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Supplementary material 4: Technical description of the

performance measures

Nan van Geloven et al.

1 General notation

We use the tutorial paper by Putter et al. [1] as main reference for the Sections 1 through 3. We
assume that individuals can experience one of K distinct events. We denote the failure time as
T , and the competing event indicator as D ∈ {1, ...,K}. In practice, individuals are subject to
some right-censoring time C, which is assumed to be independent of T and D, possibly given
covariates. We thus only observe realisations of T̃ = min(C, T ) and D̃ = I(T ≤ C)D, where
D̃ = 0 indicates a right-censored observation and I(·) is the indicator function.

2 Key quantities

The cause-specific hazard of failing from a cause k in presence of competing events is defined as:

hk(t) = lim
∆t→0

P (t ≤ T < t+∆t,D = k | T ≥ t)

∆t
.

The overall survival probability is defined by the K cause-specific hazard functions as

S(t) = exp

(
−

K∑
k=1

∫ t

0

hk(u)du

)
= exp

(
−

K∑
k=1

Hk(t)

)
,

where Hk(t) =
∫ t

0
hk(u)du is the cause-specific cumulative hazard for cause k.

The cumulative incidence function for an event k, also referred to as the absolute risk of
event k, is the probability of that event occurring by a particular time-point t without any other
competing event occurring earlier, P (T ≤ t,D = k). It is defined as

Fk(t) =

∫ t

0

hk(u)S(u−)du,

with S(u−) being the total survival probability just up to time u.

3 Aalen-Johansen

Suppose we observe n independent samples (t̃i, d̃i) of (T̃ , D̃), for i = 1 · · ·n. We order the J
distinct event times where any of the K competing events occur as 0 < t1 < . . . < tJ . Let Dk(tj)

denote the number of individuals failing from cause k at tj , and let D(tj) =
∑K

k=1 Dk(tj) denote
the total number of failures from any cause at tj . The number of individuals at risk of any event
at tj is given by R(tj).
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The cumulative incidence of cause k by some time horizon s can be estimated non-parametrically
using the Aalen-Johansen estimator [2], defined as

F̂k(s) =
∑

j:tj≤s

ĥk(tj)Ŝ(tj−1),

where

ĥk(tj) =
Dk(tj)

R(tj)
, Ŝ(t) =

∏
j:tj≤t

(
1−

K∑
k=1

ĥk(tj)

)
.

This Aalen-Johansen estimator is sometimes referred to directly as ‘the cumulative incidence
function’ (e.g. Ramspek et al. [3]). Here we the denote the cumulative incidence function as
the population quantity we are targeting, and the Aalen-Johansen estimator as the means to
estimate it from data.

4 Regression models

We assume for the remainder of this document that primary interest lies in estimating the
cumulative incidence for event D = 1 by some prediction horizon s, conditional on covariates.
Let Z denote a vector of p covariates, which are observed for every ith individual as zi.

The two most commonly used methods for predicting an event conditional on covariates in
the presence of competing risks are the Fine and Gray approach [4], and the cause-specific Cox
proportional hazards approach. Both are able to produce a subject-specific absolute risk of
experiencing event D = 1 by s, which we denote as π1(s | zi). This is effectively an estimate of
F1(s | zi) = P (T ≤ s,D = 1 | zi).

4.1 Cause-specific Cox proportional hazards approach

The cause-specific approach first entails specifying a Cox proportional hazards model for each of
the K competing events as

hk(t | Z) = hk0(t) exp(β
⊺
kZ),

where hk0(t) is the cause-specific baseline hazard, and βk represents the effects of covariates Z
on the cause-specific hazard. Each model can be estimated by treating all events by causes other
than D = k as censored. Note that the models need not necessarily share the same covariates.

