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REVIEW ARTICLE
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ABSTRACT
There is a global research interest in metal nanoparticles (MNPs) due to their diverse applica-
tions, rapidly increasing use, and increased presence in the aquatic environment. Currently,
most MNPs in the environment are at levels unlikely to cause overt toxicity. Sub-lethal effects
that MNPs may induce, notable immunotoxicity, could however have significant health implica-
tions. Thus, deciphering the immunological interactions of MNPs with aquatic organisms consti-
tutes a much-needed area of research. In this article, we critically assess the evidence for
immunotoxic effects of MNPs in bivalves and fish, as key wildlife sentinels with widely differing
ecological niches that are used as models in ecotoxicology. The first part of this review details
the properties, fate, and fundamental physicochemical behavior of MNPs in the aquatic ecosys-
tem. We then consider the toxicokinetics of MNP uptake, accumulation, and deposition in fish
and bivalves. The main body of the review then focuses on immune reactions in response to
MNPs exposure in bivalves and fish illustrating their immunotoxic potential. Finally, we identify
major knowledge gaps in our current understanding of the implications of MNPs exposure for
immunological functions and the associated health consequences for bivalves and fish, as well
as the general lessons learned on the immunotoxic properties of the emerging class of nanopar-
ticulate contaminants in fish and bivalves.

ARTICLE HISTORY
Received 12 November 2021
Revised 9 February 2022
Accepted 9 February 2022

KEYWORDS
Metal nanoparticles;
immunotoxicity;
fish; bivalves

1. Introduction

Nanotechnology has been the focus of much recent
scientific research. The production of a large num-
ber of nano-enabled products with a very wide
range of applications is increasing rapidly (Zhao
et al. 2020) and metal nanoparticles (MNPs) are one
of the most commonly used nanoparticles in these
products (Nanodatabase 2019). MNPs are released
into aquatic ecosystems during their production,
consumption, and disposal (Giese et al. 2018) and
some are potentially toxic to aquatic organisms
(Scown, van Aerle, and Tyler 2010). Most studies
into the effects of MNPs in aquatic organisms have
focused on the route of uptake and general toxicity,

and often at exposure concentrations that by far

exceed those in natural environments (Fabrega

et al. 2011; Baker, Tyler, and Galloway 2014; Handy,

Owen, and Valsami-Jones 2008; Handy et al. 2008;

Johnston et al. 2010a). There is substantial evidence

from studies in humans and other mammals that

MNPs at environmentally relevant exposure concen-

trations can modulate immunity (Knol et al. 2009)

and this is also now well recognized as a major

potential effect quality in aquatic organisms

(Jovanovi�c and Pali�c 2012). Furthermore, in human

medicine, certain classes of nanoparticles are used

for immunotherapies (Gamucci et al. 2014; Smith

et al. 2014; Ray et al. 2021; Petrarca et al. 2015) and
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in aquaculture, nanoparticles are increasingly used
for water sanitation or the delivery of vaccines
(Adomako et al. 2012; Løvmo et al. 2017; M�arquez
et al. 2018). These cases inevitably mean that nano-
particles specifically designed to induce immune
responses will increasingly enter the environment.
This illustrates the need for a proper understanding
of the effects of MNPs on the immune systems of
non-target organisms.

Some recent attractive studies (Swartzwelter
et al. 2021; Pinsino et al. 2020) explained nanopar-
ticle interactions with the innate immune system in
various organisms (from plants to mammals) based
on methodological aspects or in a prospective man-
ner. Nevertheless, there are many unknowns in the
immunological interactions of MNPs in aquatic
organisms, especially bivalves and fish which are
the focus of this study based on toxicological
aspects and critical manner. Immunity is a critical
trait for the survival and fitness of practically all liv-
ing organisms. The potential biological effect of
MNPs is not only determined by the physicochemi-
cal properties of the particles per se but also by the
interactions of these particles with the surrounding
biological environment (Barbero et al. 2017). The
particulate nature of MNPs is recognized as foreign
by the immune cells (Nel et al. 2006). Thus, MNPs
that are present at non-lethal exposure levels can
interact with the immune system and affect it
(Boraschi, Costantino, and Italiani 2012). Some basic
immune mechanisms are highly conserved through
evolution (Boehm 2011) and thus effects of MNPs
on immune functions are likely to be common
across divergent animal species.

In this review article, we first illustrate how the
properties, fate, and behavior of MNPs in the
aquatic ecosystem may affect their bioavailability to
aquatic organisms. We then analyze the toxicoki-
netics, oxidative reactions, innate and adaptive
immune reactions, and toxic effects of MNPs in
bivalves and fish. We focus on bivalves and fish as
they represent key wildlife sentinel organisms that
are widely used as experimental models in ecotoxi-
cology. Given their ecological niches, they are also
amongst biota that is most vulnerable to the effects
of MNPs. In this article, we draw upon information
on immune reactions to MNPs in mammals to fur-
ther assess their immunomodulation potential in
fish and bivalves. Finally, we offer a perspective on

where future studies are most needed to more fully
assess and understand how MNPs affect the
immunological systems in these aquatic organisms.

2. Properties and characteristics of metal-
based nanomaterials

Nanoparticles often have a suitable strength, elec-
trical and thermal conductivity, optical response,
elasticity, wear-resistance, and faster and more sen-
sitive responses compared with their larger counter-
parts (Schmid 2011; Hashim and Hadi 2018). These
novel characteristics derive from the chemical and
physical properties associated with their size, shape,
structure, surface, and molecular arrangement (Vais,
Sattarahmady, and Heli 2016; Corra, Shoshan, and
Wennemers 2017). Based upon these properties, the
nanomaterials are divided into various classes, the
most important of which are fullerenes (structure
and shape), nanotubes (shape), electrospun nanofi-
bres (shape), metal-based nanoparticles (structure),
metal oxide nanoparticles (MONPs) (structure), quan-
tum dots (size), and their hybrids and composites
(structure) (Abdelhamid 2019; Sinha et al. 2018).

The characteristics of nanoparticles can be
explained by quantum mechanics. At the atomic
scale, electronic energy levels are merged in bulk
materials but are discrete in nanomaterials. MNPs
and MONPs are seeing expanding applications in
medicine, electronics, cosmetics, and the textile
industry (Kanwar et al. 2019).

The water solubility of the MNPs is an important
screening criterion for their hazard assessment (Arts
et al. 2015; Landsiedel et al. 2017) and MNPs have
been classified based on percentage solubility (%
total metal concentration) and divided into four
groups: high solubility (> 70%), moderate solubility
(10–70%), low solubility (1–10%), and negligible
solubility (< 1%) (OECD 2015) .

3. Behavior, fate, and bioavailability of metal-
based nanomaterials in the aquatic
environment

Following their emission, nanoparticles are trans-
formed by a multitude of processes that together
determine the effective exposure to biota in the dif-
ferent aquatic compartments (aqueous, suspended
with organic matter, benthic sediments, etc.).
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Aquatic organisms in turn may be exposed to a
mixture of chemically and biologically modified par-
ticles that do not necessarily resemble the pristine
particles emitted (see Figure 1).

A key factor concerning the potential for chemi-
cals to induce adverse effects is related to their bio-
availability. This is dependent on several factors
including the exposure concentration (that will be
affected by the various transformation processes
that may occur in the environment), and the uptake
routes into the organism model developed for
understanding the dynamics of bioavailability of
chemicals (have been built upon considerations of
fugacity-driven thermodynamic equilibration, typic-
ally quantified based on equilibrium partitioning
and bioaccumulation coefficients) (Hamelink et al.
1994). However, the bioaccumulation models devel-
oped for conventional chemicals do not apply in
the case of NPs (Petersen et al. 2019).

As schematically depicted in Figure 1, various
physical, chemical, and biological factors affect the
environmental fate and behavior of nanomaterials.
Physical factors include the formation, replacement/
degradation of the surface coating, aggregation,
agglomeration, dis-aggregation, dis-agglomeration,
deposition, resuspension, and sorption. (Quik et al.
2010; Petosa et al. 2010; Praetorius et al. 2020).

