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Abstract

Life cycle assessment (LCA) models and databases have increased in size, resolution,

and complexity, requiring analysts to rely on an ever-increasing number of uncertain

model inputs. Such increased complexity calls for systematic approaches to assessing

the uncertainty of the output results of LCA models and the sensitivity of LCA model

outputs to the model’s uncertain inputs. In this contribution, we provide a theoretical

basis and present a practical software implementation that combines uncertainty anal-

ysis and moment-independent global sensitivity analysis, which can be readily applied

to full-scale LCAmodels. We implemented our approach in the Activity-Browser open

source LCA software and it is made available for use in LCA studies. We demonstrate

the approach and software implementationwith a case study of crystalline silicon pho-

tovoltaics.

KEYWORDS
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1 INTRODUCTION

The complexity ofmodels and theuncertainty of inputs require life cycle assessment (LCA) analysts to understand the impact of all potential sources

of uncertainties on the model output if the model is to be used effectively and responsibly in any decision-making process. Various authors rec-

ommend the application of a combination of uncertainty and sensitivity analyses to assure the quality of any mathematical model that supports

decision-making (Borgonovo et al., 2012; Risbey et al., 2005; Saltelli et al., 2019). In the context of LCA, ISO 14044, for instance, prescribes that the

interpretation of LCA studies “shall include an assessment and a sensitivity check of the significant inputs, outputs, and methodological choices to

understand the uncertainty of the results” (see clause 4.5.1.1; (ISO, 2006)).

In this paper, wewill be adopting the following definitions. Uncertainty analysis (UA) is the quantification and propagation of input uncertainties

to output uncertainties (Igos et al., 2019a). In LCA, uncertainty can be related to input data that are uncertain (for instance, the effects of a pesticide,

such as chlorpyrifos, on human health are not fully known), to input data that are variable (for instance, the lifetime of two identical PV panels is

not exactly equal), and to choices that must be made by the analyst (for instance, related to the choice of mass-based or economic allocation); see
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Heijungs (2020). Besides, data may be missing and therefore estimated, introducing new uncertainties. Two types of sensitivity analysis can be

distinguished: local and global (Razavi et al., 2021). Local approaches to sensitivity (LSA) refer to the variation of one input of an uncertain model

around its reference point, keeping the others at their nominal values (Igos et al., 2019a). Conversely, Saltelli et al. (2008) define global sensitivity

analysis (GSA) as the study of how the uncertainty in the output of a mathematical model can be apportioned to different sources of uncertainty

of its inputs. We focus on GSA, which limits the risk of not fully understanding the behavior of a model on which an inference is based, that is, the

so-called black-box effect (Borgonovo et al., 2012), and which can allow the analyst to best understand how uncertain inputs of a mathematical

model interact, thus allowing drawing out themaximum capabilities of mathematical modelling (Rabitz, 1989).

UA and GSA are not new to the LCA community. A series of methodological contributions have formalized UA in LCA, although sometimes using

different terminology (Heijungs, 1994; Lloyd & Ries, 2007; Heijungs & Lenzen, 2014; Groen et al., 2014; Huijbregts, 1998; Mutel et al., 2013; Igos

et al., 2019a). Current and common standard practice for UA consists of applying computational algorithms that rely on repeated sampling using

theMonte Carlomethod to obtain numerical results for LCAmodels (Groen et al., 2014). The output of UA for LCAmodels is typically a distribution

for the inventory results (e.g., emissions of CO2 for gas-powered electricity production; see, e.g., Scherer & Pfister, 2016; von Pfingsten et al., 2017;

Gavankar et al., 2015), or a distribution for the impact scores (e.g., kg of CO2 equivalent for gas-powered electricity production; see e.g., Golsteijn

et al., 2012; Douziech et al., 2019). Some authors concentrate on uncertainty in a comparative setting; see for example, Huijbregts (2003); Heijungs

& Kleijn (2001); Mendoza Beltran et al. (2018); Heijungs (2021).

Proposals for GSA are scattered. The most common approaches to GSA combine probabilistic UA based on Monte Carlo simulations with GSA

techniques, such as Sobol’ indices, which allow to numerically apportion the variance of the output of any computational model to individual uncer-

tain inputs (Sobol’, 1993). In LCA, examples of the use of the variance-based approach of Sobol’ include the work of Geisler et al. (2005), Mutel et al.

(2013), Bisinella et al. (2016), and Lacirignola et al. (2017). We further refer the reader to the work of Groen et al. (2017), Igos et al. (2019b), and

Michiels and Geeraerd (2020) for a review of GSAmethods applied to LCA.

The above brief reviewof approaches shows that disparate proposals forUA andGSA in LCAexist, and yet no consensus seems to have emerged.

Existing techniques have limitations that are computational, but also methodological. Also, most proposals have not been implemented in com-

mercially and freely available software for LCA, thus further hampering the regular application of such techniques in LCA studies. Furthermore, no

proposal to date provides a joint assessment at the level of a full LCAmodel, for example, including the impact assessment phase.

To improve on existing proposals and to support the alignment of methods, with this contribution we propose (i) an implementation of UA and

GSA that suits the needs of standard LCA practice.

