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Abstract
1. Mesocosm experiments enable researchers to study animal dynamics, but de-

termining accurate estimates of survival and development rates of different life 
stages can be difficult, especially as the subjects may be hard to sample and 
mortality rates can be high. We propose a new methodology for estimating such 
parameters.

2. We used an experimental set- up with 48 aquatic mesocosms, each with 20 first 
instar mosquito larvae and under 1 of 12 treatments with varying temperatures 
and nutrient concentrations. We took daily subsamples of the aquatic life stages 
as well as counting the emerging adults. We developed a method to estimate the 
survival and development probabilities at each life stage, based on optimising a 
matrix population model. We used two different approaches, one assuming the 
difference between predictions and observations was normally distributed, and 
the other using a combination of a normal and a multinomial distribution. For 
each approach, the resulting optimisation problem had around 100 parameters, 
making conventional gradient descent ineffective with our limited number of 
data points. We solved this by computing the formal derivatives of our matrix 
model.

3. Both approaches proved effective in predicting mosquito populations over 
time, also when compared against a separate validation dataset, and the two 
approaches produced similar results. They also both predicted similar trends in 
the survival and development probabilities for each life stage, although there 
were some differences in the actual values. The approach which only used the 
normal distribution was considerably more computationally efficient than the 
mixed distribution approach.

4. This is an effective approach for determining the survival and development 
rates of small animals in mesocosm experiments. We have not found any other 
reliable methodology for estimating these parameters, especially not from in-
complete data or when there are many different experimental treatments. This 
methodology enables researchers to gain a much more detailed understanding 
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1  |  INTRODUCTION

Controlled mesocosm experiments enable researchers to under-
stand the mechanisms driving ecological processes. They provide an 
opportunity to focus on certain aspects of a system without addi-
tional complicating factors. They have been described as a middle 
ground between a highly controlled but ultimately unrealistic labo-
ratory study, and a highly realistic but high variance and difficult- to- 
interpret field study (Semlitsch & Boone, 2009). Experimental studies 
on aquatic animals are often conducted in aquatic mesocosms, usu-
ally a pond or container filled with water and a community comprised 
of selected species, subjected to natural conditions. Such experi-
ments have enabled researchers to study a huge variety of factors 
affecting the dynamics of insects, fish and other small species, such 
as predation, responses to different chemicals, competition effects 
or climatic effects (e.g. Chase & Shulman, 2009; Ng’habi et al., 2018; 
Schrama et al., 2018). These types of studies are often used when 
considering wider issues. For example, models of mosquito- borne 
disease risk generally use estimations from such experiments (e.g. 
Beck- Johnson et al., 2017; Ellis et al., 2011). It is therefore vitally im-
portant that the parameters taken from these studies are as precise 
as possible. Similarly, mesocosm data have been used to parametrise 
models on biodiversity monitoring (Pfrender et al., 2017), effects of 
pesticides on wildlife (Kattwinkel et al., 2016) and the ecological ef-
fects of climate change (Fordham, 2015), all areas of concern where 
accurate estimations are highly important.

To achieve a full understanding of aquatic animal development, 
it is helpful to be able to monitor their different aquatic life stages. 
For example, mosquitoes lay eggs (oviposit) in water, which hatch 
into first instar larvae (L1), then develop through the L2, L3 and L4 
stages before becoming pupae and then finally emerging as adults. If 
we want to fully understand mosquito dynamics and how these are 
affected by various external factors, it is helpful to know the devel-
opment and survival rates for each aquatic stage. These can be very 
difficult to measure in a mesocosm experiment, since we are dealing 
with very small, highly mobile organisms in a relatively large area, 
which tend to dive while feeding or if they are disturbed (Merritt 
et al., 1992; Sih, 1986; Workman & Walton, 2003). Detection may 
be further complicated by the presence of vegetation or particulates 
in the water.

Previous studies have dealt with this issue in different ways. 
Some only count adult mosquitoes and measure the time from ovipo-
sition or hatching to emergence, without monitoring the intervening 

stages (Chase & Knight, 2003; Schuler & Relyea, 2018). Others re-
move all or some of the mosquitoes after a set amount of time to see 
what life stage they are at. In some cases these are then returned 
to the mesocosm (Duchet et al., 2017; Petranka & Doyle, 2010) and 
in others not (Buxton et al., 2020; Silberbush et al., 2005). If they 
are returned then the sampling process may affect their survival and 
have consequences for the validity of the experimental results, but 
if they are not returned there is no chance to collect information 
on their subsequent development. Knight et al. (2004) avoids this 
issue entirely by regularly visually inspecting each mesocosm and 
counting the number of mosquitoes at each life stage, without phys-
ically interacting with them. While this would seem to give the most 
complete results, it is rather time- consuming and prone to errors. It 
is also unlikely to be effective in mesocosms where the water is not 
very clear or where there are obstructions (e.g. vegetation), espe-
cially since larvae might naturally move across the water column to 
feed (Merritt et al., 1992).