Chemical factors affecting nanoparticle behavior
include their complexing with other chemicals,

sorption, oxidation, and reduction reactions (redox),
dissolution, sulfidation, and phase transformation.
Biological factors affecting nanoparticle behavior
include degradation of the capping agent or phase
transformations.

4. Uptake of MNPs into bivalves and fish

4.1. Uptake of MNPs into bivalves body

The diffusion and equilibrium partitioning processes
that often dominate the cellular uptake of dissolved
chemicals are commonly not relevant for nanopar-
ticles. Instead, internalization of nanoparticles into
biota occurs by passive or facilitated diffusion and/
or active transport and endocytosis through mem-
brane carrier proteins and specific membrane chan-
nels (Geiser et al. 2005; Lee et al. 2007). It has been
established that the size of nanoparticles taken up
depends on the type of endocytosis (i.e. clathrin-
and caveolae-mediated endocytosis) and the
corresponding vesicle sizes associated with their
transport. Following uptake, most nanoparticles
delocalize in lysosomes, with the potential for
releasing locally high concentrations of nanopar-
ticles and/or their transformation products.
However, a comprehensive understanding of how
the MNPs (alone or along with other contaminants)
influence the uptake and accumulation of other

Figure 1. Schematic overview of the various transformation and degradation processes following the emission of a pristine nano-
material into the aquatic environment. Note: shrinkage means the reduction of size of a particle due to transformation processes
like dissolution.
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particles or other contaminants in bivalves is still
poorly understood.

Before some recent studies, there was no data
on the mode of uptake or ingestion rates of the
MNPs in bivalve species and thus the actual internal
exposure concentration was not known (Canesi
et al. 2012). Most recent studies have reported that
the concentration of the MNPs in the bivalve’s
bodies depends on the type of MNPs and proper-
ties of the ecosystems in which bivalves live, this
can fluctuate roughly from 0 to 1000 mg/L (Li et al.
2021; de Marchi et al. 2019). After exposure to the
MNPs, the particles cross the epithelium of digestive
gland tubules of bivalves from where they are taken
up via cell-surface lipid raft-associated domains,
called caveola, or through endocytic pathways
(Moore 2006).

MNPs are taken up into bivalve mollusks mainly
through the filtering of the surrounding water for
oxygen exchange and feeding. The bivalves are ses-
sile filter-feeding organisms and can filter large vol-
umes of water. So they have a high capability to
accumulate MNPs from the surrounding environ-
ment (Goncalves and Bebianno 2021). In the swan
mussel Anodonta cygnea, exposed to sub-lethal con-
centrations of CuO NPs, for example large amounts
of copper accumulate in the mantle and foot (par-
ticles size: 40 nm, concentration: 3.15 ± 1.09mg g�1

DW) (Moezzi, Hedayati, and Ghadermarzi 2019). The
physicochemical nature of the surrounding media
and the presence of suspended particulate matter
(SPM) will also affect the bio-availability and accu-
mulation of MNPs in bivalves (Lowry et al. 2012;
Misra et al. 2012). The ‘Trojan horse phenomenon,’
may also operate, where co-exposure of chemicals
and MNPs modifies uptake and bioconcentration of
the respective chemical in the bivalve’s body. This
complex interaction can influence the accumulation
and toxic capacity of the MNPs in the bivalve’s
body (Naasz, Altenburger, and Kuhnel 2018). MNPs,
such as TiO2 and CuO exhibit this phenomenon
causing toxicity in bivalves through their inherent
properties and modifying the bioavailability of other
aquatic contaminants (de Marchi et al. 2019; Canesi
et al. 2014, 2012). A specific example here is the
freshwater golden mussel Limnoperna fortunei,
exposed to crystalline TiO2 NPs (rutile and anatase;
1mg/L) that accumulates copper both in gills and
muscles (particles size: 67 ± 20 nm and

concentration: 56 lg/L) (Nunes et al. 2018). MNPs in
food particles may be trapped by the gill sieve and
be transferred to the labial palps, the mouth, and
the gut, and finally reach the digestive gland where
digestion occurs (Canesi et al. 2012). Thus, in the
case of bivalves, the main site of MNP� cell surface
interactions occurs in the gills or gut tissues
(Zhang, Xiao, and Fang 2018; de Marchi et al. 2019).

4.2. Uptake of MNPs into the fish body

Fish may take up MNPs not only from water but
also via their diet (Chupani et al. 2017; Zhu et al.
2010; Ramsden et al. 2009) and the route of uptake
can have a major bearing on their bioaccumulation.
MNP exposure interaction sites in fish are primarily
the outer skin, gills, and/or the intestine through
diet/drinking (Smith, Shaw, and Handy 2007). The
electrostatic interactions between MNPs and muco-
proteins (depending on the size and shape of the
MNPs) in the mucosal layer of fish’s skin, gill, and
gut may facilitate penetration into the bodies of
fish (Handy et al. 2008; Cazenave et al. 2019).
Uptake of MNPs at the gill and in the gut can take
place via endocytosis where the formation of
vesicles occurs around the MNPs, followed by inva-
gination of the plasma membrane, and transport of
the materials into the cells/tissues (Moore 2006;
Fabrega et al. 2011; van der Zande et al. 2020).
Given their small size, MNPs would have access to
the interlamellar space between the gill secondary
lamellae, and they could enter the intestine with
water drunk by the fish or attached to the fish food
(Handy, Owen, and Valsami-Jones 2008; Ale et al.
2018). In both cases, it is likely that the MNPs bind
to the mucus layer covering the surface epithelia.
From here, the MNP may penetrate the epithelial
cells and/or the bloodstream, potentially via trans-
cellular or paracellular transport (Handy, Owen, and
Valsami-Jones 2008; Fabrega et al. 2011; Pedata
et al. 2019). Equally, NP may be retained and cause
damage to the external epithelial surfaces.

Uptake of MNPs may also occur via association
of the MNPs with the surface of the cell and the
release of free metal ions within the superficial
microlayer of the cell membrane. This creates a
high concentration of MNPs, leading to the rapid
uptake of the metal ion (Liu and Hurt 2010). The
strong electrostatic interaction between the MNPs
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and the phosphate groups of the cell membrane
(e.g. gill or skin organ cell membrane) can result in
enhanced MNP–cell membrane binding and cell
membrane surface tension which in turn leads to
the formation of pores (Foroozandeh and Aziz
2018). Some MNPs are deposited in the fish liver as
metal granules (Lanno, Hicks, and Hilton 1987) from
where they can be excreted into the bile, and
through enterohepatic circulation, re-uptaken across
the gut and/or excreted from the body (Handy
et al. 2008). The detailed mechanism of excretion or
storage of the MNPs in fish is not well understood.

In much of the fish nanotoxicology literature,
unrealistically high exposure concentrations have
been applied that bear little relevance to the nat-
ural environment. Concentrations in the high mg/L
range have been frequently used in laboratory stud-
ies while concentrations reported from aquatic envi-
ronments are typically in the mg/L or even ng/L
range (Shi et al. 2017; Dumont et al. 2015). In
laboratory studies, however, actual exposure con-
centrations may be much lower than nominal,
largely due to particles settling out of the water col-
umn. This has been observed for example, in expo-
sures of zebrafish embryos to Cu NPs (particles size:
40 nm, concentration: 100mg/L) (Zhao et al. 2011).
It has been shown also that water chemistry can
significantly influence the accumulation of Ag in
gills and liver of rainbow trout exposed to Ag NP in
the mg/L range (particles size: 22 ± 2 nm, concentra-
tion: 40 lg/L)(Bruneau et al. 2016). Overall, however,
the bioavailability of MNPs to fish (and other
aquatic organisms) is governed not only by the
concentration, size, and other characteristics (e.g.
the charge) of the MNPs, but also the physicochem-
ical composition of the environment and the biol-
ogy and ecology of the exposed organism are vital
in this case (Luoma and Rainbow 2005; Fabrega
et al. 2011; Song et al. 2015).

