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Abstract

One of the most popular techniques in zebrafish research is microinjection. This is a 
rapid and efficient way to genetically manipulate early developing embryos, and to 
introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. 
Here we demonstrate the development of a machine learning software that allows 
for microinjection at a trained target site in zebrafish eggs at unprecedented speed. 
The software is based on the open-source deep-learning library Inception v3. In 
a first step, the software distinguishes wells containing embryos at one-cell stage 
from wells to be skipped with an accuracy of 93%. A second step was developed to 
pinpoint the injection site. Deep learning allows to predict this location on average 
within 42 µm to manually annotated sites. Using a Graphics Processing Unit (GPU), 
both steps together take less than 100 milliseconds. We first tested our system by 
injecting a morpholino into the middle of the yolk and found that the automated injection 
efficiency is as efficient as manual injection (~ 80%). Next, we tested both CRISPR/Cas9 
and DNA construct injections into the zygote and obtained a comparable efficiency 
to that of an experienced experimentalist. Combined with a higher throughput, this 
results in a higher yield. Hence, the automated injection of CRISPR/Cas9 will allow 
high-throughput applications to knock out and knock in relevant genes to study their 
mechanisms or pathways of interest in diverse areas of biomedical research.	  

 
Introduction	

Microinjection is one of the most powerful techniques used in zebrafish (Danio rerio), 
as it allows to follow cell fate1, evaluate pathogenesis of bacteria2, produce chimeric 
individuals3, study tumour progression4,5, manipulate protein levels6,7 and create 
genetically altered lines8. In addition, it is also a suitable technique to introduce chemical 
compounds that otherwise do not readily enter the embryo due to the compound 
lipophilicity properties and the protection function of the chorion9. More recently, 
microinjections have been also used in the fields of toxicology and nanomedicine to 
evaluate nanoparticles toxicity at different functional levels and to inject nanoparticles 
encapsulating genetic material or therapeutic drugs to specific tissues in older embryos 
and/or larvae10-13. 

The intrinsic biological properties of zebrafish make it particularly amenable to this 
technique, since these cyprinids are highly fecund, a spawning pair typically producing 
more than 400 eggs at a time. Moreover, fertilization is external and spawning is confined 
to a brief period at dawn (natural or artificial), allowing for timing of the experiments. 
Furthermore, the chorion of zebrafish eggs is supple and easy to pierce.

Classically, injection of tracer dyes is used to identify single cell populations14,15, to follow 
cell lineages and to build fate maps in zebrafish1,16. The development of molecular methods 
for the zebrafish model enabled functional studies by manipulating the expression of 
specific genes. Injection of messenger RNA (mRNA) can be used to overexpress and 
misexpress a specific protein17, while morpholino antisense oligonucleotides (MOs) 
can be employed to knock down a given target gene18. In zebrafish mRNA and MO 
injections are simply performed by introducing a fine-tipped needle into the yolk of 
one-cell stage eggs and delivering nanoliter volumes of the injection material into it19. 
As cytoplasmic streaming will move the mRNA or MOs into the cytoplasm, it is not 
necessary that the injection targets the cell. While injection into the yolk requires 



33

2

some skill, it can usually be learned within a few weeks. Nevertheless, injections of 
mRNAs and MOs have their drawbacks. First of all, the effect is only transient, i.e. the 
injected molecules will be degraded and/or diluted with time. Moreover, in the case of 
mRNA injection, tissue-specific upregulation is not possible and a given mRNA will be 
expressed in all tissues indiscriminately. Also, the specificity of MO antisense technology 
has recently been questioned as MOs can sometimes lead to misleading results due to 
toxicity and off-target effects20. In a recent study21, loss-of-function mutations for ten 
different genes previously thought to have an essential role in development failed to 
recapitulate the corresponding morpholino-induced phenotypes. In several cases, the 
discrepancy between mutant and morphant phenotypes, could be explained by genetic 
compensation mechanisms that occur in mutants22, however, undoubtedly rigorous 
controls are required to ascertain the reliability of MO-induced phenotypes20,23,24. 

In the last years, with the implementation of targeted nuclease techniques in the 
zebrafish, the demand for genetic evidence to define gene function has greatly 
increased. Fortunately, after a somewhat slow start using zinc-finger nucleases (ZFNs)25 
and transcription activator-like effector nucleases (TALENs)26, the adaptation of the 
prokaryotic CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/
CRISPR associated protein 9) defence system to engineer genomes has revolutionized 
reverse genetics in zebrafish27.

