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ABSTRACT

In the past decades, hundreds of antibiotics have been isolated from microbial metabolites or have been artificially syn-
thesized for protecting humans, animals and crops from microbial infections. Their everlasting usage results in impacts
on the microbial community composition and causes well-known collateral damage to the functioning of microbial
communities. Nevertheless, the impact of different antibiotic properties on aquatic microbial communities have so
far only poorly been disentangled. Here we characterized the environmental risk of 50 main kinds of antibiotics
from 9 classes at a concentration of 10 pg/L for aquatic bacterial communities via metadata analysis combined with
machine learning. Metadata analysis showed that the alpha diversity of the bacterial community increased only
after treatment with aminoglycoside and (-lactam antibiotics, while its structure was changed by almost all tested an-
tibiotics. The antibiotic treatment also disturbed the functions of the bacterial community, especially with regard to
metabolic pathways, including amino acids, cofactors, vitamins, xenobiotics and carbohydrate metabolism. The criti-
cal characteristics (atom stereocenter count, number of hydrogen atoms in the antibiotic, and the adipose water coef-
ficient) of antibiotics affecting the composition of the bacterial community in aquatic habitats were screened by
machine learning. The key characteristics of antibiotics affecting the function bacterial communities were the number
of hydrogen atoms, molecular weight and complexity. In summary, by developing machine learning models and by
performing metadata analysis, this study provides the relationship between the properties of antibiotics and their ad-
verse impacts on aquatic microbial communities from a macro perspective. The study also provides guidance for the
rational design of antibiotics.
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1. Introduction

The term ‘antibiotics’ refers to substances produced by microorganisms
that inhibit reproduction or kill other microorganisms (Clardy et al., 2009).
Penicillin was the first antibiotics discovered and successfully used for med-
ical treatment. This was regarded as a milestone in human history to fight
against bacteria (Gould, 2016). The rapid revolution in antibiotics has
saved countless lives. Apart from their application in medicine, increasing
amounts and kinds of antibiotics are also widely used in modern agriculture
(Miroshnikova et al., 2021) and animal husbandry (Sarmah et al., 2006). By
2030, the usage of antibiotics for veterinary and clinic use is expected to
rise to 105,600 tons per year (Gelband et al., 2015) and 85.45 billion de-
fined daily doses (Klein et al., 2018). Globally, chicken, cattle and pig anti-
microbial sales are expected to reach 104,079 tons in 2030, and
consumption in Asia is expected to reach 63,062 tons, with all continents
expected to increase their antimicrobial use in the future due to the current
COVID-19 pandemic (Lardé et al., 2021; Tiseo et al., 2020).

Such everlasting usage of antibiotics is increasing the concentrations of
their residues in the environment, which threatens the stability and func-
tioning of ecosystems (Hu et al., 2010). Wastewater from hospitals, aqua-
cultures and livestock containing residual antibiotics commonly passes
through wastewater treatment plants before being discharged to freshwater
(Diwan et al., 2010; Larsson, 2014; Sim et al., 2011; Zhang et al., 2013).
However, wastewater treatment plants cannot completely remove antibi-
otics (Islam and Gilbride, 2019; Lenart-Boron et al., 2020; Zielinski et al.,
2021), which results in antibiotic residues in freshwater. It was reported
that the concentration of residual antibiotic was 127-1210 ng/L in Taihu
Lake (Xu et al., 2014). China has very high antibiotic detection rates of
100, 98.0 and 96.4% in soil, surface water and coastal water in 2020, re-
spectively (Lyu et al., 2020).

Previous research mainly focused on the impact of single antibiotics on
aquatic microorganisms. For example, Janecko et al. (2016) assessed the
negative effects of residual fluoroquinolones on metabolic pathways of
aquatic organisms. Lu et al. (2019b) exhibited that the classification and
function of freshwater plankton communities were induced by ciprofloxa-
cin. Due to the difference of experimental designs, methods, and physico-
chemical properties of the aquatic media used, results across reported
across various studies were highly heterogeneous and could not be directly
compared for the aim of obtaining universal conclusions regarding the im-
pact of antibiotics on microbial ecosystems (Ramirez et al., 2018; Xu et al.,
2020). At the same time, the impact of the physical and chemical properties
of antibiotics on aquatic microorganisms that are critical for the design of
eco-friendly antibiotics is also still unknown. The development of high-
throughput sequencing technology and machine learning provides a new
perspective to reveal the specific impact of antibiotics on the aquatic micro-
bial community and diversity.