Regardless of the counting method used, it is then necessary to 
estimate the survival and development probabilities from the result-
ing data. This is straightforward with all aquatic life stages grouped 
together (e.g. Schrama et al., 2018), but becomes more complicated 
when calculating estimates for multiple distinct aquatic life stages. 
Knight et al. (2004) also looked at mosquitoes and had the advan-
tage of complete counts at each life stage on each day, which is not 
possible for many experiments. However, they assumed that all indi-
viduals develop at an average rate and to compute this one needs to 
know the number of individuals that passed through each life stage. 
If all individuals survive the experiment then this is straightforward, 
but if there is high mortality, as was the case in some of their exper-
iments, then it is very important to understand at which life stage(s) 
this mortality occurred, which is not deducible from the data. This 
demonstrates that estimating these parameters is a difficult prob-
lem even when complete data are available. Grant et al. (2020) es-
timate the survival probabilities of monarch butterflies. While this 
is not a mesocosm experiment, it involves similar considerations. 
They sample a small proportion of the population and use a Bayesian 
state- space model to estimate the survival probabilities of different 
development stages. This appears to work well, but is dependent on 
the developmental rate of the different life stages being known and 
used as a model input. In addition, we expect that the optimisation 
routines they use would fail to converge if they were interested in 
a larger number of output parameters— for example, if one wanted 
to understand the effects of multiple experimental treatments. In 

of the life cycles of small animals, potentially leading to advances in a wide range 
of areas, for example in mosquito- borne disease risk or in considering the ef-
fects of biodiversity loss or climate change on different species.
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de Valpine and Knape (2015) and Knape and de Valpine (2016), they 
use a Monte Carlo algorithm to deduce Bayesian estimates of de-
velopment and mortality rates in stage- structured cohort models 
for grasshopper and brine shrimp populations. This is a promising 
method, allowing for variance in the development and mortality of 
individuals and also for unobserved life stages. As long as the num-
ber of parameters to be estimated is not too large it should work 
well, although it is extremely computationally intensive. However, 
if there are a large number of parameters (e.g. if there are many dif-
ferent experimental treatments) then their algorithm is unlikely to 
converge. We have not found any reliable method in the literature 
for estimating both survival and development rates of intermediate 
life stages based on incomplete data, especially when a significant 
number of treatments are considered or when there is significant 
mortality. A more sophisticated statistical technique is required to 
accurately estimate these life history parameters.

We propose a new methodology for determining the develop-
ment and survival rates of small animals at different life stages from 
subsampled data in mesocosm experiments. By small we indicate 
that they are elusive due to their size, although behaviour or high mo-
bility could also result in suboptimal detection rates and this method 
would be applicable. Our method involves sampling a portion of the 
mesocosm population in a way which minimises disruption to the 
organisms involved. We then develop a matrix population model, 
where for given survival, development and detection probabilities, 
it predicts the number of animals at a given life stage observed each 
day. Finding the probabilities that maximise the likelihood of the ob-
served values is then a problem in numerical optimisation.

We use mosquitoes as a case study, but the methodology is ap-
plicable to any mesocosm experiments studying the dynamics of 
small, difficult to count animals with multiple life stages, such as in-
sects, fish or amphibians.

2  | METHODS—EXPERIMENTALSET- UP

2.1  |  Studysite

Two mesocosm experiments were carried out under field- like con-
ditions at the Living Lab field station of Leiden University, The 
Netherlands. The main experiment took place in May– June 2020 
and provided data for model parameterisation. The second experi-
ment in August– October 2020 provided data for model validation. 
Both experiments explore the separate and interactive effects of 
temperature and eutrophication on the Northern house mosquito 
Culex pipiens s.l. life- history traits, as part of a series of experiments 
on food availability.

2.2  |  Treatments

The experiments were carried out in 65- litre black polyethylene tubs 
filled with 30 litres of dechlorinated tap water, which was left for 
48 hours prior to the experiment. To buffer temperature fluctua-
tions, each mesocosm was placed in a second, fully buried identical 
tub, thus providing an air- filled layer of insulation (Krol et al., 2019). 
This served to prevent absorption of external heat and dissipation 
of internal heat. Each mesocosm was spiked with a standardised 
concentration of algae and bacteria, acquired by filtering water from 
a neighbouring lake through a 53 μm plankton net bucket, so that 
each litre of water in the mesocosms contained a concentration of 
bacteria equal to that found in a litre of water in the lake. To simu-
late the different levels of eutrophication covering the oligotrophic– 
hypertrophic range, cow manure (2.4% N; 1.5% P2O5; 3.1% K2O) was 
added. This served to mimic oligotrophic, low eutrophic, highly eu-
trophic and hypertrophic water bodies (0 mgL- 1, 10 mg/L, 20 mg/L 
and 100 mg/L N- total respectively) within the main experiment 
and oligotrophic, highly eutrophic and hypertrophic water bodies 
(0 mg/L, 20 mg/L and 100 mg/L N- total respectively) within the vali-
dation experiment (Loeb & Verdonschot, 2009). The temperature 
was regulated by 200 W aquarium heaters (HSaqua) controlled by a 
timer calibrated to the natural 14- hour daylength. The temperature 
within the main experiment was kept constant at 20, 25 and 30 °C, 
whereas the temperature within the validation experiment was kept 
at 20 °C. All treatment combinations were allocated in a full- factorial 
random block design and replicated four times, they are summarised 
in Table 1 and a full description is included in the supplementary ma-
terials. For the validation experiment, treatments 1, 7 and 10 were 
used. Each mesocosm was covered with an emergence trap (Cadmus 
et al., 2016) to prevent natural colonisation. The mesocosms were 
thereafter left to acclimate for 2 weeks so that the bacterial com-
munities could stabilise.

