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A B S T R A C T   

Nanoforms can be manufactured in plenty of variants by differing their physicochemical properties and tox-
icokinetic behaviour which can affect their hazard potential. To avoid testing of each single nanomaterial and 
nanoform variation and subsequently save resources, grouping and read-across strategies are used to estimate 
groups of substances, based on carefully selected evidence, that could potentially have similar human health and 
environmental hazard impact. A novel computational similarity method is presented aiming to compare dose- 
response curves and identify sets of similar nanoforms. The suggested method estimates the statistical model 
that best fits the data by leveraging pairwise Bayes Factor analysis to compare pairs of curves and evaluate 
whether each of the nanoforms is sufficiently similar to all other nanoforms. Pairwise comparisons to benchmark 
materials are used to define threshold similarity values and set the criteria for identifying groups of nanoforms 
with comparatively similar toxicity. Applications to use case data are shown to demonstrate that the method can 
support grouping hypotheses linked to a certain hazard endpoint and route of exposure.   

1. Introduction 

Grouping and read-across are powerful tools to reduce the amount of 
necessary experimental testing and time (OECD, 2014; ECHA, 2008) for 
newly produced nanomaterials (NMs) and nanoforms (NFs). REACH 
established the requirements to identify and characterize sets of similar 
NFs by providing clear evidence of certain physicochemical (PC) prop-
erties, i.e. the size, shape, surface chemistry and surface area of particles 
of the NFs (ECHA, 2019a; ECHA, 2019b). The identification of PC 
properties affecting the hazard potential of NFs is crucial for similarity 
assessment, even so as NFs and NMs are characterized not only by many 
material-specific intrinsic properties, but also by extrinsic properties 
that vary in dependence of the surrounding medium and can be 
expressed using dose-response data. Recent literature suggests that 
relevant nanospecific PC properties to support grouping according to 
their (eco)toxicological effects, are factors such as the shape and the 

surface (surface chemistry or reactivity), whereas hazard classes are 
identified on the basis of bio-persistence, morphology, reactivity, and 
solubility (Jeliazkova et al., 2021- this issue; Hund-Rinke et al., 2018). 
Moreover, NFs properties may change during their lifetime, for example 
due to aging, agglomeration or aggregation, corona formation, reac-
tivity or dissolution (EU US Roadmap Nanoinformatics 2030, 2018), 
potentially influencing NFs toxicity, uptake or fate. 

Several frameworks for grouping NFs are already available based on 
the above mentioned assumption that NFs with similar PC and toxico-
logical profiles can be considered as a group (Knudsen et al., 2019; 
Oomen et al., 2018; Arts et al., 2015). Some of them employ statistical 
approaches, such as clustering and regression analyses (Knudsen et al., 
2019; Drew et al., 2017), whereas others developed specific grouping 
rules based on fixed boundaries and pre-defined categories (Arts et al., 
2015). Unsupervised learning algorithms, such as principle component 
analysis, were suggested for grouping NFs (Aschberger et al., 2019), but 
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also non-parametric supervised approaches, such as random forest 
classification algorithms, were employed to estimate sets of similar NFs 
depending on the available data and the hazard endpoints of interest 
(Bahl et al., 2020; Lamon et al., 2019). The European Commission 
funded Horizon 2020 GRACIOUS project has proposed a range of 
methods to assess similarity between NFs in terms of predefined 
grouping hypotheses that specify intrinsic/extrinsic PC characteristics 
and the toxicity data required via application of Integrated Approaches 
to Testing and Assessment (IATAs) (Stone et al., 2020). The computa-
tional similarity assessment methods suggested in the project are either 
via a multidimensional analysis or pairwise analyses conducted in a 
property-by-property manner (Jeliazkova et al. (2021)- this issue). Both 
approaches have their merits, yet they differ in that, unlike pairwise 
analysis, multidimensional analysis is directly estimating relationships 
between groups of NFs. On the other hand, pairwise analysis is a 
powerful tool when it comes to comparisons to benchmark materials 
which are largely used to read-across a toxicity endpoint but also assess 
similarity between well studied NFs to reduce the uncertainty of health 
risks from new materials (Hund-Rinke et al., 2018). These approaches 
are also useful for safety assessment of well-established materials such as 
fillers and pigments (Bahl et al., 2020; Wohlleben et al., 2017). 