Machine learning is currently the most popular research technique with
powerful training and prediction capabilities and has been widely used in
robot control, compound synthesis, precision medicine, and microbiome
research (Ban et al., 2020; Cammarota et al., 2020; Jordan and Mitchell,
2015; Wright et al., 2021; Yuan et al., 2020; Zhang et al., 2021). At present,
machine learning methods including random forest, support vector ma-
chine and in the statistical classification meta-algorithm AdaBoost (Wilck
et al., 2017). Among the available machine learning techniques, the ran-
dom forest generally provided both higher accuracy and prediction accu-
racy compared to the other two approaches (Fernandez-Delgado et al.,
2014; Speiser et al., 2019). Specifically, the random forest algorithm was
the most common machine learning method in the field of dietary habit
typing (Ren et al., 2019), disease diagnosis (Zhang et al., 2019), and plant
subspecies prediction (Yuan et al., 2020) due to its high accuracy and ro-
bustness in the prediction of highly heterogeneous data. For example,
Yuan et al. (2020) revealed the key biological indicators and characteristics
of the soil microbial community with regard to the Fusarium wilt disease,
and these authors thereby predicted the occurrence of this pathogenic fun-
gus in soil to ensure that measures can be taken to increase the food produc-
tion. Zhang et al. (2022b) combined meta-data analysis with machine
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learning and accurately identified the general patterns of the bacterial-
community composition in disease-suppressive soils. These authors de-
tected 28 potential beneficial bacteria.

It is known that several factors determine the effects of antibiotics on
communities of microorganisms, such as the test concentration
(Lundstrom et al., 2016, Marti et al., 2016), exposure time (Corno et al.,
2014; Lofmark et al., 2006), and joint effects of multiple antibiotics (Liu
etal., 2009; Zhang et al., 2022c). However, few studies focused on the influ-
ence of the physical and chemical properties of antibiotics on microorgan-
isms in the aquatic environment. In this study, 16S rRNA gene sequencing
data were combined with machine learning to predict the relationship be-
tween antibiotic characteristics (such as atom stereocenter count, number
of hydrogen atoms, and the adipose water coefficient) and the composition
and functioning of aquatic bacterial communities at one specific test
concentration (10 pg/L). This concentration was chosen because it showed
inhibitory effects on aquatic microorganism in our previous report
(Lu et al., 2019b). We studied the changes of composition and function of
the aquatic microbial community after the treatment of 50 kinds of antibi-
otics belonging to 9 classes. The present study mainly aimed to establish a
predictive model of antibiotic properties that affect the composition and
functioning of aquatic microbial communities. The study could be a contri-
bution to the knowledge of which antibiotic characteristics are harmful for
the aquatic ecosystem, and provides a guidance of the further development
of eco-friendly antibiotics.

2. Material and methods
2.1. Sample collection and processing

In this experiment, 9 categories of antibiotics commonly used in human
and veterinarian were selected. From these 9 categories of antibiotics, we
selected 50 commonly used and easily available antibiotics (Huang et al.,
2020) (Table S1 and Fig. S1). For subsequent prediction, we obtained
their physical and chemical properties from online websites (https://
pubchem.ncbi.nlm.nih.gov). The properties considered, included: atom
stereocenter count, number of hydrogen atoms, adipose water coefficient
etc. Considering that some antibiotics are not soluble in water, we used ace-
tone to prepare 1 g/L stock solutions for each antibiotic. The final concen-
tration of acetone in the microcosm was 0.001% and acetone was also
added at the same concentration in the control.