A relatively small number of studies have investi-
gated the effects of chronic aquatic exposure on
MNPs uptake and accumulation in the exposed
organisms. In those studies, some have found time-
dependent accumulation. Examples include Cu
accumulating in various organs in carp exposed to
100mg/L CuO NPs over 30 d (Zhao et al. 2011), in
zebrafish exposed to 4 or 10mg/L Fe NPs over 24 d
(Zhang et al. 2015), and tilapia exposed to 0.1, 0.5,
and 1.0mg/L Fe NPs over 60 d (Ates et al. 2016).

Bioaccumulation of an MNP does not always neces-
sarily result in a greater biological effect, as illus-
trated by Ates et al. (2016) where tilapia were
exposed to Fe NPs. These researchers found that
although the internal Fe concentration increased,
the measured immune responses (respiratory burst
activity, lysozyme activity, and myeloperoxidase
activity) were not increased (Ates et al. 2016). These
and other studies on the bioaccumulation of metals
from MNP-exposed fish have measured the tissue
concentrations of the ionic metal, and therefore,
have determined if the bioaccumulation was due to
the internalization of suspended MNPs, or if it was
due to the uptake of dissolved metal ions released
from the MNPs, or indeed a combination of both.

An interesting case concerning the relationship
between MNPs bioaccumulation and MNPs toxicity
in fish is provided by studies on TiO2 NP. Several
studies have reported that TiO2 NPs are not inter-
nalized at fish gills and therefore, do not accumu-
late in internal organs (Johnston et al. 2010b; Boyle
et al. 2013a), but further available evidence indi-
cates that TiO2 NP can have toxic effects in fish.
The toxicity of TiO2 NP in fish may be explained by
the adsorption of the nanoparticles to the gill epi-
thelial cells. Gill damaged by TiO2 NP exposure has
been associated with a decrease in arterial oxygen
tension (PaO2), leading to hypoxia condition in
internal organs or imbalance in the body osmoregu-
lation (Boyle et al. 2013b; Scown et al. 2009). The
observation that toxic effects of MNPs in some
instances do not necessarily require them being
uptaken into internal tissues, questions further
whether all the concepts applied to chemical tox-
icity hold for NPs. This is an area of research that
warrants more understanding concerning MNP
(eco) toxicology.

5. Interrelationship between oxidative responses
to MNPs and inflammation

Two major pathways of effect are commonly
reported for exposure to MNPs and are related to
oxidative stress, specifically inflammation, and
immunotoxicity. There is a close interrelationship
between oxidative stress and inflammation, and
these processes are intimately linked and could
contribute to the pathogenesis of many diseases
(Johnston et al. 2018).
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Although the exact underlying cellular mecha-
nisms for reactive oxygen species (ROS) generation
are not completely understood, most MNPs elicit
free radical-mediated toxicity via Fenton-type reac-
tions (Huang, Wu, and Aronstam 2010). The pro-oxi-
dant effect of the MNPs (increased production of
ROS and depletion of antioxidants) results in
adverse effects on cell macromolecules including
proteins, lipids, and DNA (Huang, Wu, and
Aronstam 2010). An inherent biological system can
readily repair the resulting damage caused by ROS
and/or also detoxify the reactive intermediates
(Manke, Wang, and Rojanasakul 2013). This occurs
via the activation of enzymatic and non-enzymatic
antioxidant systems that quench excess ROS
(Manke, Wang, and Rojanasakul 2013). A hierarchical
model illustrating the MNPs-mediated oxidative
stress response has been proposed by various
authors (Huang, Wu, and Aronstam 2010; Li, Xia,
and Nel 2008; Johnston et al. 2018) through which
mild oxidative stress can induce nuclear factor
(erythroidderived2)-like 2 (Nrf2) which in turn indu-
ces transcriptional activation of phase II antioxidant
enzymes. An intermediate level of oxidative stress
can activate pro-inflammatory response via inducing
the redox-sensitive mitogen-activated protein kinase
(MAPK) and the nuclear factor kappa-light-chain
enhancer of activated B cells (NF-㮫) cascades. High
toxic levels of oxidative stress can lead to cell death
via mitochondrial membrane damage and electron
chain dysfunction. Mitochondrial damage is the
major mechanism of cell death (apoptosis) caused
by MNPs-induced oxidative stress (Xia et al. 2006).
Thus, the oxidative stress induced by the MNP
exposure can link oxidative stress reaction, apop-
tosis, and inflammation.

6. Immune toxicity of MNPs

The immune system of humans is affected by
exposure to environmental MNPs (Petrarca et al.
2015; Pallardy, Turbica, and Biola-Vidamment 2017;
Alsaleh and Brown 2018), and this appears to apply
to aquatic species as well (Torrealba et al. 2018).
The immune effects of MNPs on aquatic animals
may be of particular significance because these ani-
mals can experience exposure to MNPs suspended
in water continuously, and during their entire life
cycle (Jovanovic 2011; Jovanovi�c et al. 2011).

However, the interaction between the immune sys-
tem components and MNPs is still relatively poorly
understood and there are the basic questions in
this case. These questions include, which immune
components and functions are likely impacted by
MNP exposure?, which determinants of the MNPs
do drive their interaction with immune cells?, and
even more basically, do MNPs accumulate in
immune organs and cells? These are all critical
questions for considering the mechanisms for the
immunotoxic effect of MNPs on aquatic organisms,
such as fish and bivalves (Jovanovi�c and Pali�c 2012).
However, some recent studies have focused on
these cases and shed light on these questions (Ray
et al. 2021; Dukhinova et al. 2019). In this section,
therefore, we provide a review of what is known on
the effects of MNPs on the immune system of fish
and bivalves to more explain these interactions.

Before we set out to detail the fate and effects
of MNPs in aquatic organisms and their immune
system, we need to recognize, as mentioned above,
that many experiments with MNP and fish and
bivalves have used unrealistically high exposure
concentrations, and often they have not verified if
the MNPs were taken up into the exposed organ-
isms and their organs. Without knowing the target
tissue concentrations of the exposed NPs makes it
difficult to relate exposures with the effects
reported, and/or whether they are likely to be direct
or indirect effects. Also, numerous studies on MNP
immunotoxicity in aquatic species have been
descriptive, i.e. they investigated effects on more or
less arbitrarily pre-selected immune parameters but
have not tested hypotheses on possible processes
and mechanisms through which the MNPs may
interfere with immune functions (Segner
et al. 2012).

6.1. MNPs uptake across and interaction with
immune components of epithelial barriers in fish
and bivalves

6.1.1. MNPs interaction with immune components
of epithelial barriers in fish
The main entry routes for MNPs into the body of
aquatic organisms� the epithelia of skin, gills, and
intestine, not only provide epithelial barriers but
also represent the first line of the immune defense.
The mucus layers in these surfaces contain
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specialized immune cells and natural antibiotics
that include lysozymes. In addition, the epithelia
contain cells that form part of the adaptive immune
system, in particular specialized T cells, which may
be organized as mucosa-associated lymphoid tis-
sues (MALT): gut-associated lymphoid tissue (GALT),
skin-associated lymphoid tissue (SALT), gill-associ-
ated lymphoid tissue (GIALT), and the nasopharynx-
associated lymphoid tissue (NALT) (Rombout, Yang,
and Kiron 2014; AAS 2017). The MALTs contain dif-
fuse T and B cells, with phenotypes different from
their systemic counterparts. The external mucus
layer on the skin, gills, and intestine of fish provide
an important first line of defense against pathogens
(Benson and Schlenk 2001; Jovanovi�c et al. 2011;
Torrealba et al. 2018). To this end, the mucus con-
tains immune components, such as lysozyme, anti-
microbial peptides, complement components as
well as antibodies (Brinchmann 2016). When fish
are confronted with pathogens and other foreign
bodies, the immune elements in the external mucus
layer are activated. Exposure of fish to MNPs can
induce changes in the mucus layer on skin and gills.
Studies with different fish species have shown that
fish mucus production is up-regulated under expos-
ure to various MNPs (Garcia-Reyero et al. 2015;
Ostaszewska et al. 2016; Hawkins et al. 2014;
Oliveira et al. 2018). Nanoparticles can infiltrate the
epithelial mucus layer by Brownian motion and this
appears to stimulate the goblet cells to release
mucus (Jeong et al. 2010). This increase in mucus
production results in the trapping of MNPs at these
epithelial surfaces (Song et al. 2015; Handy, Owen,
and Valsami-Jones 2008; Lee et al. 2012). On the
other hand, some MNPs may also just stay in the
mucus layer and then be released (Baker, Tyler, and
Galloway 2014).