2.3  |  Rearingandallocationoflarvae

Culex pipiens s.l. egg rafts were collected during the 4 days prior to 
the start of the experiments from naturally colonised black plastic 
buckets filled with 6 litres of 100 mg N- total (hypertrophic) ditch 
water. The larvae were subsequently allowed to hatch in a white 
plastic bucket containing 10 litres of lake water where they were 
kept at ambient temperature until the start of the experiment.

At the start of the experiment, 2 weeks after acclimatisation, all 
water within the mesocosms was filtered with a 300um sieve. This 
served to remove any hatched macro- invertebrates and to prevent 
the sieves from clogging during the identification of mosquito life 

TA B L E  1  Overview of the main experiment treatments

Treatment 1 2 3 4 5 6 7 8 9 10 11 12

N total (mg/L) 0 0 0 10 10 10 20 20 20 100 100 100

Temperature (°C) 20 25 30 20 25 30 20 25 30 20 25 30
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stages during the experiment. Twenty first instar larvae were there-
after randomly selected and added to each mesocosm. The tubs 
were covered with emergence traps (Cadmus et al., 2016) to pre-
vent (a) colonisation by natural populations, (b) predators from en-
tering and (c) emerged adults from escaping. The low larval density 
served to exclude potential effects of density dependence (Alcalay 
et al., 2018). The water level was kept stable by daily replenishing the 
evaporated volume after the measurements were taken.

2.4  | Measurementsandlifestageidentification

The temperature in each mesocosm was recorded every 15 minutes 
for the duration of the experiment by a temperature logger (iButton 
DS1921G#F5D). Larval development was measured 5 days a week 
by stirring clockwise once with a 40 mm wide 200um sieve to cre-
ate a current which prevents the larvae from diving. The sieve was 
subsequently used to collect the larvae by fully submerging the sieve 
and moving anti- clockwise twice. All collected larvae were morpho-
logically identified to developmental stage by using the size of the 
head capsule as a morphological indicator (Becker et al., 2010). The 
identifications were compared daily with a previously reared refer-
ence collection of Cx. pipiens developmental stages to ensure con-
sistency. The procedure was repeated up to five times until at least 
five larvae were sampled. At the end of the experiment, the contents 
of all mesocosms was filtered through a 250um plankton net and all 
remaining larvae and pupae were counted and identified to devel-
opmental stage.

3  | METHODS—MODELLINGAND
STATISTICALANALYSIS

3.1  | Modeloutline

An example of the results measured in a single mesocosm is shown 
in Table 2. It is unknown what total number of larvae and pupae were 
present in the mesocosms on days 1 to 8 since not all were sampled 
and there will have been some mortality, either due to natural causes 
or cannibalism.

We model the progression of the mosquitoes through each life 
stage using a matrix population model. The population at each life 
stage on day i  is represented by a vector Pi:

In particular, Po =
[
20, 0, 0, 0, 0

]
, as we always start the experiment with 

20 L2 larvae (while L1 larvae are initially placed in the mesocosms, it is 

assumed that they all survive and develop into L2 by the time the ex-
periment begins, since this only takes around 2 days (Loetti et al., 2011), 
there was no predation and they had sufficient food).

The probabilities of surviving a given day for a particular life stage 
are given by sL2, sL3, sL4 and sP. The probabilities of developing from 
one life stage to the next on a given day are given by d23, d34, d4P and 
dPA. These can be combined to produce an expression for the popu-
lation Pi+1 on day (i + 1) from Pi, where for each life stage the value is 
the survivors from the previous day, plus those which have developed 
from the previous life stage, minus those which have progressed to 
the subsequent life stage (‘*’ indicates elementwise multiplication):

This can be simplified to the following

This model produces predictions for the population at each life stage 
on each day, for a given set of survival and development probabilities.

3.2  |  Simple(all-normal)approach

Larvae and pupae are small and highly mobile, meaning we must ac-
count for their detection probabilities before trying to optimise our 

Pi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

PL2
i

PL3
i

PL4
i

PP
i

PA
i
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.
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i+1
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i+1
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i+1
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= Pi
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�
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�
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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TA B L E  2  Example of data from a single mesocosm (taken from 
the main experiment, mesocosm 9, treatment 2). No data were 
collected on day 2. Bold numbers (i.e. ‘Day 9’ and ‘Adults’) indicate 
certainty about the count. Italic numbers indicate a subsample of 
the total population

