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Chapter 1

Introduction

A fundamental research field of optimization is discrete optimization, which is preva-
lent in real-world applications, ranging from operation research (e.g., scheduling [33]
and logistics [9, 66]) to other fields of computer science (e.g., neural architecture
search [64]). It is also of vital importance in theoretical studies, e.g., NP-hardness
of optimization problems [6, 66, 70] and the analysis of algorithmic complexity of
optimization algorithms [37, 40, 49, 84, 90, 91, 110].

Many discrete optimization problems are hard-to-solve, and various algorithms are
proposed in the literature, e.g., [9, 10, 33, 70, 72, 99, 102, 152], to solve different
problems. In this thesis, we focus only on the study of evolutionary computation (EC)
methods, which have been widely and successfully applied for discrete optimization [9,
33, 70, 72, 99, 152]. An increasing number of algorithms such as genetic algorithms
(GAs) [161], estimation of distribution algorithms (EDAs) [103], genetic programming
(GP) [101], etc., are being proposed to solve different complex problems. Meanwhile,
we lack a clear conclusion about the performance of these algorithms across different
types of problems. Therefore, one key challenge of our research community is to
develop guidelines on which algorithms to favor for which kinds of problems. Another
important challenge is to enhance our understanding of performance limits of EC
methods, so as to gain insight into the potential of further improving their design.
Different approaches have been conducted to address these two key challenges, ranging
from theoretical analysis of the algorithms [51, 86, 124] to a practical comparison of
the algorithms on real-world optimization problems [134, 164].
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1.1. Benchmarking in Optimization

1.1 Benchmarking in Optimization

The theory-oriented approach and the approach of real-world optimization are con-
ducted to understand algorithms’ performance. Meanwhile, benchmarking studies can
offer an intermediate approach associating these two approaches. The two approaches
complement each other, as they can help us gain insight into algorithms’ behaviour
via different approaches, and there is much untapped potential in bounding these ap-
proaches together. For example, an algorithm proposed using one approach can help
solve problems in another approach by generating hypotheses tested on the approach
where the algorithm was originally proposed, which can be easily achieved between the
benchmarking study and real-world optimization by applying algorithms assessed on
benchmarks to real-world optimization problems. Benchmarking may also benefit the-
oreticians by enhancing mathematically-derived ideas into techniques being broadly
applicable in practical optimization. It also constitutes a catalyst for formulating new
research questions for theoretical research and the real-world optimization domain.

The recent discussion [12] in the EC community has summarized that benchmark-
ing studies can aim for: (1) Assessment of Problems and Algorithms. Benchmarking
can provide empirical analyses of algorithms’ performance across different optimization
problems, addressing the questions of how the increasing number of algorithms com-
pare across different optimization problems. Consequently, we can select the “winner”
algorithms for competitions. On the other hand, it can also help us assess the opti-
mization problems and illustrate the algorithms’ behaviour during the optimization
process; (2) Sensitivity of Performance. Benchmarking can assess the sensitivity of
algorithms with response to different problem instances. It will also benefit parameter
tuning by helping us learn the impact of the parameters for an algorithm on certain
problem instances. Moreover, it supports characterizing algorithms’ performance by
problem instance features and vice versa; (3) Performance Exploration. Benchmark-
ing can produce data for machine learning tasks to explore promising algorithms for a
given problem. Benchmarking data can also be used for automatic algorithm design,
selection, and configuration; (4) Complementing and Inspiring Theoretical Study. The
experimental results of benchmarking studies can help valid theoretical results. More-
over, the benchmarking results may inspire theoretical works; (5) Reproducibility and
Algorithm Development. Benchmarking projects can support us in verifying the re-
producibility of a given program. Also, understanding algorithms’ behavior addresses
the question of how the underlying design of algorithms can be used to solve different
types of optimization problems. Furthermore, benchmarking may inspire novel designs

2



Chapter 1. Introduction

of algorithms.
We will demonstrate the potential of benchmarking by showing in this thesis how it

inspires new theoretical results and the design of new algorithms. Also, we will present
how we can gain insights into the behaviour of the automatic algorithm configuration
tools based on experiments on classic theory-oriented problems.

1.2 Scope of the Thesis

We will apply the benchmarking approach in this thesis to investigate the performance
of EC methods on different problems. With respect to the algorithms to be investi-
gated, we focus on iterative optimization heuristics (IOHs). The IOHs aim to find
the optimal solution for a problem minimizing or maximizing f : S → R, x 7→ f(x)

by searching for new solution candidates iteratively. For each iteration, one or a set
of solution candidates {s1, s2, . . . , sλ} ∈ S are generated. The algorithm terminates
when a specific criterion is met, e.g., the time budget is reached, or a solution with the
required quality is found. The class of IOHs subsumes evolutionary algorithms (EAs),
(Quasi-)Monte Carlo algorithms, swarm intelligence, differential evolution, EDAs, ef-
ficient global optimization, Bayesian optimization, local search variants (for example,
first/steepest ascent and variable neighbourhood search), etc. As for the optimiza-
tion problems, we focus on pseudo-Boolean optimization problems, a subset of discrete
optimization.

1.3 The Demand for a New Benchmarking Environ-

ment

In the context of discrete optimization, several attempts to construct widely accepted
benchmarking software have been undertaken [81, 132], but these are typically re-
stricted to certain problem classes (often classical NP-hard problems such as Satisfia-
bility (SAT) [81], Traveling Salesperson Problem (TSP) [132], etc.) without attempt-
ing to generate a set of scalable or generalizable optimization problems. In addition,
many frameworks strongly focus on constructive heuristics, which are assumed to have
access to the problem instance data (in contrast to black-box optimization heuristics,
which implicitly learn about the problem instance only through the evaluation of po-
tential solutions). The few attempts to create a sound benchmarking platform for
discrete black-box optimization heuristics, e.g., Weise’s optimization benchmarking
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1.4. Research Questions

platform [158], did not receive significant attention from the scientific community.
In December 2018, Facebook announced its benchmarking environment for black-

box optimization [131]. Though their Nevergrad platform comprises a few discrete
problems such as TSP, shifted sphere function [145], etc., it mainly focuses on noisy
continuous optimization. Another famous benchmarking project, the COmparing Con-
tinuous Optimizers (COCO) [79] software constitutes well-established and widely rec-
ognized software for benchmarking derivative-free black-box optimization heuristics.
The COCO software is under constant development. Apart from its well-known BBOB
benchmark set [80], it also offers noisy, multi-objective [149], and mixed-integer [148]
problem collections. While COCO has been designed to analyze IOHs on different
types of problems, its designers have chosen to pre-select these problems that users
can test their algorithms on. Benchmarking new problems with COCO requires sub-
stantial knowledge of its software design, and is therefore quite time-consuming. Also,
it requires additional work using COCO to extend the performance statistics and
visualizations.

To break down barriers between different tools and unify research ideas from differ-
ent domains, we wish for a sound benchmarking environment that allows algorithms
to be tested on a wide range of problems and visualize algorithm behavior with statis-
tical analysis. Moreover, implementing problems or algorithms of existing benchmark
projects shall not require much effort to be integrated into this new benchmarking
software. The design of such benchmarking environment shall take in account the
components of optimization algorithms to be compared, the types of optimization
problems, the performance measures used to evaluate algorithms, and other possi-
ble techniques to present algorithms’ behaviour. Considering these components, we
have developed the benchmarking software IOHprofiler with a modular structure,
which provides the environment to perform the study of this thesis.

1.4 Research Questions

This thesis concentrates on an overarching research question:

How can benchmarking studies benefit theoretical analysis on the optimization problems
and the practical study of algorithm design?

From considering how to build benchmarking software to presenting what we gain from
benchmarking studies, we provide comprehensive study cases to illustrate valid answers
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Chapter 1. Introduction

for this question.
As building the IOHprofiler benchmarking software, we discuss the questions:

1. Which components shall an applicable benchmarking pipeline take into account?
To answer this question, we have addressed the sub-questions of what problems
and algorithms we are interested in, how to collect the raw data of experiments,
what performance measures we can apply for analyzing algorithms’ performance,
and how to visualize these results. In addition, technique issues of software de-
velopment such as the choices of programming language, the efficiency of imple-
mentation, and version control are also involved in developing our IOHprofiler

benchmarking software.

Benefiting from IOHprofiler, we can compare different algorithms on a set of
benchmarking problems for the following open question:

2. How do various evolutionary algorithms perform on different problems, and what
is the impact of the parameters and the operators? In this thesis, we investigate
how the population size affects the performance of (1+λ) EAs on OneMax and
LeadingOnes, how the optimal mutation rates adjust during the optimization
process for OneMax and LeadingOnes, if/how the uniform crossover is helpful
on LeadingOnes, and what the promising configurations of a (µ + λ) GA are
for different types of problems.

The benchmarking results motivate future research on the topic of parameter tun-
ing, answering the following questions:

3. How to interpolate local and global search during optimization? This question is
motivated by observing how randomized local search (RLS) and different EAs
perform at different stages of the optimization process for OneMax and Leadin-

gOnes

4. What is the impact of the cost metric (i.e., the expected running time (ERT) and
the area under the empirical cumulative distribution function curve (AUC)) for
the performance of algorithm configuration methods? We investigate the perfor-
mance of the promising configurations obtained using algorithm configuration
methods. Moreover, the results help us understand the behaviour of algorithm
configuration methods.

5. What are the next steps for algorithm configuration? We leverage our bench-
marking data of various GAs for the topic of dynamic algorithm selection. Our
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1.5. Our Contributions

investigation on the performance of different dynamic algorithm policies reveals
the potential topics for the future work on dynamic algorithm selection.

1.5 Our Contributions

Overall, this thesis involves three topics: benchmarking discrete optimization algo-
rithms, empirical analyses of evolutionary computation, and automatic algorithm
configuration. The objective is benchmarking EAs on discrete optimization for the
selection and the design of better optimizers.

In practice, we start with building the IOHprofiler benchmark software.
IOHprofiler consists of two main parts: IOHexperimenter and IOHanalyzer.
IOHexperimenter provides a platform for programming experiments, and IOHan-

alyzer performs post-processing of algorithm performance data. IOHprofiler is
the cornerstone of the study of this thesis. It supports us in testing algorithms on a
wide range of problems and allows us to perform and visualize the statistical analysis
on algorithms’ performance. Benefiting from the functionalities of IOHprofiler, we
can systematically work on the benchmark study in the following chapters.

Our initial benchmarking work focuses on the two classic problems OneMax and
LeadingOnes. We study the impact of mutation rate and population size
on the (1 + λ) EA. We find that the (1 + λ) EA benefits from small λ for OneMax.
However, the value of λ does not significantly affect the ERT values for LeadingOnes.
In addition, we observe that crossover can help for LeadingOnes by testing
a (µ + λ) genetic algorithm with different crossover probabilities. We find that as µ

increases, the value of the optimal crossover probability increases, while for fixed µ,
its value decreases with increasing problem dimension.

The work of analyzing EAs and local search algorithms on OneMax and Leadin-

gOnes clearly shows that local search is preferable at some (in our use-case, late)
stages of the optimization process, whereas larger mutation strengths of the EAs are
beneficial at other stages. Adaptive choice allows us to leverage complementarity.
Therefore, we analyze in this thesis a smooth way of interpolating between local and
non-local search by proposing a new normalized bit mutation . Experimental
results show improvement in using the normalized bit mutation compared to using
either local search or EAs.

Our benchmarking study is also performed on more benchmarking problems pro-
vided by IOHprofiler. Twelve heuristics and various configurations of the (µ+λ) GA
are tested. We investigate how crossover and mutation interplay with each
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other and the impact of population size. The obtained result provides us, for
different benchmark problems, the promising settings of mutation rate, crossover prob-
ability, and population size. The benchmark data also inspires us towards the work of
automatic algorithm configuration and dynamic algorithm selection.

We apply three AC techniques: iterated racing (Irace) [111], mixed-integer par-
allel efficient global optimization (MIP-EGO) [155], and mixed-integer evolutionary
strategies (MIES) [109], to configure the (µ+ λ) GA for two different objectives, i.e.,
ERT and AUC, respectively. The AC methods aim at automatically finding the best
configuration (i.e., the optimal parameter setting and operator choice) of an algorithm
for the given problem. However, first, we need to decide on a cost metric as the
objective of the configuration task. We investigate the impact of minimizing ERT
and maximizing AUC as the cost metric, respectively. Our results suggest that
even when interested in expected running time performance (i.e., ERT),
it might be preferable to use anytime performance measures (i.e., AUC)
for the configuration task. We also observe that tuning for ERT is much
more sensitive with respect to the budget that is allocated to the target
algorithms.

Apart from applying algorithm configuration for static settings of evolutionary
algorithms, we are also interested in the dynamic settings. We leverage our bench-
mark data of static algorithms for the study of dynamic algorithm selection .
The study inspires us to focus on the automatic detection of the timing of switching
algorithms and efficient warm-start strategies of the switching.

1.6 Structure of the Thesis

Chapter 2 provides relevant background for this thesis. In particular, we provide here
an introduction to optimization, EAs, the performance measures, and the benchmark
problems that are used in this thesis. Chapter 3 then introduces the IOHprofiler

benchmarking software. Chapter 4 presents our first use-case of benchmarking on the
two classic problems, OneMax and LeadingOnes. The proposed standard normal-
ized bit mutation is also introduced in Chapter 4. Chapter 5 continues to benchmark
twelve heuristics and various configurations of the (µ + λ) GA on more benchmark
problems provided by IOHprofiler. The topic of AC is discussed in Chapter 6,
where we apply the three techniques, Irace, MIP-EGO, and MIES, to configure the
(µ+λ) GA. In Chapter 7, we leverage the benchmark data of Chapter 5 for the study
of dynamic algorithm selection. The thesis is summarized in Chapter 8, which briefly
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recalls the main contributions and discusses future research topics inspired by our
work.

1.7 Software and Publications

This thesis is based on the following works.

1.7.1 Software and Documentation

A key contribution is the IOHprofiler environment that is available on the following
websites.

• IOHprofiler wiki page: https://iohprofiler.github.io.

• IOHprofiler Github https://github.com/IOHprofiler.

• IOHanalyzer web-based interface: https://iohanalyzer.liacs.nl.

1.7.2 Journal Publications

1. Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M Shir, and Thomas
Bäck. Benchmarking discrete optimization heuristics with IOHprofiler. Applied
Soft Computing, 106027. Elsevier, 2020.

This paper contributes to Section 5.1. It describes our benchmarking re-
sults of twelve heuristics on the twenty three problems provided by IOH-

profiler.

2. Furong Ye, Carola Doerr, Hao Wang, and Thomas Bäck. Automated Configu-
ration of Genetic Algorithms by Tuning for Anytime Performance. IEEE Trans-
actions on Evolutionary Computation. IEEE, 2022.

This paper contributes to Chapter 6. It presents our work of tuning the
(µ + λ) GA for minimizing ERT or maximizing AUC on the twenty five
problems provided by IOHprofiler, using the three AC techniques, Irace,
MIP-EGO, and MIES.

3. Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, Thomas Bäck. IO-
Hanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristic.
ACM Transactions on Evolutionary Learning and Optimization, in press. ACM,
2022.
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Chapter 1. Introduction

This paper contributes to Section 3.3. It introduces the IOHanalyzer

module of IOHprofiler in detail.

4. Jacob de Nobel*, Furong Ye*, Diederick Vermetten, Hao Wang, Carola Doerr,
and Thomas Thomas Bäck. IOHexperimenter: Benchmarking Platform for It-
erative Optimization Heuristics. arXiv preprint arXiv:2111.04077. 2021. (Un-
der revision of Evolutionary Computation Journal)(*These authors contributed
equally to this work.)

This paper contributes to Section 3.2, which introduces the IOHexperi-

menter module of IOHprofiler in details.

1.7.3 Peer-reviewed Conference Publications

1. Carola Doerr, Furong Ye, Sander van Rijn, Hao Wang, Thomas Bäck. Towards
a theory-guided benchmarking suite for discrete black-box optimization heuris-
tics: profiling (1 + λ) EA variants on OneMax and LeadingOnes. In Proc.
of Genetic and Evolutionary Computation Conference (GECCO’18), 951–958.
ACM, 2018.

This paper contributes to Section 4.1. It publishes our benchmarking re-
sults of the (1 + λ) EAs on OneMax and LeadingOnes. The results
motivated a refined analysis for the optimization time of the (1+λ) EA on
LeadingOnes.

2. Furong Ye, Carola Doerr, and Thomas Bäck. Interpolating Local and Global
Search by Controlling the Variance of Standard Bit Mutation. In Proc. of IEEE
Congress on Evolutionary Computation (CEC’19), 2292–2299. IEEE, 2019.

This paper contributes to Section 4.2. It investigates how the mutation rate
affects the performance of the (1+λ) EAs on OneMax and LeadingOnes.
The standard normalized bit mutation is proposed in this work.

3. Furong Ye, Hao Wang, Carola Doerr, and Thomas Bäck. Benchmarking a (µ+λ)

Genetic Algorithm with Configurable Crossover Probability. In Proc. of Parallel
Problem Solving from Nature (PPSN’20), 699-713. Springer, 2020.

This paper contributes to Sections 4.3 and 5.2. It investigates the impact of
the crossover probability for the (µ+λ) GA. This work shows that crossover
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1.7. Software and Publications

can be helpful for LeadingOnes and inspires us with the study of dynamic
crossover probability.

4. Furong Ye, Carola Doerr, and Thomas Bäck. Leveraging Benchmarking Data for
Informed One-Shot Dynamic Algorithm Selection. In Proc. of Genetic and Evo-
lutionary Computation Conference (GECCO’21), Companion Material, 245–246.
ACM, 2021.

This paper contributes to Chapter 7. It publishes our result of leveraging
benchmark data in Section 5.2 for dynamic algorithm selection.

1.7.4 Other Documentation

1. Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, Thomas Bäck. IOH-
profiler: A benchmarking and profiling tool for iterative optimization heuristics.
arXiv preprint arXiv:1810.05281. 2018.

This article contributes to Chapter 3. It presents the general overview of
the IOHprofiler software.
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Chapter 2

Preliminaries

This chapter briefly introduces three topics of this thesis, covering Optimization, Evo-
lutionary Algorithms, and Algorithm Configuration. Detailed descriptions of perfor-
mance measures and benchmark problems used in the empirical study are also pro-
vided.

2.1 Optimization

Optimization aims at finding the best solution for a given problem. Optimization
problems arise in many disciplines, e.g., biology [75], engineering [33], logistics [9, 66],
physics [113], etc. Meanwhile, benchmarks have been built to unify ideas and meth-
ods for different domains such as numerical analysis [79], software engineering [81],
traveling salesperson problems [132], etc.

Optimization problems consist of three elements, i.e., objective functions, decision
variables, and constraints.

The objective function is a mapping that assesses the quality of a candidate so-
lution. The assessment returns a value (i.e., single-objective optimization) or a set of
values (i.e., multi-objective optimization). We only consider the single-objective opti-
mization that is subject to maximization in this thesis. In short, we aim at maximizing
a function:

f : S → R, x 7→ f(x), (2.1)

where we refer to S as the search space and its element x ∈ S as a search point
(or solution candidate). The decision variables of x can have different types: real
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2.2. Evolutionary Algorithms

(i.e., continuous), integer (e.g., ordinal), and nominal (i.e., categorical). Continuous
optimization considers only real-valued variables, discrete optimization considers in-
teger and nominal variables, and mixed-integer problems consist of multiple types of
variables.

Constraints restrict the values of variables that can be taken for solutions, which
can be either hard constraints or soft constraints. Solutions must satisfy the require-
ments of hard constraints, and penalties will be assigned if soft constraints are vio-
lated [28]. Also, constraints can be distinguished by equality constraints h(x) = 0 and
inequality constraints g(x) ≤ 0.

2.1.1 Pseudo-Boolean Optimization

In this thesis, we study a subset of discrete optimization, whose variables consist of
binary variables, namely pseudo-Boolean optimization [19]:

f : {0, 1}n → R, x 7→ f(x). (2.2)

A variety of problems are related to pseudo-Boolean optimization, including spin
glass [11], maximum satisfiability [70], fault location [114], clustering [135], project
selection [130], etc. Many techniques have been applied to solve these problems specif-
ically. In this thesis, we study the performance of EAs and other IOHs on pseudo-
Boolean optimization problems.

2.2 Evolutionary Algorithms

Though exact algorithms, such as dynamic programming, have been developed for
solving optimization problems, these techniques usually require additional effort for
specific problems and can not solve hard problems. However, EAs have achieved
success in approximating solutions to problems in many fields [6, 9, 33, 64, 66, 70].

EAs were originally inspired by biological evolution. The general procedure of EAs
is producing offspring using variation operators after initializing a parent population
of solution candidates (i.e., individuals), then updating the population by selecting
from offspring (and parent) solution candidates. This procedure is iterated until the
termination criterion is reached.

Different design of operators will result in variations of EAs such as GAs, evolution
strategies (ESs), etc. For instance, mutation and crossover are two common operators
of EAs. Mutation allows exploiting promising search areas using small mutation rates,
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Chapter 2. Preliminaries

and crossover creates offspring by recombining information of two or more parents.
GAs use both mutation and crossover as variation operators. However, the EAs for
pseudo-Boolean optimization usually concentrate on mutation only. Also, there are
different strategies to form new populations. For example, a plus-strategy will select
solution candidates from both parent and offspring populations, and a comma-strategy
will consider only the offspring population.

Apart from the combinations of different operators, we have a variety of algorithms
because most operators are parameterized, raising the question of how to configure
them properly for the given optimization task. For example, EAs require proper
settings of the population size, the mutation rate, and the selective pressure; GAs’
performance can be affected by the values of the population size and the crossover
probability. Note that we consider that the EAs for pseudo-Boolean optimization in
this thesis are mutation-only algorithms.

2.3 Parameter Tuning Techniques

It is well known that the choice of parameters and operators influences the performance
of EAs significantly [2, 93]. There are two classes of approaches to determine algorithm
settings, namely static parameter setting and dynamic parameter control [42].

Static parameter setting identifies parameter values and operator choices of the
algorithms for a given problem. The settings are predefined for the optimization
process. Usually, the settings are based on empirical studies or theoretical works.
For the empirical study methods, the design of experiments (DOE) [26] methods can
help us understand the relationship between input parameters and decide a promising
algorithm setting. Nowadays, automatic tuning tools have also been applied to identify
algorithms’ parameters, and the obtained results have shown significant advantages
against manual settings. In the theory research domain, researchers prove bounds for
the running time of algorithms with respect to specific parameters values, such that
we can find suitable parameter settings by minimizing these bounds [163].

Dynamic parameter control adjusts parameter values and even operator choices
during the optimization process. The aim is to benefit from applying promising set-
tings at different stages of the optimization process. Both empirical [2, 61, 92] and
theoretical studies [42] have been conducted for dynamic algorithm control. Recent
work has formulated dynamic algorithm configuration as a contextual Markov deci-
sion process, and the authors compared the reinforcement learning and the classic
sequential model-based optimization for general algorithm configuration (SMAC) on
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their test bed [17]. Also, a similar topic, dynamic algorithm selection, has attracted
attention in recent research [153]. Theoreticians also investigate the optimal param-
eters for theory-oriented problems such as OneMax and proposed theory-inspired
self-adaptation methods [40, 46].

In the following, we introduce algorithm configuration (AC), also known as hy-
perparameter optimization, which belongs to the class of static parameter tuning ap-
proaches. AC is applied to explore promising operator combinations and parameter
settings of the algorithms for a given problem. Most AC methods do not require
preliminary knowledge of the algorithm and the problem. Consequently, we can not
directly explain why (or if) the obtained configurations perform well. Benefiting from
benchmarking, we can understand the behavior of both algorithms and the AC meth-
ods.

We provide here the definition of the algorithm configuration problem [60]:

Definition 2.1 (AC: Algorithm Configuration). Given a set of problem instances
P , a parametrized algorithm A with parameter space Θ, and a cost metric c : Θ ×
P → R that is subject to minimization, the objective of the AC problem is to find a
configuration θ∗ ∈ Θ such that the cost c(θ, P ) is as small as possible.

The AC problem can be seen as a meta-optimization problem, asking to optimize
performance of a specific solver on a given set of problem instances.

Many approaches, e.g., Bayesian optimization [155], local search [83], evolutionary
algorithms [109], gradient-based optimization [16], etc., can be used for the AC prob-
lem. Among the best-known tools are paramILS [83], SMAC [82], and Irace [111].
These methods have been applied to boost the performance of algorithms in many
domains such as TSP [111], software engineering [14], and machine learning [97].

2.4 Algorithm Performance Measures

We introduce here the performance measures used in this thesis to assess algorithms’
behaviour, concerning three different objectives, namely fixed-target performance,
fixed-budget performance, and anytime performance. The measures can also be used
as the cost metric in Definition 2.1.

2.4.1 Fixed-target Performance

For the fixed-target results, we consider the cost needed by each algorithm to find a
solution that is at least as good as a certain target. In this thesis, we consider the
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Figure 2.1: ERT values of the two algorithms RLS and self_GA for a maximization
problem in a fixed-target perspective.

time cost measured by the expected running time (ERT) value, where time indicates
the number of function evaluations.

Definition 2.2 (ERT: Expected Running Time). Given a target ϕ for a problem P ,
the ERT of an algorithm A hitting ϕ is

ERT(A,P, ϕ) =

∑r
i=1 min{ti(A,P, ϕ), B}∑r
i=1 1{ti(A,P, ϕ) <∞}

, (2.3)

where r is the number of independent runs of A, B is the given budget (i.e., the
maximal number of function evaluations), ti(A,P, ϕ) ∈ N ∪ {∞} is the running time
(for finite values, the running time is the number of function evaluations that the i-th
run of A on the problem P uses to hit the target ϕ, and ti(A,P, ϕ) = ∞ is used if
none of the solutions is better than ϕ), and 1(E) is the indicator function returning 1
if event E happens and 0, otherwise. ti(A,P, ϕ) <∞ indicates that the algorithm hits
the target within the given budget B in the i-th run. If the algorithm hits the target
ϕ in all r runs, the ERT is equal to the average hitting time (AHT).

Definition 2.3 (AHT: Average Hitting Time). Given a target ϕ for a problem P , the
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Figure 2.2: The mean of best-found fitness values of the two algorithms RLS and
self_GA for a maximization problem in a fixed-budget perspective.

AHT of an algorithm A hitting ϕ is

AHT(A,P, ϕ) =

∑r
i=1 ti(A,P, ϕ)

r
, (2.4)

where r is the number of independent runs of A, ti(A,P, ϕ) is the running time (i.e.,
the number of function evaluations) that the i-th run of A uses to hit the target ϕ of
P .

Figure 2.1 is an example showing fixed-target curves, which plots the ERT values
(y-axis) that the two algorithms RLS and self_GA need to find a solution satisfying
f(x) ≥ ϕ, where the target value ϕ is the value on x-axis. We see that the ERT of the
RLS for the target value 80 is around 100, while the ERT of the self_GA is around
300.

2.4.2 Fixed-budget Performance

For the fixed-budget results, we consider the quality of solutions found by each al-
gorithm with a given budget. Figure 2.2 is an example showing fixed-budget curves,
which plots average of the best-found fitness values (y-axis) after using specific budget
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Figure 2.3: ECDF values of the two algorithms RLS and self_GA for different budgets.

B, where the budget value B is the value on x-axis. We see that, after using 500

function evaluations, the mean of best-found fitness value of the RLS is 100, while the
mean of best-found fitness value of the self_GA is 90.

2.4.3 Anytime Performance

Another important concept in the analysis of IOHs are empirical cumulative distribu-
tion function (ECDF) curves, which allow to aggregate performance across different
targets. The definition of ECDF is given below. Figure 2.3 plots ECDF values (y-axis)
after using specific budget B, where the budget value B is the value on x-axis. We see
that, around 96% runs of the (run,target) pairs hit the corresponding target within the
given budget of 500 function evaluations for the RLS, while this number is 80% for the
self_GA. Note that ECDF can also be applied for evaluating algorithm performance
across different functions.