From these mucus layers, MNPs then enter the
epithelia of skin, gills, and intestines. In fish, these
epithelia harbor diverse immune elements, includ-
ing antibodies, antimicrobial peptides, phagocytes,
and lymphoid cells. Recently, Løvmo et al. (2017)
examined the translocation of fluorescent 500 nm
polystyrene nanoparticles across the intestinal epi-
thelium of zebrafish, and they found that a majority
of the particles co-localized with leucocytes, pre-
sumably macrophages, in the mucosal lamina prop-
ria, suggesting an active immune response to the
presence of the MNPs in the intestinal mucosa

(Løvmo et al. 2017). However, this study did not
account for dye leachates and/or cellular autofluor-
escence. The next study demonstrated that com-
mercial fluorescent-labeled NPs can leach their
fluorophores, and the fluorophore alone can accu-
mulate within the internal tissues of zebrafish larvae
(Catarino, Frutos, and Henry 2019). Nevertheless,
various studies indicate that an immune response
to MNPs is triggered during their translocation
across the barrier epithelia (Teles et al. 2019; Brun
et al. 2018; Wang et al. 2015). How the immune
response to MNPs operates in the absorbing epithe-
lial barriers of fish deserves further research to
more fully understand the associated processes.

6.1.2. MNPs interaction with immune components
of epithelial barriers in bivalves
In bivalves, the gills and other pallial organs (e.g.
mantle and labial palps) are the first tissues encoun-
tered by waterborne MNPs that enter the pallial
cavity (Robledo Fern�andez et al. 2019). The pallial
cavity has a semi-confined compartment, highly
regulated fluid circulation, and included the pres-
ence of immune defense factors associated with the
mucosal surfaces that act as a barrier to invading
the MNPs. The pallial organs actively secrete a
mucus layer that has a tridimensional structure with
two distinct layers covering the epithelial cells
(Beninger et al. 1997). Some studies have confirmed
a stimulatory effect of MNP exposure on the pro-
duction of mucus in bivalves (Nunes et al. 2018,
2020), which in turn can increase MNPs bioavailabil-
ity via pseudo-feces (Kuehr et al. 2021). The exact
role of the bivalve’s mucus layer in the immune
reaction with MNPs, however, is not
fully understood.

In addition to representing an efficient physical
barrier, the mucus layers contain a wide range of
immune molecules, such as galactose and man-
nose-binding lectins, C1q domain-containing pro-
teins, defensin, and lysozyme (Espinosa, Koller, and
Allam 2016). It has been shown that some of these
immune molecules are regulated via external stim-
uli (Espinosa, Perrigault, and Allam 2010; Jing et al.
2011) and it is likely therefore that MNPs may regu-
late immune reactions in bivalves via stimulating
these immune proteins. Studies on bivalves have
also shown increases in mucus production at gill
epithelial surfaces after MNPs exposure and binding

94 S. RASTGAR ET AL.



of the MNPs to mucus proteins (Espinoza et al.
2010; Bourgeault et al. 2017). Similarly, epithelial
surfaces of the digestive tract of bivalves display
enhanced mucus secretion when in contact with
MNPs (Hu et al. 2014). The question that has not
been investigated yet is whether the immune com-
ponents of the epithelial mucus layer respond to
the presence of MNPs.

6.2. MNPs accumulation in immune organs of fish
and bivalves

6.2.1. MNPs accumulation in immune organs of fish
Once the MNPs have passed the epithelia of skin,
gill (it does not indicate uptake and could be only
adsorbed to epithelial surfaces), and gut, they can
be distributed by the hemolymph or blood to the
diverse organs and tissues. Moreover, the lymphatic
system in fish plays a role in the distribution of
MNPs around the body (Rummer et al. 2014).
Several studies have investigated the tissue distribu-
tion of MNPs in fish, and the gills and liver appear
to be the primary targets. Bruneau et al. (2016), for
example exposing rainbow trout to either ionic Ag
or AgNP observed Ag accumulation in gills and liver
(particles size: 22 ± 2 nm, concentration: 40 lg/L)
(Bruneau et al. 2016). Isani et al. (2013) exposing
rainbow trout to CuO NP found that the gills and
liver were target tissues (particles size: 35 nm, con-
centration: 1 mg/g body weight) (Isani et al. 2013)
and this was found also for Fe3O4 NP-exposed
blackfish, Capoeta fusca (particles size: 20–30 nm,
concentration: 1� 100mg/L) (Sayadi et al. 2020), Ag
NP-exposed zebrafish (particles size: 60 nm, concen-
tration:20mg/L) (Xiao et al. 2020). Interestingly, the
highest Fe accumulation occurred in the spleen in a
chronic exposure study of tilapia to Fe NPs (par-
ticles size: 20 and 90 nm, concentration: 0.1–1mg/L)
(Ates et al. 2016). This suggests that exposure con-
ditions may modulate the accumulation pattern of
MNPs in fish and the different types of material
may have a bearing on this also. No studies have
investigated the systemic distribution of MNPs
within tissues and organs via the circulation, and
information would be essential for setting up physi-
ology-based pharmacokinetic models (Handy et al.
2008; Chen 2016). Given immune organs are highly
vascularized immune organs, they are likely to be
exposed to MNPs circulating in the blood. This has

been confirmed for various fish species (including
rainbow trout and Atlantic salmon) (Petrie and Ellis
2006; Shaw and Handy 2011; Isani et al. 2013).
Overall, available data indicate that the immune
organs of the fish can (and do) accumulate MNPs,
but at lower levels than the main target organs,
gills, and liver of fish. Nevertheless, some studies
measure the total amount in the organism without
depuration, and much of the body burden may be
in the gut tract and not absorbed into tissues.
There is also the potential for adsorption onto
microvilli without absorption into the organism tis-
sue. Handy et al. (2018) showed that the mucosa
and microvilli of gut will accumulate either the
nano or bulk (micron scale) form of TiO2. Moreover,
Ti NPs bioaccumulated in the intestine, but not
much is transferred to the other organs. Thus, they
suggested that the bioaccumulation potential is
mainly associated with the route of entry rather
than the internal organs (Handy et al. 2018).

6.2.2. MNPs accumulation in immune organs
of bivalves
Data on the accumulation of MNP in immune
organs in bivalves are also limited. It is known that
bivalves accumulate MNP from the water but how
the absorbed particles are distributed, and whether
they transfer into immune organs or cells remains
largely unknown. A few experiments have reported
that AgNPs reach the hemolymph and caused dam-
age to hemocytes of M. galloprovincialis (Zuykov,
Pelletier, and Demers 2011; Gomes et al. 2014; Li
et al. 2021), however, these studies used very high
MNPs concentrations (up to 12mg/L) so that the
environmental relevance of these findings is
questionable.

6.3. MNPs uptake into immune cells of fish
and bivalves

6.3.1. MNPs uptake into immune cells of fish
In mammals, interactions of the MNPs with immune
cells involve binding to cell surface receptors and
this influences the uptake routes as well as effects.
For instance, binding to Fc and complement recep-
tors triggers phagocytosis instead of endocytosis.
Since these internalization pathways are evolution-
arily conserved and occur in fish as well (Yue et al.
2017; Lammel et al. 2019), they may also function
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in the uptake of NPs in fish immune cells (Torrealba
et al. 2018). This is supported by the finding that
cadmium tellurium quantum dots are phagocytosed
by rainbow trout immune cells (particles size:
25–100 nm and concentration 50–150 lg/mL)
(Bruneau et al. 2013).