In order to obtain π1(s | zi) using the cause-specific approach, the individual-specific hazards
must first be calculated as

ĥk(t | zi) = ĥk0(t) exp(β̂
⊺
kzi),

where ĥk0(t) is calculated based on the increments in the Breslow estimate of the cause-specific
cumulative baseline hazard. These hazards for all J distinct timepoints can thereafter be plugged
into the formula for F̂k(s) outlined in Section 3, producing π1(s | zi) for D = 1. We refer the
reader for example to Section 5.2.1 of the text by Beyersmann et al. [5] for a more detailed
treatment of the procedure.
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4.2 Fine and Gray approach

The Fine and Gray approach uses a model for the so-called subdistribution hazard, defined for
cause D = k as

λk(t | Z) = lim
∆t→0

P{t ≤ T < t+∆t,D = k | T ≥ t ∪ (T ≤ t ∩D ̸= k),Z}
∆t

,

=
−d log{1− Fk(t | Z)}

dt
,

where patients failing from competing causes D ̸= k remain in the risk-set up to the end of follow
up.

A proportional hazards model can be specified for this subdistribution hazard as

λk(t | Z) = λk0(t) exp(γ
⊺
kZ),

with λk0(t) being the subdistribution baseline hazard function and γk representing the effects of
covariates Z on the subdistribution hazard. The cumulative incidence function for D = k can
then be written as

Fk(s | Z) = 1− exp

[
− exp(γ⊺

kZ)

∫ s

0

λk0(u)du

]
,

or equivalently,

1− Fk(s | Z) = {1− Fk0(s)}exp(γ
⊺
kZ),

where Fk0(s) denotes the baseline cumulative incidence. Thus, for event D = 1 this model can
be used directly to obtain a prediction π1(s | zi) without having to model the other competing
causes.

5 Dealing with censoring when assessing performance

Let Ti and Di respectively denote the true event time and competing event indicator for an
individual i. We can define Yi(s) = I(Ti ≤ s,Di = 1) as the binary event which indicates
whether event D = 1 occured prior to the prediction horizon s, or not. If an individual i is
censored prior to s, we cannot know whether they would have gone on to experience the event
of interest or not. Hence, Yi(s) is not fully observed in the presence of right-censoring.

5.1 Pseudo-observations

One of the ways to deal with the issue of censoring is to use pseudo-observations Ỹi(s) [6], which
attempts to recreate Yi(s). These are defined as

Ỹi(s) = nF̂1(s)− (n− 1)F̂−i
1 (s)

where F̂1(s) is the Aalen-Johansen estimate of E{Yi(s)} based on all patients, and F̂−i
1 (s) is based

on the sample excluding the ith individual. In case of covariate-dependent censoring, a weighted
version of the Aalen-Johansen estimator should instead be used [7]. Using Ỹi(s) instead of Yi(s)
in the calculation of for instance performance measures eases up calculations as all individuals
have a value for Ỹi(s).
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5.2 IPCW

Another way to deal with the issue of censoring is to use inverse probability of censoring weights
(IPCW). Individuals with an observed event status at s are known as a ‘complete-case’, meaning
they have either experienced one of K events prior to s, or are still at risk at s. For those patients
experiencing an event at t̃i ≤ s, the probability conditional on covariates zi of still being under
follow-up just prior to t̃i is denoted by G(t̃i− | zi). For those still at risk, t̃i > s, the probability
of being observed to have no event up to time s is written as G(s | zi). Both can be estimated
using the Cox proportional hazards models, or by Kaplan-Meier estimators in absence of any zi
predictive of censoring.

Individuals who are known to have experienced a particular event before time s or to still
be at risk prior to s are then weighted inversely to their probability of having that particular
outcome, 1/G(t̃i− | zi) or 1/G(s | zi).

6 Performance measures

6.1 Calibration

As per Blanche et al. [8], strong model calibration is defined by

π1(s | Z) = P{Y (s) = 1 | Z} for all Z,

meaning that the estimated risk is equal to the observed outcome proportion for all values
(and thus combinations) of Z. Unless Z is low-dimensional and made up entirely of categorical
variables, this is typically impossible to assess. We can instead calibration by means of various
graphical and numerical summaries.

