in the
substring (x(i−1)u+1, x(i−1)u+2, . . . , xiu).1 When n/u /∈ N, the last n − u⌊n/u⌋
remaining bits of x not fitting into any of the blocks are simply deleted; that is,
we have m = ⌊n/u⌋ and the entries xi with i > u⌊n/u⌋ do not have any influence
on y (and, thus, no influence on the function value).

Example: With n = 10 and u = 3 the bit string (1110101110) is reduced to
(101).

3. Epistasis W (∗, ∗, ν, ∗): The idea is to introduce local perturbations to the
bit strings. To this end, a string x = (x1, . . . , xn) is divided into subsequent
blocks of size ν. Using a permutation eν : {0, 1}ν → {0, 1}ν , each substring
(x(i−1)ν+1, . . . , xiν) is mapped to another string (y(i−1)ν+1, . . . , yiν) =

eν((x(i−1)ν+1, . . . , xiν)). The permutation eν is chosen in a way that Hamming-
1 neighbors u, v ∈ {0, 1}ν are mapped to strings of Hamming distance at least
ν − 1. Section 2.2 in [160] provides a construction for such permutations. For
illustration purposes, we repeat below the map for ν = 4, which is the parameter
used in our experiments. This example can also be found, along with the general
construction, in [160].

e4(0000) = 0000 e4(0001) = 1101 e4(0010) = 1011 e4(0011) = 0110

e4(0100) = 0111 e4(0101) = 1010 e4(0110) = 1100 e4(0111) = 0001

e4(1000) = 1111 e4(1001) = 0010 e4(1010) = 0100 e4(1011) = 1001

e4(1100) = 1000 e4(1101) = 0101 e4(1110) = 0011 e4(1111) = 1110

When n/ν /∈ N, the last bits of x are treated by en−ν⌊n/ν⌋; that is, the substring
(xν⌊n/ν⌋+1, xν⌊n/ν⌋+2, . . . , xn) is mapped to a new string of the same length via
the function en−ν⌊n/ν⌋.

Example: With n = 10, ν = 4, and the permutation e4 provided above, the bit
string (1111011101) is mapped to (1110000110), because e4(1111) = 1110 and
e4(0111) = 0001 and e2(01) = 10.

4. Fitness perturbation W (∗, ∗, ∗, r): With these transformations we can de-

1Note that with this formulation there is a bias towards ones in case of a tie. We follow here the
suggestion made in [160], but we note that this bias may have a somewhat complex impact on the
fitness landscape. For our first benchmark set, we therefore suggest to use this transformation with
odd values for u only.

23

2.5. Benchmark Problems

termine the ruggedness and deceptiveness of a function. Unlike the previous
transformations, this perturbation operates on the function values, not on the
bit strings. To this end, a ruggedness function r : {f(x) | x ∈ {0, 1}n} := V → V

is chosen. The new function value of a string x is then set to r(f(x)), so that
effectively the problem to be solved by the algorithm becomes r ◦ f .

To ease the analysis, it is required in [160] that the optimum vmax = max{f(x) |
x ∈ {0, 1}n} does not change, i.e., r must satisfy that r(vmax}) = vmax and r(i) <

vmax for all i < vmax. It is furthermore required in [160] that the ruggedness
functions r are permutations (i.e., one-to-one maps). Both requirements are
certainly not necessary, in the sense that additional interesting problems can be
obtained by violating these constrains. We note in particular that in order to
study plateaus of equal function values, one might want to choose functions that
map several function values to the same value. We will include one such example
in our testbed, see Section 2.5.6.

It should be noted that all functions of unitation (i.e., functions for which the
function value depends only on the OneMax value of the search point, such as
Trap or jump) can be obtained from a superposition of the fitness perturbation
onto the OneMax problem.

Example: The well-known, highly deceptive Trap function can be obtained by
superposing the permutation r : [0..n] → [0..n] with r(i) = n − 1 − i for all
1 ≤ i ≤ n and r(n) = n.