Recently the CRISPR/Cas9 system was adapted and optimised to engineer genomes. A 
single synthetic guide RNA (gRNA) directs Cas9-mediated cleavage of target DNA 27,28, 
and the method was implemented in multiple systems including zebrafish29,30, finally 
paving the road for knock-ins in this model31. Along with Tol2 mediated transgenesis, 
a transposon system based on the Tol2 element of medaka (Oryzias latipes) widely 
used in zebrafish to create transgenic lines8, the CRISPR/Cas9 system has become 
an essential tool for genome editing in zebrafish. In this context microinjection is an 
essential technique. For the creation of genetically altered lines in zebrafish, be it through 
Tol2 transgenesis or by means of zinc finger nucleases, TALEN or Cas9 nucleases, it 
is critical to inject the solution directly into the blastomere at the one-cell stage or at 
least at the interface between blastomere and yolk32-35. Contrary to RNA or MOs, DNA 
appears not to be transported into the blastomere via cytoplasmic streaming. Moreover, 
efficiency of all these genome editing techniques is much lower compared to mRNA 
or MOs injections. Therefore, in order to create genetically altered zebrafish lines it is 
essential to master microinjections into the cell. This can be challenging as this type of 
injection requires long training and excellent technical skills

Automated microinjection system	  
One of the first reports attempting to establish an automated microinjection system 
was published by Wang and colleagues in 200736. This microrobotic system based on 
computer vision and motion control was able to inject zebrafish embryos at an average 
speed of 25 seconds per embryo. Although quite innovative, this system is limited by 
the low batch size (only up to 24 embryos per plate) and low injection speed compared 
to the first version of our microinjection system33,37,38. This automated microinjection 
system featured half-spherical wells, moulded in agarose gel, which allowed for high-
throughput microinjection into the yolk of zebrafish eggs at fast speed (1 embryo in 1.8 
seconds). This was used for microinjection of bacteria, morpholinos and cancer cells37,38. 
The great advantage over other systems was the higher batch size and speed of the 
injections allowing to inject up to 2000 embryos per hour and up to 2580 embryos per 
plate. As the initial cell division steps in zebrafish embryos occur in intervals of 20-40 
minutes, speed is crucial for the accuracy, reproducibility and number of experiments. 



Chapter 2

34

In our experience, it is apparent that injections into the middle of the yolk are less 
suitable for DNA injections. Therefore as a first step, the program “click-to-inject” was 
developed to test the efficiency of injections closer to the first cell38. With this, we 
noticed that we could achieve a great increase in efficiency, similar to manual injections 
done into the first cell. Therefore, we set out to automate this procedure. 

In this study we demonstrate the results of autonomous site selection and injection for 
CRISPR/Cas9 and DNA manipulation of the zebrafish genome.

Results and discussion

Manual and automated injections of slc45a2-MO	  
In order to test MO efficiency of manual and automated injections we employed 
a translation-blocking MO against slc45a2 (solute carrier family 45 member 2). 
Downregulation of this gene induces albino and/or hypo-pigmented morphants, 
as the melanophores are unable to produce melanin41. Manual and automated yolk 
microinjections were performed in parallel, and in both cases the induced albino 
phenotype was assessed in larvae at 3 dpf (Figure 1). The results obtained with both 
microinjection approaches are comparable and show that downregulation of slc45a2 
is highly efficient using morpholino antisense technology (Figure 1A). Additionally, the 
manual injections were performed by two different experimentalists (Figure 1B) and 
this shows that efficiency and variation of efficiency obtained by manual morpholino 
injections differs from person to person and that the variation of the efficiency of the 
automated injections is slightly larger.

Semi-automated “click-to-inject”	  
After demonstrating that automated injection into the yolk is an efficient way to 
generate morphants, we sought to apply the robotic injector for generating CRISPR/

Figure 1. Morpholino knockdown efficiency with manual and automated injections.
A.	 The survival and knockdown efficiency of slc45a2-MO manual and automated (auto) microinjections 

were measured as the number of larvae displaying an albino phenotype at 3 days post-fertilization (dpf). 
Control-MO injected larvae and uninjected larvae were processed in parallel and the resulting pigmented 
(wild-type) larvae were also counted at 3 dpf. “n=” indicates the number of eggs used to obtain this cu-
mulative result. 

B.	 Efficiency comparison between the automated injection into the yolk and manual injections performed by 
two independent experimentalists (P1: experienced and P2: expert; not statistically significant). “n=” indi-
cates the number of experiments used to calculate the average and standard deviation. Each experiment 
refers to different technical and biological experiments. 
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Cas9 mutants for slc45a2. To investigate the dependence on the injection location we 
used the “click-to-inject” program to test the efficiency of injections closer to the first 
cell. In the “click-to-inject” program the injection depth is set, but the (x y) position is 
chosen by the operator38. To inject, the operator moves the mouse pointer to a specific 
site (e.g. the first cell) and clicks to trigger an injection and a subsequent movement to 
the next egg. Based on this, next we set out to develop an automated image recognition 
to more precisely identify the first cell and to automate CRISPR/Cas9 injections.

Imaging conditions	  
In manual microinjection setups, as well as in standard microscopy, near-perfect 
imaging conditions are applied with lighting from the bottom and imaging from the top, 
or vice versa. As the zebrafish egg is very transparent, epi illumination from below is 
not suitable; most contrast and edges are then lost. As the egg is spherical, a ring-light 
displays a very bright circle on top of the egg. Therefore, to obtain better and more 
reproducible imaging conditions in different locations, we placed a large (L x B = 60 x 
80 cm2) diffuse light source above the robotic injector. Five different classes were used 
to annotate the images (Figure 2). In the “Inject” class the ideal injection position for 
automated microinjection is also annotated. Instead of injecting directly into the zygote, 
we have chosen to inject in the yolk, close to the visible zygote. The reason is that 
injections in a thin zygote (less ideal orientation, or very early stage) would often cause 
a rotation of the egg, and bounce the needle off. Injections into the yolk-blastomere 
boundary almost never show this problem, and thus gave a higher yield.

