
Benchmarking discrete optimization heuristics: from building
a sound experimental environment to algorithm configuration
Ye, F.

Citation
Ye, F. (2022, June 1). Benchmarking discrete optimization heuristics: from
building a sound experimental environment to algorithm configuration.
Retrieved from https://hdl.handle.net/1887/3304813
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3304813
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3304813


Chapter 1

Introduction

A fundamental research field of optimization is discrete optimization, which is preva-
lent in real-world applications, ranging from operation research (e.g., scheduling [33]
and logistics [9, 66]) to other fields of computer science (e.g., neural architecture
search [64]). It is also of vital importance in theoretical studies, e.g., NP-hardness
of optimization problems [6, 66, 70] and the analysis of algorithmic complexity of
optimization algorithms [37, 40, 49, 84, 90, 91, 110].

Many discrete optimization problems are hard-to-solve, and various algorithms are
proposed in the literature, e.g., [9, 10, 33, 70, 72, 99, 102, 152], to solve different
problems. In this thesis, we focus only on the study of evolutionary computation (EC)
methods, which have been widely and successfully applied for discrete optimization [9,
33, 70, 72, 99, 152]. An increasing number of algorithms such as genetic algorithms
(GAs) [161], estimation of distribution algorithms (EDAs) [103], genetic programming
(GP) [101], etc., are being proposed to solve different complex problems. Meanwhile,
we lack a clear conclusion about the performance of these algorithms across different
types of problems. Therefore, one key challenge of our research community is to
develop guidelines on which algorithms to favor for which kinds of problems. Another
important challenge is to enhance our understanding of performance limits of EC
methods, so as to gain insight into the potential of further improving their design.
Different approaches have been conducted to address these two key challenges, ranging
from theoretical analysis of the algorithms [51, 86, 124] to a practical comparison of
the algorithms on real-world optimization problems [134, 164].

1



1.1. Benchmarking in Optimization

1.1 Benchmarking in Optimization

The theory-oriented approach and the approach of real-world optimization are con-
ducted to understand algorithms’ performance. Meanwhile, benchmarking studies can
offer an intermediate approach associating these two approaches. The two approaches
complement each other, as they can help us gain insight into algorithms’ behaviour
via different approaches, and there is much untapped potential in bounding these ap-
proaches together. For example, an algorithm proposed using one approach can help
solve problems in another approach by generating hypotheses tested on the approach
where the algorithm was originally proposed, which can be easily achieved between the
benchmarking study and real-world optimization by applying algorithms assessed on
benchmarks to real-world optimization problems. Benchmarking may also benefit the-
oreticians by enhancing mathematically-derived ideas into techniques being broadly
applicable in practical optimization. It also constitutes a catalyst for formulating new
research questions for theoretical research and the real-world optimization domain.

The recent discussion [12] in the EC community has summarized that benchmark-
ing studies can aim for: (1) Assessment of Problems and Algorithms. Benchmarking
can provide empirical analyses of algorithms’ performance across different optimization
problems, addressing the questions of how the increasing number of algorithms com-
pare across different optimization problems. Consequently, we can select the “winner”
algorithms for competitions. On the other hand, it can also help us assess the opti-
mization problems and illustrate the algorithms’ behaviour during the optimization
process; (2) Sensitivity of Performance. Benchmarking can assess the sensitivity of
algorithms with response to different problem instances. It will also benefit parameter
tuning by helping us learn the impact of the parameters for an algorithm on certain
problem instances. Moreover, it supports characterizing algorithms’ performance by
problem instance features and vice versa; (3) Performance Exploration. Benchmark-
ing can produce data for machine learning tasks to explore promising algorithms for a
given problem. Benchmarking data can also be used for automatic algorithm design,
selection, and configuration; (4) Complementing and Inspiring Theoretical Study. The
experimental results of benchmarking studies can help valid theoretical results. More-
over, the benchmarking results may inspire theoretical works; (5) Reproducibility and
Algorithm Development. Benchmarking projects can support us in verifying the re-
producibility of a given program. Also, understanding algorithms’ behavior addresses
the question of how the underlying design of algorithms can be used to solve different
types of optimization problems. Furthermore, benchmarking may inspire novel designs

2



Chapter 1. Introduction

of algorithms.
We will demonstrate the potential of benchmarking by showing in this thesis how it

inspires new theoretical results and the design of new algorithms. Also, we will present
how we can gain insights into the behaviour of the automatic algorithm configuration
tools based on experiments on classic theory-oriented problems.