Day
L2 
larvae

L3 
larvae

L4 
larvae Pupae Adults

1 2 1 2 0 0

3 2 4 1 0 0

4 0 5 3 0 0

5 0 0 2 9 0

6 0 0 0 11 1

7 0 0 0 2 12

8 0 0 0 0 13

9 0 0 0 0 14
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survival and development probabilities. We assume that, in sampling 
from the mesocosm, there is only a moderate probability (say cL2) 
that we will capture and count any given L2 larva, and we similarly 
define cL3, cL4 and cP. We assume the detection probability of an adult 
(cA) is one (adults are easy to count), and that these probabilities are 
constant across the different mesocosms and treatments, so that we 
only have to introduce four new parameters into our optimisation 
problem (which already has 2x48 parameters, the development and 
survival probabilities for each of 4 life stages and 12 treatments). We 
multiply our predicted mosquito populations at each life stage by our 
detection probabilities, that is,

Given values for our 100 parameters (96 development and survival 
probabilities and 4 detection probabilities), we can make predictions 
for the number of mosquitos detected at each life stage and each day of 
each treatment. Our optimisation problem is then to find the values for 
these parameters which minimises the sum of the squared differences 
between the predicted and observed populations. This corresponds to 
the maximum likelihood estimator for the parameters, assuming that 
the output errors of our model are normally distributed as functions of 
their input error. The errors will not be perfectly normally distributed 
and it may be that a different distribution would be more appropriate, 
but this involves a relatively simple calculation and provides a useful 
baseline for more complex approaches. In Section 3.3 we describe a 
more realistic model of the error.

At this point we have a standard optimisation problem: find the 
values of the parameters which minimise the total error. However, 
with 100 parameters and limited data points, standard algorithms 
have little chance of success. The best use gradient descent, but 
simply estimating the gradient of the error function at a single point 
requires 101 evaluations of the model, and does not give very good 
results because of the complexity of the functions coming from a 
matrix model run for around 20 days. As a result, standard numerical 
techniques were unable to solve this optimisation problem.

The key realisation that transforms this approach into a practi-
cal technique is that the error function we are trying to minimise 
is just a polynomial function in the input variables, as it is created 
solely through addition, multiplication and subtraction. This means 
that it is formally differentiable (as opposed to merely numerically 
differentiable, which in this case would be around 100 times slower 
(as there are 100 parameters)). It is not a small polynomial; it is of 
degree 44 in 100 variables; but this is not beyond the capabilities 
of symbolic algebra packages. The Python SymPy package (Meurer 
et al., 2017) was able to explicitly write down and evaluate the 
polynomial in under 5 minutes; computing all 100 derivatives took 
another 3 hours. With the help of these derivatives we were able 

to optimise our model via gradient descent (using the L- BFGS- B al-
gorithm within the Python SciPy module (Virtanen et al., 2001)) in 
42 minutes. All this was performed on a standard laptop (6 cores, 12 
logical processors, 32GB RAM).

3.3  | Amorerealisticapproach(mixeddistribution)

Our previously stated assumption that model error is normal may 
not be true in all cases. It would be more realistic to find those pa-
rameter estimates which maximise the likelihood of seeing the ob-
served data assuming that mosquitos (larvae and pupae) are sampled 
with replacement from the total population, that is, assuming the 
error follows a multinomial distribution. Counting of adult mosqui-
toes was always reliable, so assuming a normal error there is reason-
able. The same applies to the final day’s results, as full counts rather 
than subsampling were performed. Therefore, this approach uses a 
multinomial distribution to calculate the error in larvae and pupae 
counts with the exception of the final day (italic values in Table 2), 
and a normal distribution for the adult counts and the final day (bold 
values in Table 2).

We again need to account for the difficulty of detecting larvae 
and pupae. We are now trying to use a method which is as realistic as 
possible, and so we are not going to use the simple detection prob-
abilities which were used in the all- normal approach. Mosquitoes 
were sampled until at least five were found, which only really gives 
us information about the relative numbers of mosquitoes, rather 
than the absolute numbers. Therefore, a realistic approach is to use 
relative frequencies. We define the frequency of sampling a pupa 
(rP) as one, and estimate the relative frequencies of sampling larvae 
(rL2, rL3, rL4) relative to this. Since the adult count data are analysed 
separately from the larvae and pupae data and the adult counts are 
considered reliable, we do not have to adjust these data to account 
for the probability of detection. Predicted larval counts (PL2

i
,PL3

i
,PL4

i
 ) 

are multiplied by their respective relative frequencies (rL2, rL3, rL4) be-
fore calculating the log likelihoods.

Note that because we use relative rather than absolute frequen-
cies and treat adult predictions differently to larvae and pupae pre-
dictions, it is not possible to produce predicted detected populations, 
only predicted populations. This is because we have no way of know-
ing the larvae and pupae numbers relative to the adult numbers.

The values to be optimised were the 96 treatment- specific s and 
d values, the three relative frequencies for detection (rL2, rL3, rL4) and 
the standard deviation (�) for the normal distribution. Log likelihoods 
were calculated for each replicate and combined to produce a total 
log likelihood (see section 3.4 for details). This total was made neg-
ative and then minimised using the L- BFGS- B algorithm, to find the 
values of s, d, r and � which maximised the log likelihood. To calculate 
the log likelihoods, the following formulae were used:

Normal distribution (adults and final day):
Loglikehood =

1

2
log2��2 −

1

2�2

(
Oj−Pj

)2
, j ∈ {L2, L3, L4,P,A}.