6.1.1 Calibration plot

The simplest calibration plot bins individuals into approximately equally sized groups based
on their risk estimates, and plots the relationship between the average estimated risk and the
observed outcome proportion of the event in each group. The latter can be either estimated
using the Aalen-Johansen estimator, or by averaging across the pseudo-observations within a
group. Formally, the calibration plot assesses

P{Y (s) = 1 | π1(s | Z) = r} = r for all Z, for all r ∈ [0, 1],

which essentially states that among individuals with an estimated risk of r, the observed outcome
proportion should also be r. Methods that attempt to create a smooth calibration curve, be it
through local smoothing of pseudo-observations [9] or spline-based regression of risk estimates
[10], try to create continuity. In other words, they try to make the groups defined by r as small
as possible.

Briefly, the subdistribution model approach to creating a smooth calibration curve [11] fits a
Fine and Gray model for the primary event as a flexible function of the estimated risks, which have
been transformed as log(− log(1 − π1(s | zi))). Restricted cubic splines are used as the flexible
function, where the number of internal knots defines the degree of smoothing. The predictions
from this flexible subdistribution model by s serve as the observed outcome proportions, and can
be plotted against π1(s | zi) to create the calibration curve.

The approach taken in [9] to create smooth calibration curves first relies on computing
the pseudo-observation Ỹi(s) for each individual. Then, for some probability p, the pseudo-
observations of individuals with an estimated risk within some interval of p are averaged to
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obtain an observed outcome proportion. This pre-specified interval around p, or bandwidth,
defines the degree of smoothing.

6.1.2 Numerical summaries of calibration

Calibration ‘in the large’ is defined by

E{π1(s | Z)} = P{Y (s) = 1},

stating that the average estimated risk equals the overall observed outcome proportion. A popular
way of summarising this is the ratio of cumulative observed over expected events, or O/E. Due to
censoring in the current setting, we divide risks instead of absolute event numbers. The observed
outcome proportion (‘observed’) is given by the Aalen-Johansen estimator, while the expected
risk is simply the average across all estimated risks. For an alternative calculation of the O/E
ratio, see [12].

A second type of numerical summary is the integrated calibration index (ICI), which is
a weighted mean of the absolute differences between estimated risks and observed outcome
proportions [10]. Specifically, let x represent the vector of estimated risks π1(s | Z) by time
s, and xc the value of the calibration curve (i.e. the observed outcome proportions, obtained by
smoothing) at x. If we define f(x) = |x− xc|, and define the density function of x as ϕ(x), then

ICI(s) =

∫ 1

0

f(x)ϕ(x)dx,

which is estimated as simply the empirical mean of f(x). The median (E50) and or other
percentiles of the f(x) are also possible numerical summaries. Similarly, the squared bias may
be of interest, which is estimated as the empirical mean of f(x) = (x− xc)

2.
Note that these numerical summaries depend on the degree and type of smoothing applied to

obtain xc. With higher flexibility, i.e. smaller bandwidth for smoothing the pseudo-observations
or higher number of knots in the subdistribution approach, the calibration curve may be overfitted
in areas with few observations where the estimated risks are usually very small or large. The
advice for the subdistribution approach is to use between 3 and 5 internal knots (Austin et al.
2020+), while for the pseudo-observation approach ample advice is provided in the text by Gerds
et al. [9]. Finally, note that the smoothing method chosen to obtain the calibration plot should
preferably be the same as the one used when computing the numerical summaries.

A third way to numerically summarize calibration is through the calibration intercept and
calibration slope, which additionally allow for miscalibration testing. We briefly explain the
application of the methods described in [13] to the competing risks setting. The idea is to model
the pseudo-observations Ỹi(s) as a function of the complementary log-log transformed estimated
risks cloglog{π1(s | zi)} = log(− log(1 − π1(s | zi))) in a generalized linear regression model
(GLM). By writing E{Ỹ (s)} = µ, we can formulate the following two regression models,

cloglog(µ) = β0 + cloglog{π1(s | Z)}, (1)

cloglog(µ) = β′
0 + β′

1 cloglog{π1(s | Z)}. (2)

Both GLMs use a complementary log-log link function for the mean, and assume constant vari-
ance. Additionally, both models are fitted by means of generalized estimating equations (GEE)
[14]. Model (1) allows estimation of the calibration intercept β0, which should ideally be equal
to zero. In this model, the transformed risk estimates cloglog{π1(s | Z)} are used as an offset,
meaning that its coefficient is constrained to unity. A calibration intercept (significantly) below
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or above zero respectively implies on average over and underestimation of the observed outcome
proportions.