Combining the Basic W-model Transformations

We note that any of the four W-model transformations can be applied independently
of each other. The first three modifications can, in addition, be applied in an arbitrary
order, with each order resulting in a different benchmark problem. In line with the
presentation in [160], we consider in our implementation only those perturbations that
follow the order given above. Each set of W-model transformations can be identified
by a string ({i1, . . . , im}, u, ν, r) with m ≤ n, 1 ≤ i1 < . . . < im ≤ n, u ∈ [n], ν ∈ [n],
and r : V → V , all to be interpreted as in the descriptions given in Section 2.5.6
above. Setting {i1, . . . , im} = [n], u = 1, ν = 1, and/or r as the identity function
on V corresponds to not using the first, second, third, and/or forth transformation,
respectively.

As mentioned, the W-model can in principle be superposed on any benchmark
problem. The only complication is that the search space on which the algorithm

24

Chapter 2. Preliminaries

operates and the search space on which the benchmark problem is applied are not the
same when m < n or u > 1. More precisely, while the algorithm operates on {0, 1}n,
the base problem has to be a function f : {0, 1}s → R with s = ⌊m/u⌋. We call s
the effective dimension of the problem. When f is a scalable function defined for any
problem dimension s—this is the case for most of our benchmark functions—we just
reduce to the s-dimensional variant of the problem. When f is a problem that is only
defined for a fixed dimension n, the algorithms should operate on the search space
{0, 1}ℓ with ℓ ≥ us and ℓ− us depending on the reduction that one wishes to achieve
by the first transformation, the removal of dummy variables.

Selected W-Model Transformations

In contrast to existing works cited in [159, 160], we do not only study superpositions
of W-model transformations to the OneMax problems (functions F4-F10), but we
also consider LeadingOnes as a base problem (F11-17). This allows us to study the
effects of the transformations on a well-understood separable and a well-understood
non-separable problem. As mentioned, we only study individual transformations, and
not yet combinations thereof.

We consider the reduction of [n] to subsets of size n/2 and 0.9n, i.e., only half and
90% of the bits, respectively, contribute to the overall fitness. We consider neutrality
transformations of size u = 3, and we consider the epistasis perturbation of size ν = 4.
Finally, we consider the following ruggedness functions, where we denote by s the
size of the effective dimension (see Section 2.5.6 for a discussion) and recall that both
the s-dimensional OneMax and LeadingOnes functions take values in [0..s]. These
functions are illustrated for s = 10 in Figure 2.4.

• r1 : [0..s]→ [0..⌈s/2⌉+ 1] with r1(s) = ⌈s/2⌉+ 1 and r1(i) = ⌊i/2⌋+ 1 for i < s

and even s, and r1(i) = ⌈i/2⌉+ 1 for i < s and odd s.

• r2 : [0..s]→ [0..s] with r2(s) = s, r2(i) = i+ 1 for i ≡ s (mod 2) and i < s, and
r2(i) = max{i− 1, 0} otherwise.

• r3 : [0..s] → [−5..s] with r3(s) = s and r3(s− 5j + k) = s− 5j + (4− k) for all
j ∈ [s/5] and k ∈ [0..4] and r3(k) = s−(5⌊s/5⌋−1)−k for k ∈ [0..s−5⌊s/5⌋−1].

We see that function r1 keeps the order of the function values, but introduces small
plateaus of the same function value. In contrast to r1, function r2 is a permutation of
the possible function values. It divides the set of possible non-optimal function values
[0..s− 1] into blocks of size two (starting at s− 1 and going in the inverse direction)

25

2.5. Benchmark Problems

Figure 2.4: The ruggedness functions r1, r2, and r3.

and interchanges the two values in each block. When s is odd, the value 0 forms its
own block with r1(0) = 0. Similarly, r3 divides the set of possible function values in
blocks of size 5 (starting at s−1 and going in inverse direction), and reverses the order
of function values in each block.