1.2 Scope of the Thesis

We will apply the benchmarking approach in this thesis to investigate the performance
of EC methods on different problems. With respect to the algorithms to be investi-
gated, we focus on iterative optimization heuristics (IOHs). The IOHs aim to find
the optimal solution for a problem minimizing or maximizing f : S → R, x 7→ f(x)

by searching for new solution candidates iteratively. For each iteration, one or a set
of solution candidates {s1, s2, . . . , sλ} ∈ S are generated. The algorithm terminates
when a specific criterion is met, e.g., the time budget is reached, or a solution with the
required quality is found. The class of IOHs subsumes evolutionary algorithms (EAs),
(Quasi-)Monte Carlo algorithms, swarm intelligence, differential evolution, EDAs, ef-
ficient global optimization, Bayesian optimization, local search variants (for example,
first/steepest ascent and variable neighbourhood search), etc. As for the optimiza-
tion problems, we focus on pseudo-Boolean optimization problems, a subset of discrete
optimization.

1.3 The Demand for a New Benchmarking Environ-

ment

In the context of discrete optimization, several attempts to construct widely accepted
benchmarking software have been undertaken [81, 132], but these are typically re-
stricted to certain problem classes (often classical NP-hard problems such as Satisfia-
bility (SAT) [81], Traveling Salesperson Problem (TSP) [132], etc.) without attempt-
ing to generate a set of scalable or generalizable optimization problems. In addition,
many frameworks strongly focus on constructive heuristics, which are assumed to have
access to the problem instance data (in contrast to black-box optimization heuristics,
which implicitly learn about the problem instance only through the evaluation of po-
tential solutions). The few attempts to create a sound benchmarking platform for
discrete black-box optimization heuristics, e.g., Weise’s optimization benchmarking

3



1.4. Research Questions

platform [158], did not receive significant attention from the scientific community.
In December 2018, Facebook announced its benchmarking environment for black-

box optimization [131]. Though their Nevergrad platform comprises a few discrete
problems such as TSP, shifted sphere function [145], etc., it mainly focuses on noisy
continuous optimization. Another famous benchmarking project, the COmparing Con-
tinuous Optimizers (COCO) [79] software constitutes well-established and widely rec-
ognized software for benchmarking derivative-free black-box optimization heuristics.
The COCO software is under constant development. Apart from its well-known BBOB
benchmark set [80], it also offers noisy, multi-objective [149], and mixed-integer [148]
problem collections. While COCO has been designed to analyze IOHs on different
types of problems, its designers have chosen to pre-select these problems that users
can test their algorithms on. Benchmarking new problems with COCO requires sub-
stantial knowledge of its software design, and is therefore quite time-consuming. Also,
it requires additional work using COCO to extend the performance statistics and
visualizations.

To break down barriers between different tools and unify research ideas from differ-
ent domains, we wish for a sound benchmarking environment that allows algorithms
to be tested on a wide range of problems and visualize algorithm behavior with statis-
tical analysis. Moreover, implementing problems or algorithms of existing benchmark
projects shall not require much effort to be integrated into this new benchmarking
software. The design of such benchmarking environment shall take in account the
components of optimization algorithms to be compared, the types of optimization
problems, the performance measures used to evaluate algorithms, and other possi-
ble techniques to present algorithms’ behaviour. Considering these components, we
have developed the benchmarking software IOHprofiler with a modular structure,
which provides the environment to perform the study of this thesis.

1.4 Research Questions

This thesis concentrates on an overarching research question:

How can benchmarking studies benefit theoretical analysis on the optimization problems
and the practical study of algorithm design?

From considering how to build benchmarking software to presenting what we gain from
benchmarking studies, we provide comprehensive study cases to illustrate valid answers

4



Chapter 1. Introduction

for this question.
As building the IOHprofiler benchmarking software, we discuss the questions:

1. Which components shall an applicable benchmarking pipeline take into account?
To answer this question, we have addressed the sub-questions of what problems
and algorithms we are interested in, how to collect the raw data of experiments,
what performance measures we can apply for analyzing algorithms’ performance,
and how to visualize these results. In addition, technique issues of software de-
velopment such as the choices of programming language, the efficiency of imple-
mentation, and version control are also involved in developing our IOHprofiler

benchmarking software.

Benefiting from IOHprofiler, we can compare different algorithms on a set of
benchmarking problems for the following open question:

2. How do various evolutionary algorithms perform on different problems, and what
is the impact of the parameters and the operators? In this thesis, we investigate
how the population size affects the performance of (1+λ) EAs on OneMax and
LeadingOnes, how the optimal mutation rates adjust during the optimization
process for OneMax and LeadingOnes, if/how the uniform crossover is helpful
on LeadingOnes, and what the promising configurations of a (µ + λ) GA are
for different types of problems.

The benchmarking results motivate future research on the topic of parameter tun-
ing, answering the following questions:

3. How to interpolate local and global search during optimization? This question is
motivated by observing how randomized local search (RLS) and different EAs
perform at different stages of the optimization process for OneMax and Leadin-

gOnes

4. What is the impact of the cost metric (i.e., the expected running time (ERT) and
the area under the empirical cumulative distribution function curve (AUC)) for
the performance of algorithm configuration methods? We investigate the perfor-
mance of the promising configurations obtained using algorithm configuration
methods. Moreover, the results help us understand the behaviour of algorithm
configuration methods.