Definition 2.4 (ECDF: empirical cumulative distribution function of the running
time). Given a set of targets Φ = {ϕi ∈ R | i ∈ {1, 2, . . . ,m}} for a real-valued
problem P and a set of budgets T = {tj ∈ N | j ∈ {1, 2, . . . , B}} for an algorithm
A, the ECDF value of A at budget tj is the fraction of (run, target)-pairs (r, ϕi) that
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satisfy that the run r of the algorithm A finds a solution has fitness at least as good
as ϕi within the budget tj .

In this thesis, we evaluate anytime performance of algorithms using the area under
the ECDF curve (AUC). The domain of AUC values is [0, 1]. The definition is given
below. Note that the given definition is for a discretized version of AUC, of which
values can be affected by the given targets Φ and budgets T .

Definition 2.5 (AUC: area under the ECDF curve). Given a set of targets Φ = {ϕi ∈
R | i ∈ {1, 2, . . . ,m}} and a set of budgets T = {tj ∈ {1, 2, . . . , B} | j ∈ {1, 2, . . . , z}},
the AUC ∈ [0, 1] (normalized over B) of algorithm A on problem P is the area under
the ECDF curve of the running time over multiple targets. For maximization, it reads

AUC(A,P,Φ, T ) =

r∑
h=1

m∑
i=1

z∑
j=1

1{ϕh(A,P, tj) ≥ ϕi}

rmz
,

where r is the number of independent runs of A and ϕh(A,P, t) denotes the value of
the best solution that A evaluated within its first t evaluations of the run h.

2.5 Benchmark Problems

In this thesis, we focus on pseudo-Boolean optimization problems, i.e., all the sug-
gested benchmark problems are expressed as functions f : {0, 1}n → R. We also pay
particular attention to the scalability of the problems, with the idea that the bench-
mark problems should allow to assess performances across different dimensions. All
problems have been implemented and integrated within the IOHprofiler software.

Conventions Throughout this thesis, the variable n denotes the dimension of the
problem that the algorithm operates upon. We assume that n is known to the algo-
rithm; this is a natural assumption, since every algorithm needs to know the decision
space that it is requested to search. Note though, that the effective dimension of a
problem can be smaller than n, e.g., due to the usage of dummy variables that do not
contribute to the function values, or due to other reductions of the search space di-
mensionality (see Section 2.5.6 for examples). In practice, we thus only require that n
is an upper bound for the effective number of decision variables.

For constrained problems, such as the N-Queens problem (see Section 2.5.10), we
follow common practice in the evolutionary computation community and use penalty
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terms to discount infeasible solutions by the number and magnitude of constraint
violations.

We formulate all problems as maximization problems.

Notation A search point x ∈ {0, 1}n is written as (x1, . . . , xn). By [k] we abbreviate
the set {1, 2, . . . , k} and by [0..k] the set [k] ∪ {0}. All logarithms are to the base 10
and are denoted by log. An exception is the natural logarithm, which we denote by
ln. Finally, we denote by id the identity function, regardless of the domain.

2.5.1 Problems vs. Instances

We define a problem in this thesis as a collection of functions sharing some common
properties. For example, the NK landscape problem refers to problems with different
gene interactions [94]. While we are interested in covering different types of fitness
landscapes, we care much less about their actual embedding, and mainly seek to under-
stand algorithms that are invariant under the problem representation. In the context
of pseudo-Boolean optimization, a well-recognized approach to request representation
invariance to demand that an algorithm shows the same or similar performance on any
instance mapping each bit string x ∈ {0, 1}n to the function value f(σ(x⊕z)), where z

is an arbitrary bit string of length n, ⊕ denotes the bit-wise XOR function, and σ(y) is
to be read as the string (yσ(1), . . . , yσ(n)) in which the entries are swapped according to
the permutation σ : [n]→ [n]. Using these transformations, we obtain from one partic-
ular problem f a whole set of instances {f(σ(·⊕z)) | z ∈ {0, 1}n, σ permutation of [n]},
all of which have fitness landscapes that are pairwise isomorphic. Further discussions
of these unbiasedness transformations can be found in [54, 106].

Apart from unbiasedness, we also focus in this work on ranking-based heuristics,
i.e., algorithms which only make use of relative, and not of absolute function values. To
allow future comparisons with non-ranking-based algorithms, we test the algorithms
on instances that are shifted by a multiplicative and an additive offset. That is, instead
of receiving the values f(σ(x⊕ z)), only the transformed values af(σ(x⊕ z)) + b are
made available to the algorithms.

2.5.2 Overview of Selected Benchmark Problems

We summarize here the benchmark problems that we repeatedly use in this thesis
to compare algorithms’ performance, which are from the suite of IOHprofiler for
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pseudo-Boolean optimization (PBO). The PBO suite originally consisted of twenty
three problem [55], and two problems were added afterwards in [170].

• F1 and F4-F10: OneMax and its W-model extensions; details in Sections 2.5.3
and 2.5.6

• F2 and F11-F17: LeadingOnes and its W-model extensions; details in Sec-
tions 2.5.4 and 2.5.6

• F3: Harmonic; see Section 2.5.5

• F18: LABS: Low Autocorrelation Binary Sequences; see Section 2.5.7

• F19-21: Ising Models; see Section 2.5.8

• F22: MIVS: Maximum Independent Vertex Set; see Section 2.5.9

• F23: NQP: N-Queens; see Section 2.5.10

• F24: CT: Concatenated Trap; see Section 2.5.11

• F25: NKL: Random NK landscapes; see Section 2.5.12

2.5.3 F1: OneMax

The OneMax function is the best-studied benchmark problem in the context of dis-
crete EC, often referred to as the “drosophila of EC”. It asks to optimize the function

F1 : OM : {0, 1}n → [0..n], x 7→
n∑

i=1

xi.

The problem has a very smooth and non-deceptive fitness landscape. Due to the well-
known coupon collector effect (see, for example, [57] for a detailed explanation of this
effect), it is relatively easy to make progress when the function values are small, and
the probability to obtain an improving move decreases considerably with increasing
function value.

With the ‘⊕z’ transformations introduced in Section 2.5.1, the OneMax problem
becomes the problem of minimizing the Hamming distance to an unknown target string
z ∈ {0, 1}n.

That OneMax is interesting beyond the study of theoretical aspects of evolution-
ary computation has been argued in [147]. We believe that OneMax plays a similar
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role as the sphere function in continuous domains, and should be added to each bench-
mark set: it is not very time-consuming to evaluate, and can provide a first basic stress
test for new algorithm designs.

2.5.4 F2: LeadingOnes

Among the non-separable functions, the LeadingOnes function is certainly the one
receiving most attention in the theory of EC community. The LeadingOnes problem
asks to maximize the function

F2 : LO : {0, 1}n → [0..n], x 7→ max{i ∈ [0..n] | ∀j ≤ i : xj = 1} =
n∑

i=1

i∏
j=1

xj , (2.5)

which counts the number of initial ones.
Similar to OneMax, we argue that LeadingOnes should form a default bench-

mark problem: it is fast to evaluate and can point at fundamental issues of algorithmic
designs, see also the discussions in Section 4.1.

2.5.5 F3: A Linear Function with Harmonic Weights

Two extreme linear functions are OneMax with its constant weights and binary value
BV(x) =

∑n
i=1 2

n−ixi with its exponentially decreasing weights. An intermediate
linear function is

F3 : {0, 1}n → R, x 7→
∑
i

ixi

with harmonic weights, which was suggested to be considered in [139].

2.5.6 F4-F17: The W-model

In [160], a collection of different ways to “perturb” existing benchmark problems in
order to obtain new functions of scalable difficulties and landscape features has been
suggested, the so-called W-model. These W-model transformations can be combined
arbitrarily, resulting in a huge set of possible benchmark problems. In addition, these
transformations can, in principle, be superposed to any base problems, giving yet
another degree of freedom. Note here that the original work [160] and the existing
empirical evaluations [159] only consider OneMax as underlying problem, but there
is no reason to restrict the model to this function. We expect that in the longer
term, the W-model, similarly to the well-known NK-landscapes [94] may constitute
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an important building block for a scalable set of discrete benchmark problems. More
research, however, is needed to understand how the different combinations influence
the behavior of state-of-the-art heuristic solvers. In this thesis, we therefore restrict
our attention to instances in which the different components of the W-model are used
in an isolated way, see Section 2.5.6. The assessment of combined transformations
clearly forms a promising line for future work.

The Basic Transformations

The W-model comprises four basic transformations, and each of these transformations
is parametrized, hence offering a huge set of different problems already. We provide
a brief overview of the W-model transformations that are relevant for the study in
this thesis. A more detailed description can be found in the original work [160]. For
some of the descriptions below we deviate from the exposition in [160], because in
contrast to there, we consider maximization as objective, not minimization. Note
also that we write x = (x1, . . . , xn), whereas in [160] the strings are denoted as
(xn−1, xn−2, . . . , x1, x0). Note also that the reduction of dummy variables is our own
extension of the W-model, not originally proposed in [160].

1. Reduction of dummy variables W (m, ∗, ∗, ∗): a reduction mapping each
string (x1, . . . , xn) to a substring (xi1 , . . . , xim) for randomly chosen, pairwise
different i1, . . . , im ∈ [n]. This modification models a situation in which some
decision variables do not have any or have only negligible impact on the fitness
values. Thus, effectively, the strings (x1, . . . , xn) that the algorithm operates
upon are reduced to substrings (xi1 , . . . , xim) with 1 ≤ i1 < i2 < . . . < im ≤ n.

We note that such scenarios have been analyzed theoretically, and different ways
to deal with this unknown solution length have been proposed. Efficient EAs can
obtain almost the same performance (in asymptotic terms) than EAs “knowing”
the problem dimension [44, 62].

Dummy variables are also among the characteristics of the benchmark functions
contained in the Nevergrad platform [131], which might be seen as evidence for
practical relevance.

Example: With n = 10, m = 5, i1 = 1, i2 = 2, i3 = 4, i4 = 7, i5 = 10, the bit
string (1010101010) is reduced to (10010).

2. Neutrality W (∗, u, ∗, ∗): The bit string (x1, . . . , xn) is reduced to a string
(y1, . . . , ym) with m = n/u, where u is a parameter of the transformation. For

22



Chapter 2. Preliminaries

each i ∈ [m] the value of yi is the majority of the bit values in a size-u substring
of x. More precisely, yi = 1 if and only if there are at least u/2 ones in the
substring (x(i−1)u+1, x(i−1)u+2, . . . , xiu).1 When n/u /∈ N, the last n − u⌊n/u⌋
remaining bits of x not fitting into any of the blocks are simply deleted; that is,
we have m = ⌊n/u⌋ and the entries xi with i > u⌊n/u⌋ do not have any influence
on y (and, thus, no influence on the function value).

Example: With n = 10 and u = 3 the bit string (1110101110) is reduced to
(101).

3. Epistasis W (∗, ∗, ν, ∗): The idea is to introduce local perturbations to the
bit strings. To this end, a string x = (x1, . . . , xn) is divided into subsequent
blocks of size ν. Using a permutation eν : {0, 1}ν → {0, 1}ν , each substring
(x(i−1)ν+1, . . . , xiν) is mapped to another string (y(i−1)ν+1, . . . , yiν) =

eν((x(i−1)ν+1, . . . , xiν)). The permutation eν is chosen in a way that Hamming-
1 neighbors u, v ∈ {0, 1}ν are mapped to strings of Hamming distance at least
ν − 1. Section 2.2 in [160] provides a construction for such permutations. For
illustration purposes, we repeat below the map for ν = 4, which is the parameter
used in our experiments. This example can also be found, along with the general
construction, in [160].

e4(0000) = 0000 e4(0001) = 1101 e4(0010) = 1011 e4(0011) = 0110

e4(0100) = 0111 e4(0101) = 1010 e4(0110) = 1100 e4(0111) = 0001

e4(1000) = 1111 e4(1001) = 0010 e4(1010) = 0100 e4(1011) = 1001

e4(1100) = 1000 e4(1101) = 0101 e4(1110) = 0011 e4(1111) = 1110

When n/ν /∈ N, the last bits of x are treated by en−ν⌊n/ν⌋; that is, the substring
(xν⌊n/ν⌋+1, xν⌊n/ν⌋+2, . . . , xn) is mapped to a new string of the same length via
the function en−ν⌊n/ν⌋.

Example: With n = 10, ν = 4, and the permutation e4 provided above, the bit
string (1111011101) is mapped to (1110000110), because e4(1111) = 1110 and
e4(0111) = 0001 and e2(01) = 10.

4. Fitness perturbation W (∗, ∗, ∗, r): With these transformations we can de-

1Note that with this formulation there is a bias towards ones in case of a tie. We follow here the
suggestion made in [160], but we note that this bias may have a somewhat complex impact on the
fitness landscape. For our first benchmark set, we therefore suggest to use this transformation with
odd values for u only.
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termine the ruggedness and deceptiveness of a function. Unlike the previous
transformations, this perturbation operates on the function values, not on the
bit strings. To this end, a ruggedness function r : {f(x) | x ∈ {0, 1}n} := V → V

is chosen. The new function value of a string x is then set to r(f(x)), so that
effectively the problem to be solved by the algorithm becomes r ◦ f .

To ease the analysis, it is required in [160] that the optimum vmax = max{f(x) |
x ∈ {0, 1}n} does not change, i.e., r must satisfy that r(vmax}) = vmax and r(i) <

vmax for all i < vmax. It is furthermore required in [160] that the ruggedness
functions r are permutations (i.e., one-to-one maps). Both requirements are
certainly not necessary, in the sense that additional interesting problems can be
obtained by violating these constrains. We note in particular that in order to
study plateaus of equal function values, one might want to choose functions that
map several function values to the same value. We will include one such example
in our testbed, see Section 2.5.6.

It should be noted that all functions of unitation (i.e., functions for which the
function value depends only on the OneMax value of the search point, such as
Trap or jump) can be obtained from a superposition of the fitness perturbation
onto the OneMax problem.

Example: The well-known, highly deceptive Trap function can be obtained by
superposing the permutation r : [0..n] → [0..n] with r(i) = n − 1 − i for all
1 ≤ i ≤ n and r(n) = n.

Combining the Basic W-model Transformations

We note that any of the four W-model transformations can be applied independently
of each other. The first three modifications can, in addition, be applied in an arbitrary
order, with each order resulting in a different benchmark problem. In line with the
presentation in [160], we consider in our implementation only those perturbations that
follow the order given above. Each set of W-model transformations can be identified
by a string ({i1, . . . , im}, u, ν, r) with m ≤ n, 1 ≤ i1 < . . . < im ≤ n, u ∈ [n], ν ∈ [n],
and r : V → V , all to be interpreted as in the descriptions given in Section 2.5.6
above. Setting {i1, . . . , im} = [n], u = 1, ν = 1, and/or r as the identity function
on V corresponds to not using the first, second, third, and/or forth transformation,
respectively.

As mentioned, the W-model can in principle be superposed on any benchmark
problem. The only complication is that the search space on which the algorithm
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operates and the search space on which the benchmark problem is applied are not the
same when m < n or u > 1. More precisely, while the algorithm operates on {0, 1}n,
the base problem has to be a function f : {0, 1}s → R with s = ⌊m/u⌋. We call s
the effective dimension of the problem. When f is a scalable function defined for any
problem dimension s—this is the case for most of our benchmark functions—we just
reduce to the s-dimensional variant of the problem. When f is a problem that is only
defined for a fixed dimension n, the algorithms should operate on the search space
{0, 1}ℓ with ℓ ≥ us and ℓ− us depending on the reduction that one wishes to achieve
by the first transformation, the removal of dummy variables.

Selected W-Model Transformations

In contrast to existing works cited in [159, 160], we do not only study superpositions
of W-model transformations to the OneMax problems (functions F4-F10), but we
also consider LeadingOnes as a base problem (F11-17). This allows us to study the
effects of the transformations on a well-understood separable and a well-understood
non-separable problem. As mentioned, we only study individual transformations, and
not yet combinations thereof.

We consider the reduction of [n] to subsets of size n/2 and 0.9n, i.e., only half and
90% of the bits, respectively, contribute to the overall fitness. We consider neutrality
transformations of size u = 3, and we consider the epistasis perturbation of size ν = 4.
Finally, we consider the following ruggedness functions, where we denote by s the
size of the effective dimension (see Section 2.5.6 for a discussion) and recall that both
the s-dimensional OneMax and LeadingOnes functions take values in [0..s]. These
functions are illustrated for s = 10 in Figure 2.4.

• r1 : [0..s]→ [0..⌈s/2⌉+ 1] with r1(s) = ⌈s/2⌉+ 1 and r1(i) = ⌊i/2⌋+ 1 for i < s

and even s, and r1(i) = ⌈i/2⌉+ 1 for i < s and odd s.

• r2 : [0..s]→ [0..s] with r2(s) = s, r2(i) = i+ 1 for i ≡ s (mod 2) and i < s, and
r2(i) = max{i− 1, 0} otherwise.

• r3 : [0..s] → [−5..s] with r3(s) = s and r3(s− 5j + k) = s− 5j + (4− k) for all
j ∈ [s/5] and k ∈ [0..4] and r3(k) = s−(5⌊s/5⌋−1)−k for k ∈ [0..s−5⌊s/5⌋−1].

We see that function r1 keeps the order of the function values, but introduces small
plateaus of the same function value. In contrast to r1, function r2 is a permutation of
the possible function values. It divides the set of possible non-optimal function values
[0..s− 1] into blocks of size two (starting at s− 1 and going in the inverse direction)
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Figure 2.4: The ruggedness functions r1, r2, and r3.

and interchanges the two values in each block. When s is odd, the value 0 forms its
own block with r1(0) = 0. Similarly, r3 divides the set of possible function values in
blocks of size 5 (starting at s−1 and going in inverse direction), and reverses the order
of function values in each block.

Summarizing all these different setups, the functions F4-F17 are defined as follows:

F4: OneMax +W (⌊n/2⌋, 1, 1, id) F11: LeadingOnes +W (⌊n/2⌋, 1, 1, id)
F5: OneMax +W (⌊0.9n⌋, 1, 1, id) F12: LeadingOnes +W (⌊0.9n⌋, 1, 1, id)
F6: OneMax +W (n, u = 3, 1, id) F13: LeadingOnes +W (n, u = 3, 1, id)

F7: OneMax +W (n, 1, ν = 4, id) F14: LeadingOnes +W (n, 1, ν = 4, id)

F8: OneMax +W (n, 1, 1, r1) F15: LeadingOnes +W (n, 1, 1, r1)

F9: OneMax +W (n, 1, 1, r2) F16: LeadingOnes +W (n, 1, 1, r2)

F10: OneMax +W (n, 1, 1, r3) F17: LeadingOnes +W (n, 1, 1, r3)

W-model vs. Unbiasedness Transformations and Fitness Scaling

To avoid confusion, we clarify the sequence of the transformations of the W-model and
the unbiasedness and fitness value transformations discussed in Section 2.5.1. Both
the re-ordering of the string by the permutation σ and the XOR with a fixed string
z ∈ {0, 1}n are executed before the transformations of the W-model are applied, while
the multiplicative and additive scaling of the function values is applied to the result
after the fitness perturbation of the W-model.

Example: Assume that the instance is generated from a base problem f :

{0, 1}n → R, that the unbiasedness transformations are defined by a permutation
σ : [n] → [n] and the string z ∈ {0, 1}n, the fitness scaling by a multiplicative scalar
b > 0 and an additive term a ∈ R. Assume further that the W-model transfor-
mations are defined by the vector (i1, . . . , im, u, ν, r). For each queried search point
x ∈ {0, 1}n, the algorithm receives the function value af(W (σ(x) ⊕ z)) + b, where
σ(x) = (xσ(1), . . . , xσ(n)) and W : {0, 1}n → R denotes the function that maps each
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string to the fitness value defined via the W-transformations (i1, . . . , im, u, ν, r).

2.5.7 F18: Low Autocorrelation Binary Sequences

Obtaining binary sequences possessing a high merit factor, also known as the Low-
Autocorrelation Binary Sequence (LABS) problem, constitutes a grand combinatorial
challenge with practical applications in radar engineering and measurements [138, 126].
It also carries several open questions concerning its mathematical nature. Given a
sequence of length n, S = (s1, . . . , sn) with si ∈ {−1,+1}, the merit factor is pro-
portional to the reciprocal of the sequence’s autocorrelation. The LABS optimization
problem is defined as searching over the sequence space to yield the maximum merit

factor: n2

2E(S) with E(S) =
∑n−1

k=1

(∑n−k
i=1 si · si+k

)2

. This hard, non-linear problem
has been studied over several decades (see, e.g., [116, 125]), where the only way to
obtain exact solutions remains exhaustive search. As a pseudo-Boolean function over
{0, 1}n, it can be rewritten as follows:

FLABS (x⃗) =
n2

2
n−1∑
k=1

(
n−k∑
i=1

x′
i · x′

i+k

)2 where x′
i = 2xi − 1. (2.6)

2.5.8 F19-F21: The Ising Model

The Ising Spin Glass model [11] arose in solid-state physics and statistical mechanics,
aiming to describe simple interactions within many-particle systems. The classical
Ising model considers a set of spins placed on a regular lattice, where each edge ⟨i, j⟩
is associated with an interaction strength Ji,j . In essence, a problem-instance is defined
upon setting up the coupling matrix {Ji,j}. Each spin directs up or down, associated
with a value ±1, and a set of n spin glasses is said to form a configuration, denoted as
S = (s1, . . . , sn) ∈ {−1,+1}n. The configuration’s energy function is described by the
system’s Hamiltonian, as a quadratic function of those n spin variables: −

∑
i<j

Ji,jsisj−∑n
i=1 hisi, where hi is an external magnetic field. The optimization problem of interest

is the study of the minimal energy configurations, which are termed ground states, on a
final lattice. This is clearly a challenging combinatorial optimization problem, which is
known to be NP-hard, and to hold connections with all other NP problems [113]. EAs
have been investigated concerning the impact of their operators for the Ising model,
yielding some theoretical results on certain graph instances (see, e.g., [22, 65, 141]).

We have selected and integrated three Ising model instances in IOHprofiler,
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assuming zero external magnetic fields, and applying periodic boundary conditions
(PBC). In order to formally define the Ising objective functions, we adopt a strict
graph perspective, where G = (V,E) is undirected and V = [n]. We apply an affine
transformation {−1,+1}n ⇝ {0, 1}n, where the n spins become binary decision vari-
ables (this could be interpreted, e.g., as a coloring problem [141]). A generalized,
compact form for the quadratic objective function is now obtained:

FIsing (x⃗) =
∑

{u,v}∈E

[xuxv + (1− xu) (1− xv)] , (2.7)

thus leaving the instance definition within G.

In what follows, we specify their underlying graphs, whose edges are equally
weighted as unity, to obtain their objective functions using (2.7).

F19: The Ring (1D)

This basic Ising model is defined over a one-dimensional lattice. The objective function
follows (2.7) using the following graph:

GIs1D :

eij = 1 ⇔ j = i+ 1 ∀i ∈ {1, . . . , n− 1} (2.8)

∨ j = n, i = 1

F20: The Torus (2D)

This instance is defined on a two-dimensional lattice of size N , using altogether n = N2

vertices, denoted as (i, j), 0 ≤ i, j ≤ N−1 [22]. Since PBC are applied, a regular graph
with each vertex having exactly four neighbors is obtained. The objective function
follows (2.7) using the following graph:

GIs2D :

e(i,j)(k,ℓ) = 1 ⇔ [k = (i+ 1) mod N ∧ ℓ = j ∀i, j ∈ {0, . . . , N − 1}]

∨ [k = (i− 1) mod N ∧ ℓ = j ∀i, j ∈ {0, . . . , N − 1}]

∨ [ℓ = (j + 1) mod N ∧ k = i ∀j, i ∈ {0, . . . , N − 1}]

∨ [ℓ = (j − 1) mod N ∧ k = i ∀j, i ∈ {0, . . . , N − 1}] (2.9)
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F21: Triangular (Isometric 2D Grid)

This instance is also defined on a two-dimensional lattice, yet constructed on an iso-
metric grid (also known as triangular grid), whose unit vectors form an angle of 2π

3

[115]. The vertices are placed on integer-valued two-dimensional n = N2 vertices,
denoted as (i, j), 0 ≤ i, j ≤ N − 1, yielding altogether a regular graph whose vertices
have exactly six neighbors each (due to PBC):

GIsTR :

e(i,j)(k,ℓ) = 1 ⇔ [k = (i+ 1) mod N ∧ ℓ = j ∀i, j ∈ {0, . . . , N − 1}] (2.10)

∨ [k = (i− 1) mod N ∧ ℓ = j ∀i, j ∈ {0, . . . , N − 1}]

∨ [ℓ = (j + 1) mod N ∧ k = i ∀j, i ∈ {0, . . . , N − 1}]

∨ [ℓ = (j − 1) mod N ∧ k = i ∀j, i ∈ {0, . . . , N − 1}]

∨ [ℓ = (j + 1) mod N ∧ k = (i+ 1) mod N ∀j, i ∈ {0, . . . , N − 1}]

∨ [ℓ = (j − 1) mod N ∧ k = (i− 1) mod N ∀j, i ∈ {0, . . . , N − 1}]

2.5.9 F22: Maximum Independent Vertex Set

Given a graph G = ([n], E), an independent vertex set is a subset of vertices where
no two vertices are direct neighbors. A maximum independent vertex set (MIVS)
(which generally is not equivalent to a maximal independent vertex set) is defined as
an independent subset V ′ ⊂ [n] having the largest possible size. Using the standard
binary encoding V ′ = {i ∈ [n] | xi = 1}, MIVS can be formulated as the maximization
of the function

FMIVS (x) =
∑
i

xi − n ·
∑
i,j

xixjei,j , (2.11)

where ei,j = 1 if {i, j} ∈ E and ei,j = 0 otherwise.
In particular, following [6], we consider a specific, scalable problem instance, defin-

ing its Boolean graph as follows:

eij = 1 ⇔ j = i+ 1 ∀i ∈ {1, . . . , n− 1} − {n/2}

∨ j = i+ n/2 + 1 ∀i ∈ {1, . . . , n/2− 1} (2.12)

∨ j = i+ n/2− 1 ∀i ∈ {2, . . . , n/2}.

The resulting graph has a simple, standard structure as shown in Figure 2.5 for n = 10.
The global optimizer has an objective function value of |V ′| = n/2+1 for this standard
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graph. Notably, n ≥ 4 and n is required to be even; given an odd n, we identify the
n-dimensional problem with the n− 1-dimensional instance.

Figure 2.5: A scalable maximum independent set problem, with n = 10 vertices and
the optimal solution of size 6 marked by the black vertices.