Model (2) allows estimation of the calibration slope β′
1, which should ideally be equal to one.

A calibration slope between 0 and 1 indicates too extreme predictions (both on the low and on
the high side), while a calibration slope greater than 1 indicates predictions that do not show
enough variation. A negative calibration slope implies predictions are in the wrong direction.
Furthermore, adding the transformed risk estimates as an offset in model (2) allows to test β′

1 = 1
directly.

Regarding testing, it is preferable to first perform a joint test (β′
0, β

′
1) = (0, 1) with two

degrees of freedom to assess overall evidence for miscalibration [15]. If the null-hypothesis is
rejected in the joint test, the individual tests for β0 and β′

1 can then be performed.

6.2 Discrimination

We introduce a pair of individuals i and j with covariates zi and zj respectively. At horizon s,
we have model-based predictions π1(s | zi) and π1(s | zj). The ordering of these estimated risks
at s is thus denoted by

Qij(s) = I
{
π1(s | zi) > π1(s | zj)

}
.

6.2.1 C-index

As described in [16], the ‘truncated’ concordance index (C-index) is defined by

C1(s) = P
{
π1(s | zi) > π1(s | zj) | Di = 1, Ti ≤ s, (Ti < Tj ∪Dj /∈ {0, 1})

}
.

It measures how well the model ranks the event times occurring prior to s [17]. Notice that for
a pair of individuals, if the individual with the earlier event time is right-censored, the ordering
Ti < Tj is indeterminable. A simple solution for estimating the C-index is setting the follow
up time of the patients with competing event to the maximum follow up time in the study
design [18]. This method can however only be used in settings without censoring or with purely
administrative censoring, as recently illustrated for prediction of kidney failure [19]. To estimate
the C-index in the presence of other types of right-censoring, we can construct weights as part
of an IPCW procedure, yielding

wij,1 =
I(t̃i < t̃j)

Ĝ(t̃i− | zi)Ĝ(t̃i | zj)
, wij,2 =

I(t̃i ≥ t̃j , d̃j /∈ {0, 1})
Ĝ(t̃i− | zi)Ĝ(t̃j− | zj)

.

We can then estimate the c-index as

Ĉ1(s) =
∑n

i=1

∑n
j=1(wij,1 + wij,2)Qij(s)I(t̃i ≤ s, d̃i = 1)∑n

i=1

∑n
j=1(wij,1 + wij,2)I(t̃i ≤ s, d̃i = 1)

.

We note that the c-index is not appropriate for validating prediction models with time-varying
covariate effects [20].

6.2.2 Time-dependent area under the ROC curve

We define cases as individuals with t̃i ≤ s and d̃i = 1, i.e. as experiencing the primary event by
s. Controls however have been defined in two ways:
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1. free of any event by s, i.e. t̃i > s,

2. free of any event by s, i.e. t̃i > s, or experiencing a competing event, (t̃i ≤ s, d̃i /∈ {0, 1}).

We continue with the second definition here. We define a time-dependent area under the receiving
operating characteristic curve (AUCt), described in [21] and the supplementary material of [16].
It is defined as

AUC1(s) = P{π1(s | zi) > π1(s | zj) | Di = 1, Ti ≤ s, (Tj > s ∪Dj /∈ {0, 1})}.

It evaluates the concordance of risk estimates between individuals experiencing the primary event
by s, and individuals either event-free or that have experienced a competing event. Similarly to
the C-index, a pair becomes unevaluable (directly) if one of the individuals has a right-censored
event time prior to s. Specifically, we cannot determine whether this individual would experience
the primary event between the right-censoring time and s, or remain a control. Thus, we must
first construct weights

wi =
I(t̃i ≤ s, d̃i = 1)

Ĝ(t̃i)
, wj,1 =

I(t̃j ≤ s, d̃j /∈ {0, 1})
Ĝ(t̃j)

, wj,2 =
I(t̃j > s)

Ĝ(s)
,

and then can estimate AUC1(s) as

ÂUC1(s) =

∑n
i=1

∑n
j=1 wi(wj,1 + wj,2)Qij(s)∑n

i=1 wi

∑n
j=1(wj,1 + wj,2)

.