To which receptor the MNPs bind to, and which
uptake pathway is triggered depends on the prop-
erties of the nanoparticles including their surface
charge and/or size. A major determinant for the
interaction of MNPs with cells and their cellular
internalization of MNPs pathway is the formation of
a protein coating around the particles, referred to
as ‘corona’ (Yue et al. 2016; Gustafson et al. 2015;
Gunawan et al. 2014; Westmeier, Stauber, and
Docter 2016; Zhu et al. 2018; Liu, Tang, and Ding
2020). The corona can be formed from plasma pro-
teins, complement factors, lectins, but also from
bacterial lipopolysaccharide. The composition of the
corona coating strongly influences MNPs interaction
with immune cells, their internalization, and subse-
quent immune effects. For instance, if the MNPs are
associated with lipopolysaccharides, they can be
recognized by the toll-like receptors of phagocytes,
with these receptors subsequently initiating an
inflammatory response. If the MNPs are associated
with lectins, this can result in binding to mannose
receptors of the phagocyte, which then promotes
the endocytosis of nanoparticles (Gustafson et al.
2015). The corona plays a role not only in their
uptake into cells, but also in the MNPs activity
inside the cells. Upon entry into the cells, intracellu-
lar molecules coat the MNPs surface and it is the
resulting corona, not the original nanoparticle sur-
face that influences the fate of the MNPs inside the
cells and their interaction with biological effector
molecules. This has been nicely illustrated in the
study of Yue et al. (2017) who showed that the
type of proteins interacting with the ingested MNPs
can be used to mark the trail of MNPs in the cell,
like a forensic fingerprint (Yue et al. 2017).

The discussion above highlights the importance
of corona formation for the MNPs uptake by
immune cells of mammals. For fish, unfortunately
there exists only very limited information on the
role of corona formation. Gao et al. (2017) incu-
bated polyvinylpyrrolidone-coated AgNPs with the
plasma of the smallmouth bass (Micropterus dolo-
mieu) and found that the particles formed a protein

corona (particles size: 50 nm, concentration: 1 lg/
mL) (Gao et al. 2017). The level of corona formation
increased with exposure time, and, remarkably, it
was also influenced by the sex of the fish, with
AgNPs incubated with male plasma having slightly
thinner and less negatively charged coronas than
AgNPs incubated with female plasma. This differ-
ence in corona formation in males and females was
also observed in a study on MNPs uptake by
immune cells of zebrafish (particles size: 70 nm, con-
centration: 200 lg/mL) (Hayashi et al. 2017). These
authors incubated nanoparticles with blood plasma
of sexually mature male and female zebrafish
(Danio rerio), which differ largely in the content of
the egg yolk precursor lipoprotein and vitellogenin.
This can affect the corona formation which in turn
may affect the uptake levels into cells MNP cellular
uptake and effects needs more attention in future
studies on MNP immunotoxicity in fish.

6.3.2. MNPs uptake into immune cells of bivalves
Investigation of the pathway of the MNPs uptake
into bivalves hemocytes has confirmed that differ-
ent sizes of NPs can have different uptake routes
(Sendra et al. 2020; Khan et al. 2015). The main
pathway for uptake of large MNPs (100 nm) was via
caveolin-mediated endocytosis and clathrin-medi-
ated endocytosis, whereas for the small MNPs
(50 nm) this was not governed by these classical
endocytic pathways (Sendra et al. 2020). The uptake
pathways in the bivalve hemocyte could be a crit-
ical factor in determining the subsequent response
of the immune system including hemocyte motility,
apoptosis, ROS, and phagocytic capacity (Sendra
et al. 2020; Bouallegui et al. 2017). In the above
studies, the small MNPs were significantly more
immune toxic than the larger ones, albeit this may
not have been due to differences in phagocytosis
between bivalves immune cells (granulocytes and
hyalinocytes) but rather related to differences in
size properties of the involved particles (Bouallegui
et al. 2017).

Canesi et al. (2016) showed the formation of cor-
ona proteins around polystyrene MNPs in the
hemolymph of Mytilus galloprovincialis. They further
demonstrated that a change in surface interactions
between MNPs and hemocytes is generated due to
a component in the hemolymph serum (putative
C1q domain-containing protein MgC1q6) (particles
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size: 50 nm, concentration: 1–50mg/mL) (Canesi
et al. 2016). The key immune protein MgC1q6 has a
unique structure and calcium and heavy metal-
binding properties (Zhou et al. 2013). In the blue
mussel, exposure to TiO2 and SiO2 nanoparticles
has been shown to result in the formation of cor-
ona proteins in the hemolymph (particles size:
10–200 nm, concentration: 80lg/L) (Bourgeault
et al. 2017).

6.4. The mechanism of MNPs effects on immune
functions of fish and bivalves

6.4.1. MNPs effects on immune functions of fish
Current evidence suggests that the immune system
recognizes MNPs as foreign bodies, resulting in a
complex landscape of immune responses. Exposure
to nanomaterials could in principle lead to immune
suppression, in which the immune system would
fail to expand in response to a pathogen, or
immune stimulation, in which case the immune sys-
tem would over-respond, leading potentially to
autoimmune or allergic disease (Deloid et al. 2016).
MNPs can modulate the immune system through
direct cytotoxic actions on the immune cells, direct
interactions with receptors and signaling pathways
of immune cells and the subsequent changes in the
immune system, and direct interactions with
immune proteins such as the complement factors.
Alternatively, MNPs may indirectly affect the
immune system in that they cause tissue damage
which then results in DAMP release and the trigger-
ing of an inflammatory response (Fadeel 2012).

Response of the innate immune system is trig-
gered by recognition of specific molecular struc-
tures. If a pathogen is infecting a host, the
pathogen expresses ‘pathogen-associated molecular
patterns’ (PAMPs) on its surface, which are then rec-
ognized by pattern-recognition receptors (PRRs)
including Toll-like receptors (TLRs) (Silva et al. 2017).
The activation of these receptors leads to the stimu-
lation of the innate immune response including
inflammatory reactions, and the initiation of the
appropriate adaptive immune response. The TLR
signaling results in the activation of transcription
factors, the nuclear factor jappa-light-chain-enhan-
cer of activated B cells (NF-jB), or MAPK. These fac-
tors affect the transcription of inflammatory
immune genes. It has been reported that several

nanoparticles including TiO2, ZrO2, and ZnO can
bind through their corona coating to TLRs in
humans and mice (Luo, Chang, and Lin 2015). In
fish, direct MNPs binding to TLRs has not been
shown yet, but Krishnaraj, Harper, and Yun (2016)
found that TLR22 transcripts were down-regulated
after 14-d exposure of zebrafish to silver nanopar-
ticles (particles size: 24.1 nm, concentration:
142.2lg/L) (Krishnaraj, Harper, and Yun 2016).

If toxic agents cause cell death or tissue damage
in exposed organisms, this can result in the release
of ‘damage-associated molecular patterns’ (DAMPs).
Through DAMPs, the MNPs may indirectly interfere
with the immune system as they are recognized by
the receptors of innate immune cells and through
these mechanisms can trigger a sterile inflammatory
response.

6.4.2. MNPs effects on immune functions of bivalves
Although the exact mechanism of the reaction
between bivalve immune cells and MNPs is not well
understood, it has been suggested that bivalve
TLRs in immune cells can recognize nanoparticles
(Yung et al. 2015). This is supported by the finding
that expression of TLRs is down-regulated in the ark
clam, Tegillarca granosa, exposed to TiO2 nanopar-
ticles (particles size: 35 ± 5 nm, concentration:
10–100 lg/L) (Shi et al. 2017) and in the mussel, M.
galloprovincialis exposed to TiO2 (particles size:
27 nm and concentration: 100 lg/L) (Balbi et al.
2014) and CeO2 (particles size: 21 nm and concen-
tration: 100 lg/L) (Auguste et al. 2019) which in
turn may reduce their sensitivity to patho-
gen challenges.