2.5.10 F23: N-Queens Problem

The N -queens problem (NQP) [15] is defined as the task to place N queens on an N×N
chessboard in such a way that they cannot attack each other.2 Figure 2.6 provides
an illustration for the 8-queens problem. Notably, the NQP is actually an instance of
the MIVS problem – when considering a graph on which all possible queen-attacks are
defined as edges. NQP formally constitutes a Constraints Satisfaction Problem, but is
posed here as a maximization problem using a binary representation:

maximize
∑
i,j

xij

subject to:∑
i

xij ≤ 1 ∀j ∈ {1 . . . , N}∑
j

xij ≤ 1 ∀i ∈ {1 . . . , N}∑
j−i=k

xij ≤ 1 ∀k ∈ {−N + 2,−N + 3, . . . , N − 3, N − 2}∑
i+j=ℓ

xij ≤ 1 ∀ℓ ∈ {3, 4, . . . , 2N − 3, 2N − 1}

xij ∈ {0, 1} ∀i, j ∈ {1, . . . , N}

This formulation utilizes n = N2 binary decision variables xij , which are associated
with the chessboard’s coordinates, having an origin (1, 1) at the top-left corner. Set-
ting a binary to 1 implies a single queen assignment in that cell. This formulation

2The NQP is traced back to the 1848 Bezzel article entitled “Proposal of the Eight Queens Prob-
lem”; for a comprehensive list of references we refer the reader to a documentation by W. Kosters at
http://liacs.leidenuniv.nl/~kosterswa/nqueens/nqueens_feb2009.pdf.
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Figure 2.6: The 8-queens problem: [Left] all possible fields a queen can move to from
position D4; [Right] a feasible solution.

promotes placement of as many queens as possible by means of the objective function,
followed by four sets of constraints eliminating queens’ mutual threats: the first two
sets ensure a single queen on each row and each column, whereas the following two sets
ensure a single queen at the increasing-diagonals (using the dummy indexing k) and
decreasing-diagonals (using the dummy indexing ℓ). It should be noted that a permu-
tation formulation also exists for this problem, and is sometimes attractive for RSHs.
Due to chessboard symmetries, NQP possesses multiplicity of optimal solutions. Its
attractiveness, however, lies in its hardness. In terms of a black-box objective function,
we formulate NQP as the maximization of the following function:

FNQP(x⃗) =

N∑
i=1

N∑
j=1

xij −N ·

 N∑
i=1

max

0,−1 +
N∑
j=1

xij

+

N∑
j=1

max

{
0,−1 +

N∑
i=1

xij

}

+

N−2∑
k=−N+2

max

0,−1 +
∑

j−i=k
i,j∈{1,2,...,N}

xij

+

2N−1∑
ℓ=3

max

0,−1 +
∑
j+i=ℓ

i,j∈{1,2,...,N}

xij




(2.13)

2.5.11 F24: Concatenated Trap

Concatenated Trap (CT) is defined by partitioning a bit-string into segments of length
k and concatenating m = n/k trap functions that takes each segment as input. The
trap function is defined as follows: f trap

k (u) = 1 if the number u of ones satisfies u = k

and f trap
k (u) = k−1−u

k otherwise. We use k = 5 in our experiments.
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2.5.12 F25: Random NK Landscapes

Random NK landscapes (NKL). The function values are defined as the average of n
sub-functions Fi : [0..2

k+1− 1]→ R, i ∈ [1..n], where each component Fi only takes as
input a set of k ∈ [0..n− 1] bits that are specified by a neighborhood matrix. In this
paper, k is set to 1 and entries of the neighbourhood matrix are drawn u.a.r. in [1..n].
The function values of Fi’s are sampled independently from a uniform distribution on
(0, 1).
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The IOHprofiler

Benchmarking Software

This chapter introduces our IOHprofiler benchmarking software. Following the
motivations discussed in Chapter 1, we introduce in this chapter the functionalities
and the accessibilities of the tool.

3.1 Overview

Recall that we plan to create a benchmarking software to perform robust testing of
IOHs on a wide range of problems, while many tools have been created for specific
sets of problems with different programming designs. An overarching benchmarking
pipeline would be highly beneficial for this goal, as it allows for easy transition from
the implementation of algorithms to the analysis and comparison of performance data.
Therefore, we have developed IOHprofiler, which is a benchmarking software for
detailed, highly modular performance analysis of iterative optimization heuristics.

IOHprofiler consists of two main components: IOHexperimenter, a mod-
ule for processing the actual experiments and generating the performance data, and
IOHanalyzer [156], a post-processing module for compiling detailed statistical
evaluations. Figure 3.1 plots the workflow of IOHprofiler. With given benchmark
problems (IOHproblems) and algorithms (IOHalgorithms), IOHexperimenter

generates the output data that can be used for IOHanalyzer. IOHanalyzer can
perform performance analyses and visualize algorithms’ behaviour. We maintain our
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Figure 3.1: Workflow of IOHprofiler

data for the IOHdata module. The platform can be applied for the study of au-
tomatic algorithm configuration, algorithm selection, feature extraction, statistical
analyses, and much more.

We briefly introduce the modules of IOHprofiler in the following:

• IOHproblems: a collection of benchmark problems. This component currently
comprises (1) the PBO suite of pseudo-Boolean optimization problems suggested
in [54], (2) the 24 numerical, noise-free BBOB functions from the COCO plat-
form [78], and (3) the W-model problem generator proposed in [160].

• IOHalgorithms: a collection of IOHs. For the moment, the algorithms used for
the benchmark studies presented in [3, 35, 54] are available. This subsumes text-
book algorithms for pseudo-Boolean optimization, an integration to the object-
oriented algorithm design framework ParadisEO [24], and the modular algo-
rithm framework for CMA-ES variants originally suggested in [150] and extended
in [35]. Further extensions for both combinatorial and numerical solvers are in
progress.
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• IOHdata: a data repository for benchmark data. This repository currently
comprises the data from the experiments performed in [78], a sample data set
used in this paper, and some selected data sets from the COCO repository [77].
IOHdata also contains performance data from the Nevergrad benchmarking
environment [131], which can be fetched from their repository upon request.

• IOHexperimenter: the experimentation environment that executes IOHs
on IOHproblems or external problems and automatically takes care of logging
the experimental data. It allows for tracking the internal parameter of IOHs and
supports various customizable logging options to specify when to register a data
record.

• IOHanalyzer: the data analysis and visualization tool presented in this the-
sis.

3.2 The IOHexperimenter Module

IOHexperimenter is the module of IOHprofiler which can be considered as the
interface between algorithms and problems, where it allows consistent data collection
of both performance and algorithmic data such as the evolution of control parameters
during the optimization process.

3.2.1 Functionalities

We consider here a benchmark process consisting of three components: problems, log-
gers, and algorithms. While these components interact to perform the benchmarking,
they should be usable in a stand-alone manner, allowing any of these factors to be
modified without impacting the behaviour of the others. Within IOHexperimenter,
an interface is provided to ensure that any changes to the setup will be compatible
with the other components of the benchmarking pipeline.

At its core, IOHexperimenter provides a standard interface towards expandable
benchmark problems and several loggers to track the performance and the behaviour
(internal parameters and states) of algorithms during the optimization process. The
logger is integrated into a wide range of existing tools for benchmarking, and we have
done such integration work with IOHproblems for discrete optimization and COCO’s
BBOB [79] for the continuous case. On the algorithm side, IOHexperimenter has
been connected to several modular algorithm frameworks, such as modular GA (see
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Figure 3.2: Workflow of IOHexperimenter

Chapter 6) and modular CMA-ES [35]. Additionally, output generated by the included
loggers is compatible with the IOHanalyzer module for interactive performance anal-
ysis.

Figure 3.2 shows the way IOHexperimenter can be placed in a typical bench-
marking workflow. The key factor here is the flexibility of design: IOHexperimenter

can be used with any user-provided solvers and problems given a minimal overhead,
and ensures output of experimental results which follow conventional standards. Be-
cause of this, the data produced by IOHexperimenter is compatible with post-
processing frameworks like IOHanalyzer, enabling an efficient path from algorithm
design to performance analysis. In addition to the built-in interfaces to existing soft-
ware, IOHexperimenter aims to provide an user-accessible way to customize the
benchmarking setup. We introduce in the following the typical usage of IOHexperi-

menter, as well as the ways in which it can be customized to fit different benchmarking
scenarios.

3.2.2 Problems

In IOHexperimenter, a problem instance is defined as P = Ty ◦ f ◦ Tx, in which
f : x→ R is a benchmark problem (e.g., for OneMax x = {0, 1}n and for the sphere
function x = Rn) and Tx and Ty are automorphisms supported on x and R, respec-
tively, representing transformations in the problem’s domain and range (e.g., transla-
tions and rotations for x = Rn). To generate a problem instance, one needs to specify
a tuple of a problem f , an instance identifier i ∈ N>0, and the dimension n of the
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problem. Note that both transformations are applied to generalize the benchmark
problem, where the instance id serves as the random seed for instantiating Tx and Ty.

Any problem instance that reconciles with this definition of P , can easily be inte-
grated into IOHexperimenter, using the C++ core or the Python interface.1

The transformation methods are particularly important for robust benchmarking,
as they allow for the creation of multiple problem instances from the same base-
function, which enables checking of invariance properties of algorithms, such as scaling
invariance. Built-in transformations for pseudo-Boolean functions are available, as well
as transformation methods for continuous optimization used by [79].

When combining several problems together, a problem suite can be created. This
suite can then be used for more convenient benchmarking by providing access to built-
in iterators which allow a solver to easily run on all selected problem instances within
the suite. Additionally, an interface to two classes of the W-model extensions (based on
the OneMax and LeadingOnes respectively) [160] for generating problems is available.

3.2.3 Data Logging

IOHexperimenter provides loggers to track the performance of algorithms during
the optimization process. The loggers determine which data is recorded and the format
to record data. These loggers can be tightly coupled with the problems: when evalu-
ating a problem, the attached loggers will be triggered with the relevant information
to store. This information will be performance-oriented by default, with customiz-
able levels of granularity, but can also include any algorithm parameters. This can
be especially useful for tracking the evolution of self-adaptive parameters in iterative
optimization algorithms.

The default logger makes use of a two-part data format: meta-information, such
as function id, instance, dimension, etc., that gets written to .info-files, while the
performance data itself gets written to space-separated .dat-files. A full specification
of this format can be found in [156]. Data in this format can be used directly with the
IOHanalyzer for interactive analysis of the recorded performance metrics.

In addition to the built-in loggers, customized logging functionality can be created
within IOHexperimenter as well. This can be used to reduce the footprint of the
data when doing massive experiments such as algorithm configuration, where only the
final performance measure is relevant [3].

1Note that multi-objective problems do not follow this structure, and are not yet supported within
IOHexperimenter. Integration of both noisy and mixed-variable type objective functions is in
development.
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Figure 3.3: The screenshot of the first page of IOHanalyzer.

3.2.4 Accessibility

Note that IOHexperimenter is build in C++, with a direct interface to Python. A
more low-level technical documentation of these procedures in both C++ and Python
can be found on the IOHprofiler wiki at https://iohprofiler.github.io/. This wiki also
provides access to getting-started information about installation and basic usage of
IOHexperimenter and its place in the benchmarking pipeline.

3.3 The IOHanalyzer Module

As the post-processing module of iterative optimization heuristic, IOHanalyzer pro-
vides detailed statistics about fixed-target running times and fixed-budget performance
of the benchmarked algorithms on real-valued, single-objective optimization tasks.
Moreover, performance aggregation over several benchmark problems is possible, for
example, in the form of ECDFs. Key advantages of IOHanalyzer over other perfor-
mance analysis packages are its highly interactive design, which allows users to specify
the performance measures, ranges, and granularity that are most useful for their ex-
periments, and the possibility to analyze not only performance traces but also the
evolution of dynamic state parameters.

Figure 3.3 shows the first page of IOHanalyzer, where presents the general infor-
mation of IOHanalyzer. Users can upload data in the box frame on the left or/and
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Figure 3.4: The screenshot of the data summary of fixed-target results for the RLS
and the self_GA. The table in the figure lists the runtime of the algorithms for each
target chosen on the left box.

load IOHdata from the box frame on the right for analyzing. Figure 2.1, Figure 2.2,
and Figure 2.3 in Chapter 2 present the plots of fixed-targets results, fixed-budget
results, and ECDF curves generated using IOHanalyzer. Apart from these plots,
IOHanalyzer also provides detailed data in tables. For example, Figure 3.4 shows a
screenshot of a table summarizing runtime for each algorithm and each chosen target.

Moreover, IOHanalyzer supports analyzing the values of parameters of algo-
rithms for the chosen moments (e.g., when a required target is found or the predefined
budget is used). An example is plotted in Figure 3.5.

Note that the data tables and the figures on the IOHanalyzer website can be
downloaded.

3.3.1 Accessibility

In addition to the web-based application at https://iohanalyzer.liacs.nl, IOHan-

alyzer is available on GitHub https://github.com/IOHprofiler/IOHanalyzer and
CRAN. It is implemented by R and C++. IOHanalyzer can directly process perfor-
mance data from the main benchmarking platforms, including the COCO platform,
Nevergrad, and our own IOHexperimenter. An R programming interface is provided
for users preferring to have a finer control over the implemented functionalities. More
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Figure 3.5: The screenshot of the plots of the mean of parameters values for the ten
algorithms. The figures plot the mean of internal parameters ‘lambda’, ‘mutation
rate’, and ‘l’ of the algorithms for each required target.

details of IOHanalyzer can be found in [156].
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Problem Specific Benchmarking:
Study on OneMax and
LeadingOnes

In this chapter, we focus on the two classic problems OneMax and LeadingOnes,
to show how benchmarking can benefit theoreticians and practitioners for discussing
new research directions. We start our investigation on the (1+ λ) EAs comparing the
theoretical results and empirical performance. A normalized standard bit mutation is
proposed based on benchmarking an existing self-adaption of mutation rate for the
(1+λ) EAs. In addition, we study the impact of the population size and the mutation
rate for the (1 + λ) EAs and the crossover probability for the (µ+ λ) GA.

4.1 Profiling (1 + λ) EA

4.1.1 Background

Two fundamental building blocks of evolutionary algorithms are global variation op-
erators and populations. Global variation operators are sampling strategies that are
characterized by the property that every possible solution candidate has a positive
probability of being sampled within a short time window, regardless of the current
state of the algorithm. Standard bit mutation is an example of a global mutation
operator. From a given input string x ∈ {0, 1}n, standard bit mutation creates an
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offspring by flipping each bit in x with some positive probability 0 < p < 1, with
independent decisions for each bit. For any x, y the probability to sample y from x

is thus pH(x,y)(1 − p)n−H(x,y), where H(x, y) is the number of bits in which x and y

differ (Hamming distance). This probability is positive even for search points that are
very far apart. The motivation to use global sampling strategies is to overcome local
optima by eventually performing a sufficiently large jump.

Storing information about the optimization process, maintaining a diverse set of
reasonably good solutions, and gathering a more complete picture about the structure
of the problem at hand are among the most important reasons to employ population-
based EAs. The first two objectives are served by the parent population, which is
the subset of previously evaluated search points that are kept in the memory of the
algorithm. The parent population is updated after each generation. New solution
candidates are sampled from it through the use of variation operators. These points
form the offspring population of the generation. Non-trivial offspring population sizes
address the desire to gather more information about the fitness landscape before mak-
ing any decision about which of the points from the parent and offspring population
to keep in the memory for the next iteration.

It is very well understood that both the size of the parent population as well as
the size of the offspring population can have a significant impact on the performance.
Finding suitable parameter values for these two quantities remains to be a challenging
problem in practical applications of EAs. From an analytical point of view, populations
increase the complexity of the optimization process considerably, as they introduce a
lot of dependencies that need to be taken care of in the mathematical analysis. It
is therefore not surprising that only few theoretical works on population-based EAs
exist, cf. [105] and references mentioned therein. Most existing theoretical works regard
algorithms with non-trivial offspring population sizes, while the impact of the parent
population size has received much less interest.

We present below empirical and theoretical results for the (1+λ) EA, the arguably
simplest EA that combines a global sampling technique with a non-trivial offspring
population size.

4.1.2 Algorithms

As noted in [128] there exists an important discrepancy between the algorithms clas-
sically regarded in the theory of evolutionary computation literature and their com-
mon implementations in practice. For mutation-based algorithms like (µ + λ) and
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Algorithm 1: flipℓ chooses ℓ different positions and flips the entries in these
positions.
1 Input: x = (x1 . . . xn) ∈ {0, 1}n, ℓ ∈ N;
2 y ← x;
3 Select ℓ pairwise different positions i1, . . . , iℓ ∈ [n] u.a.r.;
4 for j = 1, . . . , ℓ do yij ← 1− xij ;

(µ, λ) EAs, this discrepancy concerns the way new solution candidates are sampled
from previously evaluated ones, and how the function evaluations are counted. Both
algorithms use the above-described standard bit mutation as only variation opera-
tor. An often recommended value for the mutation rate p is 1/n, which corresponds
to flipping exactly one bit on average, an often desirable behavior when the search
converges.

When implementing standard bit mutation, it would be rather inefficient to decide
for each i ∈ [n] whether or not the i-th bit of x should be flipped. Luckily, this is not
needed, as we can simply observe that standard bit mutation can be equally expressed
as drawing a random number ℓ from the binomial distribution Bin(n, p) with n trials
and success probability p and then flipping ℓ bits that are sampled from [n] uniformly
at random (u.a.r.) and without replacement. This latter operation is formalized by
the flipℓ operator in Algorithm 1. We refer to ℓ as the mutation strength or the step
size, while we call p the mutation rate.

Analyzing standard bit mutation, we easily observe that the probability to not
flip any bit at all equals (1 − p)n, which for p = 1/n converges to 1/ exp(1). That
is, in about 36.8% of calls to this operator, a copy of the input is returned. For the
(1 + λ) EA there is no benefit of evaluating such a copy (unless facing a dynamic or
noisy optimization setting), since it applies plus selection, where both the parent as
well as the offspring can be selected to “survive” for the next generation. It is therefore
advisable to change the probability distribution from which the mutation strength ℓ is
sampled. A straightforward (and commonly used) idea is to simply re-sample ℓ from
Bin(n, p) until a non-zero value is returned. This approach corresponds to distributing
the probability mass (1− p)n of sampling a zero proportionally to all step sizes ℓ > 0.
This gives the conditional binomial distribution Bin>0(n, p), which assigns to each
ℓ ∈ N a probability of

(
n
ℓ

)
pℓ(1 − p)n−ℓ/(1 − (1 − p)n). All our empirical results use

this conditional sampling strategy. The results can therefore differ significantly from
figures previously published in the theory of EA literature [91, 128].
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Algorithm 2: The (1 + λ) EA>0 with mutation rate p ∈ (0, 1) for the maxi-
mization of f : {0, 1}n → R
1 Initialization: Sample x ∈ {0, 1}n u.a.r.;
2 Optimization: for t = 1, 2, 3, . . . do
3 for i = 1, . . . , λ do
4 Sample ℓ(i) from Bin>0(n, p);
5 y(i) ← flipℓ(i)(x);

6 Sample x from argmax{f(x), f(y(1)), . . . , f(y(λ))} u.a.r.;

The Basic (1+λ) EA>0 The (1+λ) EA samples λ offspring in every iteration, from
which only the best one survives (ties broken uniformly at random). Each offspring
is created by standard bit mutation. Following our discussion above, we make use
of the re-sampling strategy described above, and obtain the (1 + λ) EA>0, which we
summarize in Algorithm 2.

Adaptive (1+λ) EA>0 The (1+λ) EA>0 has two parameters: the offspring popula-
tion size λ and the mutation rate p. Common implementations of the (1+λ) EA>0 use
the same population size λ and the same mutation rate p throughout the whole opti-
mization process (static parameter choice), while the use of dynamic parameter values
is much less established. A few works exist, nevertheless, that propose to control the
parameters of the (1 + λ) EA online [92]. We focus in our empirical comparison on
algorithms that have a mathematical support. These are summarized in the following
two subsections.

Adaptive Mutation Rates One of the few works that experiments with a non-
static mutation rate for the (1 + λ) EA was presented in [46]. The there-suggested
algorithm stores a parameter r that is adjusted online. In each iteration, the (1 +

λ) EAr/2,2r creates λ/2 offspring by standard bit mutation with mutation rate r/(2n),
and it creates λ/2 offspring with mutation rate 2r/n. The value of r is updated
after each iteration. With probability 1/2 it is set to the value that the best offspring
individual of the last iteration has been created with (ties broken at random), and it is
replaced by either r/2 or 2r otherwise (unbiased random decision). Finally, the value
r is capped at 2 if smaller, and at n/4, if it exceeds this value. In our experiments, we
use r = 2 as initial value.

In [46] it is shown analytically that the (1 + λ) EAr/2,2r yields an asymptotically
optimal runtime on OneMax. This performance is strictly better than what any static
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mutation rate can achieve, cf. Section 4.1.3. How well the adaptive scheme works for
other benchmark problems is left as an open question in [46].

Adaptive Population Sizes Apart from the mutation rate, one can also consider
to adjust the offspring population size λ. This is a much more prominent problem,
because λ is an explicit parameter, while the mutation rate is often not specified (and
thus by default assumed to be 1/n).

In the theory of EC literature, the following three success-based update rules have
been studied. In [87] the offspring population size λ is initialized as one. After each
iteration, we count the number s of offspring that are at least as good as the parent.
When s = 0, we double the population size, and we replace it by ⌊λ/s⌋ otherwise. For
brevity, we call this algorithm the (1 + {2λ, λ/s}) EA, and its resampling variant the
(1 + {2λ, λ/s}) EA>0.

Two similar schemes were studied in [104] where λ is doubled if no strictly better
search point has been identified and either set to one or to max{1, ⌊λ/2⌋} otherwise.
We regard here the resampling variants of these algorithms, which we call the (1 +

{2λ, 1}) EA>0 and the (1 + {2λ, λ/2}) EA>0, respectively.

4.1.3 Profiling on OneMax

We recall that the class of OneMax functions is the generalization of the function
OM that assigns to each bit string x the number |{i ∈ [n] | xi = 1}| of ones in
it. For this generalization, OM is composed with all possible XOR operations on
the hypercube. More precisely, for any bit string z ∈ {0, 1}n we define the function
OMz : {0, 1}n → [0..n], x 7→ |{i ∈ [n] | xi = zi}|, the number of bits in which x and z

agree. The OneMax problem is the collection of all functions OMz, z ∈ {0, 1}n.

Theoretical Bounds OneMax is often referred to as the drosophila of EC. It is
therefore not surprising that among all benchmark functions, OneMax is the problem
for which most runtime results are available. We summarize in this section a few
selected results.

Concerning the (1+λ) EA, the first question that one might ask is whether or not
it can be beneficial to generate more than one offspring per iteration. When using the
number of function evaluations (and not the number of generations) as performance
measure, intuitively, it should always be better to create the offspring sequentially, to
profit from intermediate fitness gains. This intuition has been formally proven in [87],
where it is shown that for all λ, k ∈ N the expected optimization time (i.e., the number
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of function evaluations until an optimal solution is queried for the first time) of the
(1 + kλ) EA cannot be better than that of the (1 + λ) EA. This result implies that
k = 1 is an optimal choice. Note, however, that the number of generations needed to
find an optimal solution can significantly decrease with increasing λ, so that it can be
beneficial even for OneMax to run the (1 + λ) EA with λ > 1 when parallel function
evaluations are possible.

For λ = 1 the runtime of the (1 + 1) EA with static mutation rate p > 0 is
quite well understood, cf. [163] for a detailed discussion. For general λ and static
mutation rate p = c/n (where here and henceforth c > 0 is assumed to be constant),
the expected optimization time is (1 ± o(1))

(
nλ ln lnλ
2 lnλ + ec

c n lnn
)

[68]. An interesting
observation made in [46] reveals that the parametrization p = c/n is suboptimal: with
p = ln(λ)/(2n) the (1 + λ) EA needs only an expected number of O(nλ/ log(λ) +√
λn log n) function evaluations to optimize OneMax [46] (the proof requires λ ≥ 45

and λ = nO(1)). We call this algorithm the (1 + λ) EAp=ln(λ)/(2n).

When using non-static mutation rates, the best expected optimization time
that a (1+λ) EA can achieve on OneMax is bounded from below by Ω(nλ/ log(λ)+

n log n) [8]. This bound is attained by a (1 + λ) EA variant with fitness-dependent
mutation rates [8]. Interestingly, it is also achieved by the self-adjusting (1+λ) EAr/2,2r

described in Section 5.1.2 (the proof requires again λ ≥ 45 and λ = nO(1)).

Concerning the algorithms using non-static offspring population sizes (see
Section 5.1.2), we do not have an explicit theoretical analysis for the (1+{2λ, λ/s}) EA,
but it is known that the expected optimization time of both the (1+ {2λ, 1}) EA and
the (1 + {2λ, λ/2}) EA is O(n log n) [104].

Disclaimer. It is important to note that all the bounds reported above (and
those mentioned in Section 4.1.4) hold, a priori, only for the classical (1 + λ) EA
variants, not the resampling versions regarded here in this thesis. For most bounds,
and in particular the ones with static parameter choices, it is, however, not difficult
to prove that the modifications do not change the asymptotic order of the expected
optimization times. What does change, however, is the leading constant. As a rule of
thumb, runtime bounds for the (1+λ) EA decrease by a multiplicative factor of about
1− (1− p)n when the mutation strengths are sampled from the conditional binomial
distribution Bin>0(n, p).

Note also that in our summary we collect only statements about the total expected
optimization time, i.e., AHT. Here again the (1+1) EA and the (1+λ) EA with static
parameters form an exception as for these two algorithms a few theoretical fixed-budget
results exist, cf. [45, 108, 122] and references therein.
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Figure 4.1: Average optimization times for 100 independent runs of the (1 + λ) EA>0

variants for OneMax, normalized by n lnn. (Initial) population size for the adaptive
variants is 50. p∗ = ln(λ)/(2n)

Empirical Evaluation We now come to the results of our empirical investigation.
All figures presented in this section are averages over 100 independent runs. This
might look like a small number, but we recall that we track the whole optimization
process, to present the fixed-target results below.

We have seen above that, for reasonable parameter settings, the average optimiza-
tion times of the (1 + λ) EA variants are all of order n log n. We therefore normalize
the empirical averages in Figure 4.1 by this factor.

We observe that the normalized averages are quite stable across the dimensions,
with an exception of the (1 + 50) EA, whose relative performance improves with
increasing problem dimension. We also see that the (1 + 50) EA>0 variant with
p∗ = ln(λ)/(2n) achieves a better optimization time than the (1 + 50) EA>0 with
p = 1/n. The variants with adaptive offspring population size perform significantly
worse than the (1+ 1) EA>0, which is not surprising given the performance hierarchy
of the (1 + λ) EAs mentioned in the beginning of Section 4.1.3.

For the tested problem dimensions, the worst-performing algorithm in our compar-
ison is the (1+λ) EAr/2,2r. This may come as a surprise since this algorithm is the one
with the best theoretical support. The advantage of this algorithm seems to require
much larger problem dimensions, different values of λ, and/or different settings of the
hyper-parameters that determined its update mechanism.
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(a) Average fixed-target runtimes
T (A,OM, i).

(b) Gradients G(A,OM, i) and relative
disadvantage R(i) of the (1+50) EA>0

over the (1+2) EA>0.

Figure 4.2: Fixed target data for the 3, 000-dimensional OneMax problem (averages
over 100 runs)

A general question raised by the data in Figure 4.1 concerns the sensitivity of the
adaptive (1+λ) EA variants with respect to the initialization of their parameters and
with respect to their hyper-parameters, which are the update strengths, but also the
initial parameter values of λ and r, respectively.

It has been discussed that for OneMax the performance of the (1+λ) EA can only
be worse than that of the (1 + 1) EA. In fact, the data in Figure 4.1 demonstrates a
quite significant discrepancy between the performance of the (1+1) EA>0 and the (1+
λ) EA>0 variants with λ ≥ 10. The expected optimization time of the (1+ 50) EA>0,
for example, is about twice as large as that of the (1 + 1) EA>0. Intuitively, this can
be explained as follows. At the beginning of the OneMax optimization process the
probability that a random offspring created by the (1+λ) EA improves upon its parent
is constant. In this phase the (1 + λ) EA variants with small λ have an advantage
as they can (almost) instantly make use of this progress, while the (1 + λ) EAs with
large λ first need to wait for all λ offspring to be evaluated. Since the expected
fitness gain of the best of these λ offspring is not much larger than that of a random
individual, large offspring population sizes are detrimental in this first phase of the
optimization process. We note, however, that the relative disadvantage of large λ is
much smaller towards the end of the optimization process. When, say, the parent
individual x satisfies OM(x) = n−Θ(1), the probability that a random offspring has
a better function value is of order Θ(1/n) only. We therefore have to create Θ(n)

offspring, in expectation, before we see any progress. The relative disadvantage of
creating several offspring in one generation is therefore almost negligible in the later
parts of the optimization process (provided that λ = O(n)). This informal explanation
is confirmed by the plots in Figure 4.2, which display for n = 3, 000
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1. in Figure 4.2a: the empirical average fixed-target times T (A,OM, i); i.e., the
average number of function evaluations that the (1+λ) EA>0 variant A needs to
identify a solution of OM-value at least i. We cap this plot at 60, 000 evaluations.