Summarizing all these different setups, the functions F4-F17 are defined as follows:

F4: OneMax +W (⌊n/2⌋, 1, 1, id) F11: LeadingOnes +W (⌊n/2⌋, 1, 1, id)
F5: OneMax +W (⌊0.9n⌋, 1, 1, id) F12: LeadingOnes +W (⌊0.9n⌋, 1, 1, id)
F6: OneMax +W (n, u = 3, 1, id) F13: LeadingOnes +W (n, u = 3, 1, id)

F7: OneMax +W (n, 1, ν = 4, id) F14: LeadingOnes +W (n, 1, ν = 4, id)

F8: OneMax +W (n, 1, 1, r1) F15: LeadingOnes +W (n, 1, 1, r1)

F9: OneMax +W (n, 1, 1, r2) F16: LeadingOnes +W (n, 1, 1, r2)

F10: OneMax +W (n, 1, 1, r3) F17: LeadingOnes +W (n, 1, 1, r3)

W-model vs. Unbiasedness Transformations and Fitness Scaling

To avoid confusion, we clarify the sequence of the transformations of the W-model and
the unbiasedness and fitness value transformations discussed in Section 2.5.1. Both
the re-ordering of the string by the permutation σ and the XOR with a fixed string
z ∈ {0, 1}n are executed before the transformations of the W-model are applied, while
the multiplicative and additive scaling of the function values is applied to the result
after the fitness perturbation of the W-model.

Example: Assume that the instance is generated from a base problem f :

{0, 1}n → R, that the unbiasedness transformations are defined by a permutation
σ : [n] → [n] and the string z ∈ {0, 1}n, the fitness scaling by a multiplicative scalar
b > 0 and an additive term a ∈ R. Assume further that the W-model transfor-
mations are defined by the vector (i1, . . . , im, u, ν, r). For each queried search point
x ∈ {0, 1}n, the algorithm receives the function value af(W (σ(x) ⊕ z)) + b, where
σ(x) = (xσ(1), . . . , xσ(n)) and W : {0, 1}n → R denotes the function that maps each

26

Chapter 2. Preliminaries

string to the fitness value defined via the W-transformations (i1, . . . , im, u, ν, r).

2.5.7 F18: Low Autocorrelation Binary Sequences

Obtaining binary sequences possessing a high merit factor, also known as the Low-
Autocorrelation Binary Sequence (LABS) problem, constitutes a grand combinatorial
challenge with practical applications in radar engineering and measurements [138, 126].
It also carries several open questions concerning its mathematical nature. Given a
sequence of length n, S = (s1, . . . , sn) with si ∈ {−1,+1}, the merit factor is pro-
portional to the reciprocal of the sequence’s autocorrelation. The LABS optimization
problem is defined as searching over the sequence space to yield the maximum merit

factor: n2

2E(S) with E(S) =
∑n−1

k=1

(∑n−k
i=1 si · si+k

)2

. This hard, non-linear problem
has been studied over several decades (see, e.g., [116, 125]), where the only way to
obtain exact solutions remains exhaustive search. As a pseudo-Boolean function over
{0, 1}n, it can be rewritten as follows:

FLABS (x⃗) =
n2

2
n−1∑
k=1

(
n−k∑
i=1

x′
i · x′

i+k

)2 where x′
i = 2xi − 1. (2.6)

2.5.8 F19-F21: The Ising Model

The Ising Spin Glass model [11] arose in solid-state physics and statistical mechanics,
aiming to describe simple interactions within many-particle systems. The classical
Ising model considers a set of spins placed on a regular lattice, where each edge ⟨i, j⟩
is associated with an interaction strength Ji,j . In essence, a problem-instance is defined
upon setting up the coupling matrix {Ji,j}. Each spin directs up or down, associated
with a value ±1, and a set of n spin glasses is said to form a configuration, denoted as
S = (s1, . . . , sn) ∈ {−1,+1}n. The configuration’s energy function is described by the
system’s Hamiltonian, as a quadratic function of those n spin variables: −

∑
i<j

Ji,jsisj−∑n
i=1 hisi, where hi is an external magnetic field. The optimization problem of interest

is the study of the minimal energy configurations, which are termed ground states, on a
final lattice. This is clearly a challenging combinatorial optimization problem, which is
known to be NP-hard, and to hold connections with all other NP problems [113]. EAs
have been investigated concerning the impact of their operators for the Ising model,
yielding some theoretical results on certain graph instances (see, e.g., [22, 65, 141]).

We have selected and integrated three Ising model instances in IOHprofiler,

27

2.5. Benchmark Problems

assuming zero external magnetic fields, and applying periodic boundary conditions
(PBC). In order to formally define the Ising objective functions, we adopt a strict
graph perspective, where G = (V,E) is undirected and V = [n]. We apply an affine
transformation {−1,+1}n ⇝ {0, 1}n, where the n spins become binary decision vari-
ables (this could be interpreted, e.g., as a coloring problem [141]). A generalized,
compact form for the quadratic objective function is now obtained:

FIsing (x⃗) =
∑

{u,v}∈E

[xuxv + (1− xu) (1− xv)] , (2.7)

thus leaving the instance definition within G.