With this contributionwe also aim to (ii) align for the first time the theory and notation ofUAandGSA techniques to the computational structure

of LCA, allowing for a streamlined collaboration across communities in the future (see Sections 2.2 and 4.3). We also translate theory andmethods

into (iii) an open-source LCA software developed in the Activity Browser (Steubing et al., 2020) that allows practitioners to directly apply the pro-

posed implementation in LCA studies. We also provide solutions (e.g., contribution-based filtering; see Section 2.3) to existing issues with UA and

GSA software tools, which are computationally demanding, and inadequate to assess full-scale real LCA models. Finally, we (iv) demonstrate the

application of the theories, methods, and software in a realistic case study of crystalline silicon photovoltaics (see Section 3), which showcases the

set of results and interpretation that can be obtained by applying the proposed approach.

2 METHODS

2.1 Choice of methods for uncertainty and global sensitivity analysis in LCA

We consider suitable for LCA the GSAmethods that have the following properties identified by Saltelli et al. (2019, 2008):

∙ copingwith the influence of scale and shape. The influence of the input should incorporate the effect of the range of input variation and the shape

of its probability density function. This applies to the uncertain inputs of LCAmodels.

∙ including amultidimensional analysis. The chosenGSAmethod should evaluate the effect of a factor while all others are also varying, thus allow-

ing to appreciate global effects in LCAmodels.

∙ being applicable to assess a full LCA model, independently of complexity. The method should work for a broad range of LCA models, also in the

case of highly-interactive, non-linear, and non-additivemodels. This is the case of LCAmodels, in which factors interact with one another, and the

effect of changing two factors is different from the sum of their individual effects.

Moment-independent (or density-based) methods are a class of sensitivity measures with the above properties. These measures consider the

entire distribution without reference to a particular moment, such as the mean or the variance. Borgonovo and Plischke (2016) demonstrated that

moment-independentmeasures: (1) are suitable to assess correlated inputs; (2) do not depend on a particularmoment of themodel output distribu-

tion, and 3) are equal to zero if and only if the output of amodel is independent of a specific input (see also Baucells & Borgonovo, 2013).Within the
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moment-independent class of methods, we select the so-called δ-measure (Borgonovo & Apostolakis, 2001). The interpretation of the δ-measure

is unaffected by the presence of correlations, which affect, for instance, variance-based sensitivity indices, which do not hold in the presence of

dependences (Borgonovo & Plischke, 2016). By looking at the shift of the actual output distribution, the approach intrinsically accommodates cor-

relations that exist in LCAmodels among dependent processes. Insofar as the source of shared uncertainty in correlated coefficients is represented

by a specific variable model input (e.g., the efficiency of a combustion engine), the total effects resulting from interactions among correlated coef-

ficients are accounted for by the δ-measure. We further refer the reader to Plischke and Borgonovo (2020) for a review of these aspects for the

δ-measure also in comparison to other GSAmeasures. Additionally, moment-independent methods can deal with multimodal output distributions,

which could result from more complex LCA models (Blanco et al., 2020), and they are computationally more parsimonious, thus more efficiently

implementable in LCA software.

2.2 Theoretical support to the proposed approach to UA and GSA

2.2.1 NOTATION

Wewill adopt the following general conventions unless otherwise specified:

∙ scalars are written as non-bold, italic, letters;

∙ vectors are written as bold, roman, lowercase letters;

∙ matrices are written as bold, roman, capitals;

∙ parameters of probability distributions are written as Greek letters;

∙ stochastic variables are written as non-bold, italic, capitals;

In the LCA-part, we will connect, where possible, to the standard symbols used in Heijungs and Suh (2002). Further, we will be differentiating

between random variables (written in capital) and their realized values (written as lower case).

2.2.2 DEFINITION OF THE LCA MODEL

Let us consider the deterministic scalar function representing a reliable and fixed specification of the LCA algorithm, such that:

h = QBA−1f. (1)

In Equation (1), A represents the square technology matrix of size m ×m. The intervention matrix B of size p ×m reports the use of resources

and emissions for each production process in the technologymatrix. The vector f of sizem represents the final demand vector, to which production

processes are scaled to produce the desired amount of output to fulfill a certain functional unit. Q of size l × p represents the characterization

matrix, that is, the ensemble of the characterization vectors available for several impact categories (e.g., global warming, toxicity; see Heijungs &

Suh, 2002 andHeijungs et al., 2015). h is the output of the LCAmodel, that is, the impact score for the l impact categories considered in a LCAmodel

(e.g., acidification, eutrophication, climate change, toxicity). If desired, the impacts may also be defined at endpoint level (human health, ecosystem

quality, etc.).

We can indicate with x the vector of the k inputs to the LCAmodel introduced in Equation (1):

x =

⎛⎜⎜⎜⎜⎜⎝

vec(A)

vec(B)

vec(Q)

f

⎞⎟⎟⎟⎟⎟⎠
, (2)

where vec(⋅) is the vectorization operator of the matrix considered. The vector of inputs to an LCA model can also include allocation factors (Jung

et al., 2014) and parameters (Mutel et al., 2013; Blanco et al., 2020); for simplicity, we do not include these in this demonstration.

We consider the output of the LCAmodel h (e.g., the impact score for climate change and other impacts), and a set of independent input variables

x as:

h = g (x) , g : ℝk → ℝl (3)
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with g representing the relationship between inputs and output, k denoting the size of the input space, that is, k = m ×m
⏟⏟⏟

A

+ p ×m
⏟⏟⏟

B

+ l × p
⏟⏟⏟
Q

+ m
⏟⏟⏟

f

, and

l denoting the number of themodel outputs considered in the LCAmodel under assessment.

2.2.3 Uncertainty analysis

We consider that almost all input data to the LCA model are uncertain, that is, that they should be treated as stochastic variables. Moreover, we

will treat them as a continuous variable, so that we can use probability density functions instead of discrete probability distribution functions for

all inputs. This is of course not completely true (for instance, the number of passengers in a train is discrete), but it is a reasonable approximation.