2. in Figure 4.2b: the gradients G(A, i) := T (A,OM, i) − T (A,OM, i − 1) (three
lowermost curves), and the relative difference Ri := (avgj=i,i+1,...,i+5(G((1 +

50)EA>0, j)−avgj=i,i+1,...,i+5G((1+2)EA>0, j)/G((1+2)EA>0, j)) of the rolling
average of the gradients of the (1 + 50) and the (1 + 2) EA>0.

Note that the gradient G(A, i) measures the average time needed by algorithm A to
make a progress of one when starting in a point x of OneMax-value OM(x) = i.
Small gradients are therefore desirable. We see that, for example, the (1 + 50) EA>0

(green curve) needs, on average, about 20 fitness evaluations to generate a strictly
better search point when starting in a solution of OM-value around 1, 700. The (1 +

2) EA>0, in contrast, needs only about 2.6 function evaluations, on average. The
relative disadvantage of the (1 + 50) EA>0 over the (1 + 2) EA>0 decreases with
increasing function values from around 7 to zero, cf. the uppermost (yellow) curve
in Figure 4.2b. We use the rolling average of 5 consecutive values here to obtain a
smoother curve for R(i).

Another important insight from Figure 4.2a is that the dominance of the (1 +

1) EA>0 over all (1 + λ) EA>0 variants does not only apply to the total expected
optimization time, but also to all intermediate target values. This can be shown with
mathematical rigor by adjusting the proofs in [87, Section 3] to suboptimal target
values.

4.1.4 Profiling on LeadingOnes

We recall that LeadingOnes is the generalization of the function LO, which counts
the number of initial ones in the string, i.e., LO(x) = max{i ∈ [0..n] | ∀j ≤ i : xj = 1}.
The generalization is by composing with an XOR-shift and a permutation of the
positions. This way, we obtain for every z ∈ {0, 1}n and for every permutation (one-
to-one map) σ of the set [n] the function LOz,σ : {0, 1}n → N, which assigns to each
x the function value max{i ∈ [0..n] | ∀j ∈ [i] : xσ(j) = zσ(j)}. The LeadingOnes

problem is the collection of all these functions.

Theoretical Bounds Also for LeadingOnes it has been proven that the optimal
value of the offspring population size λ in the (1 + λ) EA is one when using func-
tion evaluations and not generations as performance indicator [87]. In contrast to

49



4.1. Profiling (1 + λ) EA

Figure 4.3: Average optimization times for 100 independent runs of the (1 + λ) EA>0

variants for LeadingOnes, normalized by n2. (Initial) population size for the adaptive
variants is 50.

OneMax, however, we will observe, by empirical and mathematical means, that the
disadvantage of non-trivial population sizes is much less pronounced for this problem.

The (1 + 1) EA with fixed mutation probability p has an expected optimization
time of 1

2p2 ((1 − p)−n+1 − (1 − p)) + 1 on LeadingOnes [21], which is minimized
for p ≈ 1.59/n. This choice gives an expected runtime of about 0.77n2. A fitness-
dependent mutation rate can decrease this runtime further to around 0.68n2 [21].
For the (1+1) EA>0, it has been observed in [91] that its expected optimization time
decreases with decreasing p. More precisely, it equals 1−(1−p)n

2p2 ((1−p)−n+1−(1−p))+1,
which converges to n2/2 + 1 for p→ 0.

For λ = nO(1), the expected optimization time of the (1+λ) EA with mutation rate
p = 1/n is O(n2+nλ) [87]. With this mutation rate, the adaptive (1+{2λ, ⌊λ/2⌋}) EA
and the (1 + {2λ, 1}) EA achieve an expected optimization time of O(n2) [104]. Any
(1+λ) EA variant with fixed offspring population size λ but possibly adaptive mutation
rate p needs at least Ω( λn

ln(λ/n) + n2) function evaluations, on average, to optimize
LeadingOnes [8].

Recall that the bounds reported above are for the classic (1 + λ) EA variants, not
the resampling versions.

This section presents a refining of the bound for the (1+λ) EA, and we first present
the empirical results that have motivated this analysis.
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Empirical Results Similarly to the data plotted in Figure 4.1, we show in Fig-
ure 4.3 the normalized average optimization times of the different algorithms; the
normalization factor is n2.

For all (1 + λ) EA variants, a fairly stable performance across the three tested
dimensions n = 500, n = 1, 000, and n = 1, 500 can be observed. We also see that
the adaptive algorithms seem to perform worse than the ones with static parameter
values; we will address this point in more detail below.

Another interesting observation is that the value of λ does not seem to have a sig-
nificant impact on the expected performance. This is in sharp contrast to the situation
for OneMax, cf. our discussion in the second half of Section 4.1.3. Building on our
discussion there, we can explain this phenomenon as follows. Unlike for OneMax,
the situation for LeadingOnes is that the expected fitness gain of a random offspring
created by a (1 + λ) EA variant with static mutation rate p = c/n is very small
throughout the whole optimization process. More precisely, it decreases only mildly
from around 2c/n when LO(x) = 0 to 2c(1−c/n)n−1/n ≈ 2c/(ecn) for LO(x) = n−1.
Thus, intuitively, the whole optimization process of LeadingOnes is very similar to
the last steps of the OneMax optimization.

Figure 4.4 presents the average fixed-target runtimes for selected (1 + λ) EA>0

variants on the 1, 500-dimensional LeadingOnes problem. We add to this figure the
fixed target runtime of Randomized Local Search (RLS), the greedy (1+1)-type hill
climber that always flips one random bit per iteration. RLS has a constant expected
fitness gain of 2/n on LeadingOnes and thus a total expected optimization time of
n2/2 + 1.

We observe that the performance of the (1+1) EA>0 and that of the (1+50) EA>0

are indeed very similar throughout the optimization process. The curves for the (1 +

λ) EA>0 with λ = 2, 5, 10 were indistinguishable in this plot and are therefore not
shown in the figure. We also see that their fixed-target performance is better than
that of RLS for all LO-values up to around 1, 250 ≈ 0.42n (exact empirical values are
1, 227 for the (1 + 50) EA>0 and 1, 283 for the (1 + 1) EA>0, but we recall that such
numbers should be taken with care as they represent an average of 100 runs only. It
should not be very difficult to compute the cutting point precisely, by mathematical
means).

Since the only difference between the (1 + 1) EA>0 and RLS is the distribution
from which new offspring are sampled, we see that the (1+λ) EA variants profit from
iterations in which more than one bit are flipped in the beginning of the optimization
process, while they suffer from this same effect in the later parts. This situation is
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Figure 4.4: Fixed-target runtimes of the (1 + λ) EA>0 variants on the 1, 500-
dimensional LeadingOnes problem

even more pronounced in the (1 + λ) EAr/2,2r, which outperforms all other tested
algorithms for target values up to 709. Its performance then suffers from creating
at least half of its offspring with a too large mutation rate. Recall that even if the
algorithm has correctly identified the optimal mutation rate p(LO(x)), it still creates
half of its offspring with mutation rate 2p(LO(x)). This results in a mediocre overall
performance. This observation certainly raises the question of how to adjust the
structure of the (1 + λ) EAr/2,2r to benefit from its good initial performance. From
the viewpoint of hyper-heuristics, or algorithm selection, an adaptive selection between
the (1 + λ) EAr/2,2r and the (1 + λ) EA>0 would be desirable.

If we had looked only at the total optimization times, we would have classified the
(1 + λ) EAr/2,2r as being inefficient. The fixed-target results, however, nicely demon-
strate that despite the poor overall performance, there is something to be learned
from this algorithm. This emphasizes the need for a fine-grained benchmarking envi-
ronment, similar to what is done in continuous black-box optimization (where fixed-
target and fixed-budget considerations are a necessary standard since the algorithms
cannot identify an optimal solution but only get arbitrarily close to it).

Precise Bounds for LeadingOnes We have observed that, for LeadingOnes,
the runtimes of the (1 + λ) EA>0 variants with static parameter choices are very
close to that of the (1 + 1) EA>0. Theorem 1 shows that for every constant λ, the
expected optimization time of the (1 + λ) EA>0 converges from above against that of
the (1+1) EA>0 (and the same holds for the (1+λ) EA and (1+1) EA, respectively).
Theorem 1 can be proven by adjusting the proofs in [21] to the (1+λ) EA. An important
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ingredient in this analysis is the observation that the probability of making progress
in one generation with parent individual x equals 1−(1−p(1−p)LO(x))λ, i.e., 1 minus
the probability that none of the λ offspring is better. Recall that in order to create a
better offspring, none of the first LO(x) bits should flip, while the (LO(x) + 1)-st bit
does need to be flipped. The results for the (1 + λ) EA>0 can be obtained from that
for the (1 + λ) EA by taking into account that the re-sampling strategy increases the
expected fitness gain by a multiplicative factor of 1/(1− (1− p)n). Therefore, we can
derive the following:

Theorem 1. For all n, λ ∈ N the expected optimization time of the (1 + λ) EA with
static mutation rate 0 < p < 1 on the n-dimensional LeadingOnes function is at
most

1 +
λ

2

n−1∑
j=0

1

1− (1− p(1− p)j)λ
(4.1)

and the expected optimization time of the (1 + λ) EA>0 is at most

1 +
(1− (1− p)n)λ

2

n−1∑
j=0

1

1− (1− p(1− p)j)λ
. (4.2)

To judge the precision of the bound stated in Theorem 1, we first note that for
λ = 1 expression (4.1) is tight by the result presented in [21] (note though that the
additive +1 term is suppressed there as they regard the number of iterations, not
function evaluations). Similarly, for the (1 + 1) EA>0 expression (4.2) is tight by the
bound proven in [91].

Apart from this case with trivial offspring population size λ = 1, it might be
tedious to compute the expected optimization time of the (1+λ) EA on LeadingOnes

exactly, since in our proof for Theorem 1 we would have to take into account that in
one generation more than one search point that improves upon the current best search
point can be generated. Since the (1 + λ) EA chooses the best one of these, the
distribution of this offspring would have to be computed. Note, however, that this
effect can only have a very mild impact on the bounds stated above, as it occurs
relatively rarely and does, in general, not result in a much larger fitness gain. Put
differently, the bounds in Theorem 1 are close to tight for reasonable (i.e., not too
large) values of λ.

As the expressions in Theorem 1 are not easy to interpret, we provide in Table 4.1
a numerical evaluation of the upper bound (4.2) for different values of λ and n. We
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add to this table (second row) the empirically observed averages, which show a good
match to the theoretical bound.

500 1,000 1,500 10,000 100,000 500,000
(1+1) 54.317% 54.313% 54.311% 54.309% 54.308% 54.308%
emp. 54.0% 54.1% 54.2% - - -
(1+2) 54.349% 54.328% 54.322% 54.310% 54.308% 54.308%
emp. 54.8% 54.4% 54.2% - - -
(1+5) 54.444% 54.376% 54.353% 54.315% 54.309% 54.308%
emp. 54.5% 54.8% 54.6% - - -

(1+50) 55.883% 55.091% 54.829% 54.386% 54.316% 54.310%
emp. 57.6% 55.3% 55.2% - - -

Table 4.1: Theoretical upper bounds from Theorem 1 and empirical optimization times
for the (1 + λ) EA>0

4.1.5 Summary

The work profiling (1+ λ) EA provids an example of how benchmarking studies asso-
ciate theoretical analysis and empirical studies. In practice, the results shows that the
value of λ significantly affects the performance of (1+1) EA for OneMax. However, we
did not observe such effect for LeadingOnes. Moreover, the result inspired a refined
analysis of the expected optimization time of the (1 + λ) EA on LeadingOnes [56].

4.2 Interpolating Local and Global Search by Con-

trolling the Variance of Standard Bit Mutation

Recall that the probability of using the standard bit mutation to sample a specific
offspring y at distance 0 ≤ d ≤ n from x thus equals pH(x,y)(1 − p)H(x,y), where
H(x, y) = |{1 ≤ i ≤ n | xi ̸= yi}| denotes the Hamming distance of x and y. This
probability is strictly positive for all y, thus showing that the probability that an EA
using standard bit mutation will have sampled a global optimum of f converges to one
as the number of iterations increases. In contrast to pure random search, however, the
distance at which the offspring y is sampled follows a binomial distribution, Bin(n, p),
and is thus concentrated around its mean np.

The ability to escape local optima comes at the price of frequent uses of non-
optimal search radii even in those regimes in which the latter are stable for a long
time. The incapability of standard bit mutation to adjust to such situations results in
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important performance losses on almost all classical benchmark functions, which often
exhibit large parts of the optimization process in which flipping a certain number of
bits is required. A convenient way to control the degree of randomness in the choice
of the search radius would therefore be highly desirable.

In this section we introduce such an interpolation. It allows to calibrate between
deterministic and pure random search, while encompassing standard bit mutation as
one specification. More precisely, we investigate normalized standard bit mutation,
in which the mutation strength (i.e., the search radius) is sampled from a normal
distribution N(µ, σ2). By choosing σ = 0 one obtains a deterministic choice, and the
“degree of randomness” increases with increasing σ. By the central limit theorem, we
recover a distribution that is very similar to that of standard bit mutation by setting
µ = np and σ2 = np(1− p).

Apart from conceptual advantages, normalized standard bit mutation offers the ad-
vantage of separating the variance from the mean, which makes it easy to control both
parameters independently during the optimization process. While multi-dimensional
parameter control for discrete EAs is still in its infancy, cf. comments in [92, 42], we
demonstrate in this work a simple, yet efficient way to control mean and variance of
normalized standard bit mutation.

4.2.1 Background

In Section 4.1, we observed that the EA with success-based self-adjusting mutation rate
proposed in [46] outperforms the (1+λ) EA for a large range of sub-optimal targets. It
then drastically looses performance in the later parts of the optimization process, which
results in an overall poor optimization time on OneMax and LeadingOnes functions
of moderate problem dimensions n ≤ 10, 000. The proven optimal asymptotic behavior
on OneMax in [46] can thus not be observed for these dimensions.

The algorithm from [46], which we named (1 + λ) EAr/2,2r, has been mentioned
in Section 4.1.2. The details are presented in Algorithm 3. It is a (1 + λ) EA which
applies in each iteration two different mutation rates. Half of the offspring popula-
tion is generated with mutation rate r/(2n), the other half with mutation rate 2r/n.
The parameter r is the current best mutation strength, which is updated after each
iteration, with a bias towards the rate by which the best of the λ offspring has been
sampled.

Recall that we apply the standard bit mutation by first sampling a radius ℓ from
the binomial distribution Bin(n, p) and then applying the flipℓ operator, which flips
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Algorithm 3: The 2-rate (1 + λ) EAr/2,2r with adaptive mutation rates
proposed in [46]
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Initialize r ← rinit; // Following [46] we use rinit = 2;
3 Optimization: for t = 1, 2, 3, . . . do
4 for i = 1, . . . , λ/2 do
5 Sample ℓ(i) ∼ Bin>0(n, r/(2n)), create y(i) ← flipℓ(i)(x), and evaluate

f(y(i));

6 for i = λ/2 + 1, . . . , λ do
7 Sample ℓ(i) ∼ Bin>0(n, 2r/n), create y(i) ← flipℓ(i)(x), and evaluate

f(y(i));

8 x∗ ← argmax{f(y(1)), . . . , f(y(λ))} (ties broken u.a.r.);
9 if f(x∗) ≥ f(x) then x← x∗;

10 if x∗ has been created with mutation rate r/2 then s← 3/4 else s← 1/4;
11 Sample q ∈ [0, 1] u.a.r.;
12 if q ≤ s then r ← max{r/2, 2} else r ← min{2r, n/4};

ℓ pairwise different bits that are chosen from the index set [n] uniformly at random.
Note that we still apply the re-sampling strategy enforcing that all offspring differ from
their parents by at least one bit, which is achieved by sampling ℓ from the conditional
binomial distribution Bin>0(n, p).

In Section 4.1.2, we compared the fixed-target performance of the (1 + 50) EA>0

(i.e., the (1 + λ) EA using the conditional sampling rule introduced above) and the
(1 + 50) EAr/2,2r on OneMax and LeadingOnes. In Figure 4.5 we report similar
empirical results for n = 10, 000 (OneMax) and n = 2, 000 (LeadingOnes) (the other
results in the two figures will be addressed below). We also observed in Section 4.1 that
for both functions the (1+50) EAr/2,2r from [46] performs well for small target values,
but drastically looses performance in the later stages of the optimization process.

Properties of OneMax and LeadingOnes

Both OneMax and LeadingOnes have a long period during the optimization run in
which flipping one bit is optimal.

For OneMax flipping one bit is widely assumed to be optimal as soon as f(x) ≥
2n/3. Quite interestingly, however, this conjecture has not not been rigorously proven
to date. It is only known that drift-maximizing (i.e., maximizing the expected fitness
gain over the best-so-far individual) mutation strengths are almost optimal [45], in

56



Chapter 4. Problem Specific Benchmarking: Study on OneMax and
LeadingOnes

Figure 4.5: Average fixed-target running times for variants of the 2-rate (1 + 50) EA
for 10, 000-dimensional OneMax and 2, 000-dimensional LeadingOnes.

Figure 4.6: Drift maximizing and optimal mutation strength for 1, 000-dimensional
OneMax and LeadingOnes functions, respectively. Note the logarithmic scale for
kdrift for OneMax. For OneMax, RLS spends around 94% of the total optimization
time in the regime in which kdrift = 1, for LeadingOnes this fraction is still 50%.
For the drift-maximizing/optimal RLS-variants flipping in each iteration kdrift and
kopt bits, respectively, these fractions are around 96% for OneMax and 64% for
LeadingOnes.

the sense that the overall expected optimization time of the elitist (1+1) algorithm
using these rates in each step cannot be worse than the best-possible unary unbiased
algorithm for OneMax by more than an additive o(n) lower order term [45]. But even
for the drift maximizer the statement that flipping one bit is optimal when f(x) ≥ 2n/3

has only be shown for an approximation, not the actual drift maximizer. Numerical
evaluations for problem dimensions up to 10, 000 nevertheless confirm that 1-bit flips
are optimal when the OneMax-value exceeds 2n/3.

For LeadingOnes, on the other hand, it is well known that flipping one bit is
optimal as soon as f(x) ≥ n/2 [38].

We display in Figure 4.6, which is adjusted from [53], the optimal and drift-
maximizing mutation strength for LeadingOnes and OneMax, respectively. We
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also display in the same figure the expected time needed by RLSopt and RLSdrift, the
elitist (1+1) algorithm using in each step these mutation rates. We see that these
algorithms spend around 96% (for OneMax) and 64% (for LeadingOnes), respec-
tively, of their time in the regime where flipping one bit is (almost) optimal. These
numbers are based on an exact computation for LeadingOnes and on an empirical
evaluation of 500 independent runs for OneMax.

Implications for the (1 + 50) EAr/2,2r

Assume that in the regime of optimal one-bit flips the (1 + 50) EAr/2,2r has correctly
identified that flipping one bit is optimal. It will hence use the smallest possible value
for r, which is 2. In this case, half the offspring are sampled with the (for this algorithm
optimal) mutation rate 1/n, while the other half of the offspring population is sampled
with mutation rate 4/n, thus flipping on average more than four times the optimal
number of bits. It is therefore non-surprising that in this regime (and already before)
the gradient of the average fixed-target running time curves in Figures 4.5 are much
worse for the (1 + 50) EAr/2,2r than for the (1 + 50) EA>0.

4.2.2 Creating Half the Offspring with Optimal Mutation Rate

The observations made in the last section inspire the design of the (1+λ) EAr,U(0,σr/n)

defined in Algorithm 4. This algorithm samples half the offspring using as deterministic
mutation strength the best mutation strength of the last iteration. The other offspring
are sampled with a mutation rate that is sampled uniformly at random from the
interval (0, σr/n).

As we can see in Figure 4.5 this algorithm significantly improves the performance
in those later parts of the optimization process. Normalized total optimization times
for various problem dimensions are provided in Figures 4.7 and 4.8, respectively. We
display data for σ = 2 only, and call this (1 + λ) EAr,U(0,σr/n) variant (1 + λ) EAhalf.
We note that smaller values of σ, e.g., σ = 1.5 would give better results. The same
effect would be observable when replacing the factor two in the (1 + λ) EAr/(2n),2r,
i.e., when using a (1 + λ) EAr/(σn),σr rule with σ ̸= 2.

It is remarkable that on LeadingOnes the (1 + λ) EAhalf performs better than
RLS, the elitist (1+1) algorithm flipping in each iteration exactly one uniformly chosen
bit. The slightly worse gradients for target values v > n/2 (which are a consequence
of randomly sampling the mutation rate instead of using mutation strength one de-
terministically) are compensated for by the gains made in the initial phase of the
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Algorithm 4: The (1 + λ) EAr,U(0,σr/n). In line 6 we denote by U(a, b) the
uniform distribution in the interval (a, b). For σ = 2 we call this algorithm
the (1 + λ) EAhalf.
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Initialize r ← rinit; // we use rinit = 2;
3 Optimization: for t = 1, 2, 3, . . . do
4 for i = 1, . . . , λ/2 do
5 Set ℓ(i) ← r, create y(i) ← flipℓ(i)(x), and evaluate f(y(i));

6 for i = λ/2 + 1, . . . , λ do
7 Sample p(i) ∼ min{U(0, σr/n), 1}, ℓ(i) ∼ Bin>0(n, p

(i)), create
y(i) ← flipℓ(i)(x), and evaluate f(y(i));

8 i← min
{
j | f(y(j)) = max{f(y(k)) | k ∈ [n]}

}
;

9 r ← ℓ(i);
10 if f(y(i)) ≥ f(x) then x← y(i);

optimization process, where the EA variants benefit from larger mutation rates.
On OneMax the performance of the (1+λ) EAhalf is better than that of the plain

(1 + λ) EA>0 for both tested values λ = 50 and λ = 2.
We recall that it is well known that, both for OneMax and LeadingOnes, the

optimal offspring population size in the regular (1+λ) EA is λ = 1 [87]. A monotonic
dependence of the average optimization time on λ is conjectured (and empirically
observed) but not formally proven. While for OneMax the impact of λ is significant,
the dependency on λ is much less pronounced for LeadingOnes. Empirical results
for both functions and a theoretical running time analysis for LeadingOnes can be
found in [56]. For OneMax [68] offers a precise running time analysis of the (1+λ) EA
for broad ranges of offspring population sizes λ and mutation rates p = c/n. In light of
the fact that the theoretical considerations in [46] required λ = ω(1), it is worthwhile
to note that for all tested problem dimensions the (1+2) EAr/2,2r performs better on
OneMax than the (1 + 50) EAr/2,2r.

4.2.3 Normalized Standard Bit Mutation

In light of the results presented in the previous section, one may wonder if splitting the
population into two halves is needed after all. We investigate this question by introduc-
ing the (1+λ) EAnorm. which in each iteration and for each i ∈ [λ] samples the mutation
strength ℓ(i) from the normal distribution N(r, r(1− r/n)) around the best mutation
strength r of the previous iteration and rounding the sampled value to the closest in-
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teger. The reasons to replace the uniform distribution U(r/n−σ, r/n+σ) will be ad-
dressed below. As before we enforce ℓ(i) ≥ 1 by re-sampling if needed, thus effectively
sampling the mutation strength from the conditional distribution N>0(r, r(1− r/n)).
Algorithm 5 summarizes this algorithm.

Algorithm 5: The (1 + λ) EAnorm. with normalized standard bit mutation
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Initialize r ← rinit; // we use rinit = 2;
3 Optimization: for t = 1, 2, 3, . . . do
4 for i = 1, . . . , λ do
5 Sample ℓ(i) ∼ min{N>0(r, r(1− r/n)), n}, create y(i) ← flipℓ(i)(x), and

evaluate f(y(i));

6 i← min
{
j | f(y(j)) = max{f(y(k)) | k ∈ [n]}

}
;

7 r ← ℓ(i);
8 if f(y(i)) ≥ f(x) then x← y(i);

Note that the variance r(1 − r/n) of the unconditional normal distribution
N(r, r(1 − r/n)) is identical to that of the unconditional binomial distribution
Bin(n, r/n). We use the normal distribution here for reasons that will be explained
in the next section. Note, however, that very similar results would be obtained when
replacing in line 4 of Algorithm 5 the normal distribution N>0(r, r(1 − r/n)) by the
binomial one Bin>0(n, r/n). We briefly recall that, by the central limit theorem, the
(unconditional) binomial distribution converges to the (unconditional) normal distri-
bution.

The empirical performance of the (1 + 50) EAnorm. is comparable to that of the
(1 + 50) EAhalf for both problems and all tested problem dimensions, cf. Figures 4.7
and 4.8. Note, however, that for λ = 2 the (1 + 2) EAnorm. performs worse than the
(1 + 2) EAhalf.

4.2.4 Interpolating Local and Global Search

As discussed above, all EA variants mentioned so far suffer from the variance of the
random selection of the mutation rate, in particular in the long final part of the
optimization process in which the optimal mutation strength is one. We therefore
analyze a simple way to reduce this variance on the fly. To this end, we build upon
the (1 + λ) EAnorm. and introduce a counter c, which is initialized at zero. In each
iteration, we check if the value of r changes. If so, the counter is re-set to zero. It
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Figure 4.7: By n ln(n) normalized average optimization times for OneMax, for n
between 500 and 10, 000. Displayed numbers are for n = 10, 000.

Figure 4.8: By n2 normalized average optimization times for LeadingOnes, for n
between 500 and 3, 000. Displayed numbers are for n = 2, 000.

is increased by one otherwise, i.e., if the value of r remains the same. We use this
counter to self-adjust the variance of the normal distribution. To this end, we replace
in line 4 of Algorithm 5 the conditional normal distribution N>0(r, r(1 − r/n)) by
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the conditional normal distribution N>0(r, F
cr(1 − r/n)), where F < 1 is a constant

discount factor. Algorithm 6 summarizes this (1 + λ) EA variant with normalized
standard bit mutation and a self-adjusting choice of mean and variance.

Algorithm 6: The (1+λ) EAvar. with normalized standard bit mutation and
a self-adjusting choice of mean and variance
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Initialize r ← rinit; // we use rinit = 2;
3 Initialize c← 0;
4 Optimization: for t = 1, 2, 3, . . . do
5 for i = 1, . . . , λ do
6 Sample ℓ(i) ∼ min{N>0(r, F

cr(1− r/n)), n}, create y(i) ← flipℓ(i)(x),
and evaluate f(y(i));

7 i← min
{
j | f(y(j)) = max{f(y(k)) | k ∈ [n]}

}
;

8 if r = ℓ(i) then c← c+ 1; else c← 0;
9 r ← ℓ(i);

10 if f(y(i)) ≥ f(x) then x← y(i);

Choice of F : We use F = 0.98 in all reported experiments. Preliminary tests
suggest that values F < 0.95 are not advisable, since the algorithm may get stuck with
sub-optimal mutation rates. This could be avoided by introducing a lower bound for
the variance and/or by mechanisms taking into account whether or not an iteration
has been successful, i.e., whether it has produced a strictly better offspring.