A total of 40 L surface water was sampled at a depth of 0.5 m in the
Hangzhou West Lake (Zhejiang, China; 30°18’45”N, 120°09’06”E) and the
Hangzhou Tiesha River (Zhejiang, China; 30°16’18”N, 120°11’01”E) as rep-
resentatives of two kinds of freshwater microbial samples. It is known that
the water temperature in the West Lake was varies from 29.4 °C in summer
to 7.1 °C in winter. The lake surface mean pH ranged from 6.5 to 7.3. The
Dissolved Oxygen (DO) concentration ranged from 5.21 mg/L to
7.36 mg/L (Song et al., 2017). The annual water temperature of the Tiesha
River was between 10.9 °C (winter) and 27.4 °C (summer). The average sur-
face pH of this river ranged from 6.65 to 8.16. The DO concentration in the
Tiesha River ranges from 6.31 mg/L to 8.72 mg/L (Shi et al., 2015). The
water samples were immediately transported to the laboratory and placed
under a 46 pmol/m?/s cool-white fluorescent light with a 12:12 h light to
dark photoperiod at 25 = 0.5 °C. After 2 days of adaptation, the microcosms
containing fresh aquatic microbial communities were divided into a control
group and antibiotic-treated groups. Each microcosm contained 200 mL of
aquatic microbial samples and was cultured in a 250 mL Erlenmeyer flask,
with 3 replicates for each group and with the same light intensity and temper-
ature for 7 days. Antibiotics were separately added until the final concentra-
tion in each bottle reached 10 pg/L. This could slightly change the
composition of the main species of aquatic microbiota present in the samples.

2.2. The 16S rRNA gene amplicon sequencing

For each group, 150 mL of the aquatic medium was filtered through a
0.45 pm membrane to collect samples for 16S rRNA gene amplicon
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sequencing after 7 days of culturing. The total DNA of microbes was ex-
tracted using the FastDNA SPIN Kit (MP Biomedicals, OH, USA). The
primers 338F (ACTCCTACGGGAGGCAGCAG) and 806R (GGAC
TACHVGGGTWTCTAAT) were used to amplify the V3-V4 hypervariable re-
gion of the 16S rRNA gene via thermocycler a PCR system (GeneAmp 9700,
ABI, USA) and they were then sequenced on the Illumina HiSeq2500 plat-
form (Illumina, USA). The original sequencing data was submitted to the
NCBI Sequence Read Archive (SRA) database with the BioProject number
PRINA771876.

2.3. Analysis of 16S rRNA gene sequencing

The raw data obtained by sequencing were imported into QIIME2. After
removal of the adaptor and primer sequences from the reads by Cutadapt
(Martin, 2011), we used DADA2 to merge the paired end reads, to denoise
the sequence, and to obtain the feature table and sequence of amplified se-
quence variants (ASVs) under the default quality threshold. All characteris-
tic sequences were annotated with the full-length 16S rRNA gene SILVA
database for subsequent analysis. For over-amplification for different sam-
ples, we screened the ASV table according to the following rules: (1) screen-
ing the ASVs with reads number less than 10; (2) removing ASVs annotated
as mitochondria and chloroplasts; (3) subsampling for each sample to an
equal sequencing depth (20,000 reads per sample).

2.4. Functional prediction of the microbial community and co-occurrence
network analysis

Functional prediction was performed in this study by PICRUSt2, and
functional pathways were classified in the KEGG database (Kyoto Encyclo-
pedia of Genes and Genomes; https://www.kegg.jp/). In order to explore
the influence of the physicochemical properties of antibiotics on the stabil-
ity of the microbial network in the aquatic systems, we conducted a co-
occurrence network analysis at the genus level. The interactions between
aquatic bacteria were calculated using pairwise Spearman's rank correla-
tions (r) by the psych package in R (version 4.0.3). Only strong (r > 0.8 or
r < —0.8) and statistically significant (p < 0.05) correlations were used
for constructing the co-occurrence network in Gephi (version 0.9.2) as de-
scribed in our previous study (Zhang et al., 2022a). The modularity of the
co-occurrence network was also calculated in Gephi. Bacteria were divided
into several modules according to the interaction with each other.

2.5. Predictive random forests model construction

Using the regression model established by the random forest (RF) algo-
rithm, the relationship between the physicochemical properties of antibi-
otics and the microbial profiles, including the Shannon and Richness
indices, the relative abundance of the three microbial modules, the
antibiotic-sharing bacteria and the functional profiles was constructed.
The physical and chemical properties of antibiotics were input as indepen-
dent variables, whereas the microbial profiles were the dependent vari-
ables. The regression model was verified by a 10-fold cross-validation
method using the scikit-learn library (version 0.24.0) in python, and the
best model with the highest R? values was selected for subsequent analysis.
The importance of each physicochemical property of the antibiotics was
calculated by the R package RandomForest.