We refer to [21] for details on covariate dependent censoring.
Alternative versions of the AUCt have been proposed which use different definitions of cases

and controls according to having their events before, at or after the time-point of interest [22].
The cumulative case/dynamic control definition we describe here can be considered most suited
for evaluation of predictions from baseline over a specific prediction horizon [23] whereas the
incident case/dynamic control definition with cases defined as having the primary event exactly
at (i.e. not before) a fixed time-point, can be useful in evaluating dynamic prediction models
[23, 24, 25].

6.3 Overall prediction error

6.3.1 Brier score

The Brier score in the context of competing events is the expected quadratic distance between
the event indicator Y (s) (for the primary event D = 1) and the estimated risks π1(s | Z) based
on the prediction model,

B1(s) = E
[
I(T ≤ s,D = 1)− π1(s | Z)

]2
,

with I(T ≤ s,D = 1) being the true event status at s. In the presence of censoring, the Brier
score can be estimated using either IPCW, or pseudo-observations. The latter estimator has been
suggested in the context of dynamic prediction [26], and in the context of multistate models in
[27].

As per Schoop et al. [28], an IPCW estimator for the Brier score is

B̂1(s) =
1

n

n∑
i=1

[
I(t̃i ≤ s, d̃i = 1)− π1(s | zi)

]2
w1i,
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where

w1i =
I(t̃i ≤ s, d̃i ̸= 0)

Ĝ(t̃i− | zi)
+

I(t̃i > s)

Ĝ(s | zi)
.

6.3.2 Scaled Brier score

As per Kattan and Gerds [29], the scaled Brier score (also know as index of prediction accuracy,
IPA) for estimating the cumulative incidence of event D = 1 is

IPA(s) = 1− Bmod
1 (s)

Bnull
1 (s)

,

where Bmod
1 (s) is the model Brier score, and Bnull

1 (s) is the Brier score for the null model (with
no covariates). The latter can be calculated by plugging-in the Aalen-Johansen estimator in
place of π1(s | zi).

6.4 Decision curve analysis

In a competing risks setting, the net benefit at s based on a prediction model for the primary
event, given a chosen probability threshold ps, is given by

NB1(s) =
TP1(s)

n
− FP1(s)

n

(
ps

1− ps

)
, (3)

where TP1(s) is the true positive count and FP1(s) the false positive count.
In order to estimate the net benefit, we first define xi = 1 if π1(s | zi) ≥ ps. In other words, xi

defines whether an individual is classified as their estimated risk exceeding the chosen probability
threshold ps. P (X = 1) is then the proportion classified as X = 1 based on this threshold.

Recall F̂1(s) as the Aalen-Johansen estimate of the cumulative incidence of event D = 1 by

horizon s. The quantity F̂1(s | X = 1) is then the estimated cumulative incidence among those
classified as exceeding the risk threshold. As described in [30], the number of true positives is
estimated as

T̂P1(s) = F̂1(s | X = 1)× P (X = 1)× n,

and similarly the number of false positives as

F̂P1(s) =
[
1− F̂1(s | X = 1)

]
× P (X = 1)× n.

The estimated net-benefit N̂B1(s) can then be obtained by plugging-in T̂P1(s) and F̂P1(s) into

(3). Furthermore, a decision curve can be obtained by plotting N̂B1(s) for various values of ps.
This is often plotted alongside a ‘treat-all’ curve, which plots the net-benefit across thresholds
in a situation where all individuals are classified as exceeding the risk threshold regardless of the
prediction model. A ‘treat none’ reference line is useful as well, with net-benefit of zero for any
threshold (no true positive and no false positive decisions are made).
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7 Closing remarks

Formulas concerning standard errors of performance measures are beyond the scope of this
document. Analytical formulas are available for many measures, and bootstrapping can be used
for most.
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