In this work we suggest estimating similarities between NFs by 
employing a pairwise similarity approach to dose-response data. This is 
currently an ongoing research area of particular interest for grouping 
NFs given its fundamental importance to hazard assessment. We model 
NFs dose-response curves using statistical distribution functions, and 
subsequently decide whether pairs of NFs are identically distributed 
samples from the same statistical distribution or alternatively are 
derived from different distributions of the same family but with different 
parameters. Several methods are proposed in the literature for model 
fitting dose-response data (Ma et al., 2020; Pinheiro et al., 2014). 
Established methods use mainly nonlinear regression models to describe 
the curve and rely on likelihood ratio tests for the significance of more 
complex models relative to the simpler models. Following a similar logic 
for model comparison, we are suggesting that for each NF, data are 
derived from a log-normal distribution and Bayesian Factor (BF) anal-
ysis is employed to compare dose-response curves of different NFs. BF 
provides an index of preference for the similarity of a pair of NFs over 
their dissimilarity. 

2. Method 

A nested sampling-based Bayesian approach is suggested to infer the 
parameters and compare dose-response curves for pairs of NFs. A similar 
approach is described in Baranyi et al. (1993) for comparing bacterial 
growth curves across different times. According to the literature, the 
biological dose-response data have a sigmoidal structure and are nor-
mally modelled using (non)linear and logistic regression models 
depending on whether response data are continuous or categorical. 
Toxicological dose-response modelling is primarily aiming to derive a 
Benchmark dose (BMD) in human or ecotoxicological risk assessment. 
The BMD method by Crump (1984), is the most widely applied meth-
odology, however other methods, such as the PROAST software meth-
odology (Slob, 2002), are also popular. Both tools are employing the 
same set of models ranging from normal to Weibull, and Exponential and 
Hill family models. Other model-based statistical approaches have been 
applied to dose-response data, such as Bayesian modelling, however 
mainly for the purposes of drug-interaction analysis (Hamza et al., 2021; 
Hennessey et al., 2010). Here, data are assumed to follow a log-normal 
distribution in a similar fashion as introduced in (Greco et al., 1995; 
Greco et al., 1990). Uniform prior knowledge is incorporated in the 
model reflecting a lack of prior information for all parameters, however, 
there is an option to include prior information from clusters of previ-
ously analysed experimental data of similar materials. 

Bayesian analysis was preferred to maximum likelihood comparisons 
and other optimisation techniques to avoid overfitting due to inadequate 

representation of measurement errors in the data, and more sharply 
defined parameters than is justifiable given the data (Pullen and Morris, 
2014). Using the Bayesian framework, we may capture the full uncer-
tainty of the problem, taking the whole set of parameters space into 
account to make consistent predictions and make use of the readily 
available tools for model and hypothesis comparisons, i.e. the BF 
analysis. 

We consider three different models to describe the similarity be-
tween a pair of curves. In the first model (M1) the two curves are 
considered to be replicates coming from the same log-normal distribu-
tion with the same set of parameters (population mean and standard 
deviation), in the second model (M2) the two curves have the same 
curvature but differ in all other parameters, and in the third model (M3) 
the curves share no common parameters. The individual models are then 
compared using BF analysis and the results are interpreted using Jef-
freys’ scale (Kass and Raftery, 1995). BF12 shown in Eq. (1), demon-
strates the BF score for comparing model M1 over model M2, where high 
values (above 3 or 0.5 in the log10 scale) are in favour of M1 against M2 
and low values (less than 1/3 or − 0.5 in the log10 scale) are in favour of 
M2 against M1. For M1, the joined likelihood function of the combined 
data from both NF curves is calculated, denoted by P(D|M1, I), whereas 
in M2 the two curves are considered individually and the likelihood 
function is equal to the product of their two log-normal distributions, 
denoted by P(D|M2, I). We denote by D the dose-response data of a pair 
of NFs, and by I the non-informative prior information currently 
included in the model. Using similar notation, BF13 denotes the BF score 
for comparing model M1 over model M3, i.e. comparing the model of the 
combined data from both curves, to that of the two curves from two log- 
normal distributions with different parameters. For the analysis pre-
sented in this paper a uniform prior probability is assumed, however 
Gaussian or Cauchy options could be considered to include existing in-
formation from other PC data sets. 