We only assume that we have perfect knowledge of the final demand, thus that the final demand vector accurately represents the demand for

the product system under assessment, allowing us to ignore any uncertainty on f. We address the variation of the other model inputs across the

full range defined by their probability distributions. Thus, we follow Cucurachi et al. (2016) and consider that the vector of model inputs x can

be represented by a stochastic vector denoted as X. We further assume that the elements of X are represented by probability distributions. For

example, wemay consider that a particular element ofX, for instance X1, is normally distributed:

X1 ∼ N
(
𝜇X1 ,𝜎X1

)
, (4)

and similar specifications of the other elements ofX. Themodel output, then, is the stochastic vectorH, related toX through:

H = g (X) . (5)

We consider the full set of stochastic inputs of X, which are activated by the demand vector, and for which the following are available: (1) a

probability distribution (or density) function; (2) the appropriate parameters to characterize the distribution (for instance a mean and a standard

deviation in case of a normal distribution).

We further make the distinction in the system between background and foreground, modifying Equation (2) as:

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

vec
(
Afg

)
vec

(
Abg

)
vec

(
Bfg

)
vec

(
Bbg

)
vec (Q)

f

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

We consider pertaining to the foreground all processes that are modeled for a specific system, with specific conditions determined by the

modeler, as opposed to the average market activities in the background. We consider that these data are directly collected by the analyst and

include realistic uncertainty information, if available. For the background system, we rely on the uncertainty information provided by the ecoinvent

database (Wernet et al., 2016).We additionally consider uncertainty information for the LCIA phase (see Section 3.1.2).

We sample the input space, for example, using randomMonte Carlo sampling (Hastings, 1970), with sample size N. Following this approach, we

proceed with drawing random instances from the specified distribution functions of the relevant uncertain inputs of X. For each of the probability

distributions defined by the inputs, we obtainNX-structures in the k-dimensional input space.

We evaluate the model output in correspondence with each realization of X. As a result, we obtain N realizations of the l-dimensional model

outputsH. More precisely, we can define the outputs of the LCAmodel under consideration as the stochastic variable:

H ∼? (7)

where ? indicates a distribution that is to be estimated from theN sampled values.

2.2.4 Global sensitivity analysis

Let us denote by:
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F IGURE 1 The shift s(Xi) in themodel output density curve (fHj
) of an LCA impact scoreHj is the area not enclosed between the output density

curve conditional to a coefficient Xi fixed at value xi (fHj|Xi=x , shown in blue) and the density curve when Xi is left to vary randomly (fHj
, shown in

red). Adapted fromBorgonovo (2007)

∙ FXi (x) and FHj
(h) the cumulative distributions functions (cdf) of the ith input and the jth output of the LCAmodel, respectively;

∙ and by fXi (x) and fHj
(h) their probability densities (pdf).

Moment-independent measures of sensitivity follow the intuition that if we let all model inputs free to simultaneously vary per the assigned

distributions, we then obtain the unconditional model output density fHj
. The idea behindmoment-independent measures is to measure how fixing

the input Xi at a fixed value xmodifies the entire distribution of the outputHj into a conditional distribution.

By fixing Xi at xi, we obtain, thus, the conditional density of Hj given that Xi is fixed at xi, that is, fH|Xi=xi (hj) (see Figure 1). Following Borgonovo
et al. (2017) and Borgonovo & Plischke (2016), we canmeasure the shift between fHj

(hj) and fHj|Xi=xi (hj) as in:

s (xi) = ∫
Hj

|||fHj

(
hj
)
− fHj|Xi=x

(
hj
)||| dhj. (8)

The operator ∫ | ⋅ | represents an inner separation between probability distributions, thus measures the area enclosed between the conditional

and unconditional model output densities obtained for Xi = xi . The integral is taken over the full support ofHj. Notice that s(Xi) is a stochastic value,

because it is dependent on the random variable Xi.

We can further measure the expected value of this shift as follows:

EXi [s (Xi)] = ∫ fXi (xi)
[
∫
Hj

|||fHj

(
hj
)
− fHj|Xi=x

(
hj
)|||
]
d xi = ∫ fXi (xi) s (Xi) dxi. (9)

We obtain the 𝛿 sensitivity measure as proposed by Borgonovo (2007) setting:

𝛿i =
1

2
EXi [s (Xi)] . (10)

Equations (9) and (10) show that 𝛿i is proportional to the average of the difference between the product of the marginal distributions of Hj and

Xi and their joint density. The estimation of 𝛿i is not related to an explicitly definedmodel g(⋅), but only to the quasi-empirical input-output mapping

obtained through the Monte Carlo sampling implied by g(⋅). We refer the reader to Borgonovo (2007) for a description of the properties of the 𝛿

measure (see also Section 2.1).

We proceed by estimating 𝛿i following Plischke et al. (2013), and estimate the measures 𝛿i considering the input-output mapping in the LCA

modelHj = g(Xi). Here,we focus on using the dataset containing theN realizations of (Xi, Hj), calculated using aMonteCarlo simulation as described

in Section2.2.3. By this sample, it is possible toobtain theempirical pdfs fHj
(h) and fHj|Xi=x .We refer the reader to theworkofPlischke and co-authors

(Plischke et al., 2013) for further details on the estimation of 𝛿i, and to Section 2.3 for the implementation of UA andGSA in LCA software.
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2.3 Software implementation

We implemented the proposed joint approach to UA and GSA in Python, building upon the sensitivity analysis library SALib (Herman & Usher,

2017), and the brightway LCA framework (Mutel, 2017). Our implementation is available at the following repository: github.com/bsteubing/

lca-global-sensitivity-analysis. Additionally, we implemented the proposed approach in the Activity Browser open source LCA software (Steubing

et al., 2020; available from github.com/LCA-ActivityBrowser/activity-browser)1.