6.5. The response of the innate immune system of
fish and bivalves to MNPs

6.5.1. MNPs effects on complement system of fish
The complement system is an ancient and integral
part of the innate immune system which is present
in invertebrates as well as in all vertebrate classes
(Smith, Azumi, and Nonaka 1999; Smith, Rise, and
Christian 2019; Najafpour et al. 2020; Holland and
Lambris 2002). It is composed of about 30 plasma
and cell-bound proteins that are activated through
three different pathways: the classical, alternative,
and lectin pathways. Complementary proteins can
regulate immune processes and they also
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contribute to the protein corona formation around
MNPs (Figure 2). For instance, the complement fac-
tor C3 has been shown to bind to the surface of
Fe-NPs, and the bound C3 is then responsible for
the binding of the particles to innate immune cells
and subsequent uptake (Cronin et al. 2020).
Although the complementary system in teleosts is
not fully characterized, its fundamental properties
and activation pathways are similar to those of the
mammalian complement system (Holland and
Lambris 2002). Several studies have reported

alterations in complement factors of fish after MNPs
exposure. For example, common carp exposed to
ZnO NPs have shown an increased level of comple-
ment C4-2 (particles size: 25 nm and concentration:
500mg/kg of feed) (Chupani et al. 2017), the ortho-
log of C4B in mammals (Behera et al. 2014). An
alteration of the complement system after the
exposure to MNPs has been reported in rainbow
trout (Oncorhynchus mykiss) (particles size of CdS/
CdTe quantum dots: 5–10 nm and concentration:
1–6 lg/L) (Gagne et al. 2010), smallmouth bass (M.

Figure 2. A schematic view of the main route of exposure to MNP in fish and bivalves and possible mechanisms of interaction
between innate immunity (humoral and cellular immunity) and metal-based nanoparticles (MNPs) after entering into the blood
and immune cells of fish. a) Main routes of exposure. b) Protein corona formation around MNPs after entering into the blood ves-
sel or hemolymph. c) Phagocytosis of MNPs covered by corona proteins and molecular view of the interaction between MNPs cov-
ered by corona proteins and receptor of phagocytic cells followed by gene expression. SCP: soft corona protein. HCP: hard
corona protein.
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dolomieu) (particles size of polyvinylpyrrolidone-
coated AgNPs: 52.6–58 nm, concentration: ratio of
NPs to protein 1:500lg/lg) (Gao 2016), Asian sea-
bass (Lates calcarifer) (particles size of Se-NP:
30–40 nm, concentration: 4mg/kg diet; particles size
of Mg-NP: 20 nm, concentration: 500mg NanoMg/
kg diet) (Longbaf Dezfouli et al. 2019), and red sea
bream (Pagrus major) (particles size of Se-NPs:
38.7 nm and concentration: 0–2mg/kg diet)
(Dawood et al. 2019). Currently, in fish, the available
knowledge on MNP-complement interactions is
restricted to the observations that complement lev-
els are altered after MNPs exposure. There is no
information on whether the complement factors
bind to the particles and influence their clearance
by phagocytic immune cells.

6.5.2. MNPs effects on complement system
of bivalves
In aquatic invertebrates, the number of comple-
ment-related proteins is lower than that in fish, and
they have a less complex alternative with lectin
activation pathways compared to their vertebrate
counterparts (Smith, Azumi, and Nonaka 1999). In
bivalves, there are only two known complement
factors, C3 (Rd-C3) and B factor-like (Rd-Bf-like) mol-
ecules (Song et al. 2010). Wu et al. recently
reported that exposure to ZnO nanoparticles sup-
pressed the mRNA expression of the complement
component C3q in Mytilus edulis, that to our know-
ledge, is the first report of the effect of nanometal-
based particles on the complement system of
bivalves (particles size: 30 nm, concentration:
100 lg/L) (Wu et al. 2020).

6.5.3. MNPs effects on lysozyme of fish
Lysozyme is an important humoral immune protein
with antibacterial activity in the innate immune sys-
tem of both vertebrates and invertebrates (Saurabh
and Sahoo 2008; Xue et al. 2010). In the few studies
that have investigated MNP effects on lysozyme in
fish, generally, a reduction of lysozyme activity in
exposed fish has been found (Ates et al. 2016; Kaya
et al. 2016). Similar to other plasma proteins, lyso-
zyme can form a corona structure with MNPs
(Aghili et al. 2016; Chakraborti et al. 2010). After
binding to the MNPs, lysozyme can undergo a per-
manent conformational change from an a-helix into
b-sheet resulting in the inhibition of enzymatic

activity (Xu et al. 2010; Chakraborti et al. 2010). In
line with this, a biochemical study on lysozyme of
Rutilus frisii kutum confirmed that the interaction of
NiO-MNPs with lysozyme changed the enzyme’s
active site and reduced its activity (Jovanovi�c and
Pali�c 2012; Torrealba et al. 2018; Tolouei-Nia
et al. 2019).

6.5.4. MNPs effects on lysozyme of bivalves
The effect of MNPs on the lysozyme has been more
intensively investigated in bivalves than in fish. TiO2

and SiO2 nanoparticles have been shown to induce
lysozyme release in Mytilus hemocytes in a concen-
tration-dependent manner (particles size: 0.7–22 nm,
concentration: 1– 10 lg/mL) (Canesi et al. 2010).
Increased lysozyme activities have also been
observed in M. galloprovincialis exposed to nitro-
gen-doped oxides (n-TiO2, n-SiO2, n-ZnO, and n-
CeO2) MNPs (particles size: 21, 20, and 15–30 nm,
concentration: 1–10 mg/mL) (Ciacci et al. 2012), in
Scrobicularia plana exposed to silver nanoparticles
(particles size: 40 nm, concentration: 10 lg/L) (Buffet
et al. 2014), and in T. granosa (particles size:
35 ± 5 nm, concentration: 10–100 lg/L) (Shi et al.
2017), M. galloprovincialis (particles size: 21 nm and
concentration: 100 lg/L) (Auguste et al. 2019), and
M. coruscus (Kong et al. 2019) exposed to TiO2

nanoparticles (particles size: 25 nm, concentration:
0, 2.5, and 10 mg/L). A previous study reported that
lysozyme activity in bivalves does appear to be
driven by the production of oxy-radicals by hemo-
cytes after exposure to MNPs (Shi et al. 2017).

6.5.5. MNPs effects on cellular innate immunity
of fish
In addition to interaction with the soluble humoral
effectors, MNP can also interact with the effector
cells of the innate immune system. In published
studies, the focus is given mainly on phagocytic
macrophages. Phagocyte cells in fish include mono-
cyte/macrophages, granulocytes, and dendritic cells
(Wu et al. 2019). MNPs can either impair the viabil-
ity of the phagocytes (Hamilton et al. 2009; Deloid
et al. 2016; Roy, Das, and Dwivedi 2015), or they
can modulate phagocyte functions, such as oxida-
tive burst generation, phagocytic activity, or the
release of cytokines, with the possible subsequent
recruitment of other effector cells and the induction
of inflammation (Dalzon et al. 2020). As mentioned
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above (see Section 6.3), the ‘biological identity’ of
the MNPs, at least partly determined by the corona,
is of critical importance in dictating the interaction
with the immune cell receptors and thereby the
subsequent functional responses (Silva et al. 2017;
Alsaleh and Brown 2018). MNPs can affect the
phagocytes also indirectly in that they cause dam-
age in other tissues, and the resulting DAMPs then
bind to specific receptors on the phagocyte surface,
for instance, the IL-1 receptor on macrophages
(Cronin et al. 2020). Moreover, gut resident micro-
biota affects immune responses, and the most
important immune cells playing role in the first
interaction with the foreign particles in this case are
phagocytic cells (Pinsino et al. 2020).

MNPs phagocytosed by macrophages can induce
the loss of lysosomal integrity, and the initiation of
apoptotic pathways and cell death, both in mam-
mals and fish (Hamilton et al. 2009; Ortega et al.
2015). In addition, internalized MNPs can modulate
the functioning of fish phagocytes. The oxidative
burst activity of phagocytes is essential for their
ability to kill internalized pathogens. This phagocyte
function in fish is responsive to treatment with
TiO2-NP or Au-NPs (Jovanovi�c et al. 2011; Ortega
et al. 2015) but not responsive to Fe-NP treatment
in tilapia (Ates et al. 2016).