M1. curves are identical samples of the same distribution. 

M2. curves have the same curvature parameter. 

M3. curves are samples from different distributions 

BF12 =
P(D|M1, I)
P(D|M2, I)

=
P(M1|D)

P(M2|D)
∙
P(M1, I)
P(M2, I)

≈
P(M1|D)

P(M2|D)
(1) 

Since we assume uniform prior probability P(M1, I) = P(M2, I), BF12 is 
equal to the ratio of the log-normal posterior probability of model M1 
over model M2, suggesting by how much data D should update our belief 
in model M1 over the competing M2, tending to accept much simpler 
models. 

The input of the method is a data matrix that includes the two dose- 
response intrinsic descriptors needed to calculate dose-response curves. 
Specifically, the data matrix is of the same structure as the one described 
by Jeliazkova et al. (2021) with a (n x 3) dimension where n is the 
number of rows corresponding to the number of NFs included in the 
analysis and 3 is the number of columns, with the first being the ‘Names’ 
of NFs, the second one the ‘Concentration’ descriptor data and the third 
the ‘Response’ descriptor data. Since the method can be applied to 
different purposes risk assessment dose-response similarity analysis, and 
in order to automate the procedure, the method is expecting as input a 
data matrix with a header row using the keywords ‘Names’, ‘Concen-
tration’,’Response’. Data standardization and normalization issues were 
addressed, to assure that transformed data follow a log-normal distri-
bution. Well-defined benchmark materials (either negative or positive 
controls) are naturally included in the data matrix and can be used to set 
threshold values of the similarity score. For some methods or assays the 
control materials are Representative Test Materials (RTMs) that repre-
sent certain biological behaviour, and thus define a biologically relevant 
range within which materials can be considered similar. 

Various alternatives have been considered for adjusting threshold 
values taking also into account the benchmark NFs similarity score 
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values to set the biological relevant range of the similarity score. 
Negative values of the similarity BF score support the belief that the two 
NFs are derived from different probability distributions and thus cannot 
be grouped together. Nevertheless, to adjust for the biologically relevant 
information in the data, the above-mentioned thresholds were informed 
from similarity values calculated for pairs of positive and negative 
controls in the data matrix, or when available by RTMs. Specifically, the 
direction of the similarity relationship agrees with the one mentioned 
above, positive (similar), negative (dissimilar), and the specific 
threshold is data-dependent and is set by the most similar RTMs and the 
most dissimilar RTMs in the data, as indicated by the user. For instance, 
in the case of the reactivity assay use case presented in the next section, 

concentration dependent reactivity curves of case study materials were 
compared with very reactive Mn2O3 and CuO, and non-reactive BaSO4 
(Ag Seleci et al., 2022; this issue). Positive similarity score values greater 
than 0.5 in the log-scale indicate similarity, the similarity score for 
Mn2O3 and CuO is equal to 2.92 very close to the highest score of 3 
when an NF is compared to itself. 