Machine learning	  
Initially, we tried a classic approach of machine vision on these images. The Hough 

Figure 2. Imaging classification for injection. 
Representative digital images measured from below of an agarose grid (“Empty”) that supports zebrafish eggs 
with the first cell visible (“Inject”) or not visible (“No cell”), eggs in a two- or higher cell stage (“Two cell”) or  
non-viable eggs (“Sick”). In the “Inject” image an injection location is indicated by a black dot with (x y) 
coordinates.
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circle transform allowed us to detect the yolk with an above 90% accuracy36. However, 
the next step to find the first cell was problematic. In cases where the shadow of the 
micromanipulator overlapped with the first cell, the edge detection algorithm failed. 
As an alternative to edge detection, we annotated a database of images with injection 
positions. We used a Fast Fourier Transform (FFT) algorithm to find a closest matching 
egg in this database and used that image to infer an injection position. This worked 
reasonably well with a peak error (distance between calculated position and annotated 
position) of 20 µm. However, when a good match could not be found, the error was quite 
high, and as a result the tail of the error was quite large. An explanation for the large 
variation in results is that there is also a large variation in first cell shapes, especially 
when looking from an arbitrary angle. It can be an early very thin line up to about a 
third of the yolk depending on the developmental stage and orientation of the egg. 
To overcome this variation, we could make the annotated database larger, to increase 
the chance of a close match. Nevertheless, the downside of this solution is that more 
images have to be compared, and this takes more processing time during injection. 
Thus, we sought to apply a better approach based on deep learning.  

Using a database of annotated images as input, one can also train a deep learning 
network. Instead of comparing images during runtime, one trains an algorithm that 
is afterwards used to interpret new images. The execution time of this algorithm is 
independent of the size of the training image set. Thus, roughly speaking, the larger the 
number of annotated images, the higher the accuracy of the algorithm. We used the 
Inception v3 open source deep learning software46. This software has been built and 
tested to categorize images, based on a large training database of images, initially for 
the annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC; www.image-
net.org). The Inception v3 architecture uses a neural network that takes the pixels of 
images as input and extracts features. Many features are subsequently built on top of 
features, in different layers of neurons, in higher and higher levels of abstraction, until 
the neurons reach an output of defined categories47. One advantage of the Inception v3 
software is that one can reuse the first layers of feature extraction for a different set of 
images. This is built on the idea that the basic features, e.g. lines and simple patterns, 
can be used in all higher-level features that are used to train new categories with new 
sets of images. Within eight hours of training time we reached a 93% accuracy, with an 
execution time in the order of tens of milliseconds.

After finding the images with a visible first cell, the next step was to determine the 
injection location. To enable the use of deep learning for this problem, we had to modify 
the output from categories into an ideal location. When just the pixel (x y) coordinate 
is used as output, only one pixel of the whole image is correct. With this output the 
neuronal network cannot easily distinguish between locations closer to the annotated 
location and further away, and this makes learning impossible. Therefore, we translated 
the (x y) coordinates to a barycentric coordinate system48. The Greek word “barys” 
means heavy and refers to the centre of gravity. In a barycentric coordinate system a 
grid of triangles is used, with a weight assigned to each vertex. This is used as follows. A 
chosen grid of triangles is placed on top of each image. The annotated injection position 
will fall within one triangle; then the weights of these triangle vertices are given a value 
according to the location within that triangle. These weights sum up to one, whereas 
the other vertices in the grid are all zero. This vertices output vector then represents the 
ideal outcome. The advantage is now that a small deviation from this ideal output vector 
can be scored gradually instead of binary. This then allows for efficient training. A more 
detailed explanation is available in S1 Text. After eight hours of training we created a 
table of (x y) coordinates using validation images. We calculated the distance between 
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the annotated injection position and the position as predicted by the deep learning 
network (Figure 3). The average distance is 42 µm, as depicted in Figure 3B, and for 
83% of the images this distance is smaller than 60 µm. 

Figure 3. Distance between annotated and computed injection location.
A.	 Bar graph depicting the frequency of the distance between annotated and computed injection position 

(prediction). 
B.	 Digital image with a circle around an annotated injection point to illustrate the average distance between 

annotation and prediction.