MNPs binding to and internalization by phago-
cytes can activate the release of pro-inflammatory
cytokines, such as tumor necrosis factor-a (TNFa) or
various interleukins and this may lead to systemic
inflammation (Dalzon et al. 2020; Ninan, Goswami,
and Vasilev 2020). While these mechanisms are well
demonstrated for the mammalian immune system,
for fish there is only indirect evidence for this,
where studies reported an altered response of cyto-
kine expression under MNP exposure. This may be
illustrated by the finding that exposure of fathead
minnow to TiO2-NP resulted in an upregulation of
IL-11 transcript levels of neutrophils, whereas sev-
eral other pro-inflammatory immune genes showed
no response (particles size: < 25 nm, concentration:
0.01–1000 lg/mL) (Jovanovi�c et al. 2011). Although
TNFa and IL-1b did not change in the head kidney
(an organ unique for teleost fish and comprises
cytokine-producing lymphoid cells from the
immune system and endocrine cells) of sea bream,
Sparus aurata exposed to Au-NP, the upregulation
of the anti-inflammatory cytokine IL-10 was

observed (particles size: 40 nm, concentration: 4, 80,
and 1600 lg/L). It was suggested that IL10 plays a
protective role against the oxidative stress induced
by AuNP and limiting factor for the formation of
TNFa and IL-1b (Teles et al. 2016). Overall, the avail-
able data on cytokine responses are fragmentary
and do not allow for any systematic evaluation of
the relation between the cytokine response and the
conditions of the NP exposure (nature and concen-
tration of NPs, application route, and exposure dur-
ation), and fish species, sex, or life stage.

Available data for mammalian macrophages have
demonstrated that MNPs can affect macrophage
polarization and reprogramming, depending on the
physicochemical properties of the MNPs, and not-
ably their size (Miao, Leng, and Zhang 2017;
Schoenenberger et al. 2016). Smaller MNPs can
induce M1 macrophage phenotype via various
types of ROS-generation, while most of them did
not affect polarization markers (Scherbart et al.
2011; Kumar, Meena, and Paulraj 2016; Sarkar et al.
2015; Reichel, Tripathi, and Perez 2019). In contrast,
some MNPs, notably CuNPs, CeO2NPs, and
Cr2O3NPs have shown antioxidant properties under
physiological conditions and shift macrophages’
activity toward M2-like polarization via decreasing
ROS generation (Selvaraj et al. 2015; Arancibia et al.
2016; Vanos et al. 2014). Based on available evi-
dence of mammalian macrophages, it is hypothe-
sized that macrophage polarization shifts can occur
in fish exposed to MNPs and the results of a few
studies support this hypothesis. For example,
labeled SiO2 nanoparticles (70 nm) can induce M1
polarization of macrophage and inflammatory stim-
uli diminish the uptake of SiO2 (Hayashi et al. 2020).
Up-regulation of inflammation genes occurs also in
fathead minnow exposed to nanosized TiO2 (par-
ticles size: < 25 nm and concentration:
0.01–1000 lg/mL) (Jovanovi�c et al. 2011), and the
phagocytosis index has been shown to decrease in
rainbow trout exposed to CdS/CdTe quantum dots
(particles size: 5–10 nm and concentration: 1–6 lg/L)
(Gagne et al. 2010). In zebrafish embryos, exposure
to SiO2MNPs down-regulated both gene expression
for macrophage inhibitory factor (MIF) and vascular
endothelial growth factor receptor 2 (VEGFR2)
(Duan et al. 2017). Moreover, SiO2NP inhibited
macrophage activity in a dose-dependent manner
in zebrafish embryos (particles size: 107 nm and
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concentration: 1, 3, 6, and 12 ng/nL) (Duan et al.
2017). In contrast, an increase in the anti-inflamma-
tory cytokine IL-10 was observed in adult zebrafish
exposed to AgNPs. It has been shown that Cu
MNPs inhibit NO and pro-inflammatory cytokines by
the activation of arginase and the suppression of
macrophages in mice (Arancibia et al. 2016). This
report probably supports M2 polarization occurring
in macrophages (Speshock et al. 2016). It is
unknown whether or not in fish macrophages
polarization occurs in the interaction with MNPs.

Teleost fish possess so-called melanomacrophage
centers (MMCs) which are special structures in fish
that are not present in mammals. It is speculated
that they functionally replace lymph nodes in mam-
mals. MMCs typically respond to metal exposure of
fish and they appear to respond also to MNP expos-
ure. An increase in the size of the MMCs has been
reported in grazer fish (Hypostomus plecostomus)
exposed to AgNPs (particles size: 10 nm and con-
centration:0–48mg Ag/L) (Perrier et al. 2018) and in
juvenile Seabream (S. aurata) exposed to ZnONPs
(hydronamic size: 1.1, 1.2, and 1.4lm, concentra-
tion: 1mg/L) (Beegam et al. 2019). Ag NPs exposure
has also resulted in increases in the number and
size of MMCs in the spleen, kidney, and liver of cat-
fish, Clarias gariepinus (particles size: 100 nm, con-
centration: 25, 50, and 75mg/L) (Sayed and Younes
2017). In contrast, exposure to TiO2 MNPs decreased
MMCs in the kidney of fathead minnows,
Pimephales promelas (particles size: < 25 nm, con-
centration (intraperitoneal injection): 2 ng/g and
10 lg/g body weight) (Jovanovi�c et al. 2015). It
remains to be established whether MNP-related
growth of the MMCs is accompanied by increased
metal deposition in these structures.

Neutrophils are among the first responding leu-
cocytes at an inflammatory site (Havixbeck et al.
2016). To eliminate foreign agents, neutrophils use
different mechanisms, including toxic intracellular
granules, the production of ROS, and deploying
neutrophil extracellular traps (NETs) (Meseguer,
L�opez-Ruiz, and Esteban 1994; Rieger et al. 2012;
Pijanowski et al. 2013). In vitro exposure of neutro-
phils from fathead minnow, P. promelas, to TiO2

NPs increased the release of NETs, indicating a shift
to NET-dependent cell death pathways, although
this response was short-lived and decreased after
48-h of exposure (particles size: < 25 nm,

concentration: 0.01–1000 lg/mL) (Jovanovi�c et al.
2011). In Indian carp, Labeo rohita fed nano-Fe, an
increase in respiratory burst activity, myeloperoxi-
dase activity, and bactericidal activity has been
reported (particles size: < 50 nm and concentration:
0.5mg/kg dry feed weight) (Behera et al. 2014).

It has been reported that TiO2-MNPs exposure
made the fish more susceptible to A. hydrophila
infection by decreasing the phagocytosis rate of
this disease-causing pathogen (particles size: <

25 nm, concentration: 2 ng/g, and 10 lg/g body
weight) (Jovanovi�c et al. 2015).