The method was applied to single descriptors data by resampling the 
concentration values from a uniform distribution to generate dose- 
response curves, and was compared to other similarity assessment 
methods (Jeliazkova et al., 2021 – this issue). Another application of the 
method is presented in Ag Seleci et al. 2022 - this issue. The particular 
application considered a weighted distance metric for the BF score to 

Fig. 1. Similarity analysis for Daphnia magna immobilization exposed to seven CuO NFs. a) The raw dose-response data for all seven NFs are shown, together with 
fitted loess curves. b) M1 is tested against M2, c) M1 is tested against M3, d) M2 is tested against M3. e) p-values from the Wilcoxon Mann-Whitney test for comparing 
the null hypothesis that data are derived from the same distribution against the alternative that they are not. In all graphs, red rectangles correspond to highly similar 
NFs (log10-scaled BF values). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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combine dose-response curves’ similarities and their projections in the 
one-dimensional space, to reflect the importance of both the dose and 
response value ranges to characterize two NFs as similar. 

All computations and visualizations were performed using the sta-
tistical programming language R. A nested sampling algorithm is used to 
implement BF model comparisons and to generate samples from the 
posterior distribution (Skilling, 2006). The R source code for analysis, 
parameter estimation and models comparisons, as well as the use case 
data are available in github (https://github.com/h2020gracious/BFs 
imilarity). 

3. Results 

Following testing of the method with simulated data, the suggested 
methodology was applied to a literature curated data set for Daphnia 
magna immobilization exposed to seven different NFs of copper oxides. 
The immobilization dose-response data is a literature reviewed data set, 
now available from the eNanoMapper database, which also includes 
sixteen intrinsic properties for each of the seven NFs considered 
(Peinjnenburg, 2021; Zabeo et al., 2021- this issue). Fig. 1 presents all 
possible pairwise comparisons between the seven CuO NFs also testing 
all three available models M1, M2, M3 to investigate which one of the 
three possible comparisons can best capture the grouping of the data (M1 
vs M2, M1 vs M3, or M2 vs M3). As a comparison to our methodology, we 
applied a non-parametric testing approach using the Wilcoxon Mann- 
Whitney test for comparing the null hypothesis that data are derived 
from the same distribution against the alternative that pairs of NFs are 
derived from different statistical distributions. Fig. 1a shows the raw 
dose-response data for the seven copper oxides, where we can observe 
differences in the concentration ranges (for instance, nCuO_a and the 
remaining NFs) as well as differences in the dose-response curves (for 
instance, nCuO_d and nCuO_e). Fig. 1b shows a. 

heatmap of the similarity scores for all possible pairwise comparisons 
of the seven NFs; each rectangle in the graph corresponds to a BF value, 
BF12, testing whether NFs are highly similar derived from the same 
statistical distribution against the alternative model that they are 
derived from distributions with the same curvature parameters but 
different location parameters. Red rectangles correspond to highly 
similar NFs (derived from the same distribution), and blue rectangles to 
dissimilar NFs. Rectangles in the diagonal are coloured in red showing 
the highest similarity score when comparing each NF with itself. 
Negative values in this case would mean that the two NFs are derived 
from distributions with the same curvature parameters. Fig. 1c shows 
the BF13 similarity score values which quantify whether pairs of NFs are 
derived from different distributions and negative values indicate 
dissimilarity between NFs. Fig. 1d shows BF23 similarity score values 
which quantifies how dissimilar NFs are; positive values suggest that 
NFs are derived from distributions with the same curvature and negative 
values are again in favour of NFs being derived from different distri-
butions. Depending on the models compared we can understand the 
different degree of similarity between CuO NFs. It is important to note 
that across all three model comparisons (Fig. 1b - Fig. 1d) nCuO_a is 
quite dissimilar to the remaining six CuO NFs which is also supported by 
the raw data (Fig. 1a). Fig. 1e shows the p-values of the Wilcoxon Mann- 
Whitney test for comparing the null hypothesis that data are derived 
from the same distribution against the alternative that pairs of NFs are 
derived from different statistical distributions. Red rectangles in the 
graph correspond to high similarity (p-value = 1 for comparisons of each 
NF with itself along the diagonal, suggesting that we cannot reject the 
null hypothesis that NFs are derived from the same distribution and thus 
the two NFs are highly similar), and blue rectangles to low similarity 
(dark blue rectangles corresponding to p-values≤0.01, suggesting that 
the two NFs are derived from different distributions with confidence 
0.99). Overall, Fig. 1c, d agree in which pairs of NFs are dissimilar, also 
suggesting some similar pairs of NFs (e.g. nCuO_c and nCuO_b, nCuO_g 
and nCuO_f, or nCuO_d and nCuO_b). In Fig. 1b, the similarity scores are 