In what follows, we specify their underlying graphs, whose edges are equally
weighted as unity, to obtain their objective functions using (2.7).

F19: The Ring (1D)

This basic Ising model is defined over a one-dimensional lattice. The objective function
follows (2.7) using the following graph:

GIs1D :

eij = 1 ⇔ j = i+ 1 ∀i ∈ {1, . . . , n− 1} (2.8)

∨ j = n, i = 1

F20: The Torus (2D)

This instance is defined on a two-dimensional lattice of size N , using altogether n = N2

vertices, denoted as (i, j), 0 ≤ i, j ≤ N−1 [22]. Since PBC are applied, a regular graph
with each vertex having exactly four neighbors is obtained. The objective function
follows (2.7) using the following graph:

GIs2D :

e(i,j)(k,ℓ) = 1 ⇔ [k = (i+ 1) mod N ∧ ℓ = j ∀i, j ∈ {0, . . . , N − 1}]

∨ [k = (i− 1) mod N ∧ ℓ = j ∀i, j ∈ {0, . . . , N − 1}]

∨ [ℓ = (j + 1) mod N ∧ k = i ∀j, i ∈ {0, . . . , N − 1}]

∨ [ℓ = (j − 1) mod N ∧ k = i ∀j, i ∈ {0, . . . , N − 1}] (2.9)

28

Chapter 2. Preliminaries

F21: Triangular (Isometric 2D Grid)

This instance is also defined on a two-dimensional lattice, yet constructed on an iso-
metric grid (also known as triangular grid), whose unit vectors form an angle of 2π

3

[115]. The vertices are placed on integer-valued two-dimensional n = N2 vertices,
denoted as (i, j), 0 ≤ i, j ≤ N − 1, yielding altogether a regular graph whose vertices
have exactly six neighbors each (due to PBC):

GIsTR :

e(i,j)(k,ℓ) = 1 ⇔ [k = (i+ 1) mod N ∧ ℓ = j ∀i, j ∈ {0, . . . , N − 1}] (2.10)

∨ [k = (i− 1) mod N ∧ ℓ = j ∀i, j ∈ {0, . . . , N − 1}]

∨ [ℓ = (j + 1) mod N ∧ k = i ∀j, i ∈ {0, . . . , N − 1}]

∨ [ℓ = (j − 1) mod N ∧ k = i ∀j, i ∈ {0, . . . , N − 1}]

∨ [ℓ = (j + 1) mod N ∧ k = (i+ 1) mod N ∀j, i ∈ {0, . . . , N − 1}]

∨ [ℓ = (j − 1) mod N ∧ k = (i− 1) mod N ∀j, i ∈ {0, . . . , N − 1}]

2.5.9 F22: Maximum Independent Vertex Set

Given a graph G = ([n], E), an independent vertex set is a subset of vertices where
no two vertices are direct neighbors. A maximum independent vertex set (MIVS)
(which generally is not equivalent to a maximal independent vertex set) is defined as
an independent subset V ′ ⊂ [n] having the largest possible size. Using the standard
binary encoding V ′ = {i ∈ [n] | xi = 1}, MIVS can be formulated as the maximization
of the function

FMIVS (x) =
∑
i

xi − n ·
∑
i,j

xixjei,j , (2.11)

where ei,j = 1 if {i, j} ∈ E and ei,j = 0 otherwise.
In particular, following [6], we consider a specific, scalable problem instance, defin-

ing its Boolean graph as follows:

eij = 1 ⇔ j = i+ 1 ∀i ∈ {1, . . . , n− 1} − {n/2}

∨ j = i+ n/2 + 1 ∀i ∈ {1, . . . , n/2− 1} (2.12)

∨ j = i+ n/2− 1 ∀i ∈ {2, . . . , n/2}.