The empirical comparison suggests that the self-adjusting choice of the variance in
the (1 + λ) EAvar. improves the performance on OneMax further, cf. also Figure 4.7
for average fixed-target results for n = 10, 000. For λ = 2 the average performance
is comparable to, but slightly worse than that of RLS. For LeadingOnes, the (1 +

50) EAvar. is comparable in performance to the (1+ 50) EAnorm., but we observe that
for λ = 2 the (1 + λ) EAvar. performs better. It is the only one among all tested EAs
for which decreasing λ from 50 to 2 does not result in a significantly increased running
time.

4.2.5 A Meta-Algorithm with Normalized Standard Bit Muta-
tion

In the (1 + λ) EAvar. we make use of the fact that a small variance in line 6 of
Algorithm 6 results in a more concentrated distribution. The variance adjustment is
thus an efficient way to steer the degree of randomness in the selection of the mutation
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Algorithm 7: The (1+λ) Meta-Algorithm with (static) normalized standard
bit mutation. The RLS variant with deterministic search radius r and (1 +
λ) EA using standard bit mutation with mutation rate r/n are identical to
this algorithm with σ2 = 0 and σ2 = r(1− r/n), respectively.
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 for i = 1, . . . , λ do
4 Sample ℓ(i) ∼ min{N>0(r, σ

2), n}, create y(i) ← flipℓ(i)(x), and evaluate
f(y(i)); // r and σ are two parameters;

5 y ← argmax{f(y(k)) | k ∈ [n]};
6 if f(y) ≥ f(x) then x← y;

rate. It allows to interpolate between deterministic and random mutation rates. In our
experimentation we do not go beyond the variance of the binomial distribution, but in
principle there is no reason to not regard larger variance as well. The question of how
to best determine the degree of randomness in the choice of the mutation rate has, to
the best of our knowledge, not previously been addressed in the EC literature. We
believe that this idea carries good potential, since it demonstrates that local search
with its deterministic search radius and evolutionary algorithms with their global
search radii are merely two different configurations of the same meta-algorithm, and
not two different algorithms as the general perception might indicate. To make this
point very explicit, we introduce with Algorithm 7 a general meta-algorithm, of which
local search with deterministic mutation strengths and EAs are special instantiations.

Note that in this meta-model we use static parameter values, variants with adaptive
mutation rates can be obtained by applying the usual parameter control techniques,
as demonstrated above. Of course, the same normalization can be done for similar
EAs, the technique is not restricted to elitist (1 + λ)-type algorithms. Likewise, the
condition to flip at least one bit can be omitted, i.e., one can replace the conditional
normal distribution N>0(r, σ

2) in line 3 by the unconditional N(r, σ2).

4.2.6 Summary

In this section, we introduced the normalized standard bit mutation, which replaces
the binomial choice of the mutation strength in standard bit mutation by a normal
distribution [165]. This normalization allows a straightforward way to control the
variance of the distribution, which can now be adjusted independently of the mean.
We have demonstrated that such an approach can be beneficial when optimizing classic
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benchmark problems such as OneMax and LeadingOnes.

We also note that the parameter control technique which we applied to adjust the
mean of the sampling distribution for the mutation strength has an extremely short
learning period, since we simply use the best mutation strength of the last iteration
as mean for the sampling distribution of the next iteration. For more rugged fitness
landscapes a proper learning, which takes into account several iterations, should be
preferable. We recall that multi-dimensional parameter control has not received much
attention inthe EC literature for discrete optimization problems [42, 92]. Our work falls
into this category, and we have demonstrated a simple way to separate the control of
the mean from that of the variance of the mutation strength distribution. In Chapter 6,
we will introduce more work on hyperparameter optimization.

Finally, the meta-algorithm presented in Section 4.2.5 demonstrates that Random-
ized Local Search and evolutionary algorithms can be seen as two configurations of the
meta-algorithm. Parameter control, or, in this context possibly more suitably referred
to as online algorithm configuration, offers the possibility to interpolate between these
algorithms (and even more drastically, randomized heuristics). Given the significant
advances in the context of algorithm configuration witnessed by the EC and machine
learning communities, we believe that such meta-models carry significant potential to
exploit and profit from advantages of different heuristics. Note here that the config-
uration of meta-algorithms offers much more flexibility than the algorithm selection
approach classically taken in EC, e.g., in most works on hyper-heuristics. Related
work algorithm selection will also be discussed in Chapter 7.

4.3 The Impact of Crossover Probability for GA

4.3.1 Background

In this section, we look closely into the performance of a (µ + λ) GA on Leadin-

gOnes. The work of this section is motivated by the investigation of the effectiveness
of mutation and crossover, more details will be introduced in Section 5.2.

We observe some very interesting effects, that we believe may motivate the theory
community to look at the question of usefulness of crossover from a different angle.
More precisely, we find that, against our intuition that uniform crossover cannot be
beneficial on LeadingOnes, the performance of the (µ + λ) GA on LeadingOnes

improves when pc takes values greater than 0 (and smaller than 1), see Figure 4.9.
The performances are quite consistent, and we can observe clear patterns, such as a
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tendency for the optimal value of pc (displayed in Table 4.2) to increase with increasing
µ, and to decrease with increasing problem dimension. The latter effect may explain
why it is so difficult to observe benefits of crossover in theoretical work: they disappear
with the asymptotic view that is generally adopted in runtime analysis.

We have also performed similar experiments on OneMax (see our data [171]), but
the good performance of the (µ+λ) GA configurations using crossover is less surprising
for this problem, since this benefit has previously been observed for genetic algorithms
that are very similar to the (µ+ λ) GA; see [25, 29, 30, 143] for examples and further
references. In contrast to a large body of literature on the benefit of crossover for
solving OneMax, we are not aware of the existence of such results for LeadingOnes,
apart from the highly problem-specific algorithms that were developed and analyzed
in [1, 52].

4.3.2 A Family of (µ+ λ) Genetic Algorithms

We investigate a meta-model, which allows us to easily transition from a mutation-
only to a crossover-only algorithm. Algorithm 8 presents this framework, which, for
ease of notation, we refer to as the family of the (µ+ λ) GA in the following.

The (µ + λ) GA initializes its population uniformly at random (u.a.r., lines 1-
2). In each iteration, it creates λ offspring (lines 6–16). For each offspring, we first
decide whether to apply crossover (with probability pc, lines 8–11) or whether to
apply mutation (otherwise, lines 12–15). Offspring that differ from their parents are
evaluated, whereas offspring identical to one of their parents inherit this fitness value
without function evaluation (see [25] for a discussion). The best µ of parent and
offspring individuals form the new parent population of the next generation (line 17).

Note the unconventional use of either crossover or mutation. As mentioned, we
consider this variant to allow for a better attribution of the effects to each of the
operators. Moreover, note that in Algorithm 8 we decide for each offspring individually
which operator to apply. We call this scheme the (µ+λ) GA with offspring-based
variator choice. We also study the performance of the (µ+λ) GA with population-
based variator choice, which is the algorithm that we obtain from Algorithm 8 by
swapping lines 7 and 6.

4.3.3 Experimental Results

Before we go into the details of the experimental setup and our results, we recall that
for the optimization of LeadingOnes, the fitness values only depend on the first bits,
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Algorithm 8: A Family of (µ+ λ) Genetic Algorithms
1 Input: Population sizes µ, λ, crossover probability pc, mutation rate p;
2 Initialization: for i = 1, . . . , µ do sample x(i) ∈ {0, 1}n uniformly at random

(u.a.r.), and evaluate f(x(i));
3 Set P = {x(1), x(2), . . . , x(µ)};
4 Optimization: for t = 1, 2, 3, . . . do
5 P ′ ← ∅;
6 for i = 1, . . . , λ do
7 Sample r ∈ [0, 1] u.a.r.;
8 if r ≤ pc then
9 select two individuals x, y from P u.a.r. (w/ replacement);

10 z(i) ← Crossover(x, y);
11 if z(i) /∈ {x, y} then evaluate f(z(i)) else infer f(z(i)) from parent;
12 else
13 select an individual x from P u.a.r.;
14 z(i) ← Mutation(x);
15 if z(i) ̸= x then evaluate f(z(i)) else infer f(z(i)) from parent;

16 P ′ ← P ′ ∪ {z(i)};
17 P is updated by the best µ points in P ∪ P ′ (ties broken u.a.r.);

whereas the tail is randomly distributed and has no influence on the selection. More
precisely, a search point x with LeadingOnes-value f(x) has the following structure:
the first f(x) bits are all 1, the f(x)+ 1st bit equals 0, and the entries in the tail (i.e.,
in positions [f(x)+2..n]) did not have any influence on the optimization process so far.
For many algorithms, it can be shown that these tail bits are uniformly distributed,
see [39] for an extended discussion.

Experimental Setup. We fix in this section the variator choice to the offspring-
based setting. We test (µ + λ) GA with following parameter combinations on 100-
dimensional LeadingOnes: µ ∈ {2, 3, 5, 8, 10, 20, 30, . . . , 100} (14 values), λ ∈ {1, µ}
(3 values), pc ∈ {0.1k | k ∈ [0..9]} ∪ {0.95} (11 values), and mutation and crossover
operators are fixed standard bit mutation with pm = 1/n and uniform crossover. For
each of the settings listed there, we perform 100 independent runs, with a maximal
budget of 5n2 each.

Overall Running Time. We first investigate the impact of the crossover proba-
bility on the average running time, i.e., on the average number of function evaluations
that the algorithm performs until it evaluates the optimal solution for the first time.
The results for the (µ+ 1) and the (µ+ µ) GA using uniform crossover and standard
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Figure 4.9: By n2 normalized ERT values for the (µ + λ) GA using standard bit
mutation and uniform crossover on LeadingOnes, for different values of µ and for
λ = 1 (top) and for λ = µ (bottom). Results are grouped by the value of µ (main
columns), by the crossover probability pc (minor columns), and by the dimension
(rows). The ERTs are computed from 100 independent runs for each setting, with a
maximal budget of 5n2 fitness evaluations. ERTs for algorithms which successfully find
the optimum in all 100 runs are depicted as black bars, whereas ERTs for algorithms
with success rates in (0, 1) are depicted as red bars. All bars are capped at 5.

bit mutation are summarized in Figure 4.9. Since not all algorithms managed to find
the optimum within the given time budget, we plot as red bars the ERT values for
such algorithms with success ratio strictly smaller than 1, whereas the black bars are
reserved for algorithms with 100 successful runs. All values are normalized by n2, to
allow for a better comparison.

As a first observation, we note that the pattern of the results are quite regular. As
can be expected, the dispersion of the running times is rather small. To give an impres-
sion for the concentration of the running times, we report that the standard deviation
of the (50 + 1) GA on the 100-dimensional LeadingOnes function is approximately
14% of the average running time across all values of pc. As can be expected for a ge-
netic algorithm on LeadingOnes, the average running time increases with increasing

67



4.3. The Impact of Crossover Probability for GA

population size µ, see [142] for a proof of this statement when pc = 0.

Next, we compare the sub-plots in each row, i.e., fixing the dimension. We see that
the (µ + λ) GA suffers drastically from large pc values when µ is smaller, suggesting
that the crossover operator hinders performance. But as µ gets larger, the average
running time at moderate crossover probabilities (pc around 0.5) is significantly smaller
than that in two extreme cases, pc = 0 (mutation-only GAs), and pc = 0.95. This
observation holds for all dimensions and for both algorithm families, the (µ+ 1) and
the (µ+ µ) GA.

Looking at the sub-plots in each column (i.e., fixing the population size), we identify
another trend: for those values of µ for which an advantage of pc > 0 is visible for the
smallest tested dimension, n = 64, the relative advantage of this rate decreases and
eventually disappears as the dimension increases.

Finally, we compare the results of the (µ + 1) GA with those of the (µ + µ) GA.
Following [87], it is not surprising that for pc = 0, the results of the (µ + 1) GA are
better than those of the (µ+µ) GA (very few exceptions to this rule exist in our data,
but in all these cases the differences in average runtime are negligibly small), and fol-
lowing the theoretical analysis [56, Theorem 1], it is not surprising that the differences
between these two algorithmic families are rather small: the typical disadvantage of
the (µ + ⌈µ/2⌉) GA over the (µ + 1) GA is around 5% and it is around 10% for the
(µ + µ) GA, but these relative values differ between the different configurations and
dimensions.

Optimal Crossover Probabilities. To make our observations on the crossover
probability clearer, we present in Table 4.2 a heatmap of the values p∗c for which we
observed the best average running time (with respect to all tested pc values). We see
the same trends here as mentioned above: as µ increases, the value of p∗c increases,
while, for fixed µ its value decreases with increasing problem dimension n. Here again
we omit details for the (µ + ⌈µ/2⌉) GA and for the fast mutation scheme, but the
patterns are identical, with very similar absolute values.

Fixed-Target Running Times. We now study where the advantage of the
crossover-based algorithms stems from. We demonstrate this using the example of the
(50 + 50) GA in 200 dimensions. We recall from Table 4.2 that the optimal crossover
probability for this setting is p∗c = 0.3. The left plot in Fig. 4.10 is a fixed-target
plot, in which we display for each tested crossover probability pc (different lines) and
each fitness value i ∈ [0..200] (x-axis) the average time needed until the respective
algorithm evaluates for the first time a search point of fitness at least i. The mutation-
only configuration (pc = 0) performs on par with the best configurations for the first
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LeadingOnes

n
µ 2 3 5 8 10 20 30 40 50 60 70 80 90 100

(µ
+

1
)

64 0.0 0.1 0.1 0.1 0.2 0.3 0.5 0.4 0.5 0.5 0.6 0.7 0.6 0.7
100 0.0 0.1 0.1 0.1 0.1 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.4 0.6
150 0.0 0.1 0.1 0.1 0.1 0.2 0.3 0.3 0.4 0.4 0.5 0.4 0.4 0.5
200 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4
250 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.3 0.4
500 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3

(µ
+

µ
)

64 0.0 0.2 0.1 0.1 0.2 0.2 0.4 0.4 0.6 0.5 0.5 0.7 0.5 0.7
100 0.0 0.0 0.1 0.1 0.2 0.3 0.3 0.3 0.5 0.4 0.5 0.5 0.6 0.5
150 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.5 0.4 0.5 0.5 0.5 0.5
200 0.0 0.0 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.4 0.5 0.4 0.5
250 0.0 0.0 0.1 0.1 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4
500 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3

Table 4.2: On LeadingOnes, the optimal value of pc for the (µ + 1) and the (µ +
µ) GA with uniform crossover and standard bit mutation, for various combinations of
dimension n (rows) and µ (columns). Values are approximated from 100 independent
runs each, probing pc ∈ {0.1k | k ∈ [0..9]} ∪ {0.95}.
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Figure 4.10: Left: Average fixed-target running times of the (50 + 50) GA with uni-
form crossover and standard bit mutation on LeadingOnes in 200 dimensions, for different
crossover probabilities pc. Results are averages of 100 independent runs. Right: Gradient of
selected fixed-target curves.

part of the optimization process, but then loses in performance as the optimization
progresses. The plot on the right shows the gradients of the fixed-target curves. The
gradient can be used to analyze which configuration performs best at a given target
value. We observe an interesting behavior here, namely that the gradient of the
configuration pc = 0.8, which has a very bad fixed-target performance on all targets
(left plot), is among the best in the final parts of the optimization. Inspired by the
plot on the right therefore, we investigate the (µ+ λ) GA using adaptive an choice of
pc in Section 7.2.

69



4.3. The Impact of Crossover Probability for GA

4.3.4 Summary

In this section, by varying the value of the crossover probability pc of the (µ+λ) GA,
we discovered on LeadingOnes that its optimal value pc (with respect to the average
running time) increases with the population size µ, whereas for fixed µ it decreases
with increasing dimension n.

Our results raise the interesting question of whether a non-asymptotic runtime
analysis (i.e., bounds that hold for a fixed dimension rather than in big-Oh notation)
could shed new light on our understanding of evolutionary algorithms. We note that a
few examples of such analyses can already be found in the literature, e.g., in [23, 27].
The regular patterns observed in Figure 4.9 suggest the presence of trends that could
be turned into formal knowledge. In addition, the result in this section inspires the
work on dynamic pc for the the (µ+ λ) GA in Section 7.2.
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Chapter 5

Benchmarking Algorithms on
IOHprofiler Problems

IOHprofiler provides a benchmark suite of pseudo-Boolean optimization, which
allows us to investigate the performance of algorithms on a wide range of problems.
In this chapter, we compare the performance of twelve different heuristics on the
first twenty-three PBO problems to show how to apply IOHprofiler for such a
benchmarking study. Moreover, we investigate how (or whether) crossover can be
beneficial for the genetic algorithm by testing the (µ+λ) GA with different parameter
settings on the PBO problems.

5.1 Benchmarking Heuristics

5.1.1 Background

As the discussion on the design of IOHprofiler, our goal is to make the platform as
flexible as possible so that the user can easily test their algorithms on the problems
and with respect to performance criteria of their choice (see Chapter 3 for the discus-
sion). However, the original framework only provided the experimental setup, but did
not fix any benchmark problems or reference algorithms. In this chapter, we present
the results of 12 different heuristics for the original 23 PBO problems, which serves as
the first baseline for the performance evaluation of user-defined heuristics. All perfor-
mance data is available in our data repository and can be straightforwardly assessed
through the web-based version of IOHanalyzer (http://iohprofiler.liacs.nl/), which
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is easily accessible for future comparative studies. An important by-product of our
contribution is the identification of additional statistics, which are included within the
IOHprofiler. This section provides extensive examples of assessing algorithms’ per-
formance over a set of problems concerning different perspectives (such as fixed-target
result, fixed-budget result, and ECDF.)

5.1.2 Summary of Baseline Algorithms

High-level Description

We evaluate a total number of twelve different algorithms on the first 23 problems de-
scribed in Section 2.5. We have chosen algorithms that may serve for future references,
since they all have some known strengths and weaknesses that will become apparent in
the following discussions. The selection therefore shows a clear bias towards algorithms
for which theoretical analyses are available.

Note that most algorithms are parametrized, and we use here in this work only
standard parametrizations (e.g., we use standard bit mutation with 1/n as mutation
rates, etc.). Analyzing the effects of different parameter values as was done, for exam-
ple in [32, 133], would be very interesting, related work on parameter tuning will be
introduced in Section 6.

We also note that, except for the so-called vGA, our implementations (deliber-
ately) deviate slightly from the text-book descriptions referenced below. Following
the discussion in previous chapters, we enforce that offspring created by mutation are
different from their parent and resample without further evaluation if needed. Like-
wise, we do not evaluate recombination offspring that are identical to one of their
immediate parents.

All algorithms start with uniformly chosen initial solution candidates.
We list here the twelve implemented algorithms, and provide further details and

pseudo-codes:

1. gHC: A (1+1) greedy hill climber, which goes through the string from left to
right, flipping exactly one bit per each iteration, and accepting the offspring if
it is at least as good as its parent.

2. RLS: Randomized Local Search, the elitist (1+1) strategy flipping one uniformly
chosen bit in each iteration. That is, RLS and gHC differ only in the choice of
the bit which is flipped. While RLS is unbiased in the sense of Section 2.5.1,
gHC is not permutation-invariant and thus biased.
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3. (1 + 1) EA: The (1 + 1) EA with static mutation rate p = 1/n. This algorithm
differs from RLS in that the number of uniformly chosen, pairwise different bits
to be flipped is sampled from the conditional binomial distribution Bin>0(n, p).
Details refer to Algorithm 2 in Section 4.1.

4. fGA: The “fast GA” proposed in [50] with β = 1.5. Its mutation strength (i.e.,
the number of bits flipped in each iteration) follows a power-law distribution
with exponent β. This results in a more frequent use of large mutation-strength,
while maintaining the property that small mutation strengths are still sampled
with reasonably large probability.

5. (1+10) EA: The (1+10) EA with static p = 1/n, which differs from the (1+1)

EA only in that 10 offspring are sampled (independently) per each iteration.

6. (1+10) EAr/2,2r: The two-rate EA with self-adjusting mutation rates suggested
and analyzed in [46] (see Algorithm 3 in Section 4.2).

7. (1 + 10) EAnorm.: a variant of the (1 + 10) EA sampling the mutation strength
from a normal distribution N(pn, pn(1−p)) with a self-adjusting choice of p (see
Algorithm 5 in Section 4.2).

8. (1 + 10) EAvar.: The (1 + 10) EAnorm. with an adaptive choice of the variance
in the normal distribution from which the mutation strengths are sampled (see
Algorithm 6 in Section 4.2).

9. (1+10) EAlog-n. The (1+10) EA with log-normal self-adaptation of the mutation
rate proposed in [7].

10. (1+(λ, λ)) GA: A binary (i.e., crossover-based) EA originally suggested in [43].
We use the variant with self-adjusting λ analyzed in [41].

11. vGA: A (30, 30) “vanilla” GA (following the so-called traditional GA, as de-
scribed, for example, in [69, 5]).

12. UMDA: A univariate marginal distribution algorithm from the family of es-
timation of distribution algorithms (EDAs). UMDA was originally proposed
in [120].

Detailed Description of the Algorithms

Detailed description of (1 + 1) EA, (1 + 10) EA, (1 + 10) EAr/2,2r, (1 + 10) EAnorm.,
and (1 + 10) EAvar. can be found in Section 4, and descriptions of the remaining
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algorithms follow. An operator frequently used in these descriptions is the flipℓ(·)
mutation operator, which flips the entries of ℓ pairwise different, uniformly at random
chosen bit positions. Details can be found in Algorithm 1.

Again, to avoid useless evaluations of offspring that are identical to their parents,
we make use of the conditional binomial distribution Bin>0(n, p), which assigns prob-
ability Bin(n, p)(k)/(1− (1−p)n) to each positive integer k ∈ [n], and probability zero
to all other values. Sampling from Bin>0(n, p) is identical to sampling from Bin(n, p)

until a positive value is returned (“resampling strategy”).

Greedy Hill Climber The greedy hill climber (gHC, Algorithm 9) uses a deter-
ministic mutation strength, and flips one bit in each iteration, going through the bit
string from left to right, until being stuck in a local optimum, see Algorithm 9.

Algorithm 9: Greedy hill climber (gHC)

1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 x∗ ← x;
4 Flip in x∗ the entry in position 1 + (t mod n) and evaluate f(x∗);
5 if f(x∗) ≥ f(x) then x← x∗;

Randomized Local Search RLS uses a deterministic mutation strength, and flips
one randomly chosen bit in each iteration, see Algorithm 10.

Algorithm 10: Randomized local search (RLS)

1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 create x∗ ← flip1(x), and evaluate f(x∗);
4 if f(x∗) ≥ f(x) then x← x∗;

Fast Genetic Algorithm The fast Genetic Algorithm (fGA) chooses the mutation
length ℓ according to a power-law distribution Dβ

n/2, which assigns to each integer

k ∈ [n/2] a probability of Pr[Dβ
n/2 = k] = (Cβ

n/2)
−1

k−β , where Cβ
n/2 =

∑n/2
i=1 i

−β . We
use the (1+1) variant of this algorithm with β = 1.5.
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Algorithm 11: Fast genetic algorithm (fGA) from [50]

1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 for i = 1, . . . , λ do
4 Sample ℓ(i) ∼ Dβ

n/2;

5 create y(i) ← flipℓ(i)(x), and evaluate f(y(i));

6 x∗ ← argmax{f(y(1)), . . . , f(y(λ))} (ties broken by favoring the largest
index);

7 if f(x∗) ≥ f(x) then x← x∗;

The EA with log-Normal self-adaptation of mutation rate The (1 +

λ) EAlog-n., Algorithm 12, uses a self-adaptive choice of the mutation rate.

Algorithm 12: The (1 + λ) EAlog-n. with log-Normal self-adaptation of the
mutation rate
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 p = 0.2;
3 Optimization: for t = 1, 2, 3, . . . do
4 for i = 1, . . . , λ do
5 p(i) =

(
1 + 1−p

p · exp(0.22 · N (0, 1))
)−1 ;

6 Sample ℓ(i) ∼ Bin>0(n, p
(i));

7 create y(i) ← flipℓ(i)(x), and evaluate f(y(i));

8 i← min
{
j | f(y(j)) = max{f(y(k)) | k ∈ [λ]}

}
;

9 p← p(i);
10 x∗ ← argmax{f(y(1)), . . . , f(y(λ))} (ties broken by favoring the smallest

index);
11 if f(x∗) ≥ f(x) then x← x∗;

The Self-Adjusting (1 + (λ, λ)) GA The self-adjusting (1 + (λ, λ)) GA, Algo-
rithm 13, was introduced in [43] and analyzed in [41]. The offspring population size λ

is updated after each iteration, depending on whether or not an improving offspring
could be generated. Since both the mutation rate and the crossover bias (see Algo-
rithm 14 for the definition of the biased crossover operator cross) depend on λ, these
two parameters also change during the run of the (1 + (λ, λ)) GA. In our implemen-
tation we use update strength F = 3/2.
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Algorithm 13: The self-adjusting (1 + (λ, λ)) GA

1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 Mutation phase:
4 Sample ℓ ∼ Bin>0(n, λ/n);
5 for i = 1, . . . , λ do create y(i) ← flipℓ(x), and evaluate f(y(i));
6 x∗ ← argmax{f(y(1)), . . . , f(y(λ))} (ties broken by favoring the largest

index);
7 Crossover phase:
8 for i = 1, . . . , λ do create y(i) ← crossc(x, x

∗), and evaluate f(y(i));
9 y∗ ← argmax{f(y(1)), . . . , f(y(λ))} (ties broken by favoring the largest

index);
10 Selection phase:
11 if f(y∗) > f(x) then x← y∗; λ← max{λ/F, 1};
12 if f(y∗) = f(x) then x← y∗; λ← min{λF 1/4, n};
13 if f(y∗) < f(x) then λ← min{λF 1/4, n};

Algorithm 14: Crossover operation crossc(x, x
∗) with crossover bias c

1 y ← x;
2 Sample ℓ ∼ Bin>0(n, c);
3 Select ℓ different positions {i1, . . . , il} ∈ [n];
4 for j = 1, 2, . . . , ℓ do yij ← x∗

ij
;

The “Vanilla” GA The vanilla GA (vGA, Algorithm 16) constitutes a textbook
realization of the so-called Traditional GA [5, 69]. The algorithm holds a parental
population of size µ. It employs the Roulette-Wheel-Selection (RWS, that is, proba-
bilistic fitness-proportionate selection which permits an individual to appear multiple
times) as the sexual selection operator to form µ/2 pairs of individuals that generate
the offspring population. 1-point crossover (Algorithm 15) is applied to every pair
with a fixed probability of pc = 0.37. A mutation operator is then applied to every
individual, flipping every bit with a fixed probability of pm = 2/n. This completes a
single cycle.
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Algorithm 15: 1-Point crossover of two parents x(1) and x(2)

1 Sample ℓ ∈ [n] uniformly at random;
2 for i = 1, 2, . . . , ℓ do Set y

(1)
i ← x

(1)
i and y

(2)
i ← x

(2)
i ;

3 for i = ℓ+ 1, . . . , n do Set y
(1)
i ← x

(2)
i and y

(2)
i ← x

(1)
i ;

Algorithm 16: The (µ, µ)-“Vanilla-GA” with mutation rate pm and crossover
probability pc

1 Initialization:
2 for i = 1, . . . , µ do sample x(i) ∈ {0, 1}n uniformly at random and

evaluate f(x(i));
3 Optimization: for t = 1, 2, 3, . . . do
4 Parent selection phase: Apply roulette-wheel selection to {x(1), . . . , xµ}

to select µ parent individuals y(1), . . . , y(µ);
5 Crossover phase:
6 for i = 1, . . . , µ/2 do with probability pc replace y(i) and y(2i) by the

two offspring that result from a 1-point crossover of these two
parents, for a randomly chosen crossover point j ∈ [n];

7 Mutation phase:
8 for i = 1, . . . , µ do Sample ℓ(i) ∼ Bin(n, pm), set y(i) ← flipℓ(i)(y

(i)),
and evaluate f(y(i));

9 Replacement:
10 for i = 1, . . . , µ do Replace x(i) by y(i);

The Univariate Marginal Distribution Algorithm The univariate marginal
distribution algorithm (UMDA, Algorithm 17) is one of the simplest representatives of
the family of so-called estimation of distribution algorithms (EDAs). The algorithm
maintains a population of size s (we use s = 50 in our experiments) and uses the
best s/2 of these to estimate the marginal distribution of each decision variable, by
simply counting the relative frequency of ones in the corresponding position. These
frequencies are capped at 1/n and 1 − 1/n, respectively. In the t-th iteration, a new
population is created by sampling from these marginal distributions. Building upon
previous work made in [119], the UMDA was introduced in [120]. Theoretical results
for this algorithm are summarized in [100].
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Algorithm 17: The Univariate Marginal Distribution Algorithm (UMDA),
representing the family of EDAs
1 Initialization:
2 for i = 1, . . . , s do sample x(0,i) ∈ {0, 1}n uniformly at random and

evaluate f(x(0,i));
3 Let P0 be the collection of the best s/2 of these search points, ties broken

uniformly at random (u.a.r.);
4 Optimization:
5 for t = 1, 2, 3, . . . do
6 for j = 1, . . . , n do
7 pj ← 2|{x ∈ Pt−1 | xj = 1}|/s;
8 if pj < 1/n then pj = 1/n;
9 if pj > 1− 1/n then pj = 1− 1/n;

10 for i = 1, . . . , s do sample x(t,i) ∈ {0, 1}n by setting, independently
for all j ∈ [n], x(t,i)

j = 1 with probability pj and setting x
(t,i)
j = 0

otherwise. Evaluate f(x(t,i));
11 Let Pt be the collection of the best s/2 of the points

x(t,1), x(t,2), ..., x(t,s), ties broken u.a.r.;

5.1.3 Experimental Results

Experimental Setup

Our experimental setup can be summarized as follows:

• 23 test-functions F1-F23, described in Section 2.5

• Each function is assessed over the four problem dimensions n ∈ {16, 64, 100, 625}

• Each algorithm is run on 11 different instances of each of these 92 (F, n) pairs,
yielding a total number of 1, 012 different runs per each algorithm. Each run is
granted a budget of 100n2 function evaluations for dimensions n ∈ {16, 64, 100}
and a budget of 5n2 function evaluations for n = 625. More precisely, each
algorithm performs one run on each of the instances 1− 6 and 51− 55 described
in Section 2.5.1.