2.6. Visualization and statistics

The vegan and picante packages in R were used to calculate the alpha
diversity index of Shannon and Richness. The principal coordinate analysis
(PCoA) graph was generated by the Bray-Curtis distance created using the R
packages ggplot2 (version 3.3.2) and vegan (version 2.5-6). Permutation
multivariate analysis of variance (PERMANOVA) (Adonis, Bray-Curtis con-
version data, permutation = 999) was used to determine whether the beta
diversity was significantly different between the antibiotic treatment and
the control. All histograms and pie charts were constructed with Prism
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5.0 software. The heat map was constructed using TBtools (Chen et al.,
2020), and the Venn diagrams were performed using the online website
jvenn (Bardou et al., 2014). Statistically significant differences (p < 0.05)
were determined using Kruskal-Wallis test in SPSS software (version 26.0).

3. Results and discussion

3.1. Diversity and composition of the aquatic bacterial community after antibiotic
treatment

We analysed the microbial community structure from the two locations
with high-intensity human activity. The residual amount of antibiotics
could not be detected in the water after 7 d of exposure. Previous reports
showed that the physico-chemical properties of the aquatic exposure me-
dium were only slightly changed after antibiotic treatment, compared
with the control (Lu et al., 2019b; Deng et al., 2022). Therefore, we ignored
the change of water physico-chemical properties, and directly explored the
change of the bacterial community composition in microcosm after antibi-
otic treatment. In the microcosms with water from the Tiesha River, five
types of antibiotics (nitroimidazole, quinolone, lincomycin, chlorampheni-
col and aminoglycosides) significantly increased the Richness of the bacte-
rial community (Fig. S2a) compared to the control, while the Shannon
index of the bacterial community increased significantly after the treatment
of B-lactams, nitroimidazole, tetracycline and aminoglycosides (Fig. S2b).
In microcosms with water from West Lake, the Richness of B-lactams,
nitroimidazole, tetracycline and aminoglycosides increased significantly
(Fig. S2d) compared to the control, while seven types of antibiotics
(nitroimidazole, B-lactams, tetracycline, quinolone, macrolides, lincomycin
and aminoglycosides) significantly increased the Shannon index of the bac-
terial community (Fig. S2e). Principal coordinate analysis (PCoA) com-
bined with the Bray-Curtis distance showed that the composition of the
bacterial community of the West Lake and the Tiesha River changed signif-
icantly after antibiotic treatments (Fig. S2c and f; Table S1). In general, an-
tibiotics showed more dramatic influences on the Richness and Shannon
indices in the microcosms established by water from the West Lake than
in the water of the Tiesha River (Fig. 1a). At the phylum level, the abun-
dance of Patescibacteria increased slightly in West Lake (Fig. S3a), but de-
creased in the Tiesha River (Fig. S3c) after Macrolides treatment. At the
genus level, Elstera was significantly decreased in water from the West
Lake and from the Tiesha River after macrolides, tetracycline and sulfa
treatment (Fig. 1b). Our findings showed that after antibiotic treatment
the diversity of both water samples had increased with the change of com-
munity composition.

In order to illustrate the universal influence of antibiotics on aquatic mi-
crobiota, we combined the data from rivers and lakes to exclude the possi-
ble influence of environmental factors. The combination of the data for the
river and lake showed that the Shannon index and Richness of the bacterial
community in the microcosms were significantly increased after the treat-
ment of aminoglycoside and p-lactam (Fig. 2a and b, p < 0.05), but were
not significantly affected by any of the other tested antibiotics. We obtained
antibiotic-sharing bacteria using the Venn diagram, in which 247 genera of
bacteria were present in both the control and the antibiotic treatment.
However, the number of bacterial groups in the different types of antibi-
otics treatment exceeded the numbers of bacterial groups in the control
(Fig. S4). The increased diversity could be attributed to stimulative effects
of these two types of antibiotics on the growth of specific aquatic microor-
ganisms and enriched some tolerant bacteria, as tetracycline increased
the relative abundance of tetracycline resistant bacteria at 10 pg/L in
biofilms of aquatic bacterial communities (Deng et al., 2020; Lundstrom
et al., 2016). Principal coordinate analysis (PCoA) combined with the
Bray-Curtis distance showed that the composition of the bacterial commu-
nity changed significantly after antibiotic treatments (Fig. 2¢, R? =
0.06615, p < 0.001, Adonis). At the family level, the top bacteria of all
samples were mainly composed of Comamonadaceae, Flavobacteriaceae,
Oxalobacteraceae and Methylophilaceae (Fig. 2d). The numbers of some bac-
terial families, for example: the abundance of Azospirillaceae, were
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Fig. 1. The influence of antibiotics on the diversity and classification of microbial communities in the West Lake and in the Tiesha River. (a) Growth rates of the Richness and