small values around zero, suggesting that this comparison is very sen-
sitive even to small deviations across curves. As only CuO NFs are 
examined here, we conclude that BF13 values (Fig. 1c) are more sensitive 
to minor differences between NFs and for that reason are preferred 
compared to other model comparisons. 

When comparing the BF13 values (Fig. 1c) with the Wilcoxon Mann- 
Whitney test p-values (Fig. 1d), we can see an agreement in only a few 
cases (e.g. nCuO_a and nCuO_f are declared as dissimilar from both 
methods) and it seems to suggest some degree of similarity for all NFs 
apart from nCuO_f and nCuO_d, nCuO_f and nCuO_a (p-values ≤ 0.01). 

In a second use case, similarity analysis was performed for sixteen 
NFs tested within the GRACIOUS project to test concentration depen-
dent reactivity similarities via the DCFH2-DA abiotic assay. RTMs (CuO, 
Mn2O3, BaSO4, CeO2 and ZnO), iron oxide NFs, Diketopyrrolopyrroles 
(DPP)-based organic pigments and silica NFs were commonly assessed. 
Surface reactivity is very often recognized as a central parameter when 
grouping NFs (Arts et al., 2015; Oomen et al., 2015), since several fac-
tors may modulate the surface reactivity and thus account for differ-
ences in the toxicological potency between different NFs of a substance. 
Fig. 2a, shows the raw concentration-response data for the sixteen NFs, 
where we can clearly observe that the highly reactive materials CuO and 
Mn2O3 are forming almost identical curves, with their reactivity values 
being the highest of the sixteen shown. The low reactive NFs (ZnO, 
CeO2, BaSO4) also form a group of very similar curves, however CeO2 
and BaSO4 seem to be closer in terms of their reactivity values. Fig. 2b 
shows a heatmap of the similarity BF score values in the DCFH reactivity 
data set including RTMs. Each rectangle in the graph corresponds to a BF 
value, BF13, quantifying similarities between pairs of NFs. For instance, 
the blue. 

rectangle at the right top corner of Fig. 2a, corresponds to the BF13 
value comparing CuO and Silica-anis-Al NFs and suggests that the two 
NFs are dissimilar. Dissimilarities are indicated with light yellow to blue 
colouring. Red rectangles in the graph correspond to areas of high 
similarity, grouping the low reactive NFs (ZnO, CeO2, BaSO4), and the 
highly reactive NFs (CuO, Mn2O3). Additionally, we can observe the 
formation of some groups for NFs of the same material (e.g. iron oxides 
nano A and nano B, DPP coated organic pigments, and silica NFs). For 
grouping purposes, we can consider as thresholds of high similarity 
values corresponding to similar in terms of their reactivity behaviour 
RTMs (e.g. CeO2 and BaSO4, or CuO and Mn2O3) and as thresholds of 
highly dissimilarity values that correespond to RTMs with different 
reactivity behaviour (e.g. BaSO4 and CuO, or BaSO4 and Mn2O3). These 
results align with what is presented for the same set of NFs in Ag Seleci 
et al., 2022 - this issue, and compared to similarity score values across 
abiotic and cellular assays. The authors applied the BF similarity 
assessment method and were able to group RTMs according to their 
known reactivity behaviour but also provide valuable feedback for the 
grouping of all NFs per assay. 