Most of the tested algorithms are unbiased and comparison-based. For these
algorithms all 11 instances look the same, i.e., performing one run each is equiv-
alent to 11 independent runs on instance 1, which is the “pure” problem instance
without fitness scaling nor any other transformation applied to it. However, in
order to understand how the transformations impact the behavior of vGA and
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Figure 5.1: ERT values of the twelve baseline algorithms for the 625-dimensional test
suite, with respect to the best solution quality found by any of the algorithms in any
of the eleven runs. These target values can be found in Table 5.2.

gHC, we also performed 11 independent runs of each algorithm on instance 1 of
each (F, n) pair, yielding another 1, 012 runs per each algorithm.

• For each run we store the current and the best-so-far function value at each
evaluation. This setup allows very detailed analyses, since we can zoom into each
range of fixed budgets and/or fixed-targets of choice, and obtain our anytime
performance statistics in terms of quantiles, averages, probabilities of success,
ECDF curves, etc.

For some of the algorithms we also store information about the self-adjusting
parameters, for example the value of λ in the (1 + (λ, λ)) GA and the mutation
rates for the (1+10) EAr/2,2r, the (1+10) EAvar., and the (1+10) EAnorm.. From
this data we can derive how the parameters evolve with respect to the time
elapsed and with respect to the quality of the best-so-far solutions.

Concerning the number of repetitions, we note that with 11 runs we already get
a good understanding of the key differences between the algorithms. 11 runs can be
enough to get statistical significance, if the differences in performance are substan-
tial. We refer the interested reader to the tutorial [76], which argues that for a first
experiment a small number of experiments can suffice.

Function-wise Raw Observations Across Dimensions Figures 5.1 and 5.2 de-
pict the ERT of the baseline algorithms on the 625-dimensional and the 64-dimensional
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Figure 5.2: ERT values of the twelve baseline algorithms for the 64-dimensional test
suite, with respect to the best solution quality found by any of the algorithms in any
of the eleven runs. These target values can be found in Table 5.1.

funcId F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
n = 64 64 64 2, 080 32 57 21 64 33 64 63.2 32 57

n = 625 625 625 195, 625 312 562 208 576.4 314 625 625 312 562
funcId F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23
n = 64 21 43.8 33 64 64 3.981492 64 128 192 28 8

n = 625 208 36.6 314 625 625 4.2655266 621 1, 200 1, 775 268.4 24

Table 5.1: Target values for which the ERT curves in Figures 5.1 and 5.2 are computed.

functions, respectively, when considering the best function value found by any of the
algorithms in any of the runs. These target values are summarized in Table 5.1.

We summarize a few basic observations for each function.

F1: This baseline OneMax problem is easily solved, having the gHC winning (it solves
each n-dimensional OneMax instance in at most n+ 1 queries), the majority of
the algorithms clustered with a practically-equivalent performance, the (1+10)-
EAr/2,2r lagging behind, and the vGA outperformed by far. All algorithms locate
the global optimum eventually. Figure 5.3 presents the average fixed-target per-
formance of the algorithms on F1 at n = 625, in terms of ERT. Evidently, the
vGA and the UMDA obtain a clear advantage in the beginning of the optimization
process, although the vGA eventually uses the largest number of evaluations, by
far, to locate the optimum. We also see here that, as expected, the performances
of the unbiased algorithms (i.e., all algorithms except the vGA) are identical for
the 11 runs on instance 1 and the 1 run on 11 different instances. For the vGA
this is clearly not the case, the fixed-target performances of these two settings
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Figure 5.3: ERT values for F1 (OneMax) at dimension n = 625 in a fixed-target
perspective. The dashed lines are the average running times of 11 independent runs
on instance 1, while the solid lines are average running times for one run on each of
the eleven different instances 1-6 and 51-55. Note that this figure is not generated by
IOHanalyzer.

differ substantially.

F2: The LeadingOnes problem introduces more difficulty when compared to F1,
with the ERT consistently shifting upward, but it is still easily solved. The gHC
wins, the vGA loses, and the majority of the algorithms are again clustered, but
now the (1+(λ, λ))-GA lags behind. The UMDA fails to find the optimum within
the given time budget, for all tested dimensions except for n = 16. An example of
the evolution of the parameter λ in the (1+(λ, λ)) GA is visualized in Figure 5.4.
We observe – as expected – that larger function values are evidently correlated
with larger population sizes (and, thus, larger mutation rates).

F3: The behavior on this problem, the linear function with harmonic weights, is similar
to F1 for most algorithms. Exceptions are the vGA, for which it is slightly easier,
and the UMDA, which shows worse performance on F3 than on F1.

F4: This problem, OneMax with 50% dummy variables, is the most easily-solved
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Figure 5.4: Evolution of the population size λ of the (1 + (λ, λ)) GA on the Leadin-
gOnes problem F2 at dimension n = 625, correlated to the best-so-far objective
function values (horizontal axis). The line shows the average value of λ for iterations
starting with a best-so-far solution of the value indicated by the x-axis. The shade
represents the standard deviation.

problem in the suite, with an even simpler performance classification – the gHC
performs at the top, the vGA at the bottom, and the rest are tightly clustered.
Given the consistent correlation with the F1 performance profiles, across all twelve
algorithms, it seems debatable whether or not to keep this function in a benchmark
suite, since it seems to offer only limited additional insights, which could be of
a rather specialized interest, e.g., for theoretical investigations addressing precise
running times of the algorithms.

F5: Solving this problem, OneMax with 10% dummy variables, exhibits equivalent
behavior to F1. Similarly to F4, we suggest to ignore this setup for future bench-
marking activities. Note, however, that the exclusion of F4 and F5 does not imply
that the dummy variables do not play an interesting role – in an ongoing evalua-
tion of the W-model, we are currently investigating their impact when combined
with other W-model transformations.

F6: The neutrality (“majority vote”) transformation apparently introduces difficulty
to the (1 + (λ, λ)) GA, which exhibits deteriorated performance compared to F1.
The vGA, despite a slightly better performance compared to F1, is the worst
among the twelve algorithms. At the same time, the (1+10)-EAlog-n. lags behind
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its competitors in the beginning, but it eventually shows a competitive result in
the later optimization process, ending up with an overall fine ERT value. The
gHC outperforms all other algorithms also on this function.

F7: The introduction of local permutations to OneMax, within the current problem,
introduced difficulties to all the algorithms. The ability to locate the global op-
timum within the designated budget deteriorated for all of them, except for the
(1+10)-EAr/2,2r on “low-dimensional” scales (n ∈ {16, 64, 100}). Figure 5.5 de-
picts the ERT values of the algorithms on F7 at n = 625, where it is evident that
they all failed to locate the global optimum. Note that this figure encompasses
results for both instantiations (a single instance or 11 instances). The twelve al-
gorithms’ performances are clustered in two groups that are associated with two
fitness regions (and likely two basins of attraction) - the first around an objective
function value of 500 (including the UMDA, with the gHC being the fastest to
approach it and get stuck), and the other below 600. It seems that the latter
cluster could use additional budget to further improve the results.

F8: Being OneMax with the small fitness plateaus induced by the ruggedness function
r1, the UMDA performs best on this problem, with the (1 + (λ, λ)) GA following
very closely. It seems to introduce medium difficulty to all the algorithms, except
for the gHC, whose performance is dramatically hampered and becomes worse
than the vGA. Interestingly, the ERT values are distributed sparsely compared
to other OneMax variants.

F9: The UMDA also performs best for this problem, with the (1+10) EAvar. being the
runner-up. Generally, the behavior on this problem, OneMax with small fitness
perturbations, is close to F8, but with certain differences. F9 is evidently harder,
as the algorithms meet larger ERT values. Importantly, unlike F8, RLS always
fails on F9 (since it gets stuck in local optima), and “joins” the gHC and vGA
at the bottom of the performance table. The (1 + (λ, λ)) GA also shows worse
performance on F9 than on F8.

F10: This problem, OneMax with fitness perturbations of block size five, presents a
dramatic difficulty to all the algorithms, including the UMDA, which, however,
clearly outperforms all other algorithms. It is evidently the hardest OneMax

variant for all the tested algorithms, among the eight variants studied in this
work. For n = 625 the UMDA finds the optimum after an average of 141, 243

evaluations, while none of the other algorithms finds a solution better than 575.
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Figure 5.5: ERT values for F7 at dimension n = 625 in a fixed-target perspective.

F11: The gHC performs strongly on this problem, namely the LeadingOnes with 50%
dummy variables, consistently with its winning behavior on F2. The vGA per-
forms poorly, and the UMDA is also at the bottom of the table. Notably, the
problem should become easier compared to F2, since the effective number of vari-
ables is reduced. RLS, however, which generally performs well on LeadingOnes,
only ranks third from the bottom on ERT values when solving this problem.

F12: The behavior of the algorithms on this problem, LeadingOnes with 10% dummy
variables, is very similar to F11, with excellent performance of the gHC. However,
one major difference is the dramatic deterioration of UMDA and vGA, which
fail to find the optimum with given time budget for n = 625 (see Figure 5.1).
UMDA performs better than vGA for n = 64, but still obtains clear disadvantage
comparing to other algorithms (see Figure 5.2).
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F13: The introduction of neutrality on LeadingOnes makes this problem easier in
practice (that is, by observing ERT decrease compared to F2). The gHC wins,
while the vGA, (1 + (λ, λ)) GA as well as the UMDA lag behind the other meth-
ods. The poor performance of these three algorithms is consistent with their
performance on LeadingOnes.

F14: Being LeadingOnes with epistasis, this problem introduces high difficulty. For
high dimensions, n ∈ {64, 100, 625}, none of the algorithms was capable of locating
an optimal solution within the allocated budget. The vGA tops the ERT values on
this problem, followed by the (1+1)-fGA, the (1+10)-EAr/2,2r, and the (1+10)-
EAnorm.. On the other hand, three algorithms, namely the gHC, the UMDA, and
the RLS, seem to get trapped with low objective function values.

F15: The introduction of fitness perturbations to LeadingOnes makes this problem
difficult. The UMDA exhibits the worst performance among the competing meth-
ods. The remainder of the algorithms, except for the vGA and the (1+(λ, λ)) GA,
are still able to hit the optimum of this problem, but with significantly larger ERT
values. The gHC performs best, and the first runner-up is the RLS.

F16: The obtained ranks of algorithms, with respect to the ERT values, are similar to
those of F15, but generally exhibit higher ERT values. Notably, the UMDA is
still the worst performer.

F17: As expected, the rugged LeadingOnes function is the second-hardest among
the LeadingOnes variants, following F14. Only the RLS and the (1+1)-EA
are able to hit the optimum in dimension 625, while the gHC has a diminished
performance on this problem. This can be explained by the fact that the gHC has
a very high probability of getting stuck in a local traps, while the RLS is capable
of performing random walks about local optima, until eventually escaping them
(e.g., by flipping the right bit when all the consecutive four bits are also identical
to the target string). This is of course a rare event, and the ERT values are
therefore significantly worse than all other LeadingOnes variants, except F14.
As on the previous two functions, the UMDA performs poorly, with similar ERT
values as the gHC.

Comparing to F10, the effect of the fitness permutation r3 on LeadingOnes is
not as significant as on OneMax, which can be explained by the ability of most of
the algorithms to perform random walks to deal with local traps, through which
the four first bits of the tail are eventually set correctly, at which point flipping
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the significant bit (i.e., the bit in position LO(x) + 1) results in a LeadingOnes

fitness increase of at least five, and consequently a fitness increase of at least one
for the problem r3 ◦ LeadingOnes. This candidate solution is thus accepted by
all of our algorithms, and the next phase of optimizing the following consecutive
five bits begins.

F18: The LABS problem is the most complex problem in our assessment. For the higher
dimensions, n ∈ {64, 100, 625}, none of the algorithms obtained the maximally
attainable values, or got fitness values close to those of the best-known sequences
(see, e.g., [125]). Additionally, a couple of algorithms (e.g., the gHC and the
RLS) did not succeed to escape low-quality “local traps” on most dimensions.
Surprisingly, the vGA was superior to the other algorithms at n = 16 but, as
expected, over the higher dimensions presented weaker performance. Notably,
the UMDA outperforms the other methods at n = 625.

F19: The simplest problem among the Ising instances. Most of the algorithms exhibited
similar performance, except for the vGA, the UMDA and the gHC, which obtained
weak results. The latter preformed worst among all algorithms, and obtained
the lowest objective function values across all the dimensions for the given time
budget. As a demonstration of the performance statistics that IOHprofiler

provides, average fixed-target and fixed-budget running times are provided in
Figure 5.6. This figure illustrates that ERT values tell only one side of the story:
the performance of UMDA is comparable to that of the other algorithms for all
targets up to around 85; only then it starts to perform considerably worse.

F20: In contrast to its poor performance on the 1D-Ising (F19), the gHC outper-
formed the other algorithms on the 2D-Ising for target values up to around 1, 136

(d = 625), after which its performance becomes worse than most of the other
algorithms, except for the vGA, which is consistently the worst except for a few
initial target values.For d = 625, however, the (1+10) EAlog-n. achieves the best
ERT value for the target recorded in Table 5.2, followed by the (1+1) EA and
RLS.

F21: As expected, the most complex among the Ising model instances. The observed
performances resemble the observations on F20. For d = 625, the best ERT is
obtained by the (1+10)-EAvar..

F22: None of the algorithms succeeded in locating the global optimum across all dimen-
sions of this problem. This is explained by the existence of a local optimum with a

86



Chapter 5. Benchmarking Algorithms on IOHprofiler Problems

strong basin of attraction. The gHC and the vGA exhibited inferior performance
compared to the other algorithms.

F23: Some algorithms failed to locate the global optimum of the N-Queens problem in
high dimensions, yet the vGA, the gHC and the UMDA constantly possessed the
worst ERT values. Fine performance was observed for the (1+10)-EA>0 and the
(1+10) EAlog-n..

Grouping of Functions and Algorithms In the following we are aiming to rec-
ognize patterns and identify classes within (i) the set of all functions, and (ii) the set
of all algorithms.

Functions’ Empirical Grouping: It is evident that problems F1-F6, F11-F13
and F15-F16 are treated relatively easily by the majority of the algorithms, with those
functions based on LeadingOnes (i.e., F2, F11-13, F15, F16) being more challenging
within this group. On the other extreme, F7, F9-F10, F14, F18-F19 and F22 evidently
constitute a class of hard problems, on which all algorithms consistently exhibit diffi-
culties (except for n = 16); the LABS function (F18) seems the most difficult among
them. F8, the instances of the Ising model (F19-F21), as well as the NQP (F23),
constitute a class of moderate level of difficulty.

Algorithms’ Observed Trends: The gHC and the vGA usually exhibited ex-
treme performance with respect to the other algorithms. The vGA consistently suffers
from poor performance over all functions, while the gHC either leads the performance
on certain functions or performs very poorly on others. The gHC’s behavior is to
be expected, since it is correlated with the existence of local traps (by construction)
– for instance, it consistently performs very well on F1-F6, while having difficulties
on F7-F10. Clearly, RLS also gets trapped by the deceptive functions, while at the
same time it shows fine performance on most of the non-deceptive problems. The
UMDA’s performance stands out. Evidently, it performs well on the OneMax-based
problems, but fails to optimize the LeadingOnes function F2 and its derivatives
F11-F17, with the exception of F11 and F13 – a behavior that might be interesting to
analyze further in future work. Otherwise, we observe one primary class of algorithms
exhibiting equivalent performance over all problems in all dimensions: The seven
algorithms (1 + (λ, λ))-GA, (1+1)-EA, (1+10)-EAvar., (1+10)-EA, (1+10)-EAnorm.,
(1+10)-EAr/2,2r, and (1+1)-fGA behave consistently, typically exhibiting fine perfor-
mance. In terms of ERT values, the (1+10)-EAlog-n. could also be grouped into this
class of seven algorithms, but it behaves quite differently during the optimization pro-
cess, often showing an opposite trend of convergence speed at the early stages of the

87



5.1. Benchmarking Heuristics

Figure 5.6: Demonstration of the basic performance plots for F19 at dimension
n = 100: Left: best obtained values as a function of evaluations calls (“fixed-target
perspective”), versus Right: evaluations calls as a function of best obtained values
(”fixed-budget perspective”). For F19, these patterns of relative behavior are observed
across all dimensions.

optimization procedure.

Ranking: We also examined the overall number of runs per test-function in which
an algorithm successfully located the best recorded value – the so-called hitting num-
ber. We then grouped those hitting numbers by dimension, and ranked the algorithms
per each dimension. The (1+10)-EAr/2,2r consistently leads the grouped hitting num-
bers on the “low-dimensional” functions (n ∈ {16, 64}), with (1+1)-fGA and (1+10)-
EAnorm. being together the first runner-up. The (1+10)-EA also exhibits high ranking
across all dimensions. (1+10)-EAnorm. leads the grouped hitting numbers on n = 100,
whereas the (1+1)-EA leads the hitting numbers on the “high-dimensional” functions
at n = 625, with (1+10)-EA being the runner-up. Across all dimensions, UMDA, gHC
and vGA are with the lowest rankings.

Visual Analytics: As a demonstration of the performance statistics offered by
IOHprofiler, we provide snapshots of visual analytics that supported our examina-
tion. Figure 5.6 depicts basic performance plots for F19 at dimension n = 100, in
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Figure 5.7: ECDF curve for the class of “easily-solved” functions in dimension n = 625:
F1-F6, F11-F13, and F15-F16 [LEFT] and of all 23 functions [RIGHT], with respect
to equally spaced target values.

so-called fixed-target and fixed-budget perspectives. For clarity of the plots we only
show the ERT values and the average function values achieved per each budget, re-
spectively. Standard deviations as well as the 2, 5, 10, 15, 50, 75, 90, 95, 98% quantiles
are available on http://iohprofiler.liacs.nl/.

In Figure 5.7 we provide two plots obtained from our new module which computes
ECDF curves for user-specified target values. The plot on the left depicts an ECDF
curve for the “easily-solved” functions identified above (i.e., F1-F6, F11-F13, and F15-
F16) in dimension n = 625. The one on the right shows the ECDF curves across all
23 benchmark functions. For both figures we have chosen ten equally spaced target
values per each function, with the largest value being again the best function value
identified by any of the algorithms in any of the runs. Since the number of “easy”
problems dominates our overall assessment the curves on the right are to a large
extent dominated by the performances depicted on the left. This indicates once again
the need for a thorough revision of our benchmark selection.

Unbiasedness: Following our experimental planning to test the hypothesized
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Figure 5.8: Statistical box-plots for vGA’s attained function values on instance one
alone versus on the eleven different instances 1-6 and 51-55, after exploiting the entire
budget (namely, 409, 600 function evaluations): F1 [LEFT] and F2 [RIGHT]. Both
plots are for n = 64.

“biasedness” effect for the vGA, we compared its averaged performance on instance
1 versus on all the other instances (1-6 and 51-55) altogether. Figure 5.8 depicts a
comparison of attained objective function values, by means of box-plots, on F1 and
on F2 for n = 64. Performance deterioration is indeed evident on the permuted
instances; that is, instances 51-55, for which the base functions are composed with a
σ-transformation of the bit strings, as described in Section 2.5.1. The box-plots in
Figure 5.8 show very clearly that the vGA treats the plain F1 and F2 much better,
in terms of attained target values, than their transformed variants. The plots are for
n = 64 and after exhausting the full budget of 100n2 function evaluations.

5.1.4 Summary

This section presented results of the 12 heuristics on the first 23 PBO problems, which
contributes a baseline for future comparative studies. This work has inspired many
directions for IOHprofiler, and some of them are already under development.

Additional Performance Measures: While this section presents a very de-
tailed assessment of algorithms’ performance, we are continuously strengthening the
statistical repertoire of IOHanalyzer by introducing new performance measures
and by devising better procedures. Currently, IOHanalyzer also supports pairwise
Kolmogorov-Smirnov test, Glicko2-based ranking, the Deep Statistical Comparison
(DSC) analysis [59], and Contribution to portfolio (Shapley-values).

Combinations of W-model Transformations: As discussed in Section 2.5.6,
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the transformations of the W-model can be combined with each other. To analyze the
individual effects of each transformation, and in order to keep the size of the experi-
mental setup reasonable, we have not considered such combinations in this work. A
critical consideration of adding such combinations, and of extending the base trans-
formations (e.g., with respect to the fitness transformation, but also the size of the
neutrality transformation, etc.) forms another research line that we are currently
addressing in a parallel work stream.

Integration of Algorithm Design Software: IOHs are to a large extent modu-
lar algorithms, whose components can be exchanged and executed in various different
ways. This has letted the community to develop software which enables an easier algo-
rithmic design. Examples for such software are ParadisEO [24] for single-objective and
multi-objective optimization and jMetal [58] for multi-objective algorithms. Building
or integrating such software could allow much more comprehensive algorithm bench-
marking, and could eventually automate the detection of promising algorithmic vari-
ants. We are glad to see that IOHprofiler has contributed to this domain, for
example, by being integrated with other frameworks for the work of large scale auto-
mated algorithm design [3, 153, 168, 170].

5.2 Benchmarking a (µ + λ) Genetic Algorithm with

Configurable Crossover Probability

5.2.1 Background

Classic evolutionary computation methods build on two main variation operators:
mutation and crossover. While the former can be mathematically defined as unary
operators (i.e., families of probability distributions that depend on a single argument),
crossover operators sample from distributions of higher arity, with the goal to “recom-
bine” information from two or more arguments.

There is a long debate in evolutionary computation about the (dis-)advantages of
these operators, and about how they interplay with each other [118, 140]. In lack of
generally accepted recommendations, the use of these operators still remains a rather
subjective decision, which in practice is mostly driven by users’ experience. Little
guidance is available on which operator(s) to use for which situation, and how to most
efficiently interleave them. The question how crossover can be useful can therefore be
seen as far from being solved.

Of course, significant research efforts are spent to shed light on this question,
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which is one of the most fundamental ones that evolutionary computation has to offer.
While in the early years of evolutionary computation (see, for example, the classic
works [5, 34, 69]) crossover seems to have been widely accepted as an integral part
of an evolutionary algorithm, we observe today two diverging trends. Local search
algorithms such as GSAT [136] for solving Boolean satisfiability problems, or such
as the general-purpose Simulated Annealing [96] heuristic, are clearly very popular
optimization methods in practice – both in academic and in industrial applications.
These purely mutation-based heuristics are nowadays more commonly studied under
the term stochastic local search, which forms a very active area of research. Opposed to
this is a trend to reduce the use of mutation operators, and to fully base the iterative
optimization procedure on recombination operators; see [152] and references therein.
However, despite the different recommendations, these opposing positions find their
roots in the same problem: we hardly know how to successfully dovetail mutation and
crossover.

In addition to large bodies of empirical works aiming to identify useful combinations
of crossover and mutation [34, 63, 85, 121], the question how (or whether) crossover
can be beneficial has also always been one of the most prominent problems in runtime
analysis, the research stream aiming at studying evolutionary algorithms by mathe-
matical means [25, 29, 30, 31, 43, 47, 48, 88, 89, 98, 107, 123, 141, 143, 157, 162],
most of these results focus on very particular algorithms or problems, and are not (or
at least not easily) generalizable to more complex optimization tasks.

In this section, we study a simple variant of the (µ+λ) GA mentioned in Section 4.3,
which allows us to conveniently scale the relevance of crossover and mutation, respec-
tively, via a single parameter. More precisely, our algorithm is parameterized by a
crossover probability pc, which is the probability that we generate in the reproduction
step an offspring by means of crossover. The offspring is generated by mutation other-
wise, so that pc = 0 corresponds to the mutation-only (µ+ λ) EA, whereas for pc = 1

the algorithm is entirely based on crossover. Note here that we either use crossover
or mutation, so as to better separate the influence of the two operators.

We study the performance of different configurations of the (µ + λ) GA on 25
IOHprofiler problems. We observe that the algorithms using crossover perform signif-
icantly better on some simple functions as OneMax (F1) and LeadingOnes (F2),
but also on some problems that are considered hard, e.g., the 1-D Ising model (F19).
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F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

100 100 5, 050 50 90 33 100 51 100 100 50 90 33 7
F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25

51 100 100 4.215852 98 180 260 42 9 17.196 -0.2965711

Table 5.2: Target values used for computing the ERT value in Figure 5.9.

5.2.2 Experimental Results

Experiment setup In order to probe into the empirical performance of the
(µ + λ) GA, we test it on the 25 problems mentioned in Section 2.5, with a total
budget of 100n2 function evaluations. We perform 100 independent runs of each algo-
rithm on each problem. For the (µ+λ) GA (see Algorithm 8 in Section 4.3), we study
three different crossover operators, one-point crossover, two-point crossover, and uni-
form crossover, and two different mutation operators, standard bit mutation and the
fast mutation scheme suggested in [50]. These variation operators are briefly described
as follows.
- One-point crossover : a crossover point is chosen from [1..n] u.a.r. and an offspring is
created by copying the bits from one parent until the crossover point and then copying
from the other parent for the remaining positions.
- Two-point crossover : similarly, two different crossover points are chosen u.a.r. and
the copy process alternates between two parents at each crossover point.
- Uniform crossover creates an offspring by copying for each position from the first or
from the second parent, chosen independently and u.a.r.
- Standard bit mutation: a mutation strength ℓ is sampled from the conditional bi-
nomial distribution Bin>0

(n, p), which assigns to each k a probability of
(
n
k

)
pk(1 −

p)n−k/(1 − (1 − p)n) [25]. Thereafter, ℓ distinct positions are chosen u.a.r. and the
offspring is created by first copying the parent and then flipping the bits in these ℓ

positions. Still, we restrict our experiments to the standard mutation rate p = 1/n.
- Fast mutation [50]: operates similarly to standard bit mutation except that the mu-
tation strength ℓ is drawn from a power-law distribution: Pr[L = ℓ] = (Cβ

n/2)
−1ℓ−β

with β = 1.5 and Cβ
n/2 =

∑n/2
i=1 i

−β .
Moreover, we test the algorithm with µ ∈ {10, 50, 100} and λ ∈ {1, ⌈µ/2⌉, µ}.