Multinomial distribution (L2, L3, L4 and pupae for all days except 
final):

Predicted detected population on day i =
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cL2
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cL4

cP

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
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Log likelihood = log

�
N !

OL2 !OL3 !OL4 !OP !

∏
j∈ {L2L3L4P}

Pj
Oj

�

,
where OL2,OL3,OL4,OP ,OA are the observed values for each life stage 
from a given day in a given replicate; PL2,PL3,PL4,PP ,PA are the equiv-
alent predicted values; and N = OL2 + OL3 + OL4 + OP.

While the predicted values (Pj) are polynomials, the total log 
likelihood is clearly not, and indeed SymPy was not able to formally 
compute its derivatives. To solve this, we observed that the log like-
lihoods above are formed by products, sums and composites of log-
arithms and polynomials. We could calculate the derivatives of the 
different parts separately. The derivatives of the Pj could be symbol-
ically computed using SymPy (as in the all- normal approach). Formal 
derivatives of the log likelihood could then be computed by repeated 
applications of the chain rule for derivatives of composites. This was 
just enough to allow our optimisation to run; it required considerably 
more computing resources than the all- normal approach, taking in 
total around 21 hours on a high- performance computing cluster.

This approach will still not perfectly model the error distribution, 
but we have made an effort to make it as representative as possible 
of our sampling procedure. It is probably the best we can do while 
keeping the computations feasible. Also, multinomial assumptions 
are often made by researchers in these areas, so it seemed valuable 
to test the validity of this approach.

3.4  |  Practicalnotesforimplementation

Additional notes on how these methods were applied to our specific 
case are included in the supplementary materials.

3.5  |  Comparingresults

We compare the number of adults emerging over time for each ap-
proach and for the observed data. Because the mixed distribution 
approach uses relative frequencies rather than detection prob-
abilities, it is not possible to produce predictions which are directly 
comparable with the observed data for the larval and pupal stages. 
Instead, for these stages we compare the detected proportions of 
each life stage present.

3.6  | Validation

Two validation tests were performed, one based on data from the 
second experiment and the other using simulated data. Using data 
from a separate experiment tells us if our estimated parameters are 
generally applicable. Three treatments were included in the valida-
tion experimental data, with 0, 20 and 100 mg/L nutrients at 20°C. 
The optimised survival and development probabilities for these 
treatments (calculated from data from the main experiment), as 
well as the optimised detection probabilities and relative frequen-
cies, were used to determine the predicted population using both 

approaches. These predictions were then visually compared with 
the data from the validation experiment.

The second validation test was a simulation analysis. We created 
10 sets of biologically realistic survival, development and detection 
probabilities across 12 hypothetical treatments. This was done by 
making small changes to the estimates generated by the all- normal 
approach when applied to the data from the main experiment. These 
changes were randomly chosen within a range around the original 
values, with the range defined as ±50% of the distance between the 
value and either 0 or 1 (whichever was closer). These new sets of 
probabilities were taken to be ‘true’ probabilities for the purposes 
of this analysis. We then created a stochastic agent- based model 
which, given a starting number of mosquitoes, produced estimates 
of how the population might change over time, based on given sur-
vival and development probabilities (for full details see model code 
for creating inputs). We used this model to generate 10 sets of ‘ob-
served’ data (with four replicates per treatment), one for each set 
of ‘true’ probabilities. We then applied our methodology using both 
the all- normal and mixed distribution approaches to these ‘observed’ 
datasets to see if we could recover the ‘true’ (input) survival and de-
velopment probabilities. We compared the ‘true’ probabilities with 
the predictions using a two- way ANOVA (value ~ true/predicted 
+ treatment). This showed us if there was a significant difference 
between the ‘true’ and predicted values and also if our predictions 
were good enough to detect differences between treatments.

4  |  RESULTS

4.1  |  Predictedpopulations

Figure 1 shows the predicted cumulative number of adult mos-
quitoes under each approach, as well as the numbers from each 
replicate of the experimental study. For all 12 treatments, both pre-
dictions fitted the data well. The final numbers of predicted adults 
fell roughly in the middle of those found in the replicate mesocosms 
and in most treatments adults began to emerge at around the same 
time in the observations and predictions. For the treatments with 
the lowest temperatures (20°C, treatments 1, 4, 7 and 10), the pre-
dictions showed a gradual emergence over time, while the observed 
data showed all adults emerging within a very short period. This 
sudden emergence coincided with a particularly warm period, which 
raised the mesocosm temperature above 20°C. Mesocosm tempera-
ture was controlled by a heater, but there was no way to cool it down 
if the ambient temperature rose above the target temperature. The 
predictions using each approach (all- normal and mixed distribution) 
tended to be very similar to one another.