The general steps of the software implementation are the following:

1. Monte Carlo simulation;

2. Filtering of input data to GSA (see Section 2.3.1);

3. Formulation of the input data for GSA as in Equation (6);

4. GSA and display of results.

It may be helpful to further specify the nature of A and B in the context of the software implementation. As described, B contains what is often

referred to as “environmental flows” or “interventions” and describes the flows between human activities and the environment, which can thus

be seen as “causers” of environmental impact. A contains what is often referred to as “economic exchanges” or “intermediate flows” and describes

the flows between human activities, which can be thus be seen as “connectors” between the functional unit and the environmental exchanges in B

(Reinhard et al., 2016). GSA allows identifying those elements that are associated with high uncertainties from the UA and either cause important

environmental impacts within a product system (e.g., a high, but uncertain, emission in steel production) or connect these to the functional unit.

We perform aMonte Carlo simulation for a reference flow as described in Section 2.4, using a randomMonte Carlo sampling design with 1000

runs (see Heijungs, 2020). The number of MC runs can be adjusted by the user in the Activity Browser software. Alternative and more efficient

sampling strategies (e.g., quasi-Monte Carlo or Latin Hypercube) can also be considered, withoutmajor changes in the software. The computational

efficiencyof sampling strategies is outsideof the scopeof this paper, andwe further refer the reader toGroenet al. (2014) for a reviewof approaches

that can be readily implemented in combinationwith our proposal using existing software packages. The LCA case studywe use in this contribution

is non-comparative. Should the LCAanalyst be comparing two alternatives, the software implementation considers a dependent sampling approach

(Henriksson et al., 2015; Mendoza Beltran et al., 2018), thus ensuring that all systems under comparison are assessed using the same A, B, andQ

matrices.

2.3.1 Implementation of variable-filtering

When applying traditional approaches to GSA in practice with LCA, a major challenge for both computation and interpretation is the size of the

vector of inputs x. In the ecoinvent 3.6 (cutoff) database (Wernet et al., 2016), which was used here, a typical product system is described by more

than 200,000 elements inA, more than 400,000 elements ofB, as well as thousands of elements ofQ. Yet, the vast majority of these elements have

a negligible influence on the environmental impacts of a specific product system. Feeding such large numbers of variables toGSAwould lead to very

long computation times and potentially limitingmemory requirements, thus requiring some form of filtering (see also Blanco et al. (2020).

In the software implementation here proposed, we tackle these challenges by applying contribution-based filtering. Contribution-based filtering

exploits the fact that most elements inA andB have a negligible influence on the environmental impact score. A cut-off value could thus be defined

to exclude those elements that do not cause contributions to an environmental impact score (Hj) below a certain threshold; directly in the case

of B and indirectly in the case of A (see below). In most cases, this approach should reduce the number of inputs Xi sufficiently to well overcome

limitations posed by the computational intensity of the algorithms.

For environmental flows, contribution-filtering is applied as follows. First, we calculate the scaling factors s for the static product system (no

uncertainty data used), as in:

s = A−1f. (11)

Then, we calculate the scaled interventionmatrix B̃ by

B̃ = Bdiag (s) , (12)

1 A user manual of the implementation in the Activity Browser is available at: github.com/LCA-ActivityBrowser/activity-browser/wiki/Global-Sensitivity-Analysis
[Corrections added on Sep 28, 2021 after first online publication: Equation 12was corrected.]

http://github.com/LCA-ActivityBrowser/activity-browser/wiki/Global-Sensitivity-Analysis
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such that the row sum of B̃ yields the inventory result g:

g = B̃1, (13)

where1 is a vector of ones. Then,we characterize the environmental flows bymultiplying each element of B̃with its corresponding characterization

factor for a given impact category.We first select the row fromQ that contains the characterization factor for a given impact category, k, by selecting

the kth row ofQ. This row vector is indicated by q′k , where the prime indicates transposition, turning the column vector qk into a row vector. As a

result, we have

Q =

⎛⎜⎜⎜⎝
q′1
q′2
⋯

⎞⎟⎟⎟⎠
. (14)

Next, we create:

Hk = diag
(
q′k

)
B̃ (15)

Hk is a matrix that represents the characterization results split by environmental flows (rows) and processes (columns). The sum of all elements

ofHk is, thus, equal to the kth element of the impact vector h in Equation (1):

hk = 1′Hk1. (16)

The cut-off value, c, is then applied to identify the largest elements ofHk , that is, those elements that contribute to the specific impact category

by more than the set cut-off value. More precisely, we identify the elements in row i and column j of Hk , such that their contribution to the total

impact, hk , is more than the specified value, c. So, we find all (i, j) such that

(Hk )i,j

hk
> c. (17)

We repeat this procedure for every impact category, k. If for any k, the above condition holds, the entry (i, j) ofH and therefore ofB is maintained.

Otherwise, that entry of B is removed (or changed into a zero) before being an entry into Equation (6). More formally, we replace B in Equation (6)

by amatrixB∗, such that

(B∗)i,j =

⎧⎪⎨⎪⎩
(B)i,j if for any k :

(Hk )i,j

hk
> c

0 otherwise
, (18)

and passB∗ to Equation (6). For a cut-off value c = 0.001, the number of elements inB is typically reduced to a few dozens to hundreds.