Detailed results for the different configurations of the (µ+ λ) GA are available in our
data repository at [171].

Results on IOHprofiler problems In Figure 5.9, we highlight a few basic results
of this experimentation for n = 100, where the mutation operator is fixed to the
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Figure 5.9: Heat map of normalized ERT values of the (µ+λ) GA with offspring-based
(top part) and population-based (bottom part) variator choice for the 100-dimensional
benchmark problems, computed based on the target values specified in Table 5.2. The
crossover probability pc is set to 0.5 for all algorithms except the mutation-only ones
(which use pc = 0). The displayed values are the quotient of the ERT and ERTbest,
the ERT achieved by the best of all displayed algorithms. These quotients are capped
at 40 to increase interpretability of the color gradient in the most interesting region.
The three algorithm groups – the (µ+1), the (µ+ ⌈µ/2⌉), and the (µ+ µ) GAs – are
separated by dashed lines. A dot indicates the best algorithm of each group of four.
A grey tile indicates that the (µ+ λ) GA configuration failed, in all runs, to find the
target value within the given budget.

standard bit mutation. More precisely, we plot in this figure the normalized expected
running time (ERT), where the normalization is with respect to the best ERT achieved
by any of the algorithms for the same problem. Table 5.2 provides the target values
for which we computed the ERT values. For each problem and each algorithm, we
first calculated the 2% percentile of the best function values. We then selected the
largest of these percentiles (over all algorithms) as target value.

On the OneMax-based problems F1, F4, and F5, the (µ+λ) GA outperforms the
mutation-only GA, regardless of the variator choice scheme, the crossover operator,
and the setting of λ. When looking at problem F6, we find that when µ = 10 the
mutation-only GA surpasses most of (µ+λ) GA variants except the population-based
(µ+µ) GA with one-point crossover. On F8-10, the (µ+λ) GA takes the lead in general,
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Figure 5.10: Heat map comparing the (µ + λ) GAs using the standard bit mutation
(sbm) with the (µ+ λ) GAs using the fast mutation on the 25 problems from Sec. 2.5
in dimensions n = 100. Plotted values are (ERTfast − ERTsbm)/ERTsbm, for ERTs
computed wrt the target values specified in Table 5.2. pc is set to 0.5 for all crossover-
based algorithms. Values are bounded in [−1, 1] to increase visibility of the color
gradient in the most interesting region. A black dot indicates that the (µ + λ) GA
with fast mutation failed in all runs to find the target with the given budget; the black
triangle signals failure of standard bit mutation, and a gray tile is chosen for settings
in which the (µ+ λ) GA failed for both mutation operators.

whereas it cannot rival the mutation-only GA on F7. Also, only the configuration with
uniform crossover can hit the optimum of F10 within the given budget.

On the linear function F3 we observe a similar behavior as on OneMax. On
LeadingOnes (F2), the (µ + λ) GA outperforms the mutation-only GA again for
µ ∈ {50, 100} while for µ = 10 the mutation-only GA becomes superior with one-point
and uniform crossovers. On F11-13 and F15-16 (the W-model extensions of Leadin-

gOnes), the mutation-only GA shows a better performance than the (µ+λ) GA with
one-point and uniform crossovers and this advantage becomes more significant when
µ = 10. On problem F14, that is created from LeadingOnes using the same trans-
formation as in F7, the mutation-only GA is inferior to the (µ+ λ) GA with uniform
crossover.

On problems F18 and F23, the mutation-only GA outperforms the (µ+λ) GA for
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most parameter settings. On F21, the (µ + λ) GA with two-point crossover yields a
better result when the population size is larger (i.e., µ = 100) while the mutation-only
GA takes the lead for µ = 10. On problems F19 and F20, the (µ + µ) GA with
the population-based variator choice significantly outperforms all other algorithms,
whereas it is substantially worse for the other parameter settings. On problem F24,
the (µ+µ/2) GA with two-point crossover achieves the best ERT value when µ = 100.
None of the tested algorithms manages to solve F24 with the given budget. The target
value used in Figure 5.9 is 17.196, which is below the optimum 20. On problem F25,
the mutation-only GA and the (µ + λ) GA are fairly comparable when µ ∈ {10, 50}.
Also, we observe that the population-based (µ+µ) GA outperforms the mutation-only
GA when µ = 100.

In general, we have made the following observations: (1) on problems F1-6, F8-9,
and F11-13, all algorithms obtain better ERT values with µ = 10. On problems F7,
F14, and F21-25, the (µ+ λ) GA benefits from larger population sizes, i.e., µ = 100;
(2) The (µ + µ) GA with uniform crossover and the mutation-only GA outperform
the (µ + ⌈µ/2⌉) GA across all three settings of µ on most of the problems, except
F10, F14, F18, and F22. For the population-based variator choice scheme, increasing
λ from one to µ improves the performance remarkably on problems F17-24. Such an
improvement becomes negligible for the offspring-based scheme; (3) Among all three
crossover operators, the uniform crossover often surpasses the other two on OneMax,
LeadingOnes, and the W-model extensions thereof.

To investigate the impact of mutation operators on GA, we plot in Figure 5.10 the
relative ERT difference between the (µ+λ) GA configurations using fast and standard
bit mutation, respectively. As expected, fast mutation performs slightly worse on F1-
6, F8, and F11-13. On problems F7, F9, and F15-17, however, fast mutation becomes
detrimental to the ERT value for most parameter settings. On problems F10, F14, F18,
and F21-25, fast mutation outperforms standard bit mutation, suggesting a potential
benefit of pairing the fast mutation with crossover operators to solve more difficult
problems. Interestingly, with an increasing µ, the relative ERT of the (µ + λ) GA
quickly shrinks to zero, most notably on F1-6, F8, F9, F11-13.

Interestingly, in [117], an empirical study has shown that on a randomly generated
maximum flow test generation problem, fast mutation is significantly outperformed by
standard bit mutation when combined with uniform crossover. Such an observation
seems contrary to our findings on F10, F14, F18, and F21-25. However, it is made on
a standard (100 + 70) GA in which both crossover and mutation are applied to the
parent in order to generate offspring.
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5.2.3 Summary

In this section, we have analyzed the performance of a family of (µ + λ) GAs, in
which offspring are either generated by crossover (with probability pc) or by mutation
(probability 1 − pc). On the PBO problem set, it has been shown that this random
choice mechanism reduces the expecting running time on OneMax, LeadingOnes,
and many W-model extensions of those two problems.

It would certainly also be interesting to extend the study to a (µ+ λ) GA variant
using (dynamic) tuned values for the relevant parameters µ, λ, crossover probability pc,
and mutation rate p. Therefore, based on the results in this section, we will introduce
our work on algorithm configuration in Chapter 6 and dynamic algorithm selection in
Chapter 7.
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Chapter 6

Automatic Configuration of
Genetic Algorithms

We compare in this chapter the results from Section 5.2 with those obtained from three
different types of automated algorithm configuration methods, one based on iterated
racing (we use Irace [111]), one surrogate-assisted technique (we use the mixed-integer
parallel efficient global optimization MIP-EGO [151]), and a classic heuristic opti-
mization method (we use the mixed-integer evolutionary strategies MIES suggested
in [109]). Also, we configure the (µ+ λ) GA considering two different objectives, i.e.,
expected running time and the area under empirical cumulative distribution function
curve.

6.1 Background

It was discussed in Section 5.2 that there is a long debate about the effectiveness of
the two main variators, crossover and mutation, and their combinations [118, 140].
Several works study the synergy of mutation and crossover, both by empirical and by
theoretical means, see [34, 63, 85, 121] and [144], respectively, as well as references
mentioned therein. However, most of these results focus on specific algorithms and
problems. Widely accepted guidelines for their deployment are scarce, leading to
a situation in which users often rely on their own experience. To reduce the bias
inherent to such manual decisions, a number of automated algorithm configuration
techniques have been developed, to assist the user with data-driven suggestions. To
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deploy these techniques, one formulates the operator choice and/or their intensity as
a meta-optimization problem, widely referred to as the algorithm configuration (AC)
or the hyperparameter optimization problem.

The AC problem was classically addressed by standard search heuristics such as
mixed-integer evolution strategies [4, 71, 109]. More specific AC tools have been devel-
oped in recent years, among them surrogate-based models (e.g., SPOT [13], SMAC [82],
MIP-EGO [151]), racing-based methods (Irace [111], F-race [18]) and optimization-
based methods (ParamILS [83]).

The result in this chapter is built on Section 5.2 in which we analyzed a configurable
framework of (µ+λ) GAs that scales the relevance of mutation and crossover by means
of the crossover probability pc ∈ [0, 1]. Recall that, in Algorithm 8, the framework
creates new solution candidates by either applying mutation (with probability 1− pc)
or by applying crossover (with probability pc). This way, it can separate the influence
of these operators from each other. While we have studied several operator choices
in Section 5.2 by means of grid search, we consider here only one type of crossover
(uniform crossover) and one type of mutation (standard bit mutation) to keep the
search space manageable and to better highlight our key findings.

Note that, to distinguish it from the budget of the configurators, we denote the
budget of the GAs as cutoff time in the following.

Automated algorithm configuration for improving the anytime performance of algo-
rithms has been applied in several works, both with respect to classical CPU time (e.g.,
for the travel salesperson problem [20], for MAX-MIN ant systems, and for mixed-
integer programming [112]) and for the here-considered function evaluation budgets
(see [3] for a recent example). However, we are not aware of any works using anytime
measures with the objective to identify configurations that minimize ERT values. On
the other hand, previous work has studied the impact of the cutoff time for algorithm
configurators [73, 74]. In [74], the authors conclude that considering the best-found
fitness is more efficient than considering the expected running time. Our work consid-
ers AUC, a measure that takes both the found fitness and running time into account,
and we conclude that the cutoff time can influence AUC less, when compared to ERT.

All our data is publicly available at [169]. Section 4.3 describes the configurable
(µ+λ) GA (Algorithm 13). The benchmark problems were introduced in Section 2.5,
and the cost metrics used to evaluate the algorithms were explained in Section 2.4.
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6.2 Configurators

We briefly introduce the three AC methods that are applied for configuring the
(µ + λ) GA: Irace [111], a mixed-integer parallel efficient global optimization (MIP-
EGO [155]), and the mixed-integer evolution strategy (MIES [109]), which we briefly
describe in the following paragraphs. All configurators work with a user-defined con-
figuration budget, which is the maximal number of algorithm runs that the AC method
is allowed to perform before recommending its final outcome.

Irace [111] is a so-called iterated racing method designed for hyperparameter opti-
mization. The main steps of Irace are (1) sampling values of parameters from particular
distributions, after which (2) the algorithms with the corresponding sampled parame-
ter settings are evaluated across a set of instances, then (3) elitist ones will be selected
by the racing method and (4) the sampling distributions are updated based on the
elitist configurations, to bias the sampling towards the elitist space. The sampling dis-
tributions of parameters are independent of each other unless user-defined constraints
and conditions exist. For the racing method, the sampled parameter settings are eval-
uated on instances. After several steps, parameter settings that are statistically worse
than others are discarded. At the end of the configuration process, one or several elite
configurations are returned to the user, along with their performance observed during
the configuration.

Efficient global optimization (EGO), also known as Bayesian optimization,
is designed to solve costly-to-evaluate global optimization problems. For our config-
uration problem, we use an EGO-variant called mixed-integer parallel EGO (MIP-
EGO [155]) capable of handling mixed-integer search space. EGO starts by randomly
sampling solution candidates {θ1, θ2, . . .} and evaluating their fitness {c1, c2, . . .}.
From these observations EGO learns a predictive distribution of the fitness value for
each unseen configuration using stochastic models, e.g., random forests or Gaussian
processes. Aiming at balancing the trade-off between the accuracy and uncertainty of
this predictive distribution, EGO uses a so-called acquisition function to decide which
solution candidates to sample next. Common acquisition functions are expected im-
provement and probability of improvement; see [67, 137] for an overview. For this
work, we use the moment-generating function of improvement (MGFI) [155], which
is defined as the weighted combination of all moments of the predictive distribution.
For the weights, we took a robust setting in [154], obtained by an extensive empirical
study on the BBOB problem set. To learn the predictive distribution, we choose a
random forest model as it deals with the mixed-integer/categorical search space more
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naturally than Gaussian processes.

The mixed-integer evolution strategy (MIES) uses principles from evolution
strategies for handling continuous, discrete, and nominal parameters by using self-
adaptive mutation operators for all three parameter types [109]. MIES starts with
a randomly initialized parent population of size µ, and then it generates λ offspring
candidates for each generation iteratively. Offspring are generated by recombining
two randomly selected parents and then mutating the solution resulting from the
recombination, after which (µ, λ) selection is applied to the offspring population, i.e.,
the µ best of the λ offspring form the parent population of the next iteration.

6.3 Experimental Results

6.3.1 Experimental Setup

Each AC method is granted a budget of 5, 000 target runs, where each target run
corresponds to ten independent runs of the (µ + λ) GA using the configuration that
the AC method wishes to evaluate. As previously mentioned, we use ERT and AUC
as performance metric, and these values are computed from the 10 independent runs.
Irace requires a set of instances for the tuning process. We imitate these instances
by the independent runs of the (stochastic) solvers. This is in line with previous
approaches, suggested, for example, in [32]. MIP-EGO starts with 10 initial candidates
by the default setting of the package [155]. We use a (4, 28) MIES, following the
parameter settings suggested in [109].

To obtain a useful baseline against which we can compare other algorithms, we
configure the (µ+λ) GA on each PBO problem separately. We consider n = 100 for all
problems and take ERT or AUC (see Section 2.4) calculated from 10 independent GA
runs as the cost metric, respectively. Also, we perform 100 independent validation runs
with the suggested parameter settings from a configurator, which is meant to mitigate
the randomness of the cost metric, thereby producing a fair empirical comparison. All
experimental data discussed later are obtained using this validation procedure.

For evaluating GA candidates during the configuration process, the ERT values
are calculated with respect to the targets listed in Table 5.2 and to the cutoff time of
50, 000 function evaluations. This is half the budget used in Section 5.2, but, according
to the results presented there, our cutoff time is still larger than the number of function
evaluations needed to hit the corresponding targets – except for F18, which is a very
challenging problem.
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For the AUC, the set of targets are 100 values, equally spaced in the interval
[ϕmin, ϕmax], where ϕmax is equal to the ERT targets listed in Table 5.2 and ϕmin

is 0 except for the following functions: ϕmin = −19, 590 for function F22, ϕmin =

−3, 950, 000 for function F23, and ϕmin = −1 for function F25. We evaluate the AUC
for each point in [50, 000], i.e., in the notation of Definition 2.5 we use T = [50, 000].

The configuration space of the AC problem is Θ = {µ, λ, pc, pm}, where µ ∈ [100]

is the parent population size, λ ∈ [100] is the offspring population size, pc ∈ [0, 1]

is the crossover probability, and pm ∈ [0.005, 0.5] is the mutation rate. A positive
crossover probability pc > 0 requires µ > 1, which otherwise renders a configuration
infeasible. The results for the grid search are based on our work in Section 5.2, where
we used µ ∈ {10, 50, 100}, λ ∈ {1, µ/2, µ}, pc ∈ {0, 0.5}, and pm = 0.01. Note that
this is a considerably smaller search space, whose full enumeration requires only 18

different configurations, which is much less than the budget allocated to the automated
configuration techniques. We will nevertheless observe that for some problems none of
the automated configurators could find hyperparameter settings that are equally good
as those provided by this small grid search.
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6.3. Experimental Results
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6.3.2 Results Obtained by Automated Configuration

The (1 + 1) EA with pm = 1/n has shown competitive results in [55] for the PBO
problems, so we use it as the baseline against which we compare the GAs obtained
by the configurators. Although it is part of the GA framework in Algorithm 8 and
could therefore be identified by the configuration methods, we still manually add it
as a baseline and we compare the results obtained by the three configurators to it.
Table 6.1 lists the configurations of the (µ+λ) GA obtained by the grid search and by
the three AC methods. Table 6.2 compares the performance of these configurations,
by listing the ERT and AUC values of the (1 + 1) EA and the corresponding relative
deviations of the configured GAs. More precisely, the ERT and AUC values of the AC
methods result from using ERT and AUC as the cost metric, respectively. The relative
improvement of ERT is computed as (ERT(1+1)−EA - ERT) / ERT(1+1)−EA, and the
relative improvement of AUC is computed as (AUC - AUC(1+1)−EA) / AUC(1+1)−EA.
Grey tiles indicate that the result is better than the corresponding result of the (1 +

1) EA, and the degree of gray represents the degree of improvement. We use in this
table the Mann-Whitney U test to compare the average running times of the (1+1) EA
and the GAs suggested by the configuration methods (pairwise comparisons). Runs
that did not hit the final target within the cutoff time of 50, 000 evaluations are capped
at this value. Asterisks in Table 6.2 indicate that the average hitting time of the GAs
suggested by the corresponding configuration methods is significantly different from
the average hitting time of the (1 + 1) EA.

ERT Results

For the OneMax-based problems F1 and F4-F6, configurations of the (µ+λ) GA using
crossover outperform the mutation-only GA with µ ≥ 10 [170]. However, according to
the values in Table 6.2, the (1 + 1) EA outperforms the configurations with pc > 0,
relatively large µ, and also relatively large λ. This observation matches our expectation
because our previous study has shown that the (1 + 1) EA is efficient on OneMax.
Meanwhile, we observe an interesting configuration with pm < 0.01, µ = λ = 2, and
pc > 0 that achieves competitive ERT values against the (1 + 1) EA for F1. This
configuration ties well with the results on different (µ + 1) GAs that were shown to
outperform the (1 + 1) EA (and any mutation-based algorithm, in fact) in a series of
recent works [25, 29, 143].

On F4, F6, F7, F13, F15-F17, and F19-22, none of the configurations returned by
the AC methods was able to outperform the (1 + 1) EA, whereas on F9-10, F14, F18,
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Figure 6.1: Relative ERT values of the GAs obtained by Irace, MIES, and MIP-EGO
using ERT as the cost metric compared to the ERT of the GAs obtained by the same
method when using AUC as the cost metric during the configuration process. Plotted
values are (ERTusing ERT-ERTusing AUC)/ERTusing AUC, capped at −1 and 1. Positive
values therefore indicate that configurator obtains better results when configuring
AUC.

F24, all AC methods find configurations that perform much better than the (1+1) EA.

On LeadingOnes, a slightly better result compared to the ERT value 5 574 of the
(1+1) EA is found by MIES. This result is quite sensitive with respect to the mutation
rate. When changing it from the MIES-suggestion of pm = 0.005 to pm = 0.01 we
obtain an ERT value of 5 829. MIES also obtains an improvement on F11, which
corresponds to a (2 + 2) GA with pm = 0.0245. On F14, we already observed in [170]
that mutation-only GAs with pm = 1/n are inferior to other GA configurations with
a larger offspring population size and higher mutation rate. As expected, all three
methods easily suggest configurations that outperform the (1 + 1) EA by a great
margin.

On F18 and F24, all configurators unanimously suggest fairly small values for the
crossover probabilities. For F25, however, GAs with pc > 0.8 show the (by far) best
performance.

AUC Results

Since we evaluate the AUC at each budget [50, 000], the AUC values tend to be very
close to 1, especially for the GAs that require much fewer than 50, 000 evaluations to
find an optimal solution.
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Figure 6.2: Fixed-target ERT values of the configurations suggested for F10. The
suffix “-ERT/AUC” indicates which cost metric is used

On 13 out of the 25 problems, none of the configuration methods is able to identify
a hyperparameter setting that yields better AUC values than that of the (1+1) EA. In
some, but clearly not all of these cases, the achieved AUC values are not much worse
than that of the (1 + 1) EA. The largest improvements are obtained on functions F7,
F10, F14, F17, F18, and F24. In most of these cases all four configuration techniques
found improvements over the (1+1) EA except for F17, where Irace is the only method
finding an improvement and except for F7, where all three automated configuration
techniques find an improvement but not the grid search (the inverse is true on F23
but the advantage of the grid search is fairly small, not statistically significant, and
the obtained algorithm is a mutation-only (10+1) GA with pm = 1/n, which is very
close to the (1 + 1) EA).

We next discuss the results for the functions for which large improvement over the
(1 + 1) EA were obtained.

On F7, the configuration obtained by Irace (which achieves the best improvement)
is a (1 + λ) EA with pm ≈ 3/n, the one obtained by MIP-EGO is a (2 + 20) GA with
small crossover probability pc = 0.082, and the one obtained by MIES is a (23+27) GA
with large crossover probability pc = 0.672. These results indicate that the fraction of
configurations achieving better AUC value than the (1 + 1) EA may be fairly large.

On F10, large crossover probabilities seem beneficial; all three automated configu-
ration techniques return settings with pc > 0.98. The mutation rate seems to have less
impact on the results, and the suggested settings vary from 8.5/n (Irace) to 41.3/n
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(MIES, the best AUC value). Interestingly, also two of the three configurations tuned
for minimizing ERT have large crossover probabilities, with the exception of the one
returned by MIES (pc = 0.32). The performances of all these configurations are very
similar, as we can see in Figure 6.2.

On F14, the best improvement is obtained by a mutation-only (100+50) GA using
pm = 1/n, closely followed by the Irace result, which is a (48+83) GA using crossover
probability pc = 0.812 and pm ≈ 41/n. We cannot observe any clear pattern in the
results, and the four suggested configurations all differ quite a bit.

For F17, as mentioned, only Irace finds a better configuration, which is also a
(1+1) EA, but using a slightly larger mutation rate of pm = 1.9/n instead of 1/n.

For F18, all configurators return settings with small crossover probability pc <

0.031 and small mutation rate pm < 0.01, which indicates that local search methods
may be more suitable for this problem. Interestingly, the performance of randomized
local search is not very good (see [55] for details), which suggests that a positive prob-
ability for escaping local optima via small jumps in the search space or via crossover
are needed to be efficient on this problem.

For F24, no clear pattern can be observed in the suggested configurations, and
also the crossover probabilities differ widely, from 0 for the grid search, values around
0.27 for MIP-EGO and MIES, to 0.7 for Irace.

On the LeadingOnes problem F2, the (2 + 1) GA with pm = 0.008 and pc =

0.005, found by MIES, yields a (small) improvement over the (1+ 1) EA, whereas the
configurations found by the other methods perform worse.

All in all, we find that on several problems the suggested configurations differ
widely, far more than we would have expected and this across all four parameters.
Analyzing the landscape of the AC problem suggests itself as an interesting follow-up
study, which would require an effort that goes beyond the scope of this work. However,
we have seen related work being conducted in [129, 146]

6.3.3 Discussions on the Configurators’ Performance

We now compare the performance of the three automated AC methods. The last
row of Table 6.2 summarizes for how many settings each method was able to find
configurations that outperform the (1 + 1) EA. These numbers are rather balanced
between the different methods, with the notable exception of the minimizing ERT
objective, for which MIES suggested 13 improvements, compared to 6-8 improvements
found by the other methods. MIES also suggested the best configurations in most
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of the cases, but the improvements over the (1 + 1) EA are, however, rather minor
in several of these cases, so that barely counting them does not give justice to the
complex behavior observed in Table 6.2, from which we cannot derive a clear winning
configurator. We can nevertheless make a few observations.

Handling Conditional Parameter Spaces

We easily see from Table 6.1 that Irace is the only method that obtains mutation-
only GAs, and in all of these cases it returns a (1 + λ) EA. We recall that setting
µ = 1 requires to set pc = 0; the configuration is infeasible otherwise. This advantage
of Irace lies in its handling of conditional parameters: Irace samples non-conditional
parameters first, and samples conditional parameters only if the condition is satisfied.
In contrast, the two other AC methods, MIP-EGO and MIES, sample parameter
values from independent distributions and give penalties to infeasible settings. With
this strategy, the two methods can avoid infeasible candidates, but the probability of
sampling feasible conditional candidates may be too small. For example, MIP-EGO
can find a configuration with µ = 2 and pc = 0.0065 on F16 in Table 6.1, but it
cannot obtain the competitive configuration of (1+ λ) mutation-only GA because the
probability of sampling µ = 1 and pc = 0 simultaneously is too small. We observe a
similar performance of MIES on F17.

Impact of the Cost Metric

We have already observed that MIES obtains better configurations for more problems
when using ERT as the cost metric. For AUC, in contrast, Irace finds more configura-
tions that improve over the (1+1) EA, which can be explained as follows. In the first
few iterations, AUC is able to differentiate the performance of two poor configurations
if both fail to find the final target, whereas the ERT value will be infinite and thereby
incomparable in this case. Hence, using AUC as the cost metric, Irace could learn to
avoid evaluating those poor configurations in the following iterations. It is worth not-
ing that such an observation is also supported by a case study of Irace [127], in which
the authors discovered that Irace would spend too much time on poor configurations if
the mean running time is taken as the cost metric. As a solution, the adaptive capping
strategy [83] is introduced to Irace in this work. Interestingly, this discussion connotes
that the AUC metric realizes a similar effect as with adaptive capping for minimizing
the running time of an optimization algorithm. This behaviour also indicates that
the choice of the cost metric might be a factor to consider when choosing which AC
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Figure 6.3: The relative deviation from the best-known ERT value of the GAs obtained
during the configuration process of Irace for tuning the (µ + λ) GA for OneMax
in dimension n = 100, with the objective to minimize the ERT for the optimum
f(x) = 100. The maximal number of configurations that can be tested by Irace is set
to 5,000. The figure is produced by the acviz tool [36].

technique to apply.

For an algorithm that cannot hit the target in all runs, the variance of its ERT
values can be high due to the uncertain success rate. Besides, ERT can not distinguish
algorithms that can not hit the target in any runs, even though their performance may
differ in terms of results for other targets. This shortcoming is mitigated when tuning
for large AUC, since this performance metric also takes into account the hitting times
for easier targets.

Figure 6.3 plots the relative deviations from the best-known ERT value of the
configurations obtained during one run of Irace when using ERT as the cost metric. We
observe that many configurations show large relative deviation values, which stem from
GAs that cannot hit the optimum within the given budget. These configurations do not
provide much useful information, since they all look equally bad for the configurator.

6.3.4 The Choice of the Cost Metric

We now evaluate how well configurations that are obtained by tuning for the AUC
cost metric perform in terms of ERT. Figure 6.1 summarizes these result, by plot-
ting the relative advantage of the configurations tuned for AUC, compared to
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those that were explicitly tuned for ERT. More precisely, we plot (ERTusing ERT-
ERTusing AUC)/ERTusing AUC, so that positive values indicate that tuning for AUC
give better ERT values than the configurations obtained when tuning for ERT. We
see that this is the case for 13, 12, and 9 out of the 25 problems when using Irace,
MIP-EGO, and MIES, respectively.