Graphs showing the predicted larval and pupal populations can 
be found in the supplementary materials. Both approaches gave rea-
sonable estimates for the detected proportions of larvae and pupae. 
For L2 larvae the predictions using the normal approach seemed 
slightly more representative of the observed data, but for pupae the 
mixed approach seemed better (at least for some treatments).
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4.2  | Validation

4.2.1  |  Experimental data

The number of emerging adults over time from the validation 
data was compared with the predictions from the two different 

approaches. The results are shown in Figure 2. For treatments 7 
and 10, the final predicted number of adults was within the range 
found in the different replicates, while for treatment 1 the predic-
tions were slightly lower than for all the replicates. In all cases, the 
predictions showed adults emerging earlier than happened in reality, 
particularly for treatment 7.

F IGURE 1 Cumulative numbers of emerged adults over the course of the experiment, for each of the 12 temperature and nutrient 
treatments. The solid black line shows the predictions under the all- normal approach; the dashed black line shows the predictions under the 
mixed distribution approach; and the grey lines show the measured data from each replicate mesocosm

F IGURE 2 Cumulative numbers of emerged adults over the course of the experiment, for each of the validation treatments. The solid 
black line shows the predictions under the all- normal approach; the dashed black line shows the predictions under the mixed distribution 
approach; and the grey lines show the measured data from each replicate mesocosm
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Equivalent graphs showing the detected proportions of the other 
life stages can be found in the supplementary materials. In general, 
predictions from both approaches are reasonably representative of 
the observed data. Both approaches suggest that L2 and L3 larvae 
develop slightly faster than they did in reality, but this seems to cor-
rect itself by the time they become L4 and pupae. For all life stages, 
neither of the two approaches appears to produce significantly bet-
ter predictions than the other.

4.2.2  |  Simulation analysis

For each approach (all- normal and mixed distribution) we derived sets 
of ‘true’ and predicted probabilities, each with one ‘true’ and one pre-
dicted value for each of the 12 treatments. There were 80 of these 
probability sets (2 probability types (development and survival) x 4 life 
stages x 10 sets of ‘true’ values). We performed a two- way ANOVA for 
each of these 80 sets of probabilities. For the all- normal approach, there 
was no significant difference (p < 0.05) between the true and predicted 
values in 72.5% of cases and a significant difference between treat-
ments in 50.0% of cases. For the mixed distribution approach these 
were 71.3% and 55.0% respectively. In cases where there was a signifi-
cant difference between the true and predicted values, there was still 
a significant difference between treatments 86.3% and 69.6% of the 
time for the all- normal and mixed distribution approaches respectively.

4.3  | Developmentandsurvivalprobabilities

We also compared the survival and development probabilities for 
each life stage across the different treatments and between the two 
approaches. The survival probability is the probability of surviving 
from 1 day to the next. The development probability is the probability 
of developing to the next life stage on any given day. The results for 
L3 larvae are shown as an example in Figure 3. Results for the other 
life stages can be found in the supplementary materials. In general, 
the two approaches found similar trends in the effects of temperature 
and nutrient concentration, although there was some variation in the 
values. For example, both approaches agreed that development prob-
abilities generally increase with temperature, but the mixed distribu-
tion approach tended to predict higher development probabilities 
than the all- normal approach for the L2 and L3 life stages and lower 
development probabilities for the L4 and pupae stages. Both ap-
proaches agreed that pupae have very high survival rates, no matter 
what the conditions, but the mixed distribution approach predicted 
substantially lower survival probabilities for L4 larvae under the high-
est temperature treatment than the all- normal approach.

4.4  | Detectionprobabilitiesandrelativefrequencies

The detection probabilities and relative frequencies are shown in 
Table 3. These are not directly comparable, since they represent 

different quantities and are used in different ways. The detection 
probabilities represent the chance of sampling a mosquito at a given 
life stage, while the relative frequencies are a combination of the 
chances of detection and the total number present. The frequency 
for pupae was set to one and the others were calculated relative to 
this. Both the detection probabilities and the relative frequencies 
show that as mosquitoes get larger, they are easier to sample.

5  | DISCUSSION

Accurately estimating the life history parameters of aquatic ani-
mals such as mosquitoes can be of great importance (Moller- Jacobs 
et al., 2014; Tomé et al., 2014). We proposed two methods for de-
termining the survival and development rates of the different life 
stages of aquatic animals. One was a simple model based on the 
normal distribution and the other assumed the data were a combina-
tion of normally and multinomially distributed and were designed to 
better represent the sampling procedure. Both methods produced 
reasonable results, with predicted populations closely fitting the ob-
served data, both in the main and the validation experiment. The 
predictions showed a gradual adult emergence over time, while the 
observed data showed all adults emerging within a very short pe-
riod. The least good fit was found in the lowest temperature treat-
ments. The all- normal approach and the mixed distribution approach 
give very similar predictions and show similar trends in the predicted 
survival and development rates. Variation between predictions from 
the two methods is very small compared with the observed variation.

5.1  |  Predictingadultemergence

The predicted adult emergence using each approach (all- normal and 
mixed distribution) tended to be very similar to one another, although it 
was more gradual than in reality. This was most noticeable in the lowest 
temperature treatments (20°C). Our model assumes that mosquitoes de-
velop independently from one another, which will tend to favour gradual 
rather than sudden emergence. However, an external factor, such as a 
particularly sunny day, could cause many mosquitoes to emerge at once. 
This seems to be the case here, as the time of the sudden emergence in 
the lowest temperature treatments coincided with a particularly warm 
period, which raised the mesocosm temperature above 20°C.