For elements in A, the objective is to identify the most important “connectors”, that is, those economic flows that connect the environmental

flows throughout the production system to the reference flow (Reinhard et al., 2016). We used the graph traversal (Rodriguez & Neubauer, 2012)

function of brightway (Mutel, 2020)2 to identify all activities that cause or transmit environmental impacts above a user-defined cut-off value. The

graph traversal approach follows a “contribution-first” logic, that is, the supply chain is traversed starting from the reference flow based on the

magnitude of environmental impact that is either connected through or caused by supply chain activities. Note that this is the same approach that

can be applied to generate a Sankey diagram to show the cumulative contribution of processes across supply chains for a given reference product.

By including only those activities that contribute or connect environmental impacts above a certain cut-off value, the graph traversal can be used to

filter economic flows. For a cut-off value of 0.001 of the total impact score, the input to the GSA in terms of number of economic exchanges can be

typically reduced to a few hundreds.

Finally, elements in A, B or Q that have either a zero value or no uncertainty information, are filtered out as well. For example, for the impact

category of global warming, only several hundred elements of q are non-zero, only a few have uncertainty information, while the total number of

columns inQ is several thousand.

2 A description of the function is available here: https://2.docs.brightway.dev/lca.html#graph-traversal

https://2.docs.brightway.dev/lca.html%23graph-traversal
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3 CASE STUDY

3.1 Description of the case study

For illustration, we applied the proposed approach to investigate the environmental implications of recent process optimizations in the supply chain

of crystalline silicon photovoltaic (PV) installations. The studied product system, which we henceforth refer to as updated PV, is largely based on

a slanted roof-mounted mono-crystalline (single-Si) PV installation, as modeled in the LCA database ecoinvent v3.6 (cut-off version (Wernet et al.,

2016)). However, the data in ecoinvent represents PV installations manufactured before the year 2010. In the updated PV system, the amounts

of materials and energy consumed by several upstream processes as well as PV module performance are adjusted to reflect more improvements

reported by various authors (Stamford & Azapagic, 2018; Lunardi et al., 2018; Woodhouse et al., 2020). We do not know with precision to what

extent these improvements have been implemented and in several cases ranges rather than precise values have been reported. Therefore, we

reflected these uncertainties in the corresponding coefficients inA and propagated them by running 1000Monte Carlo simulations.We then used

GSA to understand the influence of these uncertainties on the distribution of the updated PV system’s LCA impact scoresH.

The key components of theupdatedPVsystemare thepanels,which contain the cellswithin an aluminumandglass frame, an aluminummounting

system used to attach the panels to the roof, an AC/DC inverter, and an electrical installation which mostly consists of cabling. The cells are based

on a silicon wafer, which is sliced from mono-crystalline silicon ingots grown via the energy-intensive Czochralski process (CZ). We defined the

functional unit of the updated PV system as 1 kWh of electricity and focused on the assessment of the climate change and freshwater ecotoxicity

impacts using the IPCC-2013GWP100 (IPCC, 2014), and USEtox (Rosenbaum et al., 2008) impact assessment methods, respectively.

3.1.1 Uncertain coefficients in the background and foreground system

For the foreground system, the coefficients we used to represent optimizations in the updated PV supply chain are presented in Table 1. For the

background system, we used the uncertainty parameters described in the ecoinvent v3.6 database.

3.1.2 Uncertain characterization factors

The models behind characterization factors may be prone to large uncertainties, given that the conditions for transport, exposure, and effects of

substances can vary considerably across time and space, as well as across species. Furthermore, characterization methods are subject to model

uncertainties such as choice of system boundaries and impact pathways or mechanisms. Even though the importance of uncertainty has been rec-

ognized for impact assessment models (see, e.g., Cucurachi et al., 2016), impact assessment models do not typically come with uncertainty infor-

mation and commercial LCA database do not include uncertainty information for CFs. We investigated the potential influence of uncertainties in

Q in comparison to those in A and B by introducing uncertainty in the global warming potential of CH4 following Boucher (2012), who proposed a

normal distribution with a standard deviation of 2.8. For ecotoxicity, USEtox suggests a lognormal distribution with a squared geometric standard

deviation of 18 and 176 to represent model uncertainties in freshwater and rural air CFs, respectively (Rosenbaum et al., 2008). We applied these

uncertainties to the highest contributors to the freshwater ecotoxicity impact category, namely the CFs of chromium (to surface water), silver (to

urban air), copper (to non-urban air or from the high stack), arsenic (to surfacewater), and zinc (to groundwater). In the Section 4,we further explore

how the current exploration can be extended to the entireQmatrix once more comprehensive CF uncertainty information becomes available, and

how this would affect the GSA.

3.2 Case study results

3.2.1 Climate change

Three of the uncertain coefficients in the foreground resulted as themost sensitive (i.e., having the highest δ), while the rest had a small influence on

the climate change impact scoredistribution (δ≤0.05). The δ-values for these coefficients are shown inTable 2 (we refer the reader to the Supporting
Information for complete results for the case study).

The most sensitive coefficient in the updated PV system is coefficient #15, associated with the electricity output from the updated PV system.