As previously, we compare our findings with those from the Wil-
coxon Mann-Whitney test; Fig. 2c shows the p-values of the Wilcoxon 
Mann-Whitney test for comparing the null hypothesis that data are 
derived from the same distribution (red rectangles) against the alter-
native that pairs of NFs are derived from different statistical distribu-
tions (blue rectangles). Overall, we can observe that the test fails to 
distinguish patterns in the data and largely rejects the null hypothesis of 
similarity (p-values ≤ 0.01). Both methods agree that CuO and Mn2O3 
are not similar to the remaining of the NFs assessed, as well as that low 
reactive NFs (ZnO, CeO2, BaSO4) are similar, however the similarity 
patterns between the highly reactive materials are not evident in Fig. 2b. 

The robustness of the method has been tested to various data sets 
from the GRACIOUS project (Jeliazkova et al., 2021; Ag Seleci et al., 
2022; Di Cristo et al., 2021)- this issue, as well as compared to alter-
natives, namely apart from the Wilcoxon Mann-Whitney test shown 
here, to the Euclidean distance metric and to an aggregated ordered 
weighted average (OWA) distance metric (Jeliazkova et al., 2021; Zabeo 
et al., 2021) - this issue, as well as to the x-fold approach implemented in 
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Fig. 2. Similarity analysis for the DCFH assay reactivity- 
concentration data for sixteen NFs carefully selected by the 
GRACIOUS project. a) The raw concentration-response DCFH 
reactivity data for all 16 NFs considered. b) BF similarity 
score values testing whether each pair of NFs is drawn from 
the same distribution against the alternative that data are log- 
normally distributed with different parameters. c) p-values 
from the Wilcoxon Mann-Whitney test for comparing the null 
hypothesis that data are derived from the same distribution 
against the alternative that they are derived from different 
distributions. Red rectangles correspond to highly similar NFs 
(log10-scaled BF values). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the 
web version of this article.)   
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ECETOC NanoApp (Janer et al., 2021). In Jeliazkova et al. (2021)- this 
issue, a simplified version of the BF analysis was applied to a set of 
predefined PC and toxicological properties of interest to estimate pair-
wise similarities between NFs for benchmark materials. In all cases, we 
found that the BF method was robust across data sets and could group 
NFs relatively well compared to alternatives. 

4. Discussion 

This paper presents a methodology that assesses similarity between 
NFs and therefore can be used to support NFs grouping. We developed a 
tool to create and justify groups of similar and dissimilar NFs by 
assessing whether each NF is sufficiently similar to all other NFs. The 
suggested approach is considering all pairwise BF similarity values to 
compare pairs of curves of dose-response data and decide whether they 
can be described by the same underlying distribution. For each pairwise 
comparison of two dose-response curves, three models of similarity are 
considered and it was found that the one which assesses if NFs are highly 
similar as opposed to highly dissimilar is more sensitive to small dif-
ferences between NFs and therefore was preferred. Although to fully 
define how NF similarity thresholds can be uniformly used for grouping 
decisions is beyond the scope of the current study, this work provides 
useful insights on the interpretation of the similarity scores using RTMs, 
an issue which is highly critical to the final decision of grouping and the 
uncertainty related to health risks of innovative new materials. Partic-
ularly, BF score values in the range of (− 0.5, 0.5) are not informative, a 
value outside the aforementioned interval of values would suggest 
similarity (positive side) or dissimilarity (negative side). Pairwise com-
parisons to benchmark materials when available should be used to 
comparatively group NFs in terms of their biological relevance and set 
experiment specific target values of similarity (positive controls) and 
dissimilarity (negative controls). 

Our findings show that the method can identify similar NFs signifi-
cantly well, suggesting that similarity assessment could be used to verify 
and strengthen grouping hypotheses as well as the link between nano-
form properties and the biological effect considered. The suggested tool 
could provide a rapid screening result to support grouping and therefore 
predict hazard in the absence of experimental data. Currently, a uniform 
prior probability is assumed, however future work will consider utilizing 
intrinsic data to inform the model of similarities across toxicity data. 
Additionally, we intend to focus on filtering the data depending on the 
specificity and complexity of the grouping hypothesis under 
consideration. 
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