Automated injection of slc45a2 gRNA/Cas9	  
Trial and error in many laboratories have led to a best practice of injecting into the first cell 
for the application of the CRISPR/Cas9 editing technique. In our robotic microinjection 
system, injecting in the middle of the yolk gives the highest speed. Image recognition 
used to customise an injection location takes time but can increase the injection 
efficiency. To balance efficiency and speed, and to be able to monitor improvements 
of our image recognition model, we started by measuring efficiency of CRISPR/Cas9 
injections performed in the yolk. Both manual and automated yolk injections gave a 
very low efficiency of 12% (Figure 4A). Then, with the “click-to-inject” program (semi-
auto), resulting in injections closer to the first cell we could generate albino larvae at 
an almost three times higher efficiency than with the injections in the middle of the 
yolk (Figure 4A). Next, using deep learning (auto), we could automate this procedure 
and with this we reached a slightly lower efficiency when comparing it the “click-to-
inject” injections but a higher efficiency than the one obtained with automated and 
manual injections in the middle of the yolk (Figure 4A). Still, manual injections into the 
first cell reached the highest efficiency of 43% (Figure 4A). Figure 4B shows that both 
the efficiency and the variation between experiments differs considerably depending 
on the experimentalist (displayed as P1: experienced, P2: expert and P3: novice). In 
contrast, here, the automated injections show relatively little variation, also when 
compare them to the “click-to-inject” (semi-auto) injections (Figure 4B). Also, it can be 
seen that the efficiency is quickly surpassed by humans given enough experience (P1 
and P2). This lower efficiency achieved with the robot can be explained by the injection 
location – close-to-cell instead of into the zygote – and by the fact that not all the eggs 
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are oriented with a cell visible on the side, despite the fact that they are oriented in the 
agar grid. Hence, the automated injections tend to be a mixture of injections into the 
middle of the yolk, and close to the first cell, when the first cell was detected. With this 
we obtained an efficiency of 24% on average (Figure 4B).

Figure 4. Automated injections of CRISPR/Cas9.
A.	 Survival and average efficiency of slc45a2 gRNA/Cas9 manual, click-to-inject (semi-auto) and automated 

(auto) microinjections both in the yolk and in the cell were measured as the number of larvae displaying an 
albino phenotype at 3 days post-fertilization (dpf). Uninjected larvae were processed as controls and the 
resulting pigmented (wild-type) larvae were also counted at 3 dpf. “n=” indicates the number of eggs that 
were used to obtain the cumulative results. 

B.	 Comparison of the average efficiency and standard deviation between the automated (auto), click-to-inject 
(semi-auto) and manual injections performed by three independent experimentalists (P1: experienced, P2: 
expert and P3: novice). “n=” indicates the number of experiments that were used to calculate the average 
and standard deviation. Each experiment refers to different technical and biological experiments.	  
(* p<0.05).

Automated injection of DNA	  
For the injections with DNA we used a COPAS (Complex Object Parameter Analyzer 
and Sorter) system to measure the efficiency of the injections (Figure 5A). For this, we 
first measured the highest red fluorescence signal of the uninjected control larvae and 
took the highest signal as a threshold at 5 dpf. Then we measured the DNA-injected 
larvae and counted the larvae that passed this threshold. The survival was measured 
at 1 dpf to focus on differences as a result of the injection. Prior to placing the larvae 
into the COPAS system, larvae with visible developmental defects were removed. Both 
the manual and automated injected eggs had a similar relative number of malformed 
embryos (4% on average).

These results show that DNA injections are less demanding in terms of injection location. 
Injections into the middle of the yolk reached an average efficiency of 32%. This can 
be improved by injecting close to the first cell, when possible, to reach an efficiency of 
39%. Surprisingly, here manual injections close to the first cell (personal preference) 
had a lower efficiency than could be obtained by automated injections and gave on 
average the same efficiency as injections into the middle of the yolk.

Microinjection throughput	  
To calculate the microinjection throughput, we divided the average injection time by 
the average efficiency. This results in the average time needed for one successfully 
injected larva. We measured and compared the throughput for the different genetic 
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modifications and experimental setups described in this article, i.e. automated and 
manual injections for gene knockdown by morpholino antisense, gene knockout by 
CRISPR/Cas9 and transgenesis by Tol2 (Figure 6).

In the case of the manual injections, the throughput differs greatly depending on the 
experimentalist, as experience can lead to a higher throughput by increasing both the 
efficiency and speed of the injection process. It can also be seen that the robot is on 
par with fast human performance in case of the morpholino injections, but 1.5 times as 
fast as average human performance.

Figure 5. Automated injections of DNA.
A.	 Average survival and efficiency of DNA automated (auto) and manual injections as measured by the COPAS 

system. “n=” indicates the number of eggs that were used to obtain the cumulative results. 
B.	 Comparison of the average efficiency and standard deviation between the automated and manual cell in-

jections. P4 indicates a different experienced experimentalist and “n=” indicates the number of experiments 
that were used to calculate the average and standard deviation.

Figure 6. Average injection time required to obtain one positive genetically modified larva.
Abbreviations: MO, slc45a2 morpholino; gRNA, slc45a2 gRNA/Cas9; DNA, Tol2 construct; Auto, automated injec-
tions; P1-4, four different experimentalists.
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With deep learning, a robot can outperform humans on the more complex cell injections. 
With CRISPR/Cas9 samples the robot needs 6 seconds of injection time to obtain a 
positive larva, and humans need 8 up to 43 seconds. On average, the robot is more 
than three times (3.6x) faster. Manual injections of DNA constructs close to the cell are 
faster to perform than injections into the cell (2.5 seconds vs 6.8 seconds). However, 
this also reduces the manual efficiency, resulting in a 1.5 times higher throughput of 
the robot. A movie showing the robotic injection process in real-time is available in S1 
File. The movie shows that the time between capturing the image and placing the cross 
(demonstrating the calculated injection location) is only about 100 milliseconds.