We now zoom into the results obtained by Irace. We abbreviates “Irace-ERT”
(“Irace-AUC”) the configurations obtained when using ERT (AUC) as cost metric.
For the problems on which the ERT of Irace-AUC was worse than that of Irace-ERT,
we plot in Figure 6.6 violin plots for the running times of the 100 validation runs. We
observe that F15 is the only problem where Irace-ERT significantly outperforms Irace-
AUC. On F2-3, F5, and F20, we observe that the result of most runs of Irace-AUC and
Irace-ERT are close, but the variances of the results of Irace-AUC are higher than for
Irace-ERT. On the remaining problems, we observe high variances for the result of both
Irace-ERT and Irace-AUC. Irace-ERT finds the configurations with fewer unsuccessful
runs, which makes sense because the number of unsuccessful runs significantly affects
the ERT value. However, AUC does not only consider the evaluations needed to hit
the final target, so we observe more unsuccessful runs and competitive partial runs for
Irace-AUC, i.e., in cases of F21 and F24.

Although Irace-AUC does not obtain better ERT values than Irace-ERT, it can
still provide valuable insights concerning the resulting configurations and performance
profiles. Figure 6.4 plots the fixed-target ERT values of the GAs obtained by Irace-
ERT and Irace-AUC for F21. We observe that the result of Irace-ERT outperforms the
result of Irace-AUC for the final target f(x) = 260. However, for the long period when
f(x) < 258, Irace-AUC performs better. This observation indicates that configuring
AUC can provide novel instances to investigate how the GA performs during the
optimization process.

We plot in Figure 6.7 the violin plots of the running times for the problems where
Irace-AUC obtains better ERT values than Irace-ERT. The advantage of Irace-AUC is
significant on several problems, i.e., F1, F6, F11, F16, and F22. Moreover, Irace-ERT
can not find the final targets of F7, F17, F19, and F25 within the cutoff time, whereas
Irace-AUC hits the targets in some (F7, F17, and F25) or all (F19) of the runs.

Figure 6.5 plots the fixed-target result of different GAs on F8. Compared to Irace-
ERT, we observe that Irace-AUC outperforms the other algorithm at the final target
and also exhibits advantages over other algorithms in most of the optimization process.
Figure 6.8 plots the fixed-target result of different GAs on F7. The figure shows that
Irace-AUC is the only one that hits the optimum f(x) = 100, and the best-found
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fitness of Irace-ERT is less than 90. We observe that none of the GAs shown in the
figure hits the optimum in all runs (because the ERT values are larger than the cutoff
time of 50, 000 function evaluations).

The results of Irace-AUC and Irace-ERT on the PBO problems reveal the questions
of how the cost metric affects the performance of Irace for different configuration tasks
for future study. We study in the following the impact of the cutoff time concerning
the behavior of Irace on OneMax and LeadingOnes.
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Figure 6.4: Fixed-target ERT values of the GAs listed in Table 6.1 for F21.
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Figure 6.5: Fixed-target ERT values of the GAs listed in Table 6.1 for F8.
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Figure 6.6: Violin plots of first runtimes hitting the targets for the configurations
found by Irace when tuning for ERT and AUC, respectively. Only showing results
for problems on which Irace-ERT outperforms Irace-AUC. Results are from the 100
independent validation runs. Targets are listed in Table 5.2, and the configurations
of the GAs can be found in Table 6.1. For each run, values are capped at the budget
50, 000 if the algorithm can not find the target.
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Figure 6.7: Violin plots of first runtimes hitting the targets for the configurations
found by Irace when tuning for ERT and AUC, respectively, for problems on which
Irace-AUC outperforms Irace-ERT. Results are from the 100 independent validation
runs. Targets are listed in Table 5.2, and the configurations of the GAs can be found
in Table 6.1. For each run, values are capped at the budget 50, 000 if the algorithm
can not find the target.
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Figure 6.8: Fixed-target ERT values of the GAs listed in Table 6.1 for F7.

Sensitivity with respect to the cutoff time

Inspired by the result in Figure 6.8, we study the sensitivity of ERT and AUC with
respect to the cutoff time of the GAs. To this end, we consider the set {(0.5+ 0.1t)×
ERT(1 + 1) EA | t ∈ [0..15]} of 16 different cutoff times. For each of these cutoff times,
for each of the two cost metrics (AUC and ERT), and for each of F1 and F2, we run
Irace 20 independent times with the same configuration budget of 5,000 target runs
(where each target run corresponds again to ten independent runs of the respective
(µ + λ) GA configuration). Figure 6.9 plots ERT values of the GAs obtained this
way (as before, each ERT value is based on 100 independent validation runs). For
comparison, the red line indicates the performance of the (1 + 1) EA.

On OneMax, we observe that Irace-ERT can not find promising configurations
when the cutoff time of the GAs is too small to hit the optimum. This is the case for
cutoff time of the budgets smaller than 665. However, Irace-AUC can work with small
budgets that are not sufficient to hit the optimum. Even with the cutoff time of the
budgets larger than 665, Irace-AUC still obtains better ERT values than Irace-ERT.
Similarly, the result for LeadingOnes shows that Irace-ERT cannot find promising
configurations with insufficient cutoff time of GAs. Still, Irace-AUC performs well
across all given cutoff time.

Overall, we thus see that tuning with respect to AUC is much less sensitive with
respect to the cutoff time.
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Figure 6.9: ERT values (y-axis) of the GAs obtained by Irace for OneMax and
LeadingOnes in dimension n = 100, for different budgets B that the GAs can spend
to find the optimum (x-axis). Showing results for B ∈ {(0.5 + 0.1t)ERT(1+1) EA | t ∈
[15]}. For comparison, the ERT values of the (1+1) EA are plotted by horizontal red
lines. Results are for the best found configurations obtained from 20 independent runs
of Irace, and each of the ERT values is with respect to 100 independent validation
runs.

Sensitivity with respect to the configuration budget of Irace

We also analyze the sensitivity of the results with respect to the configuration budget,
i.e., the number of target runs that the configurator can perform before it suggests
a configuration. We use Irace for this purpose. Figure 6.10 plots the ERT values of
the configurations suggested by Irace, for 8 selected problems from the PBO suite.
Interestingly, the ERT values are not monotonically decreasing, as one might have
expected, at least for the configurations that are explicitly tuned for small ERT. Tuning
for AUC gave the best ERT values for F1, 8, 19, 20, and 21.

6.4 Summary

In this chapter, we extended the analysis on the performance of a family of (µ +

λ) GAs, based on the work of Section 5.2. Four different configuration methods have
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been applied for finding promising configurations of GAs: the grid search and three
automated techniques.

The experimental results showed that mutation-only GAs usually benefit from
small parent population size. On the contrary, crossover-based GAs require sufficient
population sizes. On the PBO problem set, the (1+1) EA outperforms the other tested
GAs on OneMax, LeadingOnes, and some of their W-model extensions. However,
crossover can be beneficial for the W-model extensions with epistasis and ruggedness,
concatenated trap, and NK-landscapes.

We have also investigated the performance of AC methods: Irace, MIP-EGO,
and MIES. Irace is the only method that has found conditional configurations of (1 +
λ) mutation-only GAs. It handles the non-conditional parameters first and samples the
conditional parameters when the condition is satisfied, but the other two automated
methods sample all parameters independently, leading to worse results in cases where
mutation-only is beneficial.

We also observed that the cost metric used as tuning objective has a major impact
on the performance of AC methods. When using ERT, the AC methods cannot obtain
useful information from configurations that cannot hit the optimum. But not only
for these cases we observed that tuning for AUC gave better ERT values than when
directly tuning for ERT.

Our results have also demonstrated that none of the configuration methods clearly
outperforms all others, suggesting to either combine them or to develop guidelines
that can help users select a most suitable configuration technique for their concrete
problem at hand. Finally, we also observe that in several cases none of the techniques
could find configurations that outperform or perform on par with the (1+1) EA, which
may indicate improvement potential for these configuration methods.
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Figure 6.10: ERT values (y-axis) of the GAs obtained by Irace with different configu-
ration budgets BT (the number of configurations that Irace can test, x-axis). Results
are for BT ∈ {(0.5 + 0.25t)5, 000 | t ∈ [4]}. Each ERT value is for the 100 validation
runs of the configuration suggested by Irace after a single run, i.e., one for each budget.
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Chapter 7

Dynamic Algorithm Selection

We analyze in this chapter how well existing benchmark data can be used for the
selection of suitable algorithm combinations. Precisely, we investigate using dynamic
crossover probability for the (µ + λ) GA and study “one-shot” dynamic algorithm
selection (dynAS) policies based on the results of the benchmarking study presented
in Section 5.2. The study in this chapter highlights the research topics for the future
work of dynAS, namely automatic detection of alternating timing and “warm-start”
strategies for adjusting parameters.

7.1 Background

It is well known that different algorithms or different instantiations of the same al-
gorithm are best suited for different problems and even for different stages of the
optimization process. Automated algorithm selection [95] as well as dynamic parame-
ter selection [92] are therefore intensively studied meta-optimization problems in EC.
However, the former has a strong requirement on being able to run different algo-
rithms (or algorithm configurations) prior to making a decision which algorithm to
apply to the problem at hand. Parameter control and related concepts (including
hyper-heuristics, adaptive operator control, etc.), in contrast, assume that the selec-
tion has to be made on the fly, without leveraging existing data from previous or
related runs. With the rise of artificial intelligence methods, EC is currently facing a
paradigm shift, in that we aim to actively exploit existing performance data to select
which algorithms to apply, and how to possibly adjust them during the run. We are,
however, still far from achieving a fully automated informed online selection.
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7.2. Dynamic Crossover Probability Selection: A Study Case on
LeadingOnes

We study in this chapter how well we can predict from existing performance data
which algorithm instances to combine for a given problem at hand. While we do allow
for switching between different algorithms, the decision when to switch has to be made
prior to the run, and depends, in our case, on the solution quality of the evaluated
solution candidates. More precisely, we use the benchmarking data in Section 5.2 as
starting point to investigate, for each of the 25 individual problems, how well we can
predict which single-switch algorithm combinations would show good performance.
For some functions we easily obtain algorithm combinations that outperform the best
static algorithms. For other functions the results are rather mixed. On three functions,
none of the 100 tested single-switch algorithm combinations was able to outperform
the best static solver. The prediction quality of the approach suggested in [153] varies
a lot between the different functions. While for LeadingOnes, for example, the
performance predictions are rather accurate, large discrepancies between predicted
and actual performance can be observed for more complex function. In particular for
multi-modal functions the approach can get trapped by a first algorithm that is very
efficient in converging to a local optimum from which the second algorithm cannot
escape easily.

7.2 Dynamic Crossover Probability Selection: A

Study Case on LeadingOnes

Based on our finding in [170] (see Section 4.3) that, on LeadingOnes, the optimal
crossover probability of Algorithm 8 is dynamic along the problem dimension and pop-
ulation size, we start in this section with an investigation of using dynamic crossover
probabilities for the (µ+ λ) GA.

To obtain the “optimal” crossover probability at different stages of the optimization
process, we test the (10 + 10) GA using standard bit mutation with p = 1/n and
uniform crossover with different pc ∈ {0.1k | k ∈ [9]}. Algorithms run at the stages
of fitness value f ∈ [s, s + 5], s ∈ {5i | i ∈ [19]} on 100-dimensional LeadingOnes.
Practically, we initialize the population of the GAs with all the individual’s fitness
values equal to s, and the algorithms terminate once a solution with f(x) ≥ s + 5 is
found.

Figure 7.1 plots function evaluations used by the GAs at each stage. It shows that
the GA with pc = 0 uses the least function evaluations at the early stages s ≤ 40, but
other GAs with pc > 0 use less function evaluations as s is increasing. Therefore, we
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Chapter 7. Dynamic Algorithm Selection

expect to improve the performance of the (µ+λ) GA by using the “optimal” crossover
probabilities at all the stages of the optimization process. Figure 7.2 plots the fixed-
target ERTs of GAs with static pc and dynamic ones. The dynamic policy selects
the corresponding best pc at each stage. Practically, when the GA finds a solution
with s1 ≤ f(x) < s2, s2 = s1 + 5, s ∈ {5i | i ∈ [19]}, the pc will be adjusted by the
corresponding best value in Figure 7.1.

Figure 7.2 shows that the GA with dynamic pc outperforms other GAs along
the entire optimization process. The dynamic policy successfully hits the optimum
f(x) = 100 using the smallest ERT 7, 194, while ERT of the best runner-up (the GA
with pc = 0.2) is 7, 661. This corresponds to a 6% improvement of the dynamic GA
over the best static one. This performance empirically proves that the GA can benefit
from dynamic crossover probability, and it displays a successful case of applying the
dynAS for the GA. However, the dynAS problem is not usually coming with the ideal
condition that candidate algorithms differ by only one parameter. Therefore, we are
working on the GAs with more combinations of parameters in the next section.
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Figure 7.1: Average number of function evaluations needed by different (10+10) GAs
to find a solution y with f(y) ≥ s+5 on the 100-dimensional LeadingOnes function
when all ten points in the initial population are uniformly chosen from the set of points
x that satisfy f(x) = s, for s ∈ {5i | i ∈ [19]}. The GAs differ only in the crossover
probability pc ∈ {0.1k | k ∈ [9]} (different lines). Results are averaged of 1, 000
independent runs. The connecting lines are only meant to help visual interpretation,
the data points are only at the values 0, 5, 10, . . . , 95.
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Figure 7.2: Fixed-target ERTs of GAs on 100-dimensional LeadingOnes. The legend
presents values of pc, and the dynamic method adjusts its pc to the optimal value at
each target f(x) = s, s ∈ {5i | i ∈ [19]}, based on the result in Figure 7.1. Results are
average of 100 independent runs.

7.3 Dynamic Algorithm Section for the PBO Prob-

lems

Since the LeadingOnes case shows significant improvement by using dynamic
crossover probabilities, which is a particular case of the dynAS, we study the be-
havior of the dynAS on a broader range of problems and GAs. We take as input the
benchmarking data from Section 5.2, which comprise detailed performance records for
80 genetic algorithms on the 25 functions provided by IOHprofiler. We focus on
ERT as performance measure. Detailed data can be found in [166].

Following the approach suggested in [153] we compute a “theoretical” ERT value for
all combinations (A1, A2, ϕs), where A1 is the first algorithm, A2 the second, and ϕs

the target value at which we switch from A1 to A2. To this end, we simply compute
ERT(A1, P, ϕs) + ERT(A2, P, ϕf ) − ERT(A2, P, ϕs), where all these ERT values are
based on the performance records provided in Section 5.2. In total, we consider 42
possible switching points ϕs, which we select within the interval [ϕm, ϕf ] between
the smallest fitness value ϕm of the problem and the best found target ϕf according
to Table 5.2. We consider evenly spaced targets, for the original and for the log-scaled
interval, respectively. For each problem, we consider only algorithms that hit the
final target value with probability at least 80% according to the data from Section 5.2.
Using this approach, we select for each problem the 100 best combinations (A1, A2, ϕs)
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Figure 7.3: Relative ERT values of 100 1-switch combinations (A1, A2, ϕs) (dERT ) for
23 out of 25 IOHprofiler problems in dimension d = 100, compared to the ERT of the
best static GAs according to the results in Section 5.2 (sERT ). Each black dot repre-
sents one ERT value. The relative deviation is calculated by (dERT − sERT )/sERT
so that negative values (below the red line) correspond to an advantage of the dynamic
combination over the best static algorithm. We only display values between −0.5 and
0.5 so that the results of F24-F25 are missing here with values larger than 1. All ERT
values are based on 100 independent runs.

and we then run the combination 100 independent times on the problem that they
have been selected for.

In Figure 7.3 we compare the so-obtained ERT values with the best ERT value
reported in Section 5.2, which we refer to as the best static algorithm (BSA). For
combinations (A1, A2, ϕs) for which the parent population sizes µ1 of A1 is larger than
the parent population size µ2 of A2 we selected the best µ2 points to initialize the
parent population of A2. Where µ1 < µ2, the new parent population comprises all
µ1 points, as additional ⌊µ2/2⌋ − µ1 copies of the best points, and ⌈µ2/2⌉ randomly
added individuals.

For some of the problems (e.g., F1, F2, F7, F11-14, F16-23)), the ERT of several
combinations (A1, A2, ϕs) outperform that of the BSA. For other functions, and in
particular for F10, F24, and F25, none of the combinations (A1, A2, ϕs) is able to
outperform the BSA.
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Figure 7.4: Fixed-target ERTs of GAs on F24 in dimension d = 100. The dynGA
switches from the (10 + 10)-two-point-fGA to the (100 + 100)-two-point-fGA at the
target f(x) = 15.81. Results are from 100 independent runs.

Local Optima are Deceptive An intuitive explanation for the cases where dynAS
fails is that this is caused by local optima. Recall that in the computation of the
predicted ERT, the contribution of A1 to the predicted ERT is decided by its ERT
hitting the target f(x) = ϕs. However, using the ERT as the cost metric, we can not
obtain information to estimate whether the algorithm is trapped or around a local
optimum.

Figure 7.4 plots the fixed-target result of the best tested dynamic genetic algorithm
(dynGA) on F24, which uses a (10 + 10)-two-point-fGA at first and the switches to a
(100 + 100)-two-point-fGA. By using a small population size 10 initially, the dynGA
converges to the switching point (f(x) = 15.81) fast, but it is trapped there and could
not follow the original trend of the (100+100) GA later. We do not solve this problem
here, but it is interesting to spot this issue for future work.

7.4 Summary

We have investigated in this chapter possibilities to leverage existing benchmark data
to derive switch-once dynamic algorithm selection policies. While for some cases the
“theoretical” approach suggested in [153] could indeed predict combinations that out-
performed the best static solver, the results are less positive for others. One obstacle
that hinders an accurate performance prediction are local optima: when the first al-
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gorithm is very good at converging to a local optimum, it is likely to be chosen as A1.
It is then important, however, to continue the search with an algorithm that has a
good enough exploration power to escape the local optimum. This ability, however,
seems hard to infer from the pure performance profiles, and may require a “human in
the loop”.

Going forward, our long-term goal is the automated detection of situations in
which switching from one algorithm to another can be beneficial. To this end, we
will further investigate efficient strategies to warm-start the algorithms by actively
using the information accumulated thus far. In the here-presented study, we have
used ERT values as performance measure and as indicator to select which algorithm
combinations to execute. In future work we will consider other performance measures,
and in particular those that measure the anytime performance of the algorithms.
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Chapter 8

Conclusions

In this thesis, we have developed the IOHprofiler benchmarking software, and we
demonstrated the benefits of our software in benchmarking evolutionary computation
methods and studying (dynamic) algorithm configuration.

In practice, we discussed in Chapter 1 the role of benchmarking in optimization
and explained the demand for a new benchmarking environment. Thus, we presented
our IOHprofiler benchmarking software and answered research question 1 in
Chapter 3. To address research question 2, we performed benchmarking studies on
the evolutionary and genetic algorithms for a wide range of pseudo-Boolean optimiza-
tion problems. Precisely, we investigated the impact of the population size and the
mutation rate for the (1 + λ) EAs and the impact of the crossover probability for the
(µ + λ) GA on OneMax and LeadingOnes in Chapter 4. Moreover, we compared
twelve heuristics and variants of a family of genetic algorithms on the twenty-five prob-
lems provided by IOHprofiler in Chapter 5. The benchmarking studies inspired us
to work on self-adaptation and algorithm configuration. Precisely, for self-adaptation,
we proposed the standard normalized bit mutation for the (1 + λ) EAs and answered
research question 3 in Chapter 4. In addition, for algorithm configuration, we
applied Irace, MIP-EGO, and MIES to tune the parameters of the (µ + λ) GA and
discussed the impact of the cost metric for the configuration task in Chapter 6, answer-
ing research question 4. Research question 5 was discussed in Chapter 7, where
we explored the possibilities of leveraging benchmarking data for dynamic algorithm
selection.

Despite the achievements described in this thesis, the goal of developing a guideline
on which algorithms to favor for which kinds of the problem remains a challenging en-
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deavor. Much research is yet to be done to answer if there is still improvement space for
the design of the algorithm or how we can improve the-state-of-art algorithms. Among
the possible avenues for future research, we consider the following topics particularly
important: the development of IOHprofiler, the bi-objective algorithm configura-
tion problem, advancing algorithm configuration techniques, parameter control, and
dynamic algorithm selection.

• Development of IOHprofiler IOHprofiler will be an ongoing project,
and more components will be added to bring more ideas together. The software
has gained attention from the community, and we are glad to see expectations
from different researchers for the future of IOHprofiler. For example, IOH-

profiler, being integrated with other frameworks, contributes to the study
of large scale automated algorithm design [3]. From the current development
base, 1) we will consider more benchmark problems, even towards mixed-integer
optimization problem and multi-objective optimization; 2) we will develop cus-
tomized logging systems to support users observing algorithms’ behaviour from
different views of points; For example, a logger calculating the AUC values of
algorithms have been applied for our study in Chapter 6; 3) novel evaluation cri-
teria and visualization of algorithms’ performance will also be a potential topic.
For example, more and more criteria have been integrated into IOHanalyzer,
such as the Deep Statistical Comparison analysis [59] and Shapley-values.

• Bi-objective algorithm configuration Based on the study of tuning (µ +

λ) GA for minimizing ERT and maximizing AUC, respectively, we plan to study
in what sense our observation that tuning for AUC can help find better con-
figurations for ERT generalizes to other algorithm families and/or problems.
Moreover, given that we can use both running time and anytime performance
during the tuning process, a bi-objective (or even multi-objective, if consid-
ering different performance measures) optimization process might balance the
advantages of the different cost metrics.

• Advancing algorithm configuration techniques Our results have also
demonstrated that none of the configuration methods clearly outperforms all
others, suggesting to either combine them or to develop guidelines that can
help users find the most suitable configuration technique for their con-
crete problem at hand. We also observe that none of the techniques could
find configurations that outperform or perform on par with the (1 + 1) EA in
several cases, indicating improvement potential for these configuration methods.

132



Chapter 8. Conclusions

• Parameter Control and Dynamic Algorithm Selection The fact that op-
timal values of algorithm parameters change along the optimization process can
be observed in the results in this thesis. We have studied self-adaptation of the
mutation rate for the (1 + λ) EAs. Also, the result in Chapter 4 has shown
that the (µ+ λ) GA benefits from dynamic crossover probability. It would cer-
tainly be interesting to extend our study to using dynamic values for the relevant
parameters µ, λ, pc, and p on more optimization problems. Interestingly, the
meta-algorithm (Algorithm 7 in Chapter 4) demonstrates that RLS and EAs
can be seen as two configurations of the meta-algorithm. This inspired us with
the topic of online algorithm configuration., which is studied in the context of
dynamic algorithm selection in Chapter 7. We have studied how benchmark-
ing data can be used to infer informed (one-shot) dynamic algorithm selection
schemes for the solution of pseudo-Boolean optimization problems [167]. How-
ever, we do not obtain improvement for all the tested problems. Therefore, we
will investigate efficient strategies to warm-start the algorithms by actively us-
ing the information accumulated thus far. We have used ERT values as the
performance measure and as the indicator to select which algorithm combina-
tions to execute. In future work, we will consider other performance measures,
particularly those that measure the anytime performance of the algorithms.
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Samenvatting

In zowel het dagelijks leven als in wetenschappelijk onderzoek worden we vaak gecon-
fronteerd met moeilijke optimalisatie-problemen. Om deze problemen op te lossen
zijn er veel verschillende algoritmes ontworpen, maar we hebben meestal geen duideli-
jke conclusies over hoe effectief deze algoritmes zijn voor specifieke type problemen.
Gelukkig kunnen benchmark studies ons helpen om de effectiviteit van deze algoritmes
op een onbevoordeelde manier te vergelijken.

In deze thesis introduceren we de IOHprofiler, een benchmark omgeving die de
transitie van de implementatie van algoritmes naar het analyseren en visualiseren
van hun effectiviteit mogelijk maakt. Deze software bestaat uit twee componenten:
IOHexperimenter, een gebruiksvriendelijke en makkelijk aanpasbaare module voor het
uitvoeren van de benchmark experimenten en het genereren van de bijbehorende data;
en IOHanalyzer, een module voor het verwerken van deze data en het genereren van
gedetaileerde statistiche analyses.

We maken gebruik van de verscheidene functionaliteiten van IOHprofiler om de ef-
fectiviteit van evolutionaire algoritmes voor het optimaliseren van discrete problemen
te analyseren. We bestuderen specifiek de impact van de mutatie-graaden de grootte
van de populatie in (1+λ) EAs en de impact van de crossover kans binnen (µ+λ) EAs
op OneMax en LeadingOnes. Verder vergelijken we twaalf heuristieken en verschillende
versies van genetische algoritmes op vijfentwintig pseudo-Booleaanse problemen. Gein-
spireerd door deze resultaten introduceren we de gestandardiseerde genormaliseerde bit
mutatie voor EAs en stellen we voor om niet-asymptotische looptijd-analyse (d.w.z.,
genzen die houden voor een specifieke dimensie van een probleem in plaats van grote-
O-notatie) te gebruiken voor theoretische studies over het gedrag van EAs.

Vervolgens gebruiken we verschillende algoritme-configuratie methoden (irace,
MIP-EGO en MIES) om de parameters van een genetisch algoritme af te stemmen.
De experimentele resultaten geven ons inzicht in veelbelovende configuraties van het
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genetische algoritme voor verschillende type problemen. Ook analyseren we de im-
pact van de kost-metriek op het configuratie proces. Onze resultaten suggereren dat
zelfs wanneer het doel is om de verwachte optimalisatie-tijd te minimaliseren het vaak
wenselijk is om andere metrieken, die gebruik maken van de effectiviteit op meerdere
punten in de optimalisatie (bijvoorbeeld oppervlakte onder de curve) te gebruiken
tijdens het configureren.

Tot slot maken we gebruik van de verzamelde benchmark-data voor dynamische
selectie van optimalisatie-algoritmes, waarvan de resultaten laten zien dat het wissellen
van een configuration van het genetisch algoritme naar een andere configuratie tijdens
het optimalisatie proces een verbeterde effectiviteit geeft vergeleken met de statische
configuraties.
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Many hard optimization problems need to be solved in our daily life and research work,
and various algorithms are proposed to solve different problems. Meanwhile, we lack
a clear conclusion about the performance of these algorithms across different types of
problems. Fortunately, benchmarking studies can help us obtain unbiased assessments
of algorithms’ performance.

This thesis introduces the IOHprofiler benchmarking software, which allows for an
easy transition from the implementation of algorithms to the analysis and comparison
of performance data. The software consists of two components: IOHexperimenter, an
easy-to-use and customizable module for processing the actual experiments and gener-
ating the performance data, and IOHanalyzer, a post-processing module for compiling
detailed statistical evaluations.

Benefiting from the functionalities of IOHprofiler, we can systematically perform
our study of benchmarking evolutionary algorithms on discrete optimization problems.
In practice, we investigated the impact of the population size and the mutation rate
for the (1+ λ) EAs and the impact of the crossover probability for the (µ+ λ) GA on
OneMax and LeadingOnes. Moreover, we compared twelve heuristics and variants
of a family of genetic algorithms on the twenty-five pseudo-Boolean problems. Inspired
by the benchmarking results, the standard normalized bit mutation is proposed for the
EAs, and non-asymptotic runtime analysis (i.e., bounds that hold for a fixed dimension
rather than in big-Oh notation) is suggested for theoretical study of understanding the
behavior of EAs.

Moreover, we apply the algorithm configuration methods Irace, MIP-EGO, and
MIES to tune the parameters of a family of genetic algorithms. The experimental
results provide insights into promising configurations of the genetic algorithm for dif-
ferent types of problems. In addition, we analyze the impact of the cost metric for the
configuration tasks. Our results suggest that even when interested in expected run-
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ning time performance (i.e., ERT), it can be preferable to use the anytime performance
measure (i.e., AUC) for the configuration task.

Finally, we leverage our benchmarking data for dynamic algorithm selection, of
which results show improvements obtained by switching from a genetic algorithm
configuration to another one during the optimization process when compared to the
static configurations.
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