6.5.6. MNPs effects on cellular innate immunity
of bivalves
In bivalves, hemocytes are the main immune cells,
characterized by their high phagocytic activity and
capacity for oxyradical production (Garc�ıa-Garc�ıa
et al. 2008). Although hemocytes are considered a
single cell type, they are made up of three key sub-
populations: basophils, eosinophils (granular hemo-
cytes with a high phagocytic capability), and
hyalinocytes (agranular hemocytes with low phago-
cytic function) (Le Foll et al. 2010). Changing the
amounts of the different hemocytes in bivalves is
controlled by different mechanisms including the
alterations in hematopoiesis and specific cellular dif-
ferentiation, alterations to selective cell death, dif-
ferential diapedesis, and migration to tissues
according to the cell type (Chandurvelan et al.
2013). The frequency of eosinophils in the mussel,
M. galloprovincialis, exposed to the cadmium-based
quantum dots were decreased compared to agranu-
lar hemocytes (particles size: 2–7 nm and concentra-
tion: 10 lg/L) (Rocha et al. 2014). The phagocytosis
of these nanoparticles by eosinophils may induce
proapoptotic processes, higher production of ROS
and NO, due to respiratory burst and releasing
hydrolytic enzymes in eosinophilic hemocytes com-
pared to agranular hemocytes (Rocha et al. 2014).
The immune functions in hemocytes are modulated
by components of kinase-mediated cell signaling
(Canesi et al. 2006). Previous studies have shown
that hemocytes have highly developed processes
for the cellular internalization of MNPs by endocyto-
sis and phagocytosis (Moore 2006). This phenom-
enon would cause special immune signaling and
reactions. Canesi et al. reported that C60 fullerene,
TiO2, and SiO2 nanoparticles all induce p38 MAPK
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phosphorylation signaling in Mytilus hemocytes in a
time-dependent manner (Canesi et al. 2010).
Inducing p38 MAPK signaling is associated with the
efficient activation of the immune response, but
persistent phosphorylation is generally related to
the lysosomal damage, resulting in immunotoxic
effects (Canesi et al. 2016, 2006). On the other
hand, findings in bivalves suggest that some MNPs
(such as quantum dots) are likely to enter these ani-
mals through their respiratory and digestive tract
epithelia and have a lipophilic and redox-active
property (Oberd€orster, Oberd€orster, and
Oberd€orster 2005). Therefore, oxidative stress result-
ing from ROS production leads to an inflammatory
condition altering the immune systems of exposed
bivalves. Exposing freshwater mussels, Elliptio com-
planata, to CdS/CdTe quantum dots caused oxida-
tive stress and the suppression of immune function
including reducing the phagocytosis activity (Gagne
et al. 2008; Bruneau et al. 2013). In another study,
exposing E. complanata and M. edulis, to CdS/CdTe
QDs affected phagocytosis activity in a concentra-
tion, size, and species-dependent manner (Bruneau
et al. 2013). Large CdS/CdTe QD aggregates
(25 nm< size < 100 nm) reduced phagocytosis
more than did smaller nanoparticles (<25 nm) and
M. edulis hemocytes were less sensitive to CdS/CdTe
QDs than E. complanata hemocytes (Bruneau et al.
2013). In this phenomenon, the exposure to dis-
solved metals at low doses is an immune stimulator
and at higher doses is an immune inhibitor
(Calabrese and Baldwin 2003). On the other hand, it
should be noted that the effect of various types of
NPs on the immune response of mussles can be
related to shifts in the microbiota composition of
the hemolymph, indicating interaction of innate
immunity and host microbiota in mussels, as it
occurs in mammals (Auguste et al. 2019).

6.6. MNPs effects on the adaptive immune system
of fish

The adaptive immune system of vertebrates, includ-
ing fish, involves B cells and T cells. B cells are
responsible for humoral (antibody-mediated)
immunity, while T cells are involved in cell-medi-
ated responses. T helper (Th) cells (CD4þ) are
needed to support the production of antibodies by
B cells. Cytotoxic T cells (CD8þ) are required for

killing virus-infected and malignant cells, while
regulatory T cells are required for maintenance of
immune tolerance. Dendritic cells (DCs), in turn,
constitute the bridge between the innate and the
adaptive arms of the immune system. These cells
are effective phagocytic cells that also exhibit a
capacity for processing and presentation
of antigens.

The adaptive immune cells have a repertoire of
receptors on their surface to detect molecular struc-
tures. Each receptor on the cell has a single specifi-
city for a given ligand (or antigen) (Secombes and
Belmonte 2016). T cells recognize antigens as proc-
essed peptides from the original protein and deliv-
ered by major histocompatibility complex (MHC)
molecules, whereas B cells can recognize soluble
antigens and bind to them directly via their B-cell
antigen receptor (BCR) (Secombes and Belmonte
2016). Fish have also CD83-positive dendritic cells
that correspond to the mammalian dendritic cells
(Haugarvoll et al. 2006). These cells represent a con-
nection between the innate and adaptive immune
responses (Murphy and Weaver 2016).

Mammalian studies have shown that MNPs can
interact directly with MHC receptors as well as indir-
ectly by several induced co-stimulatory molecules
and receptors, such as TLRs (Kim, Kye, and Yun
2019; Chan et al. 2009). Also for fish, there exists
preliminary evidence for an MNP interaction with
MHC molecules. Teles et al. (2019) reported that the
exposure of gilthead sea bream (S. aurata) to AuNP
induced the up-regulation of ZAP70, the MHC I
molecule, and CC-chemokine. They suggested that
Au NPs activate MHC I ligation in fish T-cells, and
promote cell recruitment (Teles et al. 2019). On the
other hand, Chupani et al. (2017) reported that the
level of soluble MHC class I antigen was decreased
after the exposure of juvenile common carp
(Cyprinus carpio L.) to ZnO nanoparticles. Some
MNPs, such as Au MNPs have an epitope structure
for binding to specific antibodies (Ding et al. 2017),
and others, such as ZnO NP and TiO2 NP act as
haptens with immunogenic effects after attaching
to a larger carrier molecule (Roach, Stefaniak, and
Roberts 2019). However, this mechanism needs to
be shown to exist in fish as well.

The available literature provides evidence for the
effect of MNPs on the development, viability, and/
or function of fish lymphocytes. For example,
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exposure of rainbow trout to Ag NPs decreased
lymphocyte viability (Małaczewska and Siwicki
2013). The number of circulating lymphocytes was
also shown to be decreased in the blood of rain-
bow trout exposure to CuO NPs (particles size:
100 nm and concentration: 100 lg/L) (Khabbazi
et al. 2015). The opposite effect however was
observed in Caspian Trout (Salmo trutta caspius)
exposed to CuO-NPs (particles size: 100 nm and
concentration: 500mg/L) (Kaviani, Naeemi, and
Salehzadeh 2019). Interpreting these studies, how-
ever, is challenging as most of these studies did not
apply environmentally relevant exposure conditions.

7. Conclusions and research needs

This review focuses on the immunotoxic effects of
MNPs in finfish (teleosts) and bivalves. The bioavail-
ability and subsequent effects of these particles are
largely dependent on the form of these materials in
the aquatic environment. After having entered the
bodies of fish and bivalves, a major effect mechan-
ism is inducing oxidative stress which, in turn, can
trigger immunological responses. While many stud-
ies have shown that exposure of fish to various
MNPs induces changes in diverse immune parame-
ters, findings to date do not yet enable a conclusive
understanding on which immune components of
fish and bivalve are impacted by the MNPs, and
whether MNPs at environmentally realistic exposure
conditions do indeed compromise the overall
immune capacity of fish and bivalves so that they
turn more susceptible to infectious pathogens and
disease. In addition, the molecular and physiological
mechanisms by which the MNPs interfere with the
fish and bivalve immune systems are still lit-
tle understood.

Future research on the possible immunotoxic
activities of MNPs in finfish and bivalves should
focus on the following items:

a. A systematic understanding of the relation
between immune effects of MNPs and their
dose and physicochemical properties (e.g. size
and surface charge).

b. A better understanding of how the proteins
and other molecules that adhere to the MNP
surface (corona) trigger the immune responses.
This will need to better identify the specific

protein in the protein corona structure of MNPs
that are responsible, at least in part, for the
activation of immune pathways.

c. Establishing whether environmentally realistic
MNPs concentrations induce immunoreactive
responses, and which are immune functions
most affected. This will help to establish
whether exposures to environmentally realistic
MNPs concentration induce effect levels on the
immune systems that are likely, or not, to
impair their physiological health and defense
capacity against infective pathogens.

d. Identifying whether MNPs-induced immune dis-
turbances for environmentally realistic expo-
sures impact the overall immunocompetence of
bivalves and fish (i.e. via assessments of
responses to pathogens). This will help to bet-
ter understand what level of concern (if any)
there is for the effects of MNPs and help inform
on thresholds for immune toxicity bioassays in
MNP testing. This knowledge will also help
build the information to inform comparative
studies on immune health for MNP effects
across vertebrate and invertebrate species.

e. Finally, given the very limited studies that exist
on the effects of MNPs exposure on the adap-
tive immune system of fish, future studies need
to give more attention to the interference of
MNPs with the adaptive immune system of fish.
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