Shannon indices (b) Changes in genus (top 20) of microbial communities (“Other” refers to all the remaining genus except the top 20 were collected). *

represents statistically

significant differences from a one-way ANOVA (* p < 0.05, ** p < 0.01 *** p < 0.001).

significantly higher than in the control after the treatments of -lactams
(p < 0.05), nitroimidazole (p < 0.05), tetracycline (p < 0.05), and sulfa
(p < 0.05), lincomycin (p < 0.001) and chloramphenicol (p < 0.05), while
the relative abundance of Burkholderiaceae under quinolone treatment
was lower than that of the control (p < 0.05; Fig. 2d).

The composition of aquatic microbial community depended on environ-
mental factors, including biotic and abiotic factors (Lu et al., 2019a; Lu
etal., 2021; Zhang et al., 2022b). Altogether, antibiotics treatment dramat-
ically influenced the composition of the bacterial community. The possible
reason is that addition of antibiotics in the aquatic system exerted selective
pressure on the microbial community, with the resistant microbes being
able to survive and further influence other microorganisms via species
interactions (An et al., 2018; Rodriguez-Mozaz et al., 2020). At the
same time, different kinds of antibiotics exhibited strain-specific activity,

which inhibited or irreversibly killed specific members of the microbial
community, and hence, impacted on community composition (Maier
et al., 2021).

The abundance of antibiotic resistance genes (ARGs) in samples could
change and explain the effects of antibiotics on aquatic microbiota. Zhang
et al. (2022e) detected 2561 ARGs that collectively conferred resistance
to 24 classes of antibiotics from various habitats (560 sites, 4572 samples,
including aquatic habitats) by public metagenomic data, and demonstrated
that the abundance of ARGs is high in the area with high-intensity anthro-
pogenic activity, such as in two sampling sites in this study. ARGs accumu-
late resistant microbes after antibiotic treatment, and inhibit the growth of
antibiotic-sensitive bacteria, and therefore change the structure of the mi-
crobial community (Grenni et al., 2018; Lu et al., 2019b). The mechanism
underlying the impact of antibiotics on microbiota communities should
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be disentangled in future work with ARGs research, and explain the dissem-
ination of ARGs upon use of antibiotics.

3.2. Antibiotic treatments changed functions of bacterial community

In order to understand the functional profiles of the aquatic bacterial
community after antibiotic treatment, PICRUSt2 software was used to pre-
dict the function of the 16S rRNA sequence, and annotated these functional
pathways from the KEGG database. A total of 137 functional pathways were
detected in the Tiesha River and in the West Lake. Most functional path-
ways were shared between the antibiotic treatment and the control group
(Fig. S5). However, the bacterial functional pathways were significantly
changed after treatment with different kinds of antibiotics. For example,
there were 80 functions up-regulated and 57 functions down-regulated in
the Tiesha River, while 75 functions were up-regulated and 62 functions
down-regulated in West Lake, under aminoglycosides treatment. Our re-
sults indicated that Tiesha River and West Lake also had differences in
the functions of antibiotic-treated microorganisms (Fig. S6). A total of 38
functional pathways referred to 15 categories were dramatically changed
in antibiotic treatments and selected for further analysis (Table S3,
Fig. 3). After antibiotic treatment the metabolism of cofactors and vitamins