5. What are the next steps for algorithm configuration? We leverage our bench-
marking data of various GAs for the topic of dynamic algorithm selection. Our

5



1.5. Our Contributions

investigation on the performance of different dynamic algorithm policies reveals
the potential topics for the future work on dynamic algorithm selection.

1.5 Our Contributions

Overall, this thesis involves three topics: benchmarking discrete optimization algo-
rithms, empirical analyses of evolutionary computation, and automatic algorithm
configuration. The objective is benchmarking EAs on discrete optimization for the
selection and the design of better optimizers.

In practice, we start with building the IOHprofiler benchmark software.
IOHprofiler consists of two main parts: IOHexperimenter and IOHanalyzer.
IOHexperimenter provides a platform for programming experiments, and IOHan-

alyzer performs post-processing of algorithm performance data. IOHprofiler is
the cornerstone of the study of this thesis. It supports us in testing algorithms on a
wide range of problems and allows us to perform and visualize the statistical analysis
on algorithms’ performance. Benefiting from the functionalities of IOHprofiler, we
can systematically work on the benchmark study in the following chapters.

Our initial benchmarking work focuses on the two classic problems OneMax and
LeadingOnes. We study the impact of mutation rate and population size
on the (1 + λ) EA. We find that the (1 + λ) EA benefits from small λ for OneMax.
However, the value of λ does not significantly affect the ERT values for LeadingOnes.
In addition, we observe that crossover can help for LeadingOnes by testing
a (µ + λ) genetic algorithm with different crossover probabilities. We find that as µ

increases, the value of the optimal crossover probability increases, while for fixed µ,
its value decreases with increasing problem dimension.

The work of analyzing EAs and local search algorithms on OneMax and Leadin-

gOnes clearly shows that local search is preferable at some (in our use-case, late)
stages of the optimization process, whereas larger mutation strengths of the EAs are
beneficial at other stages. Adaptive choice allows us to leverage complementarity.
Therefore, we analyze in this thesis a smooth way of interpolating between local and
non-local search by proposing a new normalized bit mutation . Experimental
results show improvement in using the normalized bit mutation compared to using
either local search or EAs.

Our benchmarking study is also performed on more benchmarking problems pro-
vided by IOHprofiler. Twelve heuristics and various configurations of the (µ+λ) GA
are tested. We investigate how crossover and mutation interplay with each

6



Chapter 1. Introduction

other and the impact of population size. The obtained result provides us, for
different benchmark problems, the promising settings of mutation rate, crossover prob-
ability, and population size. The benchmark data also inspires us towards the work of
automatic algorithm configuration and dynamic algorithm selection.

We apply three AC techniques: iterated racing (Irace) [111], mixed-integer par-
allel efficient global optimization (MIP-EGO) [155], and mixed-integer evolutionary
strategies (MIES) [109], to configure the (µ+ λ) GA for two different objectives, i.e.,
ERT and AUC, respectively. The AC methods aim at automatically finding the best
configuration (i.e., the optimal parameter setting and operator choice) of an algorithm
for the given problem. However, first, we need to decide on a cost metric as the
objective of the configuration task. We investigate the impact of minimizing ERT
and maximizing AUC as the cost metric, respectively. Our results suggest that
even when interested in expected running time performance (i.e., ERT),
it might be preferable to use anytime performance measures (i.e., AUC)
for the configuration task. We also observe that tuning for ERT is much
more sensitive with respect to the budget that is allocated to the target
algorithms.

Apart from applying algorithm configuration for static settings of evolutionary
algorithms, we are also interested in the dynamic settings. We leverage our bench-
mark data of static algorithms for the study of dynamic algorithm selection .
The study inspires us to focus on the automatic detection of the timing of switching
algorithms and efficient warm-start strategies of the switching.

1.6 Structure of the Thesis

Chapter 2 provides relevant background for this thesis. In particular, we provide here
an introduction to optimization, EAs, the performance measures, and the benchmark
problems that are used in this thesis. Chapter 3 then introduces the IOHprofiler

benchmarking software. Chapter 4 presents our first use-case of benchmarking on the
two classic problems, OneMax and LeadingOnes. The proposed standard normal-
ized bit mutation is also introduced in Chapter 4. Chapter 5 continues to benchmark
twelve heuristics and various configurations of the (µ + λ) GA on more benchmark
problems provided by IOHprofiler. The topic of AC is discussed in Chapter 6,
where we apply the three techniques, Irace, MIP-EGO, and MIES, to configure the
(µ+λ) GA. In Chapter 7, we leverage the benchmark data of Chapter 5 for the study
of dynamic algorithm selection. The thesis is summarized in Chapter 8, which briefly

7



1.7. Software and Publications

recalls the main contributions and discusses future research topics inspired by our
work.