This coefficient, which depends on the solar panel’s conversion efficiency, triggers all other processes in the PV supply chain including ancillary

infrastructures such as inverter, cabling, and mounting structures. Therefore, this coefficient is influencing many other coefficients in matrices A
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TABLE 2 δ-sensitivity measures for climate change impacts of the updated PV system, foreground system only

Coeff ID Process

Input (I)/

Output (O) Description δ estimate

15 Electricity yield from

the updated PV

system

O: electricity,

low voltage

Amount of electricity that can be produced by the updated

PV system (yield), which is a result of the uncertain

increase in panel conversion efficiency between 19% and

22%.

0.27

6 Single-Si wafer

production

I: silicon,

single

crystal,

Czochralski

process

Amount of single-Si Czochralski crystal that goes into

single-Si wafer production. Varies depending on the

uncertain wafer thickness between 100 and 180 μm.

0.21

5 Silicon production,

single crystal,

Czochralski

process

I: electricity,

medium

voltage

The amount of electricity consumed by the Czochralski

process for growing single-Si ingot; varies between 0.7

and 1.1 kWh per wafer according.

0.11

Climate change (kg CO2eq)
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F IGURE 2 (a) Climate change impact score of updated PV systemwith uncertain foreground, unconditional (FGunco) and conditional to
coefficient #15 fixed at 1.49 kWh (FGcond). (b) Climate change impact score of updated PV systemwith uncertainty in the foreground and
background systems (FGBG) as well as in the characterization factors (FGBGCF). Data available as Supporting Information

and B of the product system. Its uncertainty can be expected to propagate throughout the whole supply chain, increasing the resulting influence

on the dispersion of the impact score distribution. Coefficient #15 is followed in importance by coefficient #6, which corresponds to the amount

of silicon contained in the wafer. This coefficient varies over a wide range (in proportion to the wafer thickness), while also having a considerable

impact contribution due to its energy intensity.

To validate these results, we fixed the value of coefficient #15 at its expected (mean) value of 1.49 kWh, reran the Monte Carlo simulation, and

plotted the new results overlapping the previous results (Figure 2a). Fixing the quantity of coefficient #15 and comparing the result to the previous

impact score distribution confirmed that this parameter can considerably reduce dispersion, making the curve narrower.

Figure 2b shows the distribution of the climate change impact scores of the same system, this time with uncertainty in the background sys-

tem, based on the uncertainty information available by default in the ecoinvent database (FGBG) and the characterization factors (FGBGCF;

see Section 3.1.2). The ecoinvent database provides background uncertainty information by the application of the so-called Pedigree approach

(Frischknecht et al., 2004; Ciroth et al., 2016; Heijungs, 2020). It can be seen that with default background uncertainty considered, the characteri-

zation factors do not introduce large changes in the distribution of the output.

Including uncertainty in the background A and B coefficients as well as in the characterization factors (Q coefficients) modified the sensitiv-

ity ranking considerably, as shown in Table 3. It can be seen that the ranking is now dominated by background coefficients. These background-

uncertainties “mask” the sensitivity of foreground coefficients, which scored low δ-values (δ≤ 0.05). Themost sensitive coefficients are again asso-

ciated with mostly downstream processes, which trigger many other processes in the supply chain. The characterization factors scored a δ < 0.04,

suggesting negligible sensitivity importance.
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TABLE 3 δ-sensitivity measures for climate change impacts of the updated PV system, with uncertain foreground, background systems, and
characterization factors

Coeff ID Process Input (I)/Output (O) Description δ estimate

BG Photovoltaic slanted-roof

installation, 3kWp,

single-Si, panel,

mounted, on roof

(I) photovoltaic panel,

single-Si wafer

Quantity of photovoltaic panels used in the photovoltaic

slanted-roof installation, in m2.

0.22

BG Electricity production,

photovoltaic, 3kWp

slanted-roof installation,

single-Si, panel, mounted

(I) photovoltaic

slanted-roof installation,

3 kWp, single-Si, panel,

mounted, on roof

Quantity of photovoltaic slanted-roof installations required to

generate electricity, in units (each installation contains 22.072

m2 of panels).

0.19

BG Photovoltaic panel

production, single-Si

wafer

(I) photovoltaic cell,

single-Si wafer

Quantity of photovoltaic cells required used in the photovoltaic

panel, in m2.

0.13

BG Photovoltaic cell

production, single-Si

wafer

(I) single-Si wafer,

photovoltaic

Quantity of single-Si wafers used for photovoltaic cell

production, in m2.

0.09

BG Photovoltaic mounting

system production, for

slanted-roof installation

(I) aluminum, wrought

alloy

Quantity of aluminum, the wrought alloy used in photovoltaic

mounting system production, in kg.

0.08

Abbreviation: BG, background coefficient.
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F IGURE 3 Freshwater ecotoxicity impact score of updated PV systemwith uncertain foreground, unconditional (FGunco) and conditional to
coefficient #15 fixed at 1.49 kWh (FGcond). Data available as Supporting Information

3.2.2 Freshwater ecotoxicity

Figure 3 shows the result of theMonteCarlo analysis for the freshwater ecotoxicity impacts of the updatedPV system, considering uncertainty only

in the foreground). As with climate change, the most sensitive coefficient is #15, related to the panel conversion efficiency. In this impact category,

the δ-value for coefficient #15was 0.15, while all other coefficients ranked lowwith δ≤ 0.07. The change in the impact distribution curve resulting

from fixing this coefficient at its expected (mean value) of 1.49 kWh is also shown in Figure 3.