were upregulated. This could influence the heme biosynthesis and NAD
biosynthesis (Obornik and Green, 2005; Xu et al., 2017). The former
could be beneficial to the synthesis of photosynthetic pigments to improve
the photosynthetic efficiency (Gong et al., 2017) and the latter could main-
tain cellular functions under environmental stress (Hashida et al., 2009;
Liang et al., 2017). Therefore, the up-regulation of cofactors and vita-
mins metabolism could be a useful strategy for bacteria to cope with
the stress of antibiotics. Xenobiotics biodegradation and metabolism,
carbohydrate metabolism, and amino acid metabolism (such as glycine,
serine and threonine, histidine and tyrosine metabolism) were down-
regulated under antibiotic treatment. These metabolic pathways played
an important role in the degradation of complex organic molecules
(Widada et al., 2002; Qiu et al., 2022), energy conversion (Spriet,
2014), and protein synthesis to control life processes (Morot-Gaudry
et al., 2001, Wagenmakers, 1998, Zhang et al., 2022a-e). Their down-
regulation indicated that the growth and proliferation of bacteria in
the microcosms was inhibited under antibiotic treatment. Our study
showed that 38 functional pathways were significantly changed after
treatment with B-lactams (14), nitroimidazole (23), macrolides (17),
lincomycin (17), and aminoglycosides (13) compared with the control
(Fig. 3).
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Fig. 3. The effect of antibiotics on bacterial functional pathways analysed by the PICRUSt2 software and the KEGG database. Relative expression values are scaled by Z-score
per transcript. * represents statistically significant differences at p < 0.05 from a one-way ANOVA.

3.3. Development of models to correlate antibiotic characteristics with bacterial
community traits

Antibiotic treatment affected the diversity and composition of the
aquatic bacterial community. The unclarified question is: which dominated
antibiotic properties played a decisive role in this study? We established a
regression model to correlate the antibiotic characteristics with microbial
community traits via machine learning with the Random Forest (RF) algo-
rithm, implicating the influence of antibiotic characteristics on bacterial
community structure and the diversity and relative abundance (Fig. S7).
A total of 76 physicochemical properties of the antibiotics were collected
as independent variables in the model (Table S1). To simplify the composi-
tion profiles of the bacterial communities, a co-occurrence network divided
the whole bacterial community into several modules based on the species
interaction, and three modules comprising the highest numbers of bacteria
were chosen for bacterial community prediction (Fig. 4a). In order to en-
sure the credibility of the prediction accuracy and appropriate fitness, we
used ten-fold cross validation to verify our three models with the predic-
tions (mean R? in each model ranged from 57 to 78%) (Fig. 4b). The effects
of the physicochemical properties of antibiotics on the changes of the three
modules of bacterial communities were different. In Module 1, the adipose
water coefficient explained 24.3% of the microbial community change
under antibiotic treatment, while the second and third most important con-
tributions were the atom stereocenter count (13.7%) and the number of hy-
drogen atoms (12.2%). Hydroxyl and dimethylamino groups were the most
important factors in Module 2, which could explain 14.7 and 14.8% of the
microbiological differences, followed by the atom stereocenter count
(12.7%). In Module 3, the numbers of hydrogen and dimethylamino
groups were the most important factors, which could explain 15.8 and
15.6% of the microbial differences. The impact of the physicochemical
properties of antibiotics on the Richness and Shannon index of aquatic
microbial community was also different. The number of hydrogen
atoms in antibiotic was the most important factor in the Shannon
index changes, which accounted for 20.8%, followed by the
dimethylamino group (12.6%). In the Richness, the antibiotic solubility
is the largest influencing factor, accounting for 33.3% of the variance in
the data, followed by the number of hydrogen atoms (15.9%). In the
influence on the average relative abundance of antibiotic-sharing bacte-
ria, the main factors were number of hydrogen atoms and number of
dimethylamino groups (Fig. 3c).

Totally, atom stereocenter count, number of hydrogen atoms and the
adipose water coefficient of antibiotics were the most important factors to
determine the changes of microorganisms (Fig. 3d). It was worth noting
that in many single studies, the type and concentration of antibiotics was
considered as the most important factors affecting aquatic microbial com-
munity (Ding and He, 2010; Liu et al., 2012; Zhao et al., 2019). In antibiotic
treatment, our model clarified that three physical and chemical properties
including atom stereocenter count, number of hydrogen atoms and the ad-
ipose water coefficient were more important potential factors to shape mi-
crobial community, because these factors could affect the absorption of
drugs by biota (Barton et al., 1997; Martinez and Amidon, 2002; Raevsky
and Schaper, 1998; Walker, 2014). Therefore, it might better to reduce
the number of these three factors to design environmental friendly
antibiotics.