The resulting graph has a simple, standard structure as shown in Figure 2.5 for n = 10.
The global optimizer has an objective function value of |V ′| = n/2+1 for this standard

29

2.5. Benchmark Problems

graph. Notably, n ≥ 4 and n is required to be even; given an odd n, we identify the
n-dimensional problem with the n− 1-dimensional instance.

Figure 2.5: A scalable maximum independent set problem, with n = 10 vertices and
the optimal solution of size 6 marked by the black vertices.

2.5.10 F23: N-Queens Problem

The N -queens problem (NQP) [15] is defined as the task to place N queens on an N×N
chessboard in such a way that they cannot attack each other.2 Figure 2.6 provides
an illustration for the 8-queens problem. Notably, the NQP is actually an instance of
the MIVS problem – when considering a graph on which all possible queen-attacks are
defined as edges. NQP formally constitutes a Constraints Satisfaction Problem, but is
posed here as a maximization problem using a binary representation:

maximize
∑
i,j

xij

subject to:∑
i

xij ≤ 1 ∀j ∈ {1 . . . , N}∑
j

xij ≤ 1 ∀i ∈ {1 . . . , N}∑
j−i=k

xij ≤ 1 ∀k ∈ {−N + 2,−N + 3, . . . , N − 3, N − 2}∑
i+j=ℓ

xij ≤ 1 ∀ℓ ∈ {3, 4, . . . , 2N − 3, 2N − 1}

xij ∈ {0, 1} ∀i, j ∈ {1, . . . , N}

This formulation utilizes n = N2 binary decision variables xij , which are associated
with the chessboard’s coordinates, having an origin (1, 1) at the top-left corner. Set-
ting a binary to 1 implies a single queen assignment in that cell. This formulation

2The NQP is traced back to the 1848 Bezzel article entitled “Proposal of the Eight Queens Prob-
lem”; for a comprehensive list of references we refer the reader to a documentation by W. Kosters at
http://liacs.leidenuniv.nl/~kosterswa/nqueens/nqueens_feb2009.pdf.

30

http://liacs.leidenuniv.nl/~kosterswa/nqueens/nqueens_feb2009.pdf

Chapter 2. Preliminaries

Figure 2.6: The 8-queens problem: [Left] all possible fields a queen can move to from
position D4; [Right] a feasible solution.

promotes placement of as many queens as possible by means of the objective function,
followed by four sets of constraints eliminating queens’ mutual threats: the first two
sets ensure a single queen on each row and each column, whereas the following two sets
ensure a single queen at the increasing-diagonals (using the dummy indexing k) and
decreasing-diagonals (using the dummy indexing ℓ). It should be noted that a permu-
tation formulation also exists for this problem, and is sometimes attractive for RSHs.
Due to chessboard symmetries, NQP possesses multiplicity of optimal solutions. Its
attractiveness, however, lies in its hardness. In terms of a black-box objective function,
we formulate NQP as the maximization of the following function:

FNQP(x⃗) =

N∑
i=1

N∑
j=1

xij −N ·

 N∑
i=1

max

0,−1 +
N∑
j=1

xij

+

N∑
j=1

max

{
0,−1 +

N∑
i=1

xij

}

+

N−2∑
k=−N+2

max

0,−1 +
∑

j−i=k
i,j∈{1,2,...,N}

xij

+

2N−1∑
ℓ=3

max

0,−1 +
∑
j+i=ℓ

i,j∈{1,2,...,N}

xij

(2.13)

2.5.11 F24: Concatenated Trap

Concatenated Trap (CT) is defined by partitioning a bit-string into segments of length
k and concatenating m = n/k trap functions that takes each segment as input. The
trap function is defined as follows: f trap

k (u) = 1 if the number u of ones satisfies u = k

and f trap
k (u) = k−1−u

k otherwise. We use k = 5 in our experiments.

31

2.5. Benchmark Problems

2.5.12 F25: Random NK Landscapes

Random NK landscapes (NKL). The function values are defined as the average of n
sub-functions Fi : [0..2

k+1− 1]→ R, i ∈ [1..n], where each component Fi only takes as
input a set of k ∈ [0..n− 1] bits that are specified by a neighborhood matrix. In this
paper, k is set to 1 and entries of the neighbourhood matrix are drawn u.a.r. in [1..n].
The function values of Fi’s are sampled independently from a uniform distribution on
(0, 1).

32