When the predicted adult emergence was compared against a 
separate validation dataset, we again saw this gradual rather than 
sudden emergence in the predictions. These were also using the 
20°C temperature treatment and so may have been subject to 
similar difficulties in keeping the temperature from rising too high, 
especially since this experiment was performed in late summer. In 
two of the three validation treatments the final predicted number 
of emerged adults was within the range found in the different rep-
licates (Figure 2), indicating that the model produces reasonable 
estimates. For treatment 1 the predictions were slightly lower than 
all the replicates. This is because in the original experiment the 
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different replicates for treatment 1 generally had lower numbers 
of emerged adults than in the validation experiment. This may be 
a case of overfitting, but it should be noted that in all treatments 
there is a lot of variation between the different replicates. It is hard 
to tell from this amount of data whether this discrepancy is due to 
overfitting or is simply to be expected given the amount of vari-
ation involved. Of all the 12 treatments, 1, 7 and 10 were among 
those with the least good fit. These were the treatments used in 
the validation experiment and the results were still satisfactory, 
suggesting that the model is doing a reasonable job of predicting 
emerging adults.

5.2  |  Predictinglarvalandpupalpopulations

While the predicted detected larval and pupal populations were 
mostly very similar, there were noticeable differences for the low-
est temperature treatment. Here, the mixed distribution approach 
tended to predict lower proportions of L2 and L3 larvae, which is 
consistent with the finding that this approach tended to predict 
higher development probabilities for the early life stages. The same 
pattern was found when comparing predictions with the validation 
dataset. As previously discussed, there were some difficulties with 
maintaining the correct temperature for this treatment which may 
have affected the results. For other treatments, the predictions were 
very much in line with the observed data. Looking at the survival and 
development rates, we found that the two approaches showed simi-
lar trends in the effects of temperature and nutrient concentration, 
although there was some variation in the values. Comparing the pro-
portions of the different larval and pupal populations, it appears that 
when there is a difference in the results of the two approaches, the 
normal approach is more effective for the earlier life stages, while 
the mixed approach is more effective for the later life stages. The 
earlier life stages were found to be harder to detect than the later 
stages. It is likely that when making predictions of organisms with 

F IGURE 3 Survival (top) and development (bottom) probabilities for L3 larvae for different temperature (left) and nutrient (right) 
treatments. The symbols ●, ★, ++ and ▲ represent the nutrient treatments 0, 10, 20 and 100 mg/L respectively. The symbols ▼, █ and ✖ 
represent the temperature treatments 20, 25 and 30°C respectively. The solid lines show the probabilities under the all- normal approach; 
the dashed lines show the probabilities under the mixed distribution approach

TA B L E  3  Detection probabilities for each life stage associated 
with the all- normal approach; and relative frequencies of each life 
stage associated with the multinomial part of the mixed distribution 
approach

Life stage Detection probabilities Relative frequencies

L2 0.21 0.17

L3 0.33 0.37

L4 0.64 0.81

Pupae 0.78 1
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a relatively high detection probability, there are benefits to using a 
statistical methodology that is representative of the sampling pro-
cedure (i.e. our mixed distribution approach). However, when the 
organisms have a low detection probability, it is better to use a more 
general statistical methodology (i.e. our all- normal approach).

5.3  |  Simulationanalysis

The simulation analysis showed that for both approaches, our 
methodology usually produces no significant difference between 
predicted and true survival and development probabilities. It also 
is often able to identify significant differences between experimen-
tal treatments. We did not expect it to always find differences be-
tween treatments, since sometimes the true values are very close 
together and our method is not precise enough with this amount of 
data to distinguish between them. It should also be noted that the 
‘observed’ data for this analysis were generated using a stochastic 
agent- based model which is very different from the matrix popula-
tion model used in our optimisation procedure. That our methodol-
ogy was nevertheless able to derive good approximations for the 
‘true’ values demonstrates its efficacy.

5.4  |  Comparingapproaches

The multinomial distribution was chosen as it well represented the 
sampling procedure used, particularly when combined with the use 
of relative frequencies. On the other hand, the multinomial distribu-
tion assumes that all the variation is due to the sampling process 
rather than due to any other factors. The wide discrepancies be-
tween different replicates suggest that there were other factors in 
play. By using the normal distribution, we assumed some degree of 
variation which can be due to a wide range of factors, such as en-
vironmental disruptions, over- simplicity of the matrix model or the 
sampling process. Then again, a disadvantage of the normal distribu-
tion is that it puts some probability mass on fractional and nega-
tive values of mosquitoes, although it is relatively simple to correct 
for this when calculating predictions. There are arguments for and 
against both approaches, but given that they produced very similar 
results, none of the drawbacks seem to have had a significantly ad-
verse effect and both approaches appear to be suitable.