3.4. Establishing a model to connect the characteristics of antibiotics with the
functioning of a bacterial community

In order to clarify the specific impact of the characteristics of antibiotics
on bacterial community function, we used RF to construct a non-linear re-
gression model between the specific physicochemical properties of antibi-
otics. Our results indicated that six main functions (cofactors and
vitamins, lipid, folding, sorting and degradation, carbohydrate and amino
acid metabolism) were the largest proportion of secondary channels.
Through the 10-fold cross-prediction model, the R? value was found to
range between 66 and 69%, implicating the influence of antibiotic charac-
teristics on the function of bacterial community (Fig. S8). The number of
hydrogen atoms was the most important factor to impact the changes of
the metabolism of cofactors and vitamins, lipid metabolism, folding, sorting
and degradation, and carbohydrate metabolism (Fig. 5a). Within the
changes of other amino acids metabolism, molecular weight was the most
important factor under antibiotics treatment, accounting for 19.7% of the
variance in the data. Molecular weight may affect bacterial proteins, such
as some products with low molecular weights acting with potency and spec-
ificity at protein receptors (Clardy and Walsh, 2004). Among the effects of
amino acid metabolism in the treatment of antibiotics, the number of sulfur
atoms had the largest contribution rate, accounting for 17.5%.

By building machine learning models, we could infer that the number of
hydrogen atoms, molecular weight, and complexity had universal effects on
bacterial functions (Fig. 5b). The number of hydrogen atoms was also an
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Fig. 4. Effects of antibiotic properties on the diversity and structure of microbial communities. (a) Modular classification of the ecological network of microbial communities
in artificial waters (In Gephi, bacteria were divided into Module 1, Module 2 and Module 3 according to the interaction with each other) treated with antibiotics.
(b) Validation of the R2 value in the model by ten-fold cross-validation evaluation. (¢) The contribution of antibiotic characteristics to the microbial characteristics of the
aquatic microbial community Richness, Shannon, the relative abundance of the three microbial modules and the average relative abundance of antibiotic-sharing
bacteria. (d) The contribution rate of the physicochemical properties of antibiotics (select the top 30 contribution rates) to M1, M2, M3, Richness, Shannon, and antibiotic

sharing bacteria.

important factor in affecting the composition of aquatic microbial commu-
nities, as described above. Therefore, in the design of antibiotics, the num-
ber of hydrogens could be changed in order to reduce the impact of
antibiotics on the function of aquatic microorganisms.

4. Conclusion

In summary, this study showed that exposure to 50 kinds of antibiotics
at a concentration of 10 pg/L had different degrees of influence on the
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Fig. 5. The effect of antibiotic properties on the main bacterial metabolism (amino acids, metabolism of cofactors and vitamins, lipid metabolism, folding, sorting and
degradation, carbohydrate metabolism and amino acid metabolism) analysed by the KEGG database. (a) Antibiotic properties contributed to the six metabolic pathways
of aquatic bacteria: metabolism of other amino acids, metabolism of cofactors and vitamins, lipid metabolism, folding, sorting and degradation, carbohydrate metabolism
and amino acid metabolism. (b) Contribution rate of the physical and chemical properties of antibiotics (select the top 30 contribution rates) to the six metabolisms of

aquatic bacteria. Values are scaled by their Z-score.

composition and function of the aquatic microbial community, which in
turn may affect the stability of aquatic ecosystems in different ways. The
present study revealed that the characteristics of antibiotics, such as de-
fined atom stereocenter count, number of hydrogen atoms and adipose
water coefficient, play a significant role in shaping the composition of the
microbial community in aquatic environments. At the same time, the num-
ber of hydrogen atoms, the molecular weight of antibiotics and complexity
also were key factors in the functional traits of bacteria. This research devel-
oped an accurate prediction model to establish specific links between anti-
biotic characteristics, biodiversity and ecosystem functions of aquatic
communities, and will guide the design and optimization of antibiotic mol-
ecules to minimize environmental risks. However, the research did not take
into account the effect of antibiotic concentration in the present study, since
we focused on the physical and chemical characteristics of the antibiotics. It
is still interesting and meaningful to figure out the impact of various antibi-
otics with different concentration gradients on the water microbial commu-
nity, as this can guide the impact of the rational use of antibiotic
concentrations in the environment.
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