1.7 Software and Publications

This thesis is based on the following works.

1.7.1 Software and Documentation

A key contribution is the IOHprofiler environment that is available on the following
websites.

• IOHprofiler wiki page: https://iohprofiler.github.io.

• IOHprofiler Github https://github.com/IOHprofiler.

• IOHanalyzer web-based interface: https://iohanalyzer.liacs.nl.

1.7.2 Journal Publications

1. Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M Shir, and Thomas
Bäck. Benchmarking discrete optimization heuristics with IOHprofiler. Applied
Soft Computing, 106027. Elsevier, 2020.

This paper contributes to Section 5.1. It describes our benchmarking re-
sults of twelve heuristics on the twenty three problems provided by IOH-

profiler.

2. Furong Ye, Carola Doerr, Hao Wang, and Thomas Bäck. Automated Configu-
ration of Genetic Algorithms by Tuning for Anytime Performance. IEEE Trans-
actions on Evolutionary Computation. IEEE, 2022.

This paper contributes to Chapter 6. It presents our work of tuning the
(µ + λ) GA for minimizing ERT or maximizing AUC on the twenty five
problems provided by IOHprofiler, using the three AC techniques, Irace,
MIP-EGO, and MIES.

3. Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, Thomas Bäck. IO-
Hanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristic.
ACM Transactions on Evolutionary Learning and Optimization, in press. ACM,
2022.

8

https://iohprofiler.github.io
https://github.com/IOHprofiler
https://iohanalyzer.liacs.nl


Chapter 1. Introduction

This paper contributes to Section 3.3. It introduces the IOHanalyzer

module of IOHprofiler in detail.

4. Jacob de Nobel*, Furong Ye*, Diederick Vermetten, Hao Wang, Carola Doerr,
and Thomas Thomas Bäck. IOHexperimenter: Benchmarking Platform for It-
erative Optimization Heuristics. arXiv preprint arXiv:2111.04077. 2021. (Un-
der revision of Evolutionary Computation Journal)(*These authors contributed
equally to this work.)

This paper contributes to Section 3.2, which introduces the IOHexperi-

menter module of IOHprofiler in details.

1.7.3 Peer-reviewed Conference Publications

1. Carola Doerr, Furong Ye, Sander van Rijn, Hao Wang, Thomas Bäck. Towards
a theory-guided benchmarking suite for discrete black-box optimization heuris-
tics: profiling (1 + λ) EA variants on OneMax and LeadingOnes. In Proc.
of Genetic and Evolutionary Computation Conference (GECCO’18), 951–958.
ACM, 2018.

This paper contributes to Section 4.1. It publishes our benchmarking re-
sults of the (1 + λ) EAs on OneMax and LeadingOnes. The results
motivated a refined analysis for the optimization time of the (1+λ) EA on
LeadingOnes.

2. Furong Ye, Carola Doerr, and Thomas Bäck. Interpolating Local and Global
Search by Controlling the Variance of Standard Bit Mutation. In Proc. of IEEE
Congress on Evolutionary Computation (CEC’19), 2292–2299. IEEE, 2019.

This paper contributes to Section 4.2. It investigates how the mutation rate
affects the performance of the (1+λ) EAs on OneMax and LeadingOnes.
The standard normalized bit mutation is proposed in this work.

3. Furong Ye, Hao Wang, Carola Doerr, and Thomas Bäck. Benchmarking a (µ+λ)

Genetic Algorithm with Configurable Crossover Probability. In Proc. of Parallel
Problem Solving from Nature (PPSN’20), 699-713. Springer, 2020.

This paper contributes to Sections 4.3 and 5.2. It investigates the impact of
the crossover probability for the (µ+λ) GA. This work shows that crossover

9



1.7. Software and Publications

can be helpful for LeadingOnes and inspires us with the study of dynamic
crossover probability.

4. Furong Ye, Carola Doerr, and Thomas Bäck. Leveraging Benchmarking Data for
Informed One-Shot Dynamic Algorithm Selection. In Proc. of Genetic and Evo-
lutionary Computation Conference (GECCO’21), Companion Material, 245–246.
ACM, 2021.

This paper contributes to Chapter 7. It publishes our result of leveraging
benchmark data in Section 5.2 for dynamic algorithm selection.

1.7.4 Other Documentation

1. Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, Thomas Bäck. IOH-
profiler: A benchmarking and profiling tool for iterative optimization heuristics.
arXiv preprint arXiv:1810.05281. 2018.

This article contributes to Chapter 3. It presents the general overview of
the IOHprofiler software.

10