Efficiency dependence on the injection location	  
Contrary to what might be expected, the efficiency of injections into the middle of the 
yolk to alter the genome were not negligible as the efficiency was 12% for CRISPR/
Cas9, 32% for DNA injections and 80% for morpholino injections. Using the measured 
efficiencies and statistics of image classification we can calculate the efficiencies 
of injections close to the first cell. During the injections of CRISPR/Cas9, on average 
65% of the eggs were oriented with a first cell visible, and 35% were injected into the 
middle of the yolk. The increase in efficiency, 24%, was caused by 65% of the eggs 
being injected with efficiency much higher than 12%. Using the efficiency of the yolk 
injections we can predict the efficiency of injections close to the first cell. Solving 
the equation 0.65*X+0.35*0.12 = 0.24 for X results in an efficiency of around 30% for 
injections close to the first cell. For DNA injections we have chosen to not orient the 
eggs after placing them in a grid, and therefore less eggs, 46%, were injected close to 
the first cell. Solving the equation 0.46*X + 0.54*0.32 = 0.39 for X results in a predicted 
efficiency of 47% for injections close to the first cell. Surprisingly, this is much higher 
than what was obtained by manual injections close to the first cell. The higher efficiency 
of DNA injections (47%) versus CRISPR/Cas9 injections (24%) can be partially explained 
by the fact that the integration of a single copy of DNA construct can still be detected, 
while the readout of the CRISPR/Cas9 injection requires a non-synonymous mutation to 
occur on both alleles in order to have a visible phenotype, the albino phenotype being 
recessive. A non-synonymous mutation in one copy of slc45a2 would not be detected in 
our assay. Hence, we expect that the actual number of induced CRISPR/Cas9 mutations 
is underestimated.

These measured and calculated efficiencies can also be used to make a prediction of 
the positive embryos, directly after the injection.

Conclusion and perspectives	

In this study we have demonstrated how we improved an automated injection robot 
to inject close to the first cell using image recognition in order to enable efficient 
genome editing in zebrafish embryos. This was accomplished using a modified open-
source deep-learning software and annotation of thousands of images. A step-by-step 
approach of first testing an annotation strategy and efficiency helped to predict the 
increase in efficiency that can be obtained. Initially we tested the efficiency with a semi-
automated click-to-inject program. This click-to-inject approach is also suitable as a 
first step for other microinjection applications, such as injections into older zebrafish 
larvae or different organisms.

Because of its transparency, rapid development and easy genetic manipulation, zebrafish 
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have become a key vertebrate model organism for the elucidation of developmental 
processes. With the advent of CRISPR/Cas9 technology, zebrafish are becoming an even 
more powerful tool for the study of diverse human disorders. The CRISPR/Cas9 system 
achieves mutagenesis rate of around 80% for generation of knockout lines31, and has 
proven to have fewer side effects than other genome editing technologies. However, 
generation of specific hereditable mutations or epitope tagging of chromosomal genes in 
zebrafish is still challenging. Unfortunately, genome editing in zebrafish is unpredictable 
and efficiency sometimes drops to 3.5%49. Therefore, higher number of eggs should 
be injected for the generation of the expected mutation. Creation of zebrafish mutant 
lines using CRISPR/Cas9 requires precise injections into or close to the zygote. These 
types of injections take time to master and are tedious if many batches of hundreds of 
eggs have to be injected, particularly for the generation of knock-in lines. Our results 
have shown that efficiency and reproducibility of manual cell injections highly depend 
on the training stage of the person performing the experiment, making it more difficult 
to have this technique as a routine procedure in the laboratory. Here, we show the 
establishment of automated injections as a reliable tool for the generation of CRISPR/
Cas9 mutants. Automated microinjections are simple to learn and allow the cell injection 
of 100 embryos in 2.5 minutes with comparable efficiency to manual cell injections. 
This method could also be used for high-throughput gene overexpression studies by 
microinjection of mRNA.

The need for high-throughput genome manipulation	 
To date there have been almost 9,000 morpholinos used in zebrafish research. In 
addition, the adaption of CRISPR/Cas9 editing technology is progressing faster than 
any other gene silencing method, and even faster than the adoption of morpholino 
knockdown technology (statistics on zfin.org). However, injections of mRNAs or DNA 
must be more precise and are more time consuming. Therefore injection can be a 
limiting step for high-throughput genetic studies. For the moment, there are about 
30,000 known gene loci that could be interesting to manipulate in order to investigate 
their function in development, disease or expressed phenotype (zfin.org). Multiplied 
with 300 injections that are typically used to obtain a mutant, and multiple mutants 
per gene, this brings us to tens of millions of injections. Much time and efforts would 
be saved if this tedious but needed task can be performed mostly by robotic systems.
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Materials and methods