From a practical point of view, the all- normal approach is consider-
ably more computationally efficient. The mixed distribution approach 
required the use of a computing cluster (around 21 hours) while the 
all- normal approach could be performed on a conventional laptop (less 
than 4 hours). Modelling all parameters using a normal distribution 
proved to be sufficient in this case, however, this may not always be so, 
and we recommend that other researchers wanting to use this method 
also consider distributions which are representative of their sampling 
procedure, particularly if detection probabilities are high.

Considering alternative methods, Grant et al. (2020) used a 
Bayesian state- space model to estimate the survival probabilities of 

the different life stages of monarch butterflies. They assume that 
developmental rates for each life stage are known and use them 
as an input in their model. Also, their data are sampled in the wild 
and do not involve different experimental treatments, meaning that 
they have far fewer outputs relative to their input data than in our 
case. This leads to a much simpler optimisation problem which can 
be solved numerically without the differentiation techniques that 
we use. Their method has the advantage that it does not require a 
known initial starting population, as ours does, and so can be used 
outside of controlled experimental conditions. Their method is also 
likely considerably less computationally intensive than our own, and 
so is a good option where developmental rates are known. The stage- 
structured cohort models used in de Valpine and Knape (2015) and 
Knape and de Valpine (2016) are the closest method we have found 
to our own. Their model is more complex than ours and considers 
the mortality and development of individuals, rather than assuming 
that all members of a life stage are homogeneous. In cases where 
their algorithm converges then it is a very good option, however, 
as the number of parameters to be estimated increases, the likeli-
hood of achieving convergence diminishes. Our method can handle 
large numbers of parameters because we define the gradient func-
tion ourselves rather than relying on standard algorithms, but this is 
highly unlikely to be possible for Knape and de Valpine’s method due 
to the complexity of their model.

5.5  | Howthismaybeused

Our methodology enables researchers to determine the survival 
and development rates of the different life stages of small animals 
in mesocosm experiments, being effective with incomplete data, 
in the presence of high mortality and when there are many differ-
ent experimental treatments. We have not found any other effec-
tive methodology for estimating these parameters. The method 
of Knight et al. (2004) only works for complete datasets with low 
mortality, the method of Grant et al. (2020) does not allow for the 
estimation of development rates, only survival, and the method of 
de Valpine and Knape (2015) and Knape and de Valpine (2016) does 
not allow for a large number of unknown parameters. Our methodol-
ogy provides a valuable way of analysing development and survival 
in stressor- based experiments, such as dose– response experiments, 
where increased mortality is expected (Damgaard et al., 2002), while 
minimising bias from handling. This methodology enables research-
ers to gain a much more detailed understanding of the life cycles 
of various small animals, potentially leading to advances in a wide 
range of areas.

Unequal stressor- responses across developmental stages pro-
vide insight into how interventions to manage disease risk and/or 
mosquito populations should be timed. They also demonstrate how 
stressors can change age structures within a population, which 
could subsequently affect interactions both within and between 
species, for example via cannibalism (Koenraadt & Takken, 2003; 
Kweka et al., 2012; Mastrantonio et al., 2018). In this study, we have 
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shown that mosquitoes at different life stages respond differently 
to different temperature and nutrient treatments. This could help 
to improve future mosquito control efforts and help with the devel-
opment of more effective intervention strategies to curb the spread 
of mosquito- borne diseases. In particular, our results indicate that 
while higher temperatures increase development rates, they also re-
duce survival for the larval stages. This is consistent with previous 
experimental results (Alcalay et al., 2018; Loetti et al., 2011; Oda 
et al., 1999; Ruybal et al., 2016). It suggests that a period of hot 
weather could lead to more adult mosquitoes in the short term as 
they develop faster, but fewer in the medium term as those which 
were in the earliest life stages at the beginning of the hot period 
are less likely to survive to maturity. Such insights could contribute 
to the development of carefully timed public awareness campaigns. 
Other topics which could benefit from a more detailed understand-
ing of the life cycle parameters of small animals are the responses of 
such animals to chemicals like fertilisers and insecticides (Kattwinkel 
et al., 2016; Tomé et al., 2014), the effects of climate change 
(Fordham, 2015) and biodiversity monitoring (Pfrender et al., 2017). 
This methodology is also applicable in studies outside aquatic me-
socosms. For example, the work of Grant et al. (2020) shows that 
monarch butterfly populations may be modelled with a similar ap-
proach, although our method does require them to be in a controlled 
environment with a known starting population.

6  |  CONCLUSIONS

This research has determined that statistically optimising survival, 
development and detection parameters based on data from repli-
cate mesocosms is an effective way of estimating the survival and 
development rates of mosquitoes in mesocosm experiments. This 
methodology can potentially also be applied to mesocosm experi-
ments involving other animals with multiple developmental stages 
which are difficult to count, and in contrast to other methods, it is 
applicable to situations where data are incomplete or where there 
is high mortality. Researchers can use this method to accurately 
estimate life history parameters which were not previously avail-
able. Such parameters can be of use in a variety of areas, such as 
disease control (in the case of mosquitoes) or helping us to bet-
ter understand the effects of climate change on a wide range of 
species.
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