Finally, we incorporated uncertainty in the background and characterization factors as earlier described and reran the simulation and GSA. All

characterization factors ranked highest (Table 4), followed by the emission of chromiumVI during the treatment of redmud from bauxite digestion

(associated with the aluminum parts I in the PV system). None of the foreground coefficients ranked high in terms of sensitivity importance (i.e., all

has a value smaller than 0.06).
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TABLE 4 δ-sensitivity measures for freshwater ecotoxicity impacts of the updated PV system, with uncertain foreground and background
systems (BG) and characterization factors (CF)

Coeff ID Description δ estimate

CF Characterization factor for copper emissions to compartment ‘air’, ‘non-urban air or from high stacks’ 0.21

CF Characterization factor for chromiumVI emissions to compartment ‘water’, ‘surface water’ 0.11

CF Characterization factor for silver emissions to compartment ‘air’, ‘urban air close to the ground’ 0.11

CF Characterization factor for zinc, ion emissions to compartment ‘water’, ‘ground-’ 0.08

BG ChromiumVI emissions (output) from ecoinvent process ‘treatment of redmud from bauxite digestion, residual

material landfill (redmud from bauxite digestion)’

0.06

CF Characterization factor for arsenic, ion emissions to compartment ‘water’, ‘surface water’ 0.06

4 DISCUSSION

4.1 Insights obtained for the updated PV system

The proposed approach to UA and GSA allowed interpreting the results of the updated PV system under assessment beyond what would have

been possible to extract using existing methodologies in standard LCA software. The GSA tells us to focus first on the highest ranking coefficient

in Table 2 (#15, electricity yield). As a function of panel conversion efficiency (19–22%), the electricity yield of the updated PV system varies only

across a relatively small range. However, the influence of the electricity yield on the uncertainty of the system’s impact scores is largest because the

impacts are embedded in the materials in the panel, cell, and other installation (balance of system). The quantities of materials vary with PV area,

which in turn varies with yield and as a result this parameter drives a large part of the uncertainty in themodel output.

In absence of comprehensive uncertainty/variability data, we chose a triangular distribution to express uncertainty in coefficient 15, following

that fewer panels can be expected to fall in the extremes (higher and lower conversion efficiency ranges). If we had chosen an even less informative

distribution to represent this uncertainty (e.g., uniform), the influence of this coefficient would likely be even higher. The analysis calls for LCA

studies of PV technologies -especially comparative ones- to pay special attention to yield models and the characterization of uncertainties and

variabilities within them. Relative to other aspects of the PV system, errors, poor data, or inconsistencies in the yield models may havemuch larger

chances to introduce error in the LCA impact scores and in the conclusions that can be derived.

A similar logic can be applied to the analysis that included uncertainty in the background coefficients (Table 3). Here, we used the default

uncertainty data available in the ecoinvent database, which are generated following the Pedigree approach (Muller et al., 2016). Again in this

case, uncertain coefficients that relate to the PV installation and panel area required to produce 1 kWh ranked highest in sensitivity impor-

tance. It is the installation/panel area that is driving the material demands and therefore most of the impacts. In the case of panel area (Table 3,

row 1), however, the sensitivity importance may be seen as a contrived result of the Pedigree approach. In practice, the uncertainty around

what area of panels is fitted in a fixed-size PV installation of 22.07 m2 should not be large, as only small variations can be expected from occa-

sional panel breakage and replacement. Yet the Pedigree approach in ecoinvent 3.6 applies a log-normal uncertainty to this coefficient with

a standard deviation of 1.3269. Since the panel includes numerous upstream components, a variation in this quantity will propagate through-

out most of the system, resulting in the high δ values observed. An important takeaway from this analysis is that special attention must be

placed on the model input uncertainties that are incorporated, and whether pedigree-type uncertainties should be investigated under the

GSA lens.

The case study also highlighted important aspects in the uncertainty of characterization models. The uncertainty of CFs for climate change is

smaller than the uncertainty for ecotoxicity CFs, which spans several orders of magnitude. In such cases, the influence of uncertainties in Q can

dwarf the influence of uncertainties inA andB, a potential issue that had been flagged by Cucurachi et al. (2016). In our case study, we only applied

uncertainty to selected CFs for illustration purposes. Extending the uncertainty to the entireQmatrix would be equally straightforward and com-

putationally efficient following the general approachwe have presented here. However, further consideration should be given to howmodel uncer-

tainties are incorporated. In the case of GWP, the IPCC reports specific uncertainties per CF (Myhre et al., 2013). In the case of USEtox, model

uncertainties are applied to entire groups of CFs depending on the compartment (e.g., a squared geometric standard deviation of 18 for all emis-

sions to freshwater in the freshwater ecotoxicity category, and 103 for all emissions to soil in the same category). In such cases, it may be that the

model uncertainty in all the CFs within a group can be attributed to shared sources of uncertainty. If a model parameter can be used to represent

this shared source of uncertainty, then it would likely outrank other coefficients significantly, as its influence would propagate throughout numer-

ous CFs. The interpretation of such results may be more appropriate, as the GSA would call for a better refinement of the parameter rather than

the specific CFs.
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4.2 Potential of the approach in broader applications

The practical approach we propose in this contribution is immediately available in software and applies to LCA studies. We also dedicated some

attention to fully aligning the theory and notation of various disciplinary fields. We started from the standard notation used by Heijungs and Suh

(2002) for the computational structure of LCA, further merged into LCA the theory and the standard notation of UA and GSA, and finally also

presented in mathematical expressions the proposed filtering approach developed in software.While the expression of LCA, UA, and GSA inmath-

ematical notation may be overlooked by the standard LCA practitioner, they are of fundamental importance to improve the collaboration between

scientists and across disciplines.