Animals	  
Wild type adult zebrafish (AB or TL strain) are maintained in the Aquatic Facility of 
the Luxembourg Centre for Systems Biomedicine and the Institute of Biology, Leiden 
University, according to standard protocols39. Zebrafish eggs were obtained by natural 
spawning on the day of each experiment, kept in 0.3X Danieau’s solution (14 mM NaCl, 2 
mM KCl, 0.12 mM MgSO4, 1.8 mM Ca(NO3)2, 1.5 mM HEPES pH 7.5 and 0.03 M methylene 
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blue) or egg water (60 μg/ml sea salt, Sera Marin, Heinsberg, Germany), and staged 
by morphology (one-cell stage) for the injections. After each series of injections, the 
eggs were incubated at 28 °C (±0.5) and evaluated up to 5 days post-fertilization (dpf). 
Anaesthesia of larvae used for live imaging and COPAS analysis was done with 0.02% 
buffered Tricaine (3-aminobenzoic acid ethyl ester, Sigma-Aldrich) in egg water37,40.

Ethics statement	  
The Luxembourg Centre for Systems Biomedicine is registered as an authorized breeder, 
supplier and user of zebrafish (Danio rerio) with Grand-Ducal decree of 20 January 
2016. Zebrafish lines used at the Institute of Biology, Leiden University were handled 
in compliance with local animal welfare regulations as overseen by the Animal Welfare 
Body of Leiden University (license number: 10612). All practices involving zebrafish 
were performed in accordance with European laws, guidelines and policies for animal 
experimentation, housing and care (European Directive 2010/63/EU on the protection of 
animals used for scientific purposes). The present study did not involve any procedures 
within the meaning of Article 3 of Directive 2010/63/EU and as such it is not subject to 
authorization by an ethics committee.

Morpholino antisense oligonucleotide	  
The translation blocking morpholino for slc45a2 (solute carrier family 45 member 2) was 
obtained from Gene Tools according to Dooley et al., 2012 with the following sequence: 
5’-GCTGGTCCTCAGTAAGAAGAGTCAT-3’ 41. In addition, a 3’ fluorescein modification 
was included, which allowed fluorescent differentiation of injected eggs. A standard 
MO with sequence 5’-CCTCTTACCTCAGTTACAATTTATA-3’ was used as an injection 
control. In both cases, stock solutions (1 mM ~ 8 ng/nL) were prepared according to the 
specifications of the provider and titrated working solutions were freshly prepared for 
each experiment.

Preparation of Cas9 mRNA, slc45a2 sgRNA and DNA construct	  
Both slc45a2 sgRNA and Cas9 mRNA were prepared according to Gagnon et al., 201434. 
Briefly, the slc45a2 DNA template was synthetized with T4 DNA polymerase (New 
England BioLabs) using the oligonucleotides: slc45a2-specific (taa tac gac tca cta taG 
GTT TGG GAA CCG GTC TGA Tgt ttt aga gct aga aat agc aag) and constant (AAA AGC 
ACC GAC TCG GTG CCA CTT TTT CAA GTT GAT AAC GGA CTA GCCTTA TTT TAA CTT 
GCT ATT TCT AGC TCT AAA AC). The sgRNA was synthetized using T7 RNA polymerase 
(Ambion MEGAscript) and then diluted to 400 ng/µl. Cas9 mRNA was synthetized using 
the pCS2-Cas9 plasmid42, transcribed using the SP6 mMessage mMachine kit (Ambion) 
and finally diluted to 600 ng/µl.

The DNA plasmid was constructed using standard methods43. Briefly, a GFP reporter 
(Tol2kit construct 389) and mCherry reporter (Tol2kit construct 233) expressed under 
a constitutive promoter (Tol2kit construct 299) was constructed (final construct actb:-
NLSmCherry-IRES-GFP) in the Gateway Tol2 vector (pDestTol2pA2). The plasmid was 
transfected in E. coli, isolated from an overnight liquid culture and diluted to 25 ng/
µl. The Tol2 transposase RNA was synthetized using SP6 RNA polymerase (Ambion 
mMESSAGE mMACHINE) and then diluted to 25ng/µl. 

Manual microinjections	  
Manual microinjections of slc45a2-MO, slc45a2 sgRNA/Cas9 and the DNA construct 
in zebrafish embryos were performed following standard methods using Eppendorf 
FemtoJet microinjectors and both in-house pulled needles, prepared with thin-wall 
capillaries (World Precision Instruments) and a P-1000 Micropipette Puller (Sutter 
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Instrument, USA), and commercially available ready-to-use 10 µm tip needles (Qvotek, 
Mississauga, Canada)19,44. The needles for each round of injections were calibrated 
according to well-established methods using a stage micrometer slide (Carl Zeiss)19. 
Ultimately, the required bolus size for injection was achieved and controlled by regulating 
the pressure in the microinjector. After each series of microinjections, the embryos were 
incubated at 28 °C (±0.5) and evaluated daily until 5 dpf to record non-viable embryos, 
(i.e. non-fertilized, fluorescent negative, dead and dysmorphic embryos/larvae from 1 to 
5 dpf), and the efficiency of injection. Table 1 shows the specifications of the different 
types of manual injections that were performed in this study. 

slc45a2 MO & control MO slc45a2 gRNA + Cas9 RNA DNA construct + Tol2 
RNA

Injection type Manual Manual Manual

Developmental stage 
at injection

One- to two-cell One-cell One-cell

Injection location Middle of the yolk Middle of the yolk Blastomere/yolk 
boundary

Sample concentration 230 µM 400 ng/µL + 600 ng/µL 25 ng/µL + 25 ng/µL

Injection volume 2 nL 4 nL 1 nL

Injection time(per 100 
embryos)

P1: 5 min
P2: 3 min

P1: 17 min
P2: 10 min
P3: 19 min

P4: 4 min

Microinjector type EppendorfFemtoJet 4X EppendorfFemtoJet 4X Eppendorf FemtoJet

Evaluation lapse From 6 hpf to 5 dpf From 6 hpf to 5 dpf From 6 hpf to 5 dpf

Sorting criteria GFP positive and albino 
phenotype

Albino phenotype GFP positive

Exclusion criteria Non-fertilized, GFP 
negative, dysmorphic and 
dead embryos / larvae

Non-fertilized, no albino 
phenotype, dysmorphic 
and dead embryos / larvae

Non-fertilized, GFP 
negative, dysmorphic 
and dead embryos / 

larvae

Place of the 
experiments

LCSB LCSB Leiden University

Table 1. Technical specification for the manual microinjections 
Abbreviations: P1, experienced experimentalist; P2, expert experimentalist; P3, novice experimentalist; P4, 
experienced experimentalist; hpf, hours post-fertilization; dpf, days post-fertilization; GFP, green fluorescent 
protein.

Automated microinjections	  
Automated microinjections of slc45a2-MO, slc45a2 sgRNA/Cas9 and the DNA construct 
in zebrafish embryos were performed using the robotic injector (Life Science Methods 
BV) following guidelines described in Spaink et al. 201338. Briefly, all components of 
the robotic injector are connected to a controlling computer that is equipped with a 
software control program written in Python. The robot uses Eppendorf FemtoJet 4X 
microinjectors in combination with both in-house pulled needles and commercially 
available ready-to-use 10 µm tip needles as described in the section above. The 
established parameters for each needle (i.e. pressure and time) were then used for the 
microinjector linked to the robot injector. Zebrafish embryos were carefully arranged 
in each well of a 1% agarose covered grid (9 blocks x 100 wells) with the help of an 
artist brush. Particularly for RNA injections, each embryo was also oriented (with the 
artist brush) to put the one-cell visible for injection. The grid was then placed in the 
motorized stage coupled to a controlled and motorized micro-manipulator. After the 
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robotic injector was properly set (position of grid and needle) automated injections 
occurred at high speed (Table 2). For RNA and DNA injections in the robotic injector we 
used an image classification algorithm (see section below) to recognize each embryo 
i.e. “First-cell”, “No-cell”, “Empty”, “Two-Cell”, and “Sick”, and to decide if triggering an 
injection. The total count of injected embryos (i.e. classified as “First-cell” and “No-cell”) 
and of non-injected wells (classified as “Empty”, “Two-Cell”, and “Sick”) was obtained at 
the end of each injection round. After each series of microinjections, the embryos were 
incubated at 28 °C (±0.5) and evaluated daily until 5 dpf to record non-viable embryos, 
(i.e. non-fertilized and fluorescent negative at 6 hpf, dead and dysmorphic embryos/
larvae from 1 to 5 dpf), and the efficiency of injection. Table 2 shows the specifications 
of the different types of automated injections that were performed in this study. 

slc45a2 MO & control 
MO

slc45a2 gRNA + Cas9 RNA DNA construct + Tol2 
RNA

Injection type Automated Automated Automated

Developmental stage 
at injection

One- to two-cell One-cell One-cell

Injection location Middle of the yolk Depending on image 
classification

Depending on image 
classification

Injection volume 2 nL 4 nL 1 nL

Injection concentration 230 µM 400 ng/µL + 600 ng/µL 25 ng/µL + 25 ng/µL

Microinjector type Robotic injector + 
Eppendorf FemtoJet 4X

Robotic injector + 
Eppendorf FemtoJet 4X

Robotic injector + 
Eppendorf FemtoJet 4X

Injection time (per 100 
embryos)

2 – 3 minutes 3 minutes 3 minutes

Evaluation lapse From 6 hpf to 5 dpf From 6 hpf to 5 dpf From 6 hpf to 5 dpf

Sorting criteria GFP positive and albino 
phenotype

Albino phenotype GFP positive

Exclusion criteria Non-fertilized, GFP 
negative, dysmorphic and 
dead embryos / larvae

Non-fertilized, no albino 
phenotype, dysmorphic 
and dead embryos / larvae

Non-fertilized, GFP 
negative, dysmorphic 
and dead embryos / 

larvae

Place of the 
experiments

LCSB LCSB Leiden University

Table 2. Technical specifications for the automated microinjections  
Abbreviations: hpf, hours post-fertilization; dpf, days post-fertilization; GFP, green fluorescent protein.

Deep learning algorithm for image classification	  
As a first step we used the Inception v3 network to learn to distinguish between five 
different categories: “Empty”, “No-Cell”, “First-Cell”, “Two-Cell”, “Sick” (this term is used 
to refer to non-viable eggs). We used a total of 11,000 annotated images. To prevent 
overfitting, we artificially increased the number of training samples by performing four 
types of image transformation: 1) rotations about the center of the image; 2) zooming by 
a factor 0.9-1.1; 3) shifting by 28 pixels orthogonally in the +/- x and y direction, and 4) 
flipping the image horizontally. The neural network architecture consisted of: 1) the top 
part of the Inception v3 network (containing all inception blocks); 2) a 2D global spatial 
average pooling layer; 3) a fully connected layer of 1024 nodes with ReLU activation 
function, and 4) a fully connected layer of 5 nodes, with softmax activation function. 
Training of the classification step was done using the Adam stochastic optimizer45, with 
a learning rate of 10-4. For a more in-depth description see S1 Text.
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Deep learning algorithm for finding the injection site	 
For the injection point determination, we translated the (x y) coordinates to a vector in a 
triangular mesh using a barycentric coordinate system. We let the outputs of the neural 
net correspond to vertices in the mesh. In our case, we used 160 vertices.

The neural network architecture consists of: 1) the top part of the Inception v3 network 
(containing all inception blocks); 2) a 2D global spatial average pooling layer; 3) a fully 
connected layer of 1024 nodes with ReLU activation function, and 4) a fully connected 
layer of 160 nodes, with softmax activation function. We used 2724 images for training 
and 674 images for validation (these are the same images as used for label “first-cell” 
in the classification step). Training of the injection point determination step was done 
using the Adam optimizer, with a learning rate varying from 10-3 to 10-5. More details can 
be found in S1 Text.

Software and hardware	  
For deep learning and robot control we used a Shuttle SZ170R8 equipped with an Intel 
Core i3 6100 CPU, 16 GB kit Kingston DDR4 2133Mhz, ECC memory and an NVidia 
GeForce GTX 1070 GPU. Installed software are: Keras 1.2.2, Theano 0.9.0, NumPy 1.11.0, 
SciPy 0.17.0. For the analysis of the data, raw data for all the series of microinjections 
was processed in excel. Statistical analysis was done using excel and GraphPad Prism 
6 followed by unpaired t-test with Welch’s correction for single comparisons (when 
applicable). The criterion for statistical significance was P<0.05. Graphs were plotted 
using GraphPad Prism 6 and error bars on all graphs represent standard deviation. 

Microscopy and fluorescent analysis	  
At the Institute of Biology, Leiden University, representative pictures were taken using a 
Leica M205 FA stereo fluorescence microscope equipped with a DFC345 FX monochrome 
camera. Fluorescent signal was quantified using a Complex Object Parameter Analyzer 
and Sorter (COPAS, Union Biometrica). At the Luxembourg Centre for Systems 
Biomedicine, fluorescent sorting of fluorescein positive embryos (for slc45a2-MO 
injections) was done using a Nikon SMZ25 stereomicroscope. Representative pictures 
of control larvae and injected larvae displaying an albino phenotype were taken using 
the Nikon SMZ25 stereomicroscope equipped with a Nikon Digital Sight DS-Ri1 camera

Supplementary information

S1 Text. 	Deep learning supplement.	  
S1 File. 	Movie demonstrating robotic injections with deep learning.	 
S2 File. 	Demo source code and demo images.	  
S3 File. 	Data set used for plotting the graphs. 	

The supporting information can be found here: 	  
https://doi.org/10.1371/journal.pone.0202377
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Supplementary figures

Figure S1. Representative images of manual and automated yolk injections with slc45a2 morpholino. 
The images show four days post-fertilization (dpf) larvae that were injected manually (A) or injected by the 
automated robot (B) with control morpholino (top) and slc45a2 morpholino (bottom). In both cases the albino 
phenotype is evident in the morphant larvae (bottom), in which pigmentation is significantly reduced compared 
to the control morpholino (top).  

Figure S2. Representative images of manual and automated injections with (act:-NLSmCherry-IRES-GFP) 
Tol2 construct. 
The images show five days post-fertilization (dpf) larvae that were subjected to manual cell injections or 
automated yolk or cell injections with a (act:-NLSmCherry-IRES-GFP) Tol2 DNA construct and Tol2 transposase 
RNA. In all three cases the phenotype is evident as fluorescent signal is significantly increased compared to 
the uninjected control (top row). White scale bar = 250µm.

Figure S3. Representative images of manual and automated cell injections with slc45a2 gRNA/Cas9. 
The images show four days post-fertilization (dpf) larvae that were subjected to manual cell injections (A) or 
automated cell injections (B) with slc45a2 gRNA/Cas9. In both cases the albino phenotype (bottom) is evident 
as pigmentation is significantly reduced compared to the uninjected controls (top).