Beyond a theoretical and a practical approach, we also strengthened the interpretation toolbox of the LCA analyst, thus allowing including in

any LCA study an assessment and a sensitivity check of the significant inputs, as also prescribed by the ISO standard. The availability of sensitiv-

ity results allows the LCA analyst to pinpoint areas in the full LCA system that may require improvement of supporting standard databases (e.g.,

background inventory data), additional direct data collection (e.g., foreground data), improvement of models (e.g., characterization factors). With

GSA, low scores are also of high value, that is, uncertain elements of the model that are found to rank low on the scale of sensitivity importance.

Having a clear and grounded identification of these parameters of low importance helps to clear the way for the interpretation and communication

of the modeling results. Fixing non-important parameters can reduce the degrees of freedom in the models and help focus efforts—both in further

modeling, in their subsequent communication, interpretation, and decision-making that follows from the analysis. As a result, we are now able to

provide a better understanding of the relationship between uncertain inputs and outputs of LCAmodels.

The results also highlight that care should be taken in blindly incorporating in UA the imprecise estimate of the input parameters. The analyst

can approximate foreground uncertainty information using uncertainty information based on an understanding of themechanisms driving it in each

parameter. For the background, uncertainty informationmay come from thePedigree-style approaches commonly used andpropagated in LCA. The

limitation of usingPedigree-style information forUAarediscussedbyHeijungs (2020). The application ofGSAon the sameMonteCarlo sample that

we propose heremitigates potential challenges of Pedigree-information, as the root of the uncertainty of the output is highlighted allowing the LCA

practitioner to better explore the system under assessment. An iterative approach, also involving experts on the specific product system under

assessment, would allow, if resources are available, to improve the quality of the data or models for those parts of the system that result as top

contributors (see Section 3.2).

Our approach can be readily used to apply UA and GSA to complex LCA systems and with reduced computational intensity (∼minutes). The

filtering solutions applied to reduce the complexity of the Monte Carlo simulation of the input space provided an additional avenue to improve

standard UA in LCA software.While contribution-based filtering could be also applied at the level of the stochastic LCA results (i.e., for eachMonte

Carlo simulation run), we applied it at the level of the non-stochastic LCA results in this contribution. The advantage of this is that the input variables

to the GSA are pre-defined and are the same for each simulation run. A potential disadvantage of this approach is that there is a risk that input

variables that increase in relevance above the cut-off value as a result of the sampling, would be excluded at this stage although theymight become

relevant as a result of the sampling.

4.3 Further work

We proposed an approach in open source LCA software, thus allowing other developers to implement UA and GSA also in other LCA software. The

results of the GSA are currently presented in software in a tabular format, ranked based on the δ scores of input parameters. Additional efforts

could also further expand our proposal toward a better graphical representation of results.

The filtering approach we proposed will be key to future rapid implementation of advanced techniques of UA and GSA in LCA. Filtering could

also be performed following other rationales. For instance, one could consider attribute-based filtering, where any attribute or meta-data available

could be used to filter exchanges (e.g., the product system could be divided into the foreground and background systems, environmental exchanges

could be filtered by emission compartment, or economic exchanges could be filtered based on a sectoral classification). Naturally, if attribute-based

filtering is applied, this means that by definition certain variables are excluded from the GSA and their relevance is thus not assessed. Similarly, if

contribution-based filtering is applied there is a theoretical risk that input variables are missed as theymay only become relevant as a combination

of value changes during sampling; this risk can be minimized by using a lower cut-off value, with the drawback of also including more variables into

the GSA.

Of particular importance toward the further implementation of the filtering is also the handling of multiple impact categories. TheMonte Carlo

simulation we performed is for all reference flows and impact categories at once. For the GSA, we currently repeat the filtering for every impact

category, andwe approach theGSAone impact category at a time (see Section 2.3). The automation of this process and the simultaneous calculation

of all impact categories at oncewould be possible, but itwould also likely lead to longer calculation times (e.g., with 10 reference flows and10 impact
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categories the proposed approachwill likely be a factor of 100 slower). To this end, additional research on the filtering should also explore potential

synergies across impact categories.

Aside from filtering, furtherwork should also go into improving the estimation of the δ function in open source software applications, such as the
SAlib library. Here, the algorithm used requires partitioning the output distribution into a given number of bins; see also Plischke and co-authors

(Plischke et al., 2013; Plischke & Borgonovo, 2020). In the case study considered, some negative values suggested that the δ estimation protocol

was not immediately applicable for the impact category under consideration. Output distributions for freshwater ecotoxicity tend to be extremely

pronounced with narrow peaks and long tails. To accommodate for this, we log-transformed the output vector to obtain a curve that could bemore

easily partitioned. Thanks to transformation invariance, the sensitivity rankings were preserved. The workaround allows using the SALib library in

its current format until a better estimate of the δmeasure will be implemented.

Recent improvements in the GSA literature will be able to improve on such matters and the computational capabilities of GSA for LCA. For

instance, Derennes et al. (2019) and Plishke and Borgonovo (2020) have recently proposed updated estimation protocols, which should be consid-

ered for future work as they could allow estimating the δ-values without requiring partitioning and log-transformation, and with using approaches

that might be overall computationally less expensive. Such updates should be also adequately developed in software packages that are compatible

with open source LCA software. Other updates include the use of more stable estimation algorithms other than the kernel-based estimation used

here and the use of improved sampling strategies of the input space (see, e.g., Derennes et al., 2019). To exploit such recent updates and to keep LCA

practice up to date, regular close collaboration between LCA scientists and GSA developers